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"Mountains are not cones, clouds are not spheres,
trees are not cylinders, neither does lightning

travel in a straight line."
- Benoît B. Mandelbrot

"The fractal geometry of nature" (1982)

"The mind as a whole is self-similar
no matter whether it refers to the large or the small."

- Anaxagoras
"Fragment No. 12" (456 BC)

"In examining disease, we gain wisdom about
anatomy and physiology and biology.
In examining the person with disease,

we gain wisdom about life."
- Oliver Sacks

"The man who mistook his wife for a hat
and other clinical tales" (1985)
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A B S T R A C T

Most of the knowledge about physiological systems has been learned
using linear system theory. The randomness of many biomedical sig-
nals has been traditionally ascribed to a noise-like behavior. An al-
ternative explanation for the irregular behavior observed in systems
which do not seem to be inherently stochastic is provided by one of the
most striking mathematical developments of the past few decades, i.e.,
chaos theory. Chaos theory suggests that random-like behavior can
arise in some deterministic nonlinear systems with just a few degrees
of freedom. One of the most evocative aspects of deterministic chaos is
the concept of fractal geometry. Fractal structure, characterized by self-
similarity and noninteger dimension, is displayed in chaotic systems
by a subset of the phase space known as strange attractor. However,
fractal properties are observed also in the unpredictable time evolution
and in the 1

fβ
power-law of many biomedical signals. The research

activities carried out by the Author during the PhD program are con-
cerned with the analysis of the fractal-like behavior of the EEG. The
focus was set on those methods which evaluate the fractal geometry
of the EEG in the time domain, in the hope of providing physicians
and researchers with new valuable tools of low computational cost
for the EEG analysis. The performances of three widely used tech-
niques for the direct estimation of the fractal dimension of the EEG
were compared and the accuracy of the fBm scaling relationship, often
used to obtain indirect estimates from the slope of the spectral density,
was assessed. Direct estimation with Higuchi’s algorithm turned out
to be the most suitable methodology, producing correct estimates of
the fractal dimension of the electroencephalogram also on short traces,
provided that minimum sampling rate required to avoid aliasing is
used. Based on this result, Higuchi’s fractal dimension was used to
address three clinical issues which could involve abnormal complexity
of neuronal brain activity: 1) the monitoring of carotid endarterec-
tomy for the prevention of intraoperative stroke, 2) the assessment of
the depth of anesthesia to monitor unconsciousness during surgery
and 3) the analysis of the macro-structural organization of the EEG in
autism with respect to mental retardation. The results of the clinical
studies suggest that, although linear spectral analysis still represents
a valuable tool for the investigation of the EEG, time domain fractal
analysis provides additional information on brain functioning which
traditional analysis cannot achieve, making use of techniques of low
computational cost.
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S O M M A R I O

La maggior parte delle conoscenze acquisite sui sistemi fisiologici
si deve alla teoria dei sistemi lineari. Il comportamento pseudo sto-
castico di molti segnali biomedici è stato tradizionalmente attribuito al
concetto di rumore. Un’interpretazione alternativa del comportamento
irregolare rilevato in sistemi che non sembrano essere intrinsecamente
stocastici è fornita da uno dei più sorprendenti sviluppi matematici
degli ultimi decenni: la teoria del caos. Tale teoria suggerisce che una
certa componente casuale può sorgere in alcuni sistemi deterministici
non lineari con pochi gradi di libertà. Uno degli aspetti più suggestivi
del caos deterministico è il concetto di geometria frattale. Strutture
frattali, caratterizzate da auto-somiglianza e dimensione non intera,
sono rilevate nei sistemi caotici in un sottoinsieme dello spazio delle
fasi noto con il nome di attrattore strano. Tuttavia, caratteristiche frat-
tali possono manifestarsi anche nella non prevedibile evoluzione tem-
porale e nella legge di potenza 1

fβ
tipiche di molti segnali biomedici.

Le attività di ricerca svolte dall’Autore nel corso del dottorato hanno
riguardato l’analisi del comportamento frattale dell’EEG. L’attenzione
è stata rivolta a quei metodi che affrontano lo studio della geometria
frattale dell’EEG nel dominio del tempo, nella speranza di fornire a
medici e ricercatori nuovi strumenti utili all’analisi del segnale EEG e
caratterizzati da bassa complessità computazionale. Sono state messe
a confronto le prestazioni di tre tecniche largamente utilizzate per la
stima diretta della dimensione frattale dell’EEG e si è valutata l’ac-
curatezza della relazione di scaling del modello fBm, spesso utilizza-
ta per ottenere stime indirette a partire dalla pendenza della densità
spettrale di potenza. Il metodo più adatto alla stima della dimen-
sione frattale dell’elettroencefalogramma è risultato essere l’algoritmo
di Higuchi, che produce stime accurate anche su segmenti di breve
durata a patto che il segnale sia campionato alla minima frequenza di
campionamento necessaria ad evitare il fenomeno dell’aliasing. Sulla
base di questo risultato, la dimensione frattale di Higuchi è stata uti-
lizzata per esaminare tre questioni cliniche che potrebbero coinvolgere
una variazione della complessità dell’attività neuronale: 1) il moni-
toraggio dell’endoarterectomia carotidea per la prevenzione dell’ictus
intraoperatorio, 2) la valutazione della profondità dell’anestesia per
monitorare il livello di incoscienza durante l’intervento chirurgico e
3) l’analisi dell’organizzazione macro-strutturale del EEG nell’autismo
rispetto alla condizione di ritardo mentale. I risultati degli studi clini-
ci suggeriscono che, sebbene l’analisi spettrale rappresenti ancora uno
strumento prezioso per l’indagine dell’EEG, l’analisi frattale nel do-
minio del tempo fornisce informazioni aggiuntive sul funzionamento
del cervello che l’analisi tradizionale non è in grado di rilevare, con il
vantaggio di impiegare tecniche a basso costo computazionale.
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1 I N T R O D U C T I O N

Electroencephalography is the recording of brain electrical activity. Background

It is a non invasive, simple and relatively cheap technique which pro-
vides a measure of neuronal functioning with high temporal resolu-
tion. When appropriately processed, the EEG is a valuable tool for the
diagnosis and prognosis of many neurological disorders as well as for
the monitoring of cerebral functions. It allows the identification of ab-
normal patterns, the localization of brain sources and the detection of
event related potentials. The analysis of the electroencephalogram is
also useful to understand how the electrical patterns modify between
different brain activities, during the transition from wakefulness to
sleep or with age. These are the reasons why great effort has been
devoted to the development of suitable signal processing techniques
to analyze EEG.

