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HYSTERETIC BEHAVIOR OF SPATIALLY COUPLED PHASE-OSCILLATORS

Eszter Fehér1, 2, Balázs Havasi-Tóth3 and Tamás Kalmár-Nagy4

Abstract. Motivated by phenomena related to biological systems such as the synchronously flash-
ing swarms of fireflies, we investigate a network of phase oscillators evolving under the generalized
Kuramoto model with inertia. A distance-dependent, spatial coupling between the oscillators is con-
sidered. Zeroth and first order kernel functions with finite kernel radii were chosen to investigate the
effect of local interactions. The hysteretic dynamics of the synchronization depending on the coupling
parameter was analyzed for different kernel radii. Numerical investigations demonstrate that (1) lo-
cally locked clusters develop for small coupling strength values, (2) the hysteretic behavior vanishes for
small kernel radii, (3) the ratio of the kernel radius and the maximal distance between the oscillators
characterizes the behavior of the network.
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1. Introduction

Synchronization is a collective behavior observed in many fields. It is a result of the interaction between
oscillators capable of adjusting their rhythms/natural frequencies. To model synchronization of coupled phase
oscillators the Kuramoto model proposed in 1975 [1] is often used, for example, to investigate the collective
behavior of lasers [2], neurons [3–5], social groups [6] and even crickets [7]. This model was also used to
describe the interesting phenomena related to Pteroptyx malaccae, a species of firefly capable of synchronous
firing with almost no phase lag [8]. This can be attributed to this insect’s ability to alter its flashing frequency
in response to external stimulus [9]. Motivated by behavior of fireflies, the original first order Kuramoto model
was later extended with an inertial term by Tanaka et al. [10] which allows for the adaptation of the flashing
frequency of one firefly. They showed that in a fully coupled system, the degree of synchrony depends on the
coupling strength between the oscillators in a hysteretic manner. The critical coupling strength necessary for
the system to transition from the incoherent state to the coherent state is larger than the critical coupling
strength resulting in the breaking of synchrony. According to Tanaka et al., the coupling strength of a firefly
depends on the ratio of the brightness of the firing and that of the environment. This can lead to the swarm
dynamics to exhibit hysteretic behavior. As a result, if the brightness of the background is too large, the fireflies
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are unable to synchronize. However, the model suggests that by increasing the brightness of the background of
a synchronously flashing swarm, they can also maintain synchrony in a much brighter environment.

The generalized model is used to describe the synchronization of Josephson junctions [11] and power-grids
[12–17]. The hysteretic behavior in the model is affected by many factors. In the original Kuramoto model, the

coupling between the oscillators is usually considered to be undirected: they are either connected or not, which
is a valid model for some applications such as power grids. Direction of current research include considering
the topology of the network [18], the heterogeneity of the network connections [19], the effect of dilution [15,20]
and assortativity [21]. Heterogeneity can be also considered by assuming time-delay or frequency-weighted
coupling [22, 23]. Spatial distribution of the oscillators can also result in the delay or weakening of the signal.
As it was reported in [24], P. malaccae has a 3 feet range of vision which advocates the assumption of local
interactions. The distance-dependency of the coupling strength was taken into account in the original Kuramoto
model by using kernel functions [25,26] and it was also investigated for the second order model by [16,17]. Spatial
coupling of oscillators is also examined in [27] considering the one dimensional coupling of neighboring pendula.
Although homogeneous coupling was considered, the spatial coupling resulted in chimera states and symmetry
breaking.

In this work, we numerically analyzed the hysteretic behavior of spatially coupled phase oscillators described
by the generalized Kuramoto-model with inertia. The paper is structured as follows. In the next Section, we
briefly describe the model and our approach to include spatial coupling. We describe the simulations in Section
3, which is followed by the report of our main results in Section 4. Finally, in Section 5, we summarize our
observations and discuss some possible applications.

2. The phase-oscillator model

2.1. Coupled oscillators with inertia

Also known as the damped driven pendulum model, the system of coupled oscillators with the inertial term
extension has been introduced and numerically investigated by [10]. The system with N mutually coupled
oscillators reads as follows:

mθ̈i + θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi) i = 1, .., N, (1)

where θi(t) and Ωi are the phase and natural frequency of the ith oscillator respectively, K is the coupling
strength parameter expressing how quickly an oscillator can adapt to (the resultant of the) external stimuli,
and m is the inertial constant.

