10,448 research outputs found

    Intervalence (Charge-Resonance) Transitions in Organic Mixed-Valence Systems. Through-Space versus Through-Bond Electron Transfer between Bridged Aromatic (Redox) Centers

    Get PDF
    Intervalence absorption bands appearing in the diagnostic near-IR region are consistently observed in the electronic spectra of mixed-valence systems containing a pair of aromatic redox centers (Ar•+/Ar) that are connected by two basically different types of molecular bridges. The through-space pathway for intramolecular electron transfer is dictated by an o-xylylene bridge in the mixed-valence cation radical 3•+ with Ar = 2,5-dimethoxy-p-tolyl (T), in which conformational mobility allows the proximal syn disposition of planar T•+/T redox centers. Four independent experimental probes indicate the large through-space electronic interaction between such cofacial Ar•+/Ar redox centers from the measurements of (a) sizable potential splitting in the cyclic voltammogram, (b) quinonoidal distortion of T•+/T centers by X-ray crystallography, (c) “doubling” of the ESR hyperfine splittings, and (d) a pronounced intervalence charge-resonance band. The through (br)-bond pathway for intramolecular electron transfer is enforced in the mixed-valence cation radical 2a•+ by the p-phenylene bridge which provides the structurally inflexible and linear connection between Ar•+/Ar redox centers. The direct comparison of intramolecular rates of electron transfer (kET) between identical T•+/T centers in 3•+ and 2a•+indicates that through-space and through-bond mechanisms are equally effective, despite widely different separations between their redox centers. The same picture obtains for 3•+ and 2a•+from theoretical computations of the first-order rate constants for intramolecular electron transfer from Marcus−Hush theory using the electronic coupling elements evaluated from the diagnostic intervalence (charge-transfer) transitions. Such a strong coherence between theory and experiment also applies to the mixed-valence cation radical 7•+, in which the aromatic redox S center is sterically encumbered by annulation

    Crystallographic Distinction between “Contact” and “Separated” Ion Pairs:  Structural Effects on Electronic/ESR Spectra of Alkali-Metal Nitrobenzenides

    Get PDF
    The classic nitrobenzene anion-radical (NB-• or nitrobenzenide) is isolated for the first time as pure crystalline alkali-metal salts. The deliberate use of the supporting ligands 18-crown-6 and [2.2.2]cryptand allows the selective formation of contact ion pairs designated as (crown)M+NB-•, where M+ = K+, Rb+, and Cs+, as well as the separated ion pair K(cryptand)+NB-•both series of which are structurally characterized by precise low-temperature X-ray crystallography, ESR analysis, and UV−vis spectroscopy. The unusually delocalized structure of NB-• in the separated ion pair follows from the drastically shortened N−C bond and marked quinonoidal distortion of the benzenoid ring to signify complete (95%) electronic conjugation with the nitro substituent. On the other hand, the formation of contact ion pairs results in the substantial decrease of electronic conjugation in inverse order with cation size (K+ \u3e Rb+) owing to increased localization of negative charge from partial (NO2) bonding to the alkali-metal cation. Such a loss in electronic conjugation (or reverse charge transfer) may be counterintuitive, but it is in agreement with the distribution of odd-electron spin electron density from the ESR data and with the hypsochromic shift of the characteristic absorption band in the electronic spectra. Most importantly, this crystallographic study underscores the importance of ion-pair structure on the intrinsic property (and thus reactivity) of the component ions - as focused here on the nitrobenzenide anion

    X-ray Crystal Structures and the Facile Oxidative (Au−C) Cleavage of the Dimethylaurate(I) and Tetramethylaurate(III) Homologues

    Get PDF
    Dimethylaurate(I) has been prepared as the crystalline tetrabutylammonium salt for comparison with the known tetramethylaurate(III) analogue. The linear structure of dimethylaurate(I) and the square-planar structure of tetramethylaurate(III) have both been confirmed by X-ray crystallography. One-electron oxidation of dimethylaurate(I) by either ferrocenium or arenediazonium cations produces the metastable dimethylgold(II) intermediate, which can be trapped as the paramagnetic 9,10-phenanthrenequinone (PQ) adduct. Otherwise, dimethylgold(II) is subject to rapid reductive elimination of ethane and affords metallic gold (mirror). The analogous oxidation of tetramethylaurate(III) by ferrocenium, arenediazonium, or nitrosonium cations also proceeds via electron transfer to generate the putative tetramethylgold(IV) intermediate. The highly unstable (CH3)4AuIV spontaneously undergoes homolytic cleavage to produce methyl radical and the coordinately unsaturated trimethylgold(III), which can be intercepted by added triphenylphosphine to afford Me3AuIIIPPh3