Since the EEG signal, as many biomedical time series, is apparently
random in time, it has been traditionally ascribed to stationary stochas-
tic processes and thus analyzed with linear techniques. The autocor-
relation of EEG samples, as well as the power carried by the differ-
ent waves, have been widely used as quantitative measures of brain
electrical activity. A more recent perspective to address the irregular
behavior of the EEG stems from chaos theory. According to chaos
theory randomness can also be displayed by deterministic nonlinear
dynamical systems with just a few degrees of freedom. Chaotic sys-
tems, though deterministic, are highly unpredictable due to their sen-
sitive dependence on initial conditions. However, the rules governing
the dynamics of such systems are, actually, simple. Chaos theory pro-
vides new techniques for the analysis of many physiological systems
and suggests the existence of simple mathematical models for their de-
scription. The most characteristic measures of a chaotic system are the
largest Lyapunov exponent, which quantifies the rate of the exponen-
tial divergence of nearby trajectories in the phase space, and the corre-
lation dimension, representing the unusual geometry of the so-called
strange attractor. Both measures generally require the reconstruction
of the attractor in the phase space from the available observation in
time, procedure that may be computationally expensive. An alterna-
tive way to approach the study of complex systems is offered by fractal
geometry. The main features of fractal objects, namely self-similarity
and noninteger dimension, can be displayed also by a time series di-
rectly in the time domain. In this perspective, the fractal-like behavior
of the EEG and its unusual power spectrum can be characterized by
parameters like the fractal dimension, the power-law exponent and
the Hurst index. A fruitful connection between the aforementioned

1



measures is provided by fractional Brownian motion (fBm), a simple
mathematical model for the description of the EEG.

This thesis explores the time domain approach for the study of theAims of the thesis

chaotic behavior of brain electrical activity based on the analysis of the
fractal-like features of the EEG signal. The aims of the thesis are: 1)
to determine the most accurate methodology for the fractal analysis
of the EEG in the time domain and 2) to assess the ability of EEG
fractal analysis to provide additional information to that achieved by
traditional spectral analysis.

The thesis is divided into two parts, reflecting the twofold nature ofThesis outline

Author’s research activity.
The first part provides the theoretical notions and the analysis tools

necessary to understand the Author’s approach to the clinical issues
presented in the second part. After a brief overview of the basics about
electroencephalography (Chapter 2), the fundamental concepts of non-
linear dynamical systems theory are described in Chapter 3, with par-
ticular focus on the notions of deterministic chaos, sensitivity to initial
conditions and strange attractor. The tools for the analysis of irregular
time series in the phase space, based on chaotic systems theory, are
then provided. Chapter 4 presents an alternative perspective for the
study of complex systems producing irregular time series based on the
notion of fractal geometry. The concepts of self-similarity and fractal
dimension are then introduced and adapted for the characterization
of fractal objects in time. The characteristics of fractional Brownian
motion, the most useful mathematical model for the fractal processes
in nature, including the EEG, are then discussed. At the end of this
chapter, Author’s approach to the analysis of the EEG is described. The
next two chapters contain two theoretical studies conducted by the Au-
thor in order to define the most accurate methodology for the study
of the fractal-like behavior of the EEG in the time domain. In Chapter
5 the Author presents a comparison of three widely used algorithms
for the estimation of the fractal dimension of time series directly in the
time domain. The most reliable algorithm in terms of accuracy and
sensitivity to estimation parameters, namely the sampling frequency
and the time window length, is identified and will be used for all fur-
ther investigations. In Chapter 6 the Author discusses the accuracy
of the fBm model, evaluating how much the EEG scaling relationship
between the fractal dimension and the power-law exponent deviates
from the theoretical one, valid for fBm, widely used in literature for
the indirect estimation of EEG fractal dimension.

The second part of the thesis contains three applications of time do-
main fractal analysis of the EEG to clinical issues which presumably
involve abnormal complexity of neuronal activity. Chapter 7 presents
a study on the monitoring of carotid endarterectomy (CEA) conducted
in close collaboration with the Neurophysiopathology Sub Division of
the Clinical Neurology Ward at the AOTS Hospital of Trieste. CEA is
a common surgical procedure for the prevention of stroke in patient
with high-grade carotid stenosis. The standard procedure implies a
reduction of cerebral blood flow, in the hemisphere associated with
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the carotid clamping, which may lead to intraoperative ischemia. Al-
though some objective measures have been proposed to quantify the
risk of intraoperative stroke, the commonest practice is still the visual
assessment of the EEG, subject to the experience of the neurophysiolo-
gist and prone to human error. Aim of the study was the development
of a reliable decision support system based on EEG parameterization.
Chapter 8 presents a preliminary study on the monitoring of anesthe-
sia in operating room carried out in cooperation with the IRCCS “Burlo
Garofolo” Scientific Institute of Trieste. During surgery, an anesthesi-
ologist is responsible for administering the hypnotic agent to prevent
both over dosing side effects and intraoperative awareness. As a con-
sequence of intraoperative awareness, the patient may recall all of the
details of the surgical procedure and develop some form of anxiety
disorder. Despite the fact that several commercial monitors, based on
complex algorithms, are already available to monitor unconsciousness,
intraoperative awareness is still a major clinical problem. Aim of the
study was the identification of an effective and easy-to-calculate index
for the quantification of unconsciousness during general anesthesia.
The last study, presented in Chapter 9, was carried out in close collab-
oration with the Developmental Psychopathology Unit at the IRCCS
“Eugenio Medea” Scientific Institute of Udine. Subject of the research
was the macro-structural organization of neuronal activity in autism
both in the awake state and during sleep. The investigation was aimed
at the identification of one or more parameters capable of discrimi-
nating autism from mental retardation, on the basis of brain electrical
activity, for early diagnosis and intervention purposes. In the three
aforementioned studies the fractal dimension was compared with tra-
ditional spectral measures as well as with a time domain nonlinear
index, i.e., the zero-crossings. General conclusions are provided in
Chapter 10, while Appendix A gives a brief description of the algo-
rithm for the zero-crossings count.