The global synchronization of the system of oscillators can be characterized by the complex order parameter

ReiΦ =

N∑
j=1

eiθj , (2)

where magnitude of the complex parameter R – hereinafter referred to as order parameter – describes the level
of synchronization, Φ = 1/N

∑
j θj is the arithmetic mean of the θ’s. Using (2), R = 1 corresponds to the

complete synchronization (Φ = θj) and R = 0 corresponds to an incoherent state of the oscillators.
Varying the coupling strength K in the system leads to a hysteretic behavior in the model. For small K

values, the phases of the oscillators are incoherently distributed and R ≈ 0. Increasing K leads to the appearance
of phase-locked oscillators and eventually the system reaches a coherent state. However, decreasing K from a
completely synchronized state results in a higher level of synchronization for smaller K values.
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2.2. Coupling with spatial collocation

The second term on the right-hand side of Eq. (1) represents the Kuramoto-synchronization term, which is
often modified with the adjacency matrix Aij so that

K

N

N∑
j=1

Aij sin(θj − θi), (3)

where the value of Aij is 1 if and only if the ith and jth oscillators are coupled, and 0 otherwise [28]. In
case Aij 6= 1 ∀ i, j, the system is diluted. It is known, that some diluted systems exhibit a hysteretic behavior
similar to the fully coupled case. The hysteretic dynamics of randomly diluted systems has recently been
investigated [15]. However, even in case of the modified model Eq. (3), former investigations neglect the effect
of spatial distribution on the hysteretic phase-synchronization dynamics.

As a generalization of the mean in Eqs. (1) and (3), we propose a spatial averaging technique for the com-
putation of pairwise coupling strength as a function of internodal distances and local neighborhoods. Systems
with spatially distributed phase-oscillators may require special treatment depending on the spatial distribution.
Recently [25] and [26] investigated the phase-oscillator model without inertial term using wavelet-like and bell-
shaped kernel functions, respectively. Both works consider the kernel as a function of the internodal distances
for the weighting of the coupling strength.

We consider a set of N spatially distributed nodes on the plane with positions ri with internodal Euclidean
distances dij = |rij | = |ri − rj |. Using the nodal positions, we define the phase assigned to each node as

θi = θ(ri). (4)

In order for the pairwise coupling strength to be scaled as a function of the distances, we define a spherically
symmetric kernel-function Wij = W (dij ,∆) with (finite or infinite) smoothing radius ∆ and construct the
weighted average for the Kuramoto phase-synchronizer term as

K

ni∑
j=1

sin(θj − θi)Ŵij , (5)

Ŵij =
Wij∑ni

j=1Wij
, (6)

where ni is the number of neighbors within the kernel radius ∆ around the ith node. The jth oscillator is
a neighbor of the jth oscillator if it is in the ∆ neighborhood of the ith oscillator, i.e. if dij ≤ ∆. The
normalization (6) is also known as Shepard’s correction of the weighted summation [29]. As a result, instead of
Eq. (1) we consider the following equation

θ̈i
m

+ θ̇i = Ωi +K

ni∑
j=1

sin(θj − θi)Ŵij i = 1, .., N, (7)

where K is the coupling parameter. Note, that in Eq. (7), the coupling parameter of the ith and jth oscillator
is weighted with the kernel function, therefore the actual coupling strength between the oscillators is varying.

The model described by Eq. (7) is a generalization of Eq. (1). Choosing Wij = 1, in the ∆ → ∞ limit we
have

∑ni

j=1Wij = N and Eq. (7) reproduces the conventional Kuramoto model. Consequently, we keep the

definition of the order parameter R (Eq. (2)) to describe the level of synchronization of the spatially coupled
system.
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3. Simulations

We implemented the model in Nauticle, the general purpose particle-based simulation tool [30]. Facilitating
the implementation and application of meshless numerical methods, Nauticle provides the sufficient flexibility
in building arbitrary mathematical models with free-form definition of governing equations. Being a meshless
open source simulation package, it is capable to solve large system of coupled ordinary differential equations,
hence, the numerical model discussed in the present work can be configured easily in terms of both the equations
and the geometrical layout.

