4,349 research outputs found

    Integrated Modeling and Verification of Real-Time Systems through Multiple Paradigms

    Get PDF
    Complex systems typically have many different parts and facets, with different characteristics. In a multi-paradigm approach to modeling, formalisms with different natures are used in combination to describe complementary parts and aspects of the system. This can have a beneficial impact on the modeling activity, as different paradigms an be better suited to describe different aspects of the system. While each paradigm provides a different view on the many facets of the system, it is of paramount importance that a coherent comprehensive model emerges from the combination of the various partial descriptions. In this paper we present a technique to model different aspects of the same system with different formalisms, while keeping the various models tightly integrated with one another. In addition, our approach leverages the flexibility provided by a bounded satisfiability checker to encode the verification problem of the integrated model in the propositional satisfiability (SAT) problem; this allows users to carry out formal verification activities both on the whole model and on parts thereof. The effectiveness of the approach is illustrated through the example of a monitoring system.Comment: 27 page

    A Theory of Sampling for Continuous-time Metric Temporal Logic

    Full text link
    This paper revisits the classical notion of sampling in the setting of real-time temporal logics for the modeling and analysis of systems. The relationship between the satisfiability of Metric Temporal Logic (MTL) formulas over continuous-time models and over discrete-time models is studied. It is shown to what extent discrete-time sequences obtained by sampling continuous-time signals capture the semantics of MTL formulas over the two time domains. The main results apply to "flat" formulas that do not nest temporal operators and can be applied to the problem of reducing the verification problem for MTL over continuous-time models to the same problem over discrete-time, resulting in an automated partial practically-efficient discretization technique.Comment: Revised version, 43 pages

    On Zone-Based Analysis of Duration Probabilistic Automata

    Full text link
    We propose an extension of the zone-based algorithmics for analyzing timed automata to handle systems where timing uncertainty is considered as probabilistic rather than set-theoretic. We study duration probabilistic automata (DPA), expressing multiple parallel processes admitting memoryfull continuously-distributed durations. For this model we develop an extension of the zone-based forward reachability algorithm whose successor operator is a density transformer, thus providing a solution to verification and performance evaluation problems concerning acyclic DPA (or the bounded-horizon behavior of cyclic DPA).Comment: In Proceedings INFINITY 2010, arXiv:1010.611

    Deciding the Satisfiability of MITL Specifications

    Get PDF
    In this paper we present a satisfiability-preserving reduction from MITL interpreted over finitely-variable continuous behaviors to Constraint LTL over clocks, a variant of CLTL that is decidable, and for which an SMT-based bounded satisfiability checker is available. The result is a new complete and effective decision procedure for MITL. Although decision procedures for MITL already exist, the automata-based techniques they employ appear to be very difficult to realize in practice, and, to the best of our knowledge, no implementation currently exists for them. A prototype tool for MITL based on the encoding presented here has, instead, been implemented and is publicly available.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Cooperative Task Planning of Multi-Agent Systems Under Timed Temporal Specifications

    Full text link
    In this paper the problem of cooperative task planning of multi-agent systems when timed constraints are imposed to the system is investigated. We consider timed constraints given by Metric Interval Temporal Logic (MITL). We propose a method for automatic control synthesis in a two-stage systematic procedure. With this method we guarantee that all the agents satisfy their own individual task specifications as well as that the team satisfies a team global task specification.Comment: Submitted to American Control Conference 201

    Improving HyLTL model checking of hybrid systems

    Get PDF
    The problem of model-checking hybrid systems is a long-time challenge in the scientific community. Most of the existing approaches and tools are either limited on the properties that they can verify, or restricted to simplified classes of systems. To overcome those limitations, a temporal logic called HyLTL has been recently proposed. The model checking problem for this logic has been solved by translating the formula into an equivalent hybrid automaton, that can be analized using existing tools. The original construction employs a declarative procedure that generates exponentially many states upfront, and can be very inefficient when complex formulas are involved. In this paper we solve a technical issue in the construction that was not considered in previous works, and propose a new algorithm to translate HyLTL into hybrid automata, that exploits optimized techniques coming from the discrete LTL community to build smaller automata.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596
    corecore