All the algorithms used for data analysis were implemented by the Software

Author in the MATLAB environment (The MathWorks, Inc.).
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Part I

Fractal analysis of the EEG
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2 E L E C T R O E N C E P H A LO G R A P H Y

contents
2.1 History 7
2.2 Origin of the EEG 8
2.3 EEG rhythms 9
2.4 Recording of the EEG 9

The rationale for the application of advanced digital signal process-
ing techniques to the electrical signals measured from the brain of
human subjects lies in the assumption that the electroencephalogram
reflects neuronal functioning and is, therefore, an indicator of the sta-
tus of the whole body. In this chapter, after a brief history of electroen-
cephalography, the physiological concepts underlying the generation
of the EEG signal are introduced. An overview of the rhythms that
characterize the EEG is then presented. The problems of recording
and conditioning of the raw signal are finally addressed. The concepts
presented in the present chapter are adapted from Sanei and Cham-
bers [2007].

2.1 history

The first recording of brain electrical activity was performed in 1875

by English scientist Richard Canton using a galvanometer connected to
the scalp of a human subject through two electrodes. At that time, the
term “electroencephalogram” (EEG) was coined to denote the writing
of brain electrical activity recorded from the head. However, the first
report of the EEG on photographic paper in 1929 is due to German psy-
chiatrist Hans Berger, who is known among electroencephalographers
as the discoverer of the human EEG. During the 1930s the interest in
the recording of the EEG raised up. In 1932 the Rockefeller foundation
produced the first differential amplifier for EEG and the importance of
multichannel recordings was right after recognized. Research activity
focused on the EEG started in the USA around 1934 with the studies
on the alpha rhythm, epileptic seizure and brain activity during sleep,
and lead to the foundation of the American EEG Society in 1947. Anal-
ysis of EEG signals was introduced right after the early recordings,
when Berger himself applied Fourier transformation to the recorded
traces. Throughout the years, the power of the EEG as a source of in-
formation about the brain became more and more evident and brought
to the development of clinical and experimental studies for detection,
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diagnosis, treatment and prognosis of several neurological abnormali-
ties, as well as for the characterization of many physiological states.

2.2 origin of the eeg

The Central Nervous System (CNS) consists of the brain and its natural
extension, the spinal cord. The brain is largely made up by nerve cells
(or neurons) and glia cells.

Neurons are electrically excitable cells that receive, process and trans-Neurons

mit information by electro-chemical signaling. A typical neuron con-
sists of a cell body (signal processor) with branching dendrites (signal
receivers) and an axon (signal transmitter) often sheathed in myelin
(Fig. 1). The information transmitted by an axon, the so-called action
potential, is transmitted to the following neuron across a specialized
junction called synapse. Neurons are electrically excitable cells charac-Membrane potential

terized by a resting membrane potential of approximately -70 mV. This
voltage is determined by the intra- and extracellular concentrations
of Na+, K+, Cl− and Ca2+ ions, which are maintained by means of
metabolically driven ion pumps combined with chemically-gated ion
channels embedded in the membrane. Changes in the ionic concentra-
tions on the two sides of the membrane, induced by chemical activity
at the preceding synapse, can modify the function of the voltage-gated
ion channels. The opening and closing of these channels induce de-
viations from the resting potential. A depolarization occurs when theAction potential

interior potential becomes less negative while a hyperpolarization oc-
curs when the voltage inside the membrane becomes more negative. If
the depolarization is large enough to drive the interior voltage above
a threshold of about -55 mV, an action potential (a spike up to approx-
imately +30 mV) is triggered and travels down the axon. If the axon
ends in an excitatory synapse, an excitatory postsynaptic potential oc-
curs in the following neuron (depolarization). If the axon ends in an
inhibitory synapse, an inhibitory postsynaptic potential will occur in
the following neuron (hyperpolarization).

An EEG signal is the measurement of the microscopic synaptic cur-EEG

rents mainly produced within the dendrites of special neurons called
pyramidal neurons. Pyramidal neurons, located in the cerebral cortex,
in the hippocampus and in the amigdala, are characterized by highly
branched axons and dendrites. The large number of synaptic connec-
tions allows the pyramidal neuron to receive (transmit) signals from
(to) many different neurons. When neighboring pyramidal neurons
are activated synchronously, the sum of the microscopic synaptic cur-
rents generates a magnetic field and a secondary electrical field. Since
the signal is attenuated by head tissues and corrupted by noise gen-
erated within the brain, only large populations of active pyramidal
neurons can generate enough potential to be recordable using scalp
electrodes.
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Figure 1: Structure of a typical neuron.

