150 research outputs found

    An Inkjet Printed Chipless RFID Sensor for Wireless Humidity Monitoring

    Get PDF
    A novel chipless RFID humidity sensor based on a finite Artificial Impedance Surface (AIS) is presented. The unit cell of the AIS is composed of three concentric loops thus obtaining three deep and high Q nulls in the electromagnetic response of the tag. The wireless sensor is fabricated using low-cost inkjet printing technology on a thin sheet of commercial coated paper. The patterned surface is placed on a metal backed cardboard layer. The relative humidity information is encoded in the frequency shift of the resonance peaks. Varying the relative humidity level from 50% to 90%, the frequency shift has proven to be up to 270MHz. The position of the resonance peaks has been correlated to the relative humidity level of the environment on the basis of a high number of measurements performed in a climatic chamber, specifically designed for RF measurements of the sensor. A very low error probability of the proposed sensor is demonstrated when the device is used with a 10% RH humidity level discrimination

    Sub-ppm NO2 Detection through Chipless RFID Sensor Functionalized with Reduced SnO2

    Get PDF
    NO2 is an important environmental pollutant and is harmful to human health even at very low concentrations. In this paper, we propose a novel chipless RFID sensor able to work at room temperature and to detect sub-ppm concentration of NO2 in the environment. The sensor is made of a metallic resonator covered with NO2-sensitive tin oxide and works by monitoring both the frequency and the intensity of the output signal. The experimental measurements show a fast response (a few minutes) but a very slow recovery. The sensor could therefore be used for non-continuous threshold monitoring. However, we also demonstrated that the recovery can be strongly accelerated upon exposure to a UV source. This opens the way to the reuse of the sensor, which can be easily regenerated after prolonged exposure and recycled several times

    NFC Sensors Based on Energy Harvesting for IoT Applications

    Get PDF
    The availability of low-cost near-field communication (NFC) devices, the incorporation of NFC readers into most current mobile phones, and the inclusion of energy-harvesting (EH) capabilities in NFC chips make NFC a key technology for the development of green Internet of Things (IoT) applications. In this chapter, an overview of recent advances in the field of battery-less NFC sensors at 13.56 MHz is provided, and a comparison to other short-range RFID technologies is given. After reviewing power transfer in NFC, recommendations for the practical design of NFC-based sensor tags and NFC readers are made. A list of commercial NFC integrated circuits with energy-harvesting capabilities is also provided. A survey of recent battery-less NFC sensors developed by the group including soil moisture, water content, pH, color, and implanted NFC sensors is done

    Passively-coded embedded microwave sensors for materials characterization and structural health monitoring (SHM)

    Get PDF
    Monitoring and maintaining civil, space, and aerospace infrastructure is an ongoing critical problem facing our nation. As new complex materials and structures, such as multilayer composites and inflatable habitats, become ubiquitous, performing inspection of their structural integrity becomes even more challenging. Thus, novel nondestructive testing (NDT) methods are needed. Chipless RFID is a relatively new technology that has the potential to address these needs. Chipless RFID tags have the advantage of being wireless and passive, meaning that they do not require a power source or an electronic chip. They can also be used in a variety of sensing applications including monitoring temperature, strain, moisture, and permittivity. However, these tags have yet to be used as embedded sensors. By embedding chipless RFID tags in materials, materials characterization can be performed via multi-bit sensing; that is, looking at how the multi-bit code assigned to the response of the tag changes as a function of material. This thesis develops this method through both simulation and measurement. In doing so, a new coding method and tag design are developed to better support this technique. Furthermore, inkjet-printing is explored as a manufacturing method for these tags and various measurement methods for tags including radar cross-section and microwave thermography are explored --Abstract, page iii

