526 research outputs found

    A Novel Spike-Wave Discharge Detection Framework Based on the Morphological Characteristics of Brain Electrical Activity Phase Space in an Animal Model

    Get PDF
    Background: Animal models of absence epilepsy are widely used in childhood absence epilepsy studies. Absence seizures appear in the brain’s electrical activity as a specific spike wave discharge (SWD) pattern. Reviewing long-term brain electrical activity is time-consuming and automatic methods are necessary. On the other hand, nonlinear techniques such as phase space are effective in brain electrical activity analysis. In this study, we present a novel SWD-detection framework based on the geometrical characteristics of the phase space.Methods: The method consists of the following steps: (1) Rat stereotaxic surgery and cortical electrode implantation, (2) Long-term brain electrical activity recording, (3) Phase space reconstruction, (4) Extracting geometrical features such as volume, occupied space, and curvature of brain signal trajectories, and (5) Detecting SDWs based on the thresholding method. We evaluated the approach with the accuracy of the SWDs detection method.Results: It has been demonstrated that the features change significantly in transition from a normal state to epileptic seizures. The proposed approach detected SWDs with 98% accuracy.Conclusion: The result supports that nonlinear approaches can identify the dynamics of brain electrical activity signals

    Analysis of observed chaotic data

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2004Includes bibliographical references (leaves: 86)Text in English; Abstract: Turkish and Englishxii, 89 leavesIn this thesis, analysis of observed chaotic data has been investigated. The purpose of analyzing time series is to make a classification between the signals observed from dynamical systems. The classifiers are the invariants related to the dynamics. The correlation dimension has been used as classifier which has been obtained after phase space reconstruction. Therefore, necessary methods to find the phase space parameters which are time delay and the embedding dimension have been offered. Since observed time series practically are contaminated by noise, the invariants of dynamical system can not be reached without noise reduction. The noise reduction has been performed by the new proposed singular value decomposition based rank estimation method.Another classification has been realized by analyzing time-frequency characteristics of the signals. The time-frequency distribution has been investigated by wavelet transform since it supplies flexible time-frequency window. Classification in wavelet domain has been performed by wavelet entropy which is expressed by the sum of relative wavelet energies specified in certain frequency bands. Another wavelet based classification has been done by using the wavelet ridges where the energy is relatively maximum in time-frequency domain. These new proposed analysis methods have been applied to electrical signals taken from healthy human brains and the results have been compared with other studies

    Review and classification of variability analysis techniques with clinical applications

    Get PDF
    Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis

    Local properties of vigilance states: EMD analysis of EEG signals during sleep-waking states of freely moving rats

    Get PDF
    Understanding the inherent dynamics of the EEG associated to sleep-waking can provide insights into its basic neural regulation. By characterizing the local properties of the EEG using power spectrum, empirical mode decomposition (EMD) and Hilbert-spectral analysis, we can examine the dynamics over a range of time-scales. We analyzed rat EEG during wake, NREMS and REMS using these methods. The average instantaneous phase, power spectral density (PSD) of intrinsic mode functions (IMFs) and the energy content in various frequency bands show characteristic changes in each of the vigilance states. The 2nd and 7th IMFs show changes in PSD for wake and REMS, suggesting that those modes may carry wake- and REMS-associated cognitive, conscious and behavior-specific information of an individual even though the EEG may appear similar. The energy content in θ2 (6Hz-9Hz) band of the 1st IMF for REMS is larger than that of wake. The decrease in the phase function of IMFs from wake to REMS to NREMS indicates decrease of the mean frequency in these states, respectively. The rate of information processing in waking state is more in the time scale described by the first three IMFs than in REMS state. However, for IMF5-IMF7, the rate is more for REMS than that for wake. We obtained Hilbert-Huang spectral entropy, which is a suitable measure of information processing in each of these state-specific EEG. It is possible to evaluate the complex dynamics of the EEG in each of the vigilance states by applying measures based on EMD and Hilbert-transform. Our results suggest that the EMD based nonlinear measures of the EEG can provide useful estimates of the information possessed by various oscillations associated with the vigilance states. Further, the EMD-based spectral measures may have implications in understanding anatamo-physiological correlates of sleep-waking behavior and clinical diagnosis of sleep-pathology