2.3 eeg rhythms

Five major brain rhythms are recognized in the EEG: delta, theta, al-
pha, beta and gamma, each characterized by a specific frequency range.
The characteristics of the waves change not only with pathology or age,
but also according to the physiological state (wakefulness or sleep, for
example). The delta rhythm, in the range 0.5-4 Hz, is primarily asso-
ciated with deep sleep. Delta activity occurs also in case of coma and
other disorders of consciousness, as well as during anesthesia. Theta
activity, with frequencies between 4 and 8 Hz, appears as conscious-
ness slips toward drowsiness or during deep meditation. Theta waves
occur mainly during infancy and childhood and are abnormal in the
awake adults. Alpha activity, in the range 8-13 Hz, commonly appears
as a sinusoidal signal. It is characteristic of eyes-closed awake state
(relaxed awareness) and is mainly present in the occipital lobes. The
beta waves are associated with active thinking and problem solving
and are usually found in adults within the range 13-30 Hz. Gamma
activity refers to waves with frequencies above 30 Hz and seems to
be related to consciousness. The frequency ranges of the five EEG
rhythms are summarized in Tab. 1.

2.4 recording of the eeg

A typical multichannel EEG recording is performed with scalp elec-
trodes, commonly Ag/AgCl disks less than 3 mm in diameter, with
long flexible leads that can be plugged into an amplifier. In order

9



Table 1: Frequency ranges of EEG characteristic rhythms.

Rhythm Frequency range [Hz]
delta (δ) 0.5-4
theta (θ) 4-8
alpha (α) 8-13

beta (β) 13-30

gamma (γ) >30

to avoid distortion, the electrode impedance is generally kept below
5 kΩ. Electrodes are applied to the scalp of the subject according
to the so-called 10-20 system. The 10-20 system is a method for the10-20 system

electrode positioning recommended by the International Federation
of Societies for Electroencephalography and Clinical Neurophysiol-
ogy [Jasper, 1958]. Proposed to ensure standardized reproducibility,
the positioning method is based on constant distances from specific
anatomic landmarks. The location of the electrodes on the front-back
line of the skull is based on dividing the distance between the nasion
(N) and the inion (I) over the vertex in the midline. The positioning on
the left-right line of the skull is similarly based on dividing the distance
between the ears over the vertex in the midline. Each location is char-
acterized by a letter, to identify the underlying brain region (Fig. 2a),
and a number, to identify the brain hemisphere. The letter “F”, “T”,
“C”, “P” and “O”, denotes the frontal, temporal, central, parietal and
occipital brain regions, respectively. Odd numbers identify electrodes
placed in the left hemisphere, whereas even number refer to those on
the right hemisphere. Locations along the midline are denoted by let-
ter “z”. To understand how channels are located in the 10-20 system,
consider the example of Fig. 2b. The first location, Fp1, is positioned
at 10% of the NI distance from N, the second one, F3, is located at 20%
of the NI distance from Fp1 (corresponding to 30% from N) and so
on in steps of 20% until location O1 which is positioned at 20% of the
NI distance from the preceding one, P3, and at 10% of the NI distance
from I. The 10-20 system is a conventional electrode setting meant for
21 channels. However, further locations were added to meet the use of
a larger number of electrodes. For multichannel recordings, electrode
caps are often used.

EEG signal can be recorded according to different modalities. In theElectrodes montage

differential montage, each derivation represents the difference of two
adjacent electrodes. To record Fp1-F3, for example, the inputs of the
differential amplifier are Fp1 and F3. In the referential montage, each
derivation represents the difference between a certain electrode and
a designed reference. One or two reference electrodes are commonly
used. The most used physical references are vertex (Cz), linked-ears
and tip of the nose. Also reference-free recording techniques, which
actually use a common average reference, can be used. In order to
avoid topographic distortion, the reference should be chosen as neutral
as possible.
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(a) Brain lobes (b) 10-20 system

Figure 2: International 10-20 system of electrode placement.

The EEG recorded from the scalp has amplitudes of about 10-100 EEG conditioning

µV and can contain frequencies up to 200-300 Hz. Raw EEG may
be corrupted by many physiological and non-physiological artifacts.
The main physiological artifacts derive from electrical activity of the
heart (ECG), eyes movements and blinks, muscle activity and sweating.
Power-line interference, impedance fluctuations and electrical noise
from electronic components are the most frequent non-physiological
noise sources. In order to retain the effective information, reject ar-
tifacts and prevent aliasing, EEG signals have to be filtered prior to
being analyzed. A highpass filter, with cutoff frequency below 0.5 Hz,
is generally used in order to remove low frequency baseline drift. A
low pass filter must be used to reject high frequency noise and to pre-
vent aliasing. The low pass cutoff frequency is set according to the
application. The neuronal information of routine EEG is generally lim-
ited to approximately 50-70 Hz. Notch filters may be required in order
to reject the power-line frequency (50 or 60 Hz according to the coun-
try). All filters must be designed in order to avoid the introduction
of undesired distortions. The sampling frequency, that must be cho-
sen according to the Nyquist-Shannon sampling theorem, commonly
ranges from 100 to approximately 1000 Hz. Sometimes, when a higher
spectral resolution is required for the representation of the signal in
the frequency domain, sampling frequencies of up to 2 kHz may be
used.
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3 DY N A M I C A L S Y S T E M S A N D
C H A O S T H E O R Y
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Since the early electroencephalographic recordings, the EEG mani-
fested itself as an apparently random or aperiodic signal. The most
simple system which produces aperiodic signals is a linear stochastic
process. A stationary stochastic process can be described in the time
domain by mean and variance of the observed time series. A better
description, including the information about the time evolution of the
system, is given by the so-called autocorrelation function, which mea-
sures the linear correlation between data points. The same system
can be equivalently approached using Fourier transform, a mathemati-
cal tool which is used to decompose a signal into a set of sinusoidal
components whose amplitudes and phases are represented in the fre-
quency domain. In the frequency domain the system is described by
the power spectral density which represents how the power of the sig-
nal is distributed with frequency. The fruitful connection existing be-
tween the autocorrelation function and the power spectral density is
provided by the Wiener-Khinchin theorem. The Wiener-Khinchin the-
orem states that the power spectral density of a wide-sense stationary
stochastic process is equal to the Fourier transform of the correspond-
ing autocorrelation function. Hence, using Parseval’s theorem, the to-
tal power of the signal can be calculated equivalently in the time or in
the frequency domain. If the system properties change over time, pro-
ducing nonstationary signals, the short-time Fourier transform is used to
produce the spectrogram which provides a time-frequency represen-
tation of the system. As many other aperiodic signals, the EEG has
been widely analyzed as the output of a stationary stochastic process.
Traditional linear analysis of the EEG mainly involves the estimation
of the power carried by the different rhythms characterizing the signal
(Tab. 1).

