1,775 research outputs found

    CHANCE: A FRENCH-GERMAN HELICOPTER CFD-PROJECT

    Get PDF
    The paper gives an overview of the CHANCE research project (partly supported by the French DPAC and DGA and the German BMWA) which was started in 1998 between the German and French Aerospace Research Centres DLR and ONERA, the University of Stuttgart and the two National Helicopter Manufacturers, Eurocopter and Eurocopter Deutschland. The objective of the project was to develop and validate CFD tools for computing the aerodynamics of the complete helicopter, accounting for the blade elasticity by coupling with blade dynamics. The validation activity of the flow solvers was achieved through intermediate stages of increasing geometry and flow modelling complexity, starting from an isolated rotor in hover, and concluding with the time-accurate simulation of a complete helicopter configuration in forward-flight. All along the research program the updated versions of the CFD codes were systematically delivered to Industry. This approach was chosen to speed up the transfer of capabilities to industry and check early enough that the products meet the expectations for applicability in the industrial environment of Eurocopter

    On computations of the integrated space shuttle flowfield using overset grids

    Get PDF
    Numerical simulations using the thin-layer Navier-Stokes equations and chimera (overset) grid approach were carried out for flows around the integrated space shuttle vehicle over a range of Mach numbers. Body-conforming grids were used for all the component grids. Testcases include a three-component overset grid - the external tank (ET), the solid rocket booster (SRB) and the orbiter (ORB), and a five-component overset grid - the ET, SRB, ORB, forward and aft attach hardware, configurations. The results were compared with the wind tunnel and flight data. In addition, a Poisson solution procedure (a special case of the vorticity-velocity formulation) using primitive variables was developed to solve three-dimensional, irrotational, inviscid flows for single as well as overset grids. The solutions were validated by comparisons with other analytical or numerical solution, and/or experimental results for various geometries. The Poisson solution was also used as an initial guess for the thin-layer Navier-Stokes solution procedure to improve the efficiency of the numerical flow simulations. It was found that this approach resulted in roughly a 30 percent CPU time savings as compared with the procedure solving the thin-layer Navier-Stokes equations from a uniform free stream flowfield

    Towards numerical simulation of yarn insertion on air-jet weaving looms

    Get PDF
    In this research a structural solver and flow solver are coupled to simulate the motion of a nylon yarn as it is launched into the atmosphere by a main nozzle of an air-jet weaving loom. The high-speed air flow, large displacements of the yarn, 3D-nature of the problem and the contact between yarn and nozzle wall pose substantial challenges to both solvers. Furthermore, the large displacements necessitate a two-way coupling which drastically increases the computational time required. In fluid-structure interaction simulations, the flexible structure is often modelled using continuum elements. However, in this work, the use of beam theory to model the yarn is investigated. Switching to beam theory allows reducing the computational time required for the structural solver, but requires adaptations to the fluid-structure interaction code so that forces are projected onto the centreline and centreline displacements are converted into 3D displacements of the surface nodes. To validate the use of beam elements, a structural simulation is performed in which a section of the yarn is mechanically pulled through the main nozzle. Afterwards the correct functioning of the beam elements is tested by performing a fluid-structure interaction simulation on a 3D, cantilevered beam in cross-flow. Finally, a simulation is performed in which a nylon yarn (diameter 0.72 mm) is unwound by the main nozzle air flow (5 bar gauge) and launched into the atmosphere. The gain in computational time by switching to beam elements is evaluated

    Development and Validations of a 3-D Numerical Wave Model in Cartesian Grid System Using Level Set Method

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    Simulating water-entry/exit problems using Eulerian-Lagrangian and fully-Eulerian fictitious domain methods within the open-source IBAMR library

    Full text link
    In this paper we employ two implementations of the fictitious domain (FD) method to simulate water-entry and water-exit problems and demonstrate their ability to simulate practical marine engineering problems. In FD methods, the fluid momentum equation is extended within the solid domain using an additional body force that constrains the structure velocity to be that of a rigid body. Using this formulation, a single set of equations is solved over the entire computational domain. The constraint force is calculated in two distinct ways: one using an Eulerian-Lagrangian framework of the immersed boundary (IB) method and another using a fully-Eulerian approach of the Brinkman penalization (BP) method. Both FSI strategies use the same multiphase flow algorithm that solves the discrete incompressible Navier-Stokes system in conservative form. A consistent transport scheme is employed to advect mass and momentum in the domain, which ensures numerical stability of high density ratio multiphase flows involved in practical marine engineering applications. Example cases of a free falling wedge (straight and inclined) and cylinder are simulated, and the numerical results are compared against benchmark cases in literature.Comment: The current paper builds on arXiv:1901.07892 and re-explains some parts of it for the reader's convenienc

    Hysteretic behavior of spatially coupled phase-oscillators

    Get PDF
    Motivated by phenomena related to biological systems such as the synchronously flashing swarms of fireflies, we investigate a network of phase oscillators evolving under the generalized Kuramoto model with inertia. A distance-dependent, spatial coupling between the oscillators is considered. Zeroth and first order kernel functions with finite kernel radii were chosen to investigate the effect of local interactions. The hysteretic dynamics of the synchronization depending on the coupling parameter was analyzed for different kernel radii. Numerical investigations demonstrate that (1) locally locked clusters develop for small coupling strength values, (2) the hysteretic behavior vanishes for small kernel radii, (3) the ratio of the kernel radius and the maximal distance between the oscillators characterizes the behavior of the network
    • …
    corecore