Although the proposed model is suitable for arbitrary spatial distribution of the oscillators, as an initial
study, unless stated otherwise, we investigate N = n2 coupled phase oscillators placed on a two-dimensional
equidistant square-grid with grid cell size ∆x and of edge length L = (n − 1)∆x. Consequently, the position
vector of an oscillator is rjk = ((j − 1)∆x, (k − 1)∆x), where j, k = 1, ..., n. Each oscillator is assigned with a
scalar index parameter i, such that i = (k − 1)n+ j.

Following [10], we chose an evenly spaced natural frequency distribution on the interval of [−ΩM ,ΩM ] such
that

Ωi = −ΩM +
2(i− 1)ΩM
N − 1

, (8)

where ΩM is a constant. We considered two types of initial conditions of Eq. (7), the uniformly diffused (IC 1)
taking

θi(t = 0) = 2π
i

N
,

θ̇i(t = 0) = Ωi,
(9)

and the perfectly synchronized (IC 2), where

θi(t = 0) = 0,

θ̇i(t = 0) = 0.
(10)

In the present work we performed the simulations with two different, finite width spatial kernel-functions
with a kernel radius ∆. The zeroth order kernel-function is constant in the neighborhood of the ith oscillator

W 0
ij =

{
1 if dij ≤ ∆,

0 if dij > ∆,
(11)

and the first order kernel-function depends linearly on the distance between the ith and jth oscillators

W 1
ij =

{
1− dij

∆ , if dij ≤ ∆,

0, if dij > ∆,
(12)

consequently it is maximal at the center and decreases toward the boundary of the neighborhood.
During the solution we applied the classic fourth order Runge-Kutta scheme for numerical integration of the

system defined by Eq. (7). We fixed the time step size ∆t = 0.1 in all simulations. On the one hand, to let the
value of R reach a developed state, we run all cases for 500 in simulation time and in order to eliminate the
oscillations of R in time, we computed the temporal average of the order parameter R̄ of the last 2000 steps.
Also, an extended simulation of 10000 steps had been performed to check if the results sufficiently converged
but no significant changes were observed.
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4. Results

Since the hysteretic behavior of the fully coupled system of oscillators with inertia was studied in [10], it is
known that the temporal development of the order parameter R may strongly depend on the initial conditions.
In this section we present our numerical investigation in terms of the effects of the finite width spatial covering
on the synchronization of the spatially distributed oscillators. We kept ΩM = 5 and the inertia m = 0.85
constant in all simulation cases and varied the kernel radii and the spatial distribution.

As a measure of the distance-based dilution we introduce a dimensionless parameter q, the relative kernel
radius

q :=
∆

dmaxij

(13)

expressing the ratio between the kernel radius and dmaxij the maximal Euclidean distance between two oscillators

of the system. In case of the zeroth order kernel-function W 0
ij and q ≥ 1, i.e. ∆ > L the numerical setup

reproduces the fully coupled second-order model (Eq. (1)).

4.1. The effect of spatial coupling

In order to present the local synchronization effects, we solved the equation for IC 1 and IC 2 for three
different values of q and both zeroth and first order kernel-functions (Eqs. (11) and (12), respectively).

If q is large enough (Figs. 1A-D), the spatially coupled model exhibits similar hysteretic behavior as the
fully-coupled model. However, spatial coupling leads to the appearance of a transitional state of the system (Fig.
1). Starting from an incoherent state (IC 1) and a small coupling parameter K, the average order parameter R̄
stays near zero. As K is increased, at a critical point KC1 the synchronization begins, i.e. R̄ start to increase.
Further increasing K leads to R̄ reaching a maximum and it stays constant for a range of K. However it
decreases before transitioning to the globally coherent state by starting to increase again at a critical value of
the coupling parameter KC2. Therefore in case of IC 1, the globally coherent state is reached through two
critical points KC1 and KC2, the beginning of the local and global synchronization, respectively. In case of IC
2, i.e. starting from a coherent state and decreasing the value of K, the system either jumps into an incoherent
state (Fig. 1A) or the transitional state corresponding to locally locked clusters (Fig. 1B-D) at a bifurcation
point KC3. For K < KC3 there is almost no difference between IC 1 and IC 2. In particular, if the maximal
coupling strength is small enough, the local behavior dominates.