The introduction of chaos theory provided a new approach to the
analysis of irregular time series. According to chaos theory, random be-
havior can arise also in deterministic nonlinear dynamical system with
just a few dynamical variables. New methods were introduced to cap-
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ture the unusual behavior of irregular time series, including the EEG.
After a brief overview of nonlinear dynamical systems and their repre-
sentation in the phase space, this chapter introduces the basics about
chaos theory, including the concepts of unpredictability and strange
attractor. The measures for quantifying the properties of a chaotic
system, including largest Lyapunov exponent and correlation dimen-
sion are then presented. The chapter finally addresses the problem of
phase space reconstruction, which is required for the calculation of the
aforementioned parameters. The notions provided in this chapter are
adapted from Henry et al. [2001] and Kantz and Schreiber [2004].

3.1 nonlinear dynamical systems
The concept of dynamical system is applied to any system that evolvesNonlinear dynamical

system in time. Dynamical systems evolving continuously in time are mathe-
matically defined by a coupled set of first-order autonomous ordinary
differential equations:

d

dt
x(t) = F(x(t)) (1)

while a coupled set of first-order autonomous difference equations de-
scribes dynamical systems whose behavior changes at discrete time
intervals:

xn+1 = G(xn) (2)

The components of the vectors x are the dynamical variables of the
system evolving in continuous time (t ∈ R) or in discrete time (n ∈
Z) and the components of the vector fields F and G represent the
dynamical rules governing the evolution of the dynamical variables.
The term autonomous refers to the property of the vector fields of being
not explicitly dependent on time. It should be noted that there is
no loss of generality in the restriction to autonomous systems since
a nonautonomous systems can be transformed into an autonomous
systems by the introduction of additional degrees of freedom.

Under modest smoothness assumptions about the evolution rules,Deterministic
nonlinear dynamical

system
the mathematical theory of ordinary differential (or difference) equa-
tions ensures the existence of unique solutions. Thus, the dynamical
system is deterministic, that is, once the current state is determined,
the state at any future time is determined as well. However, despite
the existence of unique solutions, there may be no explicit algebraic
representation of the state of the system at a given point in time.

3.2 phase space and attractors
Phase space is an abstract mathematical space in which each possi-Phase space
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ble state of a dynamical system is represented by a point. Thus, if
the systems is defined by a set of n first-order autonomous ordinary
differential (or difference) equations, then the phase space is a finite di-
mensional vector space in Rn. A sequence of points xn or x(t) solving Trajectory

the equations is a trajectory of the dynamical system in the phase space.
As dynamical variables evolve in time, the representative point of xn
and x(t) traces out a continuous curve or a sequence of points in the
phase space, respectively. As time proceeds, trajectories in the phase
space can run away to infinity or remain in a bounded area. If a dy-
namical system is also dissipative, that is, on average the phase space
volume contracts as the system evolves, a set of initial conditions will
be attracted to some sub-set of the phase space. This sub-set, invari- Attractor

ant under the dynamical evolution, is called the attractor of the system.
Simple examples of attractors are fixed points and limit cycles.

3.3 deterministic chaos and strange at-
tractors

The solutions of many nonlinear dynamical systems are apparently
random. Even though these systems are deterministic, with no ran-
dom elements involved, they result highly unpredictable. However,
random signals generated by noise are fundamentally different from
those generated by low order deterministic dynamics. The behavior Deterministic chaos

of such systems, highly sensitive to initial conditions, is known as de-
terministic chaos. Geometrical counterpart of the sensitivity to initial
conditions is the complex structure exhibited by the attractors. These Strange attractors

attractors are known as strange attractors.
One of the first examples of three-dimensional nonlinear dynamical

system evolving continuously in time and showing chaotic behavior is
the Lorenz oscillator [Lorenz, 1963]. The Lorenz oscillator is governed
by the following differential equations:

dx
dt = σ(y− x)
dy
dt = x(ρ− z) − y
dz
dt = xy−βz

(3)

Figure 3a shows Lorenz strange attractor for ρ = 28, σ = 10 and β = 8
3 .

A two-dimensional discrete dynamical system is the Hénon map
[Hénon, 1976]. The difference equations that describe the Hénon map
are:

xn+1 = yn + 1− ax2n
yn+1 = bxn

(4)

The strange attractor of the canonical Hénon map, built with a = 1.4
and b = 0.3, is shown in Fig 3b.

A strange attractor is characterized by the following properties:
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(a) Lorenz attractor. (b) Hénon map.

Figure 3: Strange attractors of a 3D continuous and a 2D discrete dynamical
system.

• phase space trajectories through all points on the attractor di-
verge exponentially on average;

• the dimension of the set of points delimited by the attractor is
noninteger.

