276 research outputs found

    On the resolution power of Fourier extensions for oscillatory functions

    Full text link
    Functions that are smooth but non-periodic on a certain interval possess Fourier series that lack uniform convergence and suffer from the Gibbs phenomenon. However, they can be represented accurately by a Fourier series that is periodic on a larger interval. This is commonly called a Fourier extension. When constructed in a particular manner, Fourier extensions share many of the same features of a standard Fourier series. In particular, one can compute Fourier extensions which converge spectrally fast whenever the function is smooth, and exponentially fast if the function is analytic, much the same as the Fourier series of a smooth/analytic and periodic function. With this in mind, the purpose of this paper is to describe, analyze and explain the observation that Fourier extensions, much like classical Fourier series, also have excellent resolution properties for representing oscillatory functions. The resolution power, or required number of degrees of freedom per wavelength, depends on a user-controlled parameter and, as we show, it varies between 2 and \pi. The former value is optimal and is achieved by classical Fourier series for periodic functions, for example. The latter value is the resolution power of algebraic polynomial approximations. Thus, Fourier extensions with an appropriate choice of parameter are eminently suitable for problems with moderate to high degrees of oscillation.Comment: Revised versio

    Detection of Edges in Spectral Data II. Nonlinear Enhancement

    Get PDF
    We discuss a general framework for recovering edges in piecewise smooth functions with finitely many jump discontinuities, where [f](x):=f(x+)f(x)0[f](x):=f(x+)-f(x-) \neq 0. Our approach is based on two main aspects--localization using appropriate concentration kernels and separation of scales by nonlinear enhancement. To detect such edges, one employs concentration kernels, Kϵ()K_\epsilon(\cdot), depending on the small scale ϵ\epsilon. It is shown that odd kernels, properly scaled, and admissible (in the sense of having small W1,W^{-1,\infty}-moments of order O(ϵ){\cal O}(\epsilon)) satisfy Kϵf(x)=[f](x)+O(ϵ)K_\epsilon*f(x) = [f](x) +{\cal O}(\epsilon), thus recovering both the location and amplitudes of all edges.As an example we consider general concentration kernels of the form KNσ(t)=σ(k/N)sinktK^\sigma_N(t)=\sum\sigma(k/N)\sin kt to detect edges from the first 1/ϵ=N1/\epsilon=N spectral modes of piecewise smooth f's. Here we improve in generality and simplicity over our previous study in [A. Gelb and E. Tadmor, Appl. Comput. Harmon. Anal., 7 (1999), pp. 101-135]. Both periodic and nonperiodic spectral projections are considered. We identify, in particular, a new family of exponential factors, σexp()\sigma^{exp}(\cdot), with superior localization properties. The other aspect of our edge detection involves a nonlinear enhancement procedure which is based on separation of scales between the edges, where Kϵf(x)[f](x)0K_\epsilon*f(x)\sim [f](x) \neq 0, and the smooth regions where Kϵf=O(ϵ)0K_\epsilon*f = {\cal O}(\epsilon) \sim 0. Numerical examples demonstrate that by coupling concentration kernels with nonlinear enhancement one arrives at effective edge detectors

    An adaptive pseudospectral method for discontinuous problems

    Get PDF
    The accuracy of adaptively chosen, mapped polynomial approximations is studied for functions with steep gradients or discontinuities. It is shown that, for steep gradient functions, one can obtain spectral accuracy in the original coordinate system by using polynomial approximations in a transformed coordinate system with substantially fewer collocation points than are necessary using polynomial expansion directly in the original, physical, coordinate system. It is also shown that one can avoid the usual Gibbs oscillation associated with steep gradient solutions of hyperbolic pde's by approximation in suitably chosen coordinate systems. Continuous, high gradient solutions are computed with spectral accuracy (as measured in the physical coordinate system). Discontinuous solutions associated with nonlinear hyperbolic equations can be accurately computed by using an artificial viscosity chosen to smooth out the solution in the mapped, computational domain. Thus, shocks can be effectively resolved on a scale that is subgrid to the resolution available with collocation only in the physical domain. Examples with Fourier and Chebyshev collocation are given

    Extension of Chebfun to Periodic Functions

    Get PDF
    Algorithms and underlying mathematics are presented for numerical computation with periodic functions via approximations to machine precision by trigonometric polynomials, including the solution of linear and nonlinear periodic ordinary differential equations. Differences from the nonperiodic Chebyshev case are highlighted

    A rational spectral collocation method with adaptively transformed Chebyshev grid points

    Get PDF
    A spectral collocation method based on rational interpolants and adaptive grid points is presented. The rational interpolants approximate analytic functions with exponential accuracy by using prescribed barycentric weights and transformed Chebyshev points. The locations of the grid points are adapted to singularities of the underlying solution, and the locations of these singularities are approximated by the locations of poles of Chebyshev-Padé approximants. Numerical experiments on two time-dependent problems, one with finite time blow-up and one with a moving front, indicate that the method far outperforms the standard Chebyshev spectral collocation method for problems whose solutions have singularities in the complex plan close to [-1,1]

    Spectral method for matching exterior and interior elliptic problems

    Full text link
    A spectral method is described for solving coupled elliptic problems on an interior and an exterior domain. The method is formulated and tested on the two-dimensional interior Poisson and exterior Laplace problems, whose solutions and their normal derivatives are required to be continuous across the interface. A complete basis of homogeneous solutions for the interior and exterior regions, corresponding to all possible Dirichlet boundary values at the interface, are calculated in a preprocessing step. This basis is used to construct the influence matrix which serves to transform the coupled boundary conditions into conditions on the interior problem. Chebyshev approximations are used to represent both the interior solutions and the boundary values. A standard Chebyshev spectral method is used to calculate the interior solutions. The exterior harmonic solutions are calculated as the convolution of the free-space Green's function with a surface density; this surface density is itself the solution to an integral equation which has an analytic solution when the boundary values are given as a Chebyshev expansion. Properties of Chebyshev approximations insure that the basis of exterior harmonic functions represents the external near-boundary solutions uniformly. The method is tested by calculating the electrostatic potential resulting from charge distributions in a rectangle. The resulting influence matrix is well-conditioned and solutions converge exponentially as the resolution is increased. The generalization of this approach to three-dimensional problems is discussed, in particular the magnetohydrodynamic equations in a finite cylindrical domain surrounded by a vacuum

    Discontinuous collocation methods and gravitational self-force applications

    Full text link
    Numerical simulations of extereme mass ratio inspirals, the mostimportant sources for the LISA detector, face several computational challenges. We present a new approach to evolving partial differential equations occurring in black hole perturbation theory and calculations of the self-force acting on point particles orbiting supermassive black holes. Such equations are distributionally sourced, and standard numerical methods, such as finite-difference or spectral methods, face difficulties associated with approximating discontinuous functions. However, in the self-force problem we typically have access to full a-priori information about the local structure of the discontinuity at the particle. Using this information, we show that high-order accuracy can be recovered by adding to the Lagrange interpolation formula a linear combination of certain jump amplitudes. We construct discontinuous spatial and temporal discretizations by operating on the corrected Lagrange formula. In a method-of-lines framework, this provides a simple and efficient method of solving time-dependent partial differential equations, without loss of accuracy near moving singularities or discontinuities. This method is well-suited for the problem of time-domain reconstruction of the metric perturbation via the Teukolsky or Regge-Wheeler-Zerilli formalisms. Parallel implementations on modern CPU and GPU architectures are discussed.Comment: 29 pages, 5 figure
    corecore