Under a critical value of the relative kernel radius q, the local and global behavior are separated and the
system exhibits no hysteresis (Figs. 1E-F), i.e. there is almost no difference between IC 1 and IC 2. Moreover,
there is no constant part of the R̄−K diagram. Decreasing q increases KC2 and KC3 and decreases KC1. For
q ≈ 0.14 (Figs. 1E-F) the synchronization starts near K ≈ 0.

There is no qualitative difference between the results calculated with the applied kernel-functions. However,
for constant ∆, W 1

ij leads to a higher level of dilution compared to W 0
ij . As a result, having the same kernel

radii, the range of the partial synchronization (i.e. KC1 ≤ K ≥ KC2) is always larger when using a first order
than a zeroth order kernel-function. Interestingly, the average order parameter always decreased before the
global synchronization began at KC2 in all of our simulations.

The transitional state of the system is a result of the spatial coupling and the natural frequency distribution.
Spatial coupling was also considered for 2D lattices by [16] taking randomly distributed natural frequency values.
While the system showed hysteresis there was no drop in the order parameter. Nevertheless, they observed no
hysteresis for large system sizes, which is analogous with our results in Fig. 1e and f. Similar results was also
reported in [20] for randomly diluted systems, showing that increasing dilution decreases the hysteretic region
while increasing the mass leads to the opposite. In Fig. 1 KC2−KC3 decreases for decreasing q and eventually
it reaches zero.
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Figure 1. Comparison of the hysteretic loops of synchronization in case of different kernel
radii. Results with zeroth and first order kernel-functions are shown on the left and right,
respectively.
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Figure 2. States of a system of spatially coupled oscillators depending on the coupling pa-
rameter K. The relative kernel radius is q ≈ 0.46, taking ∆ = 0.6 and ∆x = 0.05, N = 400
applying first order kernel-function. a) Time series of the order parameter R for different values
of K calculated for IC 1. For KC1 < K < KC2, R has an oscillatory nature. b) Final phases of
the oscillators in polar form at t = 500s illustrating the different states of the system calculated
for IC 1. c) States of the system and the time average R̄ of the order parameter depending on
the coupling parameter K.
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Figure 3. Average frequency
¯̇
θ in the function of the oscillator index i and the coupling strength K.

4.2. States of the system

We analyzed the states of the spatially coupled model depending on the coupling parameter K in case q is
large enough for the system to exhibit the hysteretic behavior. Analysis of the solutions of Eq. 7 in time was
carried out by taking uniformly diffused initial conditions (IC 1) and first order kernel-function W 1

ij with fixed
kernel radius ∆ = 0.6 (q ≈ 0.46) and ∆x = 0.05. By examining the time evolution of the order parameter
R (Fig. 2A) and the phases of the individual oscillators (Fig. 2B), three states of the system in the R̄ − K
diagram (Fig. 2C) was found. 2B is only a visualization of the data and the distances measured on the circle
are independent of the strength of the interactions. Fig. 3 illustrates the different states by showing the average
frequency in the function of the oscillator index and the coupling strength. Fig. 4 shows the average frequency
in the function of the oscillator index reordered for increasing frequency values for K values corresponding to
the different states. Starting from the incoherent state, the system goes through transitional states with locally
locked oscillators until it reaches a globally locked state. The transitional state is further divided into three parts
characterized by different frequency distribution patterns (Fig. 4). Note, that the states of the system strongly
depend on the natural frequency distribution (Eq. 8) which in this case induces a correlation between the index

i and θ̇i.
If 0 < K < KC1, the system is in the incoherent state. Since we keep the natural frequency distribution

defined by Eq. (8) and it is a dominant part of the equation, there are two sub-populations in the initial
configuration (Ωi < 0 and Ωi ≥ 0). The order parameter R varies in time in a random-like manner, but it
remains close to zero (Fig. 2A, K = 2) and the phases of the oscillators are heterogeneous (Fig. 2B K = 2).
The fluctuations of R in time can be attributed to the finite number of oscillators in the system. The average
frequency of the oscillators is different for each oscillators (Fig. 3). Increasing K, the average order parameter
R̄ stays near zero until reaching a KC1 value. Above KC1, the degree of synchronization gradually increases.
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Figure 4. Average frequency
¯̇
θ of the oscillators for different K values, ordered for increasing

frequency values. j is the oscillator index after reordering for each K values. For small K
values, the system is in an unsynchronized state (K = 1), then for increasing K locally locked
clusters develop and merge (K = 4 and K = 5) until there are only two separated clusters
(K = 11) which start to merge (K = 14) and finally there is only one cluster (K = 18).