The next two subsections discuss more in detail the aforementioned
properties.

3.3.1 Sensitivity to initial conditions: Lyapunov exponents

The dynamical property of a chaotic system manifests itself in the un-
predictability of the future states due to the sensitive dependence on
its initial conditions. Nearby trajectories separate very fast, or more
precisely, exponentially fast over time. The average exponential sepa-Lyapunov exponents

ration between nearby phase space trajectories, related to the strength
of chaos, is quantified by Lyapunov exponents. Although a dynam-
ical system in Rn has associated n Lyapunov exponents, the overall
predictability of the system is determined by the largest Lyapunov ex-
ponent, λ. Consider two points in the phase space with Euclidean
distance δ0 � 1 at time n = n0 and denote with δ∆n the Euclidean
distance between the two trajectories emerged from these points at
time n = n1. The largest Lyapunov exponent λ is then determined by:

δ∆n ' δ0eλ∆n, δ∆n � 1, ∆n� 1 (5)

where ∆n = n1 − n0. A positive value of λ implies an exponential
divergence of nearby trajectories, i.e., chaos (Tab. 2).

3.3.2 Noninteger dimension: correlation dimension

Attractors of dissipative chaotic systems have an apparently complex
structure showing details on all length scales. One of the early wayCorrelation

dimension to quantify the strangeness of a strange attractor by a dimension was
proposed by Grassberger and Procaccia [1983]. They called this notion
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Table 2: Possible types of motion and corresponding largest Lyapunov expo-
nent.

Type of motion Largest Lyapunov exponent
stable fixed point λ < 0

stable limit cycle λ = 0

chaos 0 < λ <∞
noise λ =∞

correlation dimension. The correlation sum for a set of points xn in some
vector space is defined as the fraction of all possible pairs of points
whose distance ρ is less than or equal to a given distance r:

C(r,N) ≈ 2

N(N− 1)

N∑
i=1

N∑
j=i+1

Θ(r− ρ(xi, xj)) (6)

where the Heaviside step function is defined as:

Θ(s) =

{
1, if s > 0
0, if s < 0

(7)

The sum counts the pair (xi,xj) whose distance ρ is smaller than r. The
correlation dimension D is defined as:

D = lim
r→0

lim
N→∞ logC(r,N)

log r
(8)

Since both limits cannot be realized in practical applications, Grass-
berger and Procaccia proposed to deduce D from the law C(r) ∝ rD
as the slope of the straight line fitting logC(r) versus log(r). The no-
tion of dimension is important because it is related to the minimum
number of dynamical variables required to describe the dynamics of
the strange attractor.

3.4 phase space reconstruction
The largest Lyapunov exponent and the correlation dimension provide
information about the dynamics of the trajectories and the geometry
of the strange attractor, respectively. Thus, to better understand the na-
ture of a chaotic system, knowledge of the trajectories in phase space
is desirable. Unfortunately, in most practical cases one does not have
direct access to the system but what he observes is a single time series.
The essential problem in the study of deterministic dynamical systems Phase space

reconstructionis the reconstruction of the state vectors in phase space from a given
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observation in time. The method of phase space reconstruction, de-
veloped by Packard et al. [1980], has been rigorously justified by the
embedding theorems of Takens [1981] and Sauer et al. [1994].

According to Takens, if the observed time series is one component ofEmbedding theorem

an attractor that can be represented by a smooth d-dimensional mani-
fold (with d an integer) then the topological properties of the attractor
(such as the largest Lyapunov exponent and the correlation dimension)
are equivalent to the topological properties of the embedding formed
by the m-dimensional phase space vectors:

sn = (sn−(m−1)τ, sn−(m−2)τ, ..., sn−τ, sn) (9)

whenever m > 2d + 1. In Eq. 9 τ is the time delay and m is the
embedding dimension. Sauer extended Takens’ theorem to the case of
strange attractors with noninteger dimension D.

To optimize the measurements of the largest Lyapunov exponent
and the correlation dimension, there is the need to specify the opti-
mum value for the embedding dimension m and the time delay τ.
Although for many practical purposes the most important embedding
parameter is the product mτ, the embedding dimension and the time
delay are commonly chosen separately.

3.4.1 Optimal m

The main problem of phase space reconstruction is the choice of theEmbedding
dimension optimal embedding dimension. As asserted by the aforementioned

embedding theorems, a phase space is correctly reconstructed if the
embedding dimension is chosen as m > 2D + 1. In this terms, if a
m embedding dimension provides a good representation of the phase
space, every m’ embedding dimension greater than m would be as
much correct. However, the choice of an arbitrary large m value will
result in an increased computational effort required by the algorithms
for the analysis of the dynamical system. Thus, the main problem
in phase space reconstruction is the choice of the optimal embedding
dimension.

Kennel et al. [1992] developed a method for determining the em-False nearest
neighbors bedding dimension introducing the concept of false nearest neighbors.

Consider two neighboring states in the phase space at a given time.
Under smoothness assumptions about the dynamical rules governing
the system, the two trajectories emerging from the two points should
be still close after a short time interval δn despite the sensitivity to
initial conditions. If two neighboring states in a mi-dimensional space
diverge exponentially in the mi+1-dimensional space, then they are
defined “false neighbors” for the chosen mi embedding dimension.
The algorithm compares the distances between neighboring trajecto-
ries at successively higher dimensions. When the ratio between the
distances in dimension mi and in dimension mi+1 is greater than a
fixed threshold, large enough to allow for exponential divergence due
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to deterministic chaos, then the considered trajectories are false neigh-
bors. As i increases, the percentage r of false neighbors decreases and
the optimal embedding dimension is chosen where r approaches zero.