    Application of Ultra-Wideband Technology to RFID and Wireless Sensors

    Get PDF
    Aquesta Tesi Doctoral estudia l'ús de tecnologia de ràdio banda ultraampla (UWB) per sistemes de identificació per radiofreqüència (RFID) i sensors sense fils. Les xarxes de sensors sense fils (WSNs), ciutats i llars intel•ligents, i, en general, l'Internet de les coses (IoT) requereixen interfícies de ràdio simples i de baix consum i cost per un número molt ampli de sensors disseminats. UWB en el domini temporal es proposa aquí com una tecnologia de radio habilitant per aquestes aplicacions. Un model circuital s'estudia per RFID d'UWB codificat en el temps. Es proposen lectors basats en ràdars polsats comercials amb tècniques de processat de senyal. Tags RFID sense xip (chipless) codificats en el temps son dissenyats i caracterizats en termes de número d'identificacions possible, distància màxima de lectura, polarització, influència de materials adherits, comportament angular i corbatura del tag. Es proposen sensors chipless de temperatura i composició de ciment (mitjançant detecció de permitivitat). Dos plataformes semipassives codificades en temps (amb un enllaç paral•lel de banda estreta per despertar el sensor i estalviar energia) es proposen com solucions més complexes i robustes, amb una distància de lectura major. Es dissenya un sensor de temperatura (alimentat per energia solar) i un sensor de diòxid de nitrogen (mitjançant nanotubs de carboni i alimentat per una petita bateria), ambdòs semipassius amb circuiteria analògica. Es dissenya un multi-sensor semipassiu capaç de mesurar temperatura, humitat, pressió i acceleració, fent servir un microcontrolador de baix consum digital. Combinant els tags RFID UWB codificats en temps amb tecnologia de ràdar de penetració del terra (GPR), es deriva una aplicació per localització en interiors amb terra intel•ligent. Finalment, dos sistemes actius RFID UWB codificats en el temps s'estudien per aplicacions de localització de molt llarg abast.Esta Tesis Doctoral estudia el uso de tecnología de radio de banda ultraancha (UWB) para sistemas de identificación por radiofrecuencia (RFID) y sensores inalámbricos. Las redes de sensores inalámbricas (WSNs), ciudades y casas inteligentes, y, en general, el Internet de las cosas (IoT) requieren de interfaces de radio simples y de bajo consumo y coste para un número muy amplio de sensores diseminados. UWB en el dominio temporal se propone aquí como una tecnología de radio habilitante para dichas aplicaciones. Un modelo circuital se estudia para RFID de UWB codificado en tiempo. Configuraciones de lector, basadas en rádar pulsados comerciales, son propuestas, además de técnicas de procesado de señal. Tags RFID sin chip (chipless) codificados en tiempo son diseñados y caracterizados en términos de número de identificaciones posible, distancia máxima de lectura, polarización, influencia de materiales adheridos, comportamiento angular y curvatura del tag. Se proponen sensores chipless de temperatura y composición de cemento (mediante detección de permitividad). Dos plataformas semipasivas codificadas en tiempo (con un enlace paralelo de banda estrecha para despertar el sensor y ahorrar energía) se proponen como soluciones más complejas y robustas, con una distancia de lectura mayor. Se diseña un sensor de temperatura (alimentado por energía solar) y un sensor de dióxido de nitrógeno (mediante nanotubos de carbono y alimentado por una batería pequeña), ambos semipasivos con circuitería analógica. Se diseña un multi-sensor semipasivo capaz de medir temperatura, humedad, presión y aceleración, usando un microcontrolador digital de bajo consumo. Combinando los tags RFID UWB codificados en tiempo y tecnología de radar de penetración de suelo (GPR), se deriva una aplicación para localización en interiores con suelo inteligente. Finalmente, dos sistemas activos RFID UWB codificados en tiempo se estudian para aplicaciones de localización de muy largo alcance.This Doctoral Thesis studies the use of ultra-wideband (UWB) radio technology for radio-frequency identification (RFID) and wireless sensors. Wireless sensor networks (WSNs) for smart cities, smart homes and, in general, Internet of Things (IoT) applications require low-power, low-cost and simple radio interfaces for an expected very large number of scattered sensors. UWB in time domain is proposed here as an enabling radio technology. A circuit model is studied for time-coded UWB RFID. Reader setups based on commercial impulse radars are proposed, in addition to signal processing techniques. Chipless time-coded RFID tags are designed and characterized in terms of number of possible IDs, maximum reading distance, polarization, influence of attached materials, angular behaviour and bending. Chipless wireless temperature sensors and chipless concrete composition sensors (enabled by permittivity sensing) are proposed. Two semi-passive time-coded RFID sensing platforms are proposed as more complex, more robust, and longer read-range solutions. A wake-up link is used to save energy when the sensor is not being read. A semi-passive wireless temperature sensor (powered by solar energy) and a wireless nitrogen dioxide sensor (enabled with carbon nanotubes and powered by a small battery) are developed, using analog circuitry. A semi-passive multi-sensor tag capable of measuring temperature, humidity, pressure and acceleration is proposed, using a digital low-power microcontroller. Combining time-coded UWB RFID tags and ground penetrating radar, a smart floor application for indoor localization is derived. Finally, as another approach, two active time-coded RFID systems are developed for very long-range applications

    Compact readout system for chipless passive LC tags and its application for humidity monitoring