If KC1 < K < KC2 locally locked clusters develop and the system start to transition to the globally locked
state. Increasing K from KC1, the locally locked clusters grow and merge. This process continues, until two
well separable locally locked clusters develop at a KT1 value. This state of the system corresponds to a travelling
wave. Between KT1 and KT2, the average order parameter reaches a maximum max(RC) and it stays constant
while R oscillates in time (Fig. 2A, K = 8). This state is a standing wave and it remains until KC2. Note, that
the overlap of the clusters neither result in their interaction nor global synchronization. Above a KT2 > KT1

value, the clusters start to affect each other leading to their merge (Fig. 2B, K = 14) but the system still
corresponds to a standing wave. While R is still oscillating in time (Fig. 2A, K = 14), the merging of the
local clusters is indicated by a decrease in the maximal value of the order parameter. Further increasing K,
the system rapidly jumps into a globally locked state in a bifurcation point, at a KC2 value. At this point, the
clusters merge as one of them take over the domination and the average frequency becomes zero (Fig. 3).

If KC2 < K, there is only one cluster, the system is in a globally locked state (Fig. 2B, K = 20) and R is
constant in time (Fig. 2A, K = 20). As K is further increased, the synchronization and R̄ gradually increases
(Fig. 2A-B, K = 200) and the system seemingly reaches the globally coherent state at a large value of K. In
contrast to the fully coupled model, where R ≈ 1 is reached at moderate K, here the results imply, that R̄→ 1
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Figure 5. Average order parameter in the function of the coupling strength for the sub-
populations corresponding to Ωi < 0 (R-) and Ωi ≥ 0 (R+) for IC 1 taking the same parameters
as in Fig. 2c.
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Figure 6. Average frequency in the function of the coupling strength for the sub-populations
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¯̇
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θi+) for IC 1 taking the same parameters as in Fig.

2c.

asymptotically. Accordingly, spatial coupling can hinder full synchronization for large system sizes in case the
coupling strength of the individual oscillators is limited.

We also checked the solutions of the model for IC 2. For 0 ≤ K ≥ KC3, the system has the same states as
for IC 1. Above KC3, there is one globally locked cluster with constant R in time.

Due to the initial condition regarding the natural frequency distribution, it is worth to handle the sub-
populations corresponding to Ωi < 0 and Ωi ≥ 0 separately. Figs. 5 and 6 illustrate the order parameter and
the average frequency for the different sub-populations. According to the diagrams, the two sub-populations
behave symmetric as K is increased.
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4.3. Effect of the relative kernel radius

In Fig. 1, ∆ and q were varied simultaneously in the different simulations. The diagrams show varying values
of KC1,KC2,KC3 and different max(RC) in the locally locked state. To examine the effect of the parameters
separately, we calculated R̄ versus K for both IC 1 and IC 2 keeping either the number of oscillators in a
neighborhood of a general point constant (i.e. keeping ∆ and ∆x constant) or the relative kernel radius q
fixed. Since, there is no qualitative difference between the first and zeroth order kernel-functions, we applied
W 1
ij in all cases. First, we considered three systems of oscillators with different domain sizes, but the same
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Figure 7. Average order parameter R̄ versus the coupling parameter K calculated for IC 1 and
IC 2 fixing the kernel radius ∆ = 0.5 and varying the domain size L1 = 0.5, L2 = 0.75, L3 = 1
(q1 ≈ 0.7, q2 ≈ 0.47, q3 ≈ 0.35), applying the first order kernel W 1

ij .