3.4.2 Optimal τ

The embedding theorems consider data with infinite precision. Thus, Time delay

embedding with the same dimension m but different time delay τ are
equivalent in the mathematical sense for noise-free data. However, if τ
is small compared to the internal time scales of the system, consecutive
phase space points are strongly correlated. On the other hand, for large
values of time delay successive elements are already almost indepen-
dent. One of the most common methods for determining the optimal Autocorrelation

time delay is based on the behavior of the autocorrelation function of
the signal. According to this method, the first zero of the autocorrela-
tion function represents a good value of τ. Another proposal is based Mutual information

on the more refined concept of mutual information introduced by Fraser
and Swinney [1986]. The optimal value of time delay corresponds to
the first local minimum of the mutual information which is a quantity
that measures how much information on the average can be predicted
about one time series point given full information about the other.
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The measures presented in the preceding chapter for the character-
ization of a dynamical system producing irregular time series require
the reconstruction of the phase space, a procedure which may be com-
putationally expensive.

A new perspective to approach the study of such systems without
reconstructing the attractor is offered by the concept of fractal geome-
try. Complexity is a theme shared by many physiological systems in
all areas of medical research. The classical notion of scaling is not able
to describe the irregular structures seen in lungs and brain, as well as
the irregular patterns of electroencephalographic and heart rate vari-
ability signals. In this chapter, the main features of fractal shapes are
firstly presented in the more intuitive space domain and then adapted
for the characterization of fractal processes in time. Fractional Brow-
nian motion, the most used mathematical model for natural fractal
processes, including the EEG, is then described. Finally, the fractal ap-
proach adopted by the Author during the PhD course for the analysis
of the EEG is presented. The theoretical concepts presented in this
chapter are adapted from Peitgen and Saupe [1988].

4.1 fractals and self-similarity
Within the last 30 years fractal geometry has become a central con-
cept in most of the natural sciences, among which physics, chemistry,
physiology and meteorology. Although fractal objects are complex in
appearance, they arise from simple rules and contrarily to Euclidean
shapes, they represent more suitable models for natural phenomena.

To understand the major differences between Euclidean and frac- Euclidean versus
fractal geometrytal geometry, consider a three-dimensional Euclidean shape, for exam-

ple a sphere. A sphere is characterized by one size (the radius r), is

21



completely described by a simple algebraic formula ((x− x0)2 + (y−

y0)
2 + (z− z0)

2 = r2) and provides an accurate description of many
artificial objects. Fractals, on the contrary, have no characteristic size
(they are self-similar or independent of scale), are usually the result of
a recursive construction procedure and provide a good description of
many natural shapes, processes or phenomena (coastlines, turbulence,
snowflakes, etc.).

Consider the von Koch curve, one of the first mathematical fractals
described in literature [von Koch, 1904]. Figure 4 shows the first four
steps of the recursive procedure for constructing this famous fractal
curve. A line segment is first divided into three equal segments (n=0).
The middle segment is replaced by two equal segments forming two
sides of an equilateral triangle (n=1). This procedure is then repeated
on each of the four segments, whose middle third is replaced by two
equal segments forming two sides of an equilateral triangle (n=2). On
each iteration, the number of the segments is multiplied by four while
the length of the segments is divided by three. Thus, the length of
the curve increases by a factor of 43 with each iteration. The von Koch
curve is the limiting curve obtained by iterating the construction rule
an infinite number of times.

The von Koch curve has no characteristic size. It exhibits an exact
self-similarity, meaning that each small portion, when magnified, is ex-
actly identical to the original one. The curve is said to be independent
of scale because there will be an equivalent level of detail at every scale.
Moreover, the limiting curve obtained after an infinite number of iter-
ations would compress an infinite length into a finite area of the plane
without intersecting itself. The von Koch curve, though apparently
complex, is produced by the iteration of a very simple rule. However,
there is no algebraic formula that can describe its points in the plane.
Based on the von Koch curve, the fractal shape of Fig. 5 provides a
good description of the snowflake.

4.2 self-similarity and dimension

One of the central concepts of fractal geometry is the property of self-Self-similarity

similarity, also known as scaling or scale-invariance. Although every
fractal exhibits some form of self-similarity, it is not true that, if an
object is self-similar, then it is fractal. Consider a one-dimensional Eu-
clidean object like a line segment. It can be divided into N identical
segments each reduced by a scaling factor r = 1

N . A two-dimensional
Euclidean object, for example a square area, can be divided into N
smaller squares, each scaled down by a factor r = 1

2√
N

. Similarly, a
three-dimensional Euclidean object, such as a solid cube, can be di-
vided into N self-similar copies, each scaled down by a factor r = 1

3√
N

.
It can be deduced that, in the same way, a D-dimensional self-similar
object can be divided into N identical parts each of which is reduced
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n=0

n=1

n=2

n=3

n=4

Figure 4: Initiator (n=0) and generator (n=1) of the von Koch curve, and next
steps in the construction.
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by a factor r = 1
D√
N

. The relation between the number N of rescaled
D-dimensional objects and the reduction factor r is given by:

N =
1

rD
(10)

Thus, given a Euclidean self-similar object divided into N parts scaled
down by a factor r from the whole, its dimension is equal to:

D =
logN
log 1r

(11)

The concept of self-similarity is intimately connected with the in-Dimension

tuitive notion of dimension. However, the dimension of a self-similar
object needs not to be an integer. Consider the von Koch curve of Fig. 4.
Each segment is composed by 4 sub-segments, each scaled down by a
factor of r = 1

3 from its parent. By using Eq. 11 it derives thatD =
log4
log3 ,

i.e., the dimension of the von Koch curve is non integer. Thus, the von
Koch curve is a self-similar object with fractal dimension FD = 1.2619.
The fractal dimension reflects the unusual property of the von Koch
curve of filling more space than a Euclidean line segment (D = 1) but
less than a Euclidean area (D = 2). In this terms, as FD increases from
1 toward 2, the self-similar curves progress from being “line-like” to
“area-like”, though remaining curves with a topological dimension of
1.