    Get PDF
    The development of a contactless readout system for High Frequency (HF) tags and its application to relative humidity monitoring is presented. The system consists of a Colpitts oscillator circuit whose frequency response is determined by a built-in logic counter of a microcontroller unit. The novel readout strategy is based on the frequency response change due to the inductive coupling between the coil of the Colpitts oscillator and the load impedance of a parallel LC resonator tag, as a result of the variation of the humidity sensing capacitor. The frequency is monitored with a low cost microcontroller, resulting in a simple readout circuit. This passive LC tag has been directly screen-printed on a humidity-sensitive flexible substrate. The readout circuit experimental uncertainty as frequency meter was 4 kHz in the HF band. A linear temperature drift of (-1.52 ± 0.17) kHz/⁰C was obtained, which can be used to apply thermal compensation if required. The readout system has been validated as a proof of concept for humidity measurement, obtaining a significant change of about 260 kHz in the resonance frequency of the Colpitts oscillator when relative humidity varies from 10% to 90%, with a maximum uncertainty of ±3% (±2 SD). Therefore, the proposed readout system stands as a compact, low-cost, contactless solution for chipless HF tags that avoids the use of bulky and costly equipment for the analog reading of wireless passive LC sensors.This work was supported by project CTQ2016-78754-C2-1-R from the Spanish Ministry of Economics and Competitivity. P. Escobedo wants to thank the Spanish Ministry of Education, Culture and Sport (MECD) for a pre-doctoral grant (FPU13/05032)

    Development of sensors and non-destructive techniques to determine the performance of coatings in construction

    Get PDF
    The primary objective of this work was to examine and develop techniques for monitoring the degradation of Organically Coated Steel (OCS) in-situ. This included the detection of changes associated with the weathering to both the organic coating and metallic substrate. Initially, a review of current promising techniques was carried out however many were found to be unsuitable for this application and the adaptation of current techniques and the development of new techniques was considered. A brief concept investigation, based on initial testing and considerations, was used to determine a number of sensing techniques to examine. These included embedded, Resonant Frequency Identification (RFID), Magnetic Flux Leakage (MFL) and dielectric sensing. Each of these techniques were assessed for the application, prototyped, and tested against a range of samples to determine the accuracy and sensitivity of degradation detection provided. A range of poorly and highly durable coated samples were used in conjunction with accelerated weathering testing for this aim. Track based electronic printed sensors were presented as both a cut edge corrosion tracking and coating capacitance measurement method. While suffering somewhat from electrical paint compatibility issues both concepts showed merit in initial trials however the capacitive sensor ultimately proved insufficiently responsive to coating changes. The embedded, progressive failure-based, cut edge corrosion sensor was produced and tested in modern coating systems with moderate success. Novel applications of RFID and MLF techniques were considered and proved capable of detecting large changes in substrate condition due to significant corrosion. However, there was a lack of sufficient sensitivity when considering early-stage corrosion of durable modern OCS products. Finally, it was shown that a chipless antenna could be designed and optimised for novelly monitoring the changes to the dielectric properties of a paint layer due to degradation. However, ultimately this test, due to equipment requirements, lent itself more to lab testing than in-situ. Due to some of these limitations a different approach was considered in which the environmental factors influencing degradation were examined with the aim of relating these to performance across a building. It was observed that a combination of high humidity and the build-up of aggressive natural deposits contributed to high degradation rates in sheltered regions, such as building eaves, where microclimates were created. The build-up of deposits and their effect was presented as a key degradation accelerant during in-use service. A unique numerical simulation approach was developed to predict the natural washing, via rain impact and characteristics of the building analysed. This approach showed promise for determining areas unlikely to be naturally washed, and therefore subjected to a degradation accelerating, build-up of deposits. Given these understandings coated wetness sensors were considered as a realistic live-monitoring device capable of determining deposit build up and ultimately OCS lifetime

    Development of a chipless RFID based aerospace structural health monitoring sensor system

    Get PDF
    Chipless Radio Frequency Identification (RFID) is modern wireless technology that has been earmarked as being suitable for low-cost item tagging/tracking. These devices do not require integrated circuitry or a battery and thus, are not only are cheap, but also easy to manufacture and potentially very robust. A great deal of attention is also being put on the possibility of giving these tags the ability to sense various environmental stimuli such as temperature and humidity. This work focusses on the potential use of chipless RFID as a sensor technology for aerospace Structural Health Monitoring. The project is focussed on the sensing of mechanical strain and temperature, with an emphasis placed on fabrication simplicity, so that the final sensor designs could be potentially fabricated in-situ using existing printing technologies. Within this project, a variety of novel chipless RFID strain and temperature sensors have been designed, fabricated and tested. A thorough discussion is also presented on the topic of strain sensor cross sensitivity, which places emphasis on issues like, transverse strain, dielectric constant variations and thermal swelling. Additionally, an exploration into other key technological challenges was also performed, with a focus on challenges such as: accurate and reliable stimulus detection, sensor polarization and multi-sensor support. Several key areas of future research have also been identified and outlined, with aims related to: Enhancing strain sensor fabrication simplicity, enhancing temperature sensor sensitivity and simplicity and developing a fully functional interrogation system

    Advanced Radio Frequency Identification Design and Applications

    Get PDF
    Radio Frequency Identification (RFID) is a modern wireless data transmission and reception technique for applications including automatic identification, asset tracking and security surveillance. This book focuses on the advances in RFID tag antenna and ASIC design, novel chipless RFID tag design, security protocol enhancements along with some novel applications of RFID
    corecore