    Fractal analysis of the EEG and clinical applications

    Get PDF
    2010/2011Most of the knowledge about physiological systems has been learned using linear system theory. The randomness of many biomedical signals has been traditionally ascribed to a noise-like behavior. An alternative explanation for the irregular behavior observed in systems which do not seem to be inherently stochastic is provided by one of the most striking mathematical developments of the past few decades, i.e., chaos theory. Chaos theory suggests that random-like behavior can arise in some deterministic nonlinear systems with just a few degrees of freedom. One of the most evocative aspects of deterministic chaos is the concept of fractal geometry. Fractal structure, characterized by self-similarity and noninteger dimension, is displayed in chaotic systems by a subset of the phase space known as strange attractor. However, fractal properties are observed also in the unpredictable time evolution and in the 1/f^β power-law of many biomedical signals. The research activities carried out by the Author during the PhD program are concerned with the analysis of the fractal-like behavior of the EEG. The focus was set on those methods which evaluate the fractal geometry of the EEG in the time domain, in the hope of providing physicians and researchers with new valuable tools of low computational cost for the EEG analysis. The performances of three widely used techniques for the direct estimation of the fractal dimension of the EEG were compared and the accuracy of the fBm scaling relationship, often used to obtain indirect estimates from the slope of the spectral density, was assessed. Direct estimation with Higuchi's algorithm turned out to be the most suitable methodology, producing correct estimates of the fractal dimension of the electroencephalogram also on short traces, provided that minimum sampling rate required to avoid aliasing is used. Based on this result, Higuchi's fractal dimension was used to address three clinical issues which could involve abnormal complexity of neuronal brain activity: 1) the monitoring of carotid endarterectomy for the prevention of intraoperative stroke, 2) the assessment of the depth of anesthesia to monitor unconsciousness during surgery and 3) the analysis of the macro-structural organization of the EEG in autism with respect to mental retardation. The results of the clinical studies suggest that, although linear spectral analysis still represents a valuable tool for the investigation of the EEG, time domain fractal analysis provides additional information on brain functioning which traditional analysis cannot achieve, making use of techniques of low computational cost.La maggior parte delle conoscenze acquisite sui sistemi fisiologici si deve alla teoria dei sistemi lineari. Il comportamento pseudo stocastico di molti segnali biomedici è stato tradizionalmente attribuito al concetto di rumore. Un'interpretazione alternativa del comportamento irregolare rilevato in sistemi che non sembrano essere intrinsecamente stocastici è fornita da uno dei più sorprendenti sviluppi matematici degli ultimi decenni: la teoria del caos. Tale teoria suggerisce che una certa componente casuale può sorgere in alcuni sistemi deterministici non lineari con pochi gradi di libertà. Uno degli aspetti più suggestivi del caos deterministico è il concetto di geometria frattale. Strutture frattali, caratterizzate da auto-somiglianza e dimensione non intera, sono rilevate nei sistemi caotici in un sottoinsieme dello spazio delle fasi noto con il nome di attrattore strano. Tuttavia, caratteristiche frattali possono manifestarsi anche nella non prevedibile evoluzione temporale e nella legge di potenza 1/f^β tipiche di molti segnali biomedici. Le attività di ricerca svolte dall'Autore nel corso del dottorato hanno riguardato l'analisi del comportamento frattale dell'EEG. L'attenzione è stata rivolta a quei metodi che affrontano lo studio della geometria frattale dell'EEG nel dominio del tempo, nella speranza di fornire a medici e ricercatori nuovi strumenti utili all'analisi del segnale EEG e caratterizzati da bassa complessità computazionale. Sono state messe a confronto le prestazioni di tre tecniche largamente utilizzate per la stima diretta della dimensione frattale dell'EEG e si è valutata l'accuratezza della relazione di scaling del modello fBm, spesso utilizzata per ottenere stime indirette a partire dalla pendenza della densità spettrale di potenza. Il metodo più adatto alla stima della dimensione frattale dell'elettroencefalogramma è risultato essere l'algoritmo di Higuchi, che produce stime accurate anche su segmenti di breve durata a patto che il segnale sia campionato alla minima frequenza di campionamento necessaria ad evitare il fenomeno dell'aliasing. Sulla base di questo risultato, la dimensione frattale di Higuchi è stata utilizzata per esaminare tre questioni cliniche che potrebbero coinvolgere una variazione della complessità dell'attività neuronale: 1) il monitoraggio dell'endoarterectomia carotidea per la prevenzione dell'ictus intraoperatorio, 2) la valutazione della profondità dell'anestesia per monitorare il livello di incoscienza durante l'intervento chirurgico e 3) l'analisi dell'organizzazione macro-strutturale del EEG nell'autismo rispetto alla condizione di ritardo mentale. I risultati degli studi clinici suggeriscono che, sebbene l'analisi spettrale rappresenti ancora uno strumento prezioso per l'indagine dell'EEG, l'analisi frattale nel dominio del tempo fornisce informazioni aggiuntive sul funzionamento del cervello che l'analisi tradizionale non è in grado di rilevare, con il vantaggio di impiegare tecniche a basso costo computazionale.XXIV Ciclo198

    Etude expérimentale des dynamiques temporelles du comportement normal et pathologique chez le rat et la souris

    Get PDF
    155 p.Modern neuroscience highlights the need for designing sophisticated behavioral readout of internal cognitive states. From a thorough analysis of classical behavioral test, my results supports the hypothesis that sensory ypersensitivity might be the cause of other behavioural deficits, and confirm the potassium channel BKCa as a potentially relevant molecular target for the development of drug medication against Fragile X Syndrome/Autism Spectrum Disorders. I have also used an innovative device, based on pressure sensors that can non-invasively detect the slightest animal movement with unprecedented sensitivity and time resolution, during spontaneous behaviour. Analysing this signal with sophisticated computational tools, I could demonstrate the outstanding potential of this methodology for behavioural phenotyping in general, and more specifically for the investigation of pain, fear or locomotion in normal mice and models of neurodevelopmental and neurodegenerative disorders
    • …
    corecore