Exact self-similar objects would be inaccurate models for most frac-Statistical
self-similarity tals in nature. A coastline, for example, does not exhibit the exact scale

invariance of the von Koch curve. When magnified, smaller parts of
a coastline show the same statistical properties of the whole but never
look like the whole. Fractals in the real world are, to be more pre-
cise, statistically self-similar. Moreover, whereas a mathematical fractal
object has an infinitely repeatedly self-similarity when magnified, frac-
tals in nature are statistical self-similar only over a finite number of
scales. Scale-invariance is an approximation of the real world, from
a physicist’s point of view, and vice versa, from the mathematician’s
perspective.

Figure 5: Von Koch snowflake, derived from the von Koch curve.
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4.3 time-domain self-similarity

Although fractal geometry is generally meant in space, self-similar be-
havior can be observed also in time. Randomness in time is generally
ascribed to noise. The correlation between successive points in a ran-
dom process is determined by the “color” of the noise, which is related
to the slope of the power spectral density. The most famous noise is
represented by white noise (Fig. 6). White noise is characterized by
flat power spectral density, representing equal amounts of power at
all frequencies within a fixed bandwidth. In a statistical sense, white
noise is an uncorrelated process that could be produced by a random
number generator. A highly correlated process is the Brownian mo-
tion, also known as red noise or brown noise, which is characterized
by a power density proportional to 1

f2
(Fig. 6). It can be produced

by a random walk process or by integrating white noise. The process
having a power spectral density proportional to 1

f is the pink noise,
whose name arises from being intermediate between white noise and
red noise (Brownian motion). Within the scientific literature, the term 1

fβ
behavior

1
f -noise is often use to refer to any process characterized by a power
spectral density proportional to 1

fβ
. For the sake of clarity, in this thesis

the Author will refer to 1
fβ

behavior with the term 1
f -like noise. 1f -like

noise is claimed to be the most common noise found in nature. A
time series showing 1

f -like power spectrum has no characteristic time
scale. The property of having no characteristic time scale can be better
understood by considering, for example, periodic phenomena. A peri-
odic process has a specific time scale which generates a characteristic
peak in the power spectrum. Viewing such a process on a different
time scale would dramatically alter its appearance. On the contrary,
the fluctuations of a 1f -like process, with appropriate y-axis rescaling, will
appear similar under temporal magnification in the same way that the
structure of a fractal shape appears similar under spatial magnifica-
tion. The underlying temporal process of 1f -like time series is fractal
in nature [Pritchard, 1992].

4.4 fractional brownian motion

Fractals in nature have been traditionally described with fractional Brow-
nian motion (fBm) of Mandelbrot and Van Ness [1968]. Fractional Brow- Fractional Brownian

motionnian motion is derived from the mathematical model of Brownian mo-
tion, widely used in physics and finance to characterize random fluc-
tuations over time. It is the only self-similar nonstationary process
with stationary Gaussian increments. Figure 7 shows three examples
of fBm traces with different scaling behavior. As can be inferred, the
scaling property of fractional Brownian motion (BH(t)) is determined
by H, the Hurst exponent, whose values range between 0 and 1. The
more H is close to 0, the rougher are the traces. On the contrary, as
H approaches 1 the traces become relatively smooth. The variations of
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the function, ∆B = B(t2) − B(t1), are related by H to the variations of
time, ∆t = t2 − t1, according to the simple scaling law:

∆B ∝ ∆tH (12)

Since the displacements of Brownian motion are proportional to the
square root of the elapsed time, a value of H = 1

2 generates a trace of
Brownian motion.

Brownian motion

pink noise

white noise

1/f0

1/f

1/f2

Figure 6: Examples of typical noise processes.

4.5 self-affinity
The scaling behavior exhibited by fBm is quite similar but different
from the above mentioned exact and statistical self-similarity. Con-
sider, as an example, the Weiestrass function XH(t) [Bassingthwaighte
et al., 1994] (Fig. 8). This function consists of an infinite summation of
periodic terms, each of which has a frequency that is a factor γ larger
than the preceding term and an amplitude that is γH times smaller:

X(t) =

∞∑
n=0

cos(2πγnt)
γHn

(13)
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with γ>1. Whereas self-similar objects repeat identically under mag- Self-affinity

nification, XH and t must be scaled down by different amounts (∆XH
and ∆t, respectively) to obtain two identical views. In particular, the
magnified curve results indistinguishable from the whole only if ∆XH =

∆tH. The property of fractal time series that need such anisotropic scal-
ing in the x- and y-axis, in order to appreciate their self-similarity, is
known as self-affinity.

H=0.2
FD=1.8

H=0.5
FD=1.5

H=0.8
FD=1.2

B
H
(t)

Figure 7: Examples of fractional Brownian motion BH(t) for different values
of H and FD.

4.6 statistical self-affinity: fractal di-
mension, hurst index and β expo-
nent

Since fractional Brownian motion traces repeat statistically when BH be- Statistical
self-affinitycomes ∆tHBH, fBm scaling property is known as statistical self-affinity.

As can be seen by comparing Figs. 6 and 7, the roughness of the noises
changes with the spectral exponent β similarly to how the roughness
of fBm traces changes with H index. A fruitful connection exists be-

27



X
H
(t)

Figure 8: Self-affine structure of the Weierstrass fractal function.
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tween the three equivalent characterization FD, H and β of a fBm func-
tion:

FD = 2−H =
5−β

2
(14)

For H ∈ (0,1), FD is in the range 1-2 and 1 < β < 3.

4.7 modeling eeg with fbm

The so-called 1
f -like behavior is a ubiquitous property of complex