    Structural Properties, Order-Disorder Phenomena and Phase Stability of Orotic Acid Crystal Forms

    Get PDF
    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1) and dimethylsulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135°C and loses only a small part of the water when stored over desiccants (25°C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen-bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a non-layer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions different levels of order-disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration

    Predictive Power of Molecular Dynamics Receptor Structures in Virtual Screening

    Get PDF
    Molecular dynamics (MD) simulation is a well-established method for understanding protein dynamics. Conformations from unrestrained MD simulations have yet to be assessed for blind virtual screening (VS) by docking. This study presents a critical analysis of the predictive power of MD snapshots to this regard, evaluating two well-characterized systems of varying flexibility in ligand-bound and unbound configurations. Results from such VS predictions are discussed with respect to experimentally determined structures. In all cases, MD simulations provide snapshots that improve VS predictive power over known crystal structures, possibly due to sampling more relevant receptor conformations. Additionally, MD can move conformations previously not amenable to docking into the predictive range

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    “Separated” versus “Contact” Ion-Pair Structures in Solution from Their Crystalline States:  Dynamic Effects on Dinitrobenzenide as a Mixed-Valence Anion

    Get PDF
    Qualitative structural concepts about dynamic ion pairs, historically deduced in solution as labile solvent-separated and contact species, are now quantified by the low-temperature isolation of crystalline (reactive) salts suitable for direct X-ray analysis. Thus, dinitrobenzenide anion (DNB-) can be prepared in the two basic ion-paired forms by potassium-mirror reduction of p-dinitrobenzene in the presence of macrocyclic polyether ligands:  LC (cryptand) and LE (crown-ethers). The crystalline “separated” ion-pair salt isolated as K(LC)+//DNB- is crystallographically differentiated from the “contact” ion-pair salt isolated as K(LE)+DNB- by their distinctive interionic separations. Spectral analysis reveals pronounced near-IR absorptions arising from intervalence transitions that characterize dinitrobenzenide to be a prototypical mixed-valence anion. Most importantly, the unique patterns of vibronic (fine-structure) progressions that also distinguish the “separated” from the “contact” ion pair in the crystalline solid state are the same as those dissolved into THF solvent and ensure that the same X-ray structures persist in solution. Moreover, these distinctive NIR patterns are assigned with the aid of Marcus−Hush (two-state) theory to the “separated” ion pair in which the unpaired electron is equally delocalized between both NO2-centers in the symmetric ground state of dinitrobenzenide, and by contrast, the asymmetric electron distribution inherent to “contact” ion pairs favors only that single NO2-center intimately paired to the counterion. The labilities of these dynamic ion pairs in solution are thoroughly elucidated by temperature-dependent ESR spectral changes that provide intimate details of facile isomerizations, ionic separations, and counterion-mediated exchanges

    The crystal structure of superoxide dismutase from Plasmodium falciparum

    Get PDF
    Background: Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase. Results: The cytosolic iron superoxide dismutase from P. falciparum (PfFeSOD) has been overexpressed in E. coli in a catalytically active form. Its crystal structure has been solved by molecular replacement and refined against data extending to 2.5 angstrom resolution. The structure reveals a two-domain organisation and an iron centre in which the metal is coordinated by three histidines, an aspartate and a solvent molecule. Consistent with ultracentrifugation analysis the enzyme is a dimer in which a hydrogen bonding lattice links the two active centres. Conclusion: The tertiary structure of PfFeSOD is very similar to those of a number of other iron-and manganese-dependent superoxide dismutases, moreover the active site residues are conserved suggesting a common mechanism of action. Comparison of the dimer interfaces of PfFeSOD with the human manganese-dependent superoxide dismutase reveals a number of differences, which may underpin the design of parasite-selective superoxide dismutase inhibitors
    corecore