number of particles in a neighborhood of a general point of the domain. The domain sizes and the particle
numbers were chosen to be L1 = 0.5, N1 = 100, L2 = 0.75, N2 = 225 and L3 = 1, N3 = 400. The grid cell
size and the kernel radius were ∆x = 0.05 and ∆ = 0.5 in all systems. Accordingly, the relative kernel radii
were q1 ≈ 0.7, q2 ≈ 0.47, q3 ≈ 0.35. As we can see in Fig. 7, although the number of oscillators in a general
in-domain neighborhood is the same in all cases, both the local and global parts of the diagram are affected. In
case of a smaller relative kernel radius, the local synchronization starts at smaller values of K and a larger K is
necessary for the onset of the global synchronization. Furthermore, the maximal order max(RC) of the system
in the locally synchronized state is higher for q2. Smaller relative kernel radius q results in a larger range of K
corresponding to the locally synchronized states (i.e. |KC1−KC2| increases), but it also requires a larger value
of KC3 for the global synchronization.

Next, we fixed q and ∆x = 0.05 by choosing L1 = ∆1 = 0.5, N1 = 100, L2 = ∆2 = 0.75, L3 = ∆3 = 1, N3 =
400 (q1 = q2 = q3 =≈ 0.7). Fig. 8 shows, that there is only a small difference between the locations of KC1

and KC3, but the transitional state is not affected. The onset of the local synchronization requires larger K as
the system size is increased, but the global synchronization can be maintained for smaller values of K. Similar
dependencies on the system size were reported in [10,15] for the fully coupled and diluted systems, respectively.
These results suggest, that the R̄−K diagram is characterized by q and the local behavior is not affected by the
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system size. The maximal order max(RC) of the system in the locally synchronized state was also independent
of the system size in our simulations.
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Figure 9. Maximum of the average order parameter in the locally locked state max(RC)
depending on q fixing L = 1,∆x = 0.05, N = 400, applying first order kernel-function. For the
simplicity, the diagram was computed assuming IC 1.



TITLE WILL BE SET BY THE PUBLISHER 13

Finally, we computed the maximal value of the order parameter in the locally locked state max(RC) for
KC1 < K < KC2 depending on q, keeping L = 1,∆x = 0.05, N = 400 fixed and applying first order kernel-
function. According to Fig. 9, the max(RC)(q) function has a maximum. Consequently, there is an optimal
value of the relative kernel radius in terms of the local synchronization. If q is too large, the local behavior
dominates and if the kernel radius is too small compared to the domain size, the local synchronization is
hindered.

5. Conclusion

In summary, we carried out a numerical study to examine the effect of the spatial coupling of phase oscillators
in the Kuramoto model with inertia. A finite size system was considered with compact zeroth and first order
kernel functions to incorporate distance-dependent coupling strength between the oscillators. A dimensionless
parameter, the relative kernel radius q was introduced, expressing the ratio between the kernel radius and the
maximal distance between the ith and jth oscillators. We examined the order of the global synchronization
depending on the coupling parameter for different q values. In the case of large kernel radii, the model gives
back the original, fully coupled model.

We implemented the model in the Nauticle general purpose particle-based simulation tool [30] and examined
the hysteretic behavior of the spatially coupled model. We fixed the domain size and investigated the behavior
for different values of q. For a range of q, the system exhibits a hysteretic behavior depending on the initial
conditions and the coupling parameter, but for a range of K values locally locked clusters develop and dominate.
In case of the presence of the local clusters, the order parameter R is oscillates in time. We pointed out, that
this oscillations can be attributed to locally locked clusters that develop and break up through some transitional
states. If q is small enough, the system exhibits no hysteresis, which agree with previous works showing that
reducing the number of links between the oscillators lead to the vanish of the hysteretic behavior [15]. Analysis
of the parameters in the problem showed, that the local behavior is characterized mainly by the relative kernel
radius q, which has an optimal value leading to a maximal value of the synchronization in the locally locked
state.

Our results suggest, that large systems of oscillators having a distance limited vision, such as the fireflies
can develop locally synchronized clusters without transitioning into global synchronization. The proposed
framework can be used to model more complex spatially coupled systems. Some bacteria such as Myxococcus
xanthus [31] or systems of microgears [32] exhibit not only social interactions but also complex mechanical
behavior. By the implementation of the model into Nauticle it is possible to consider a mathematical coupling
of the Kuramoto model with other equations, such as mechanical models to examine complex systems of spatially
moving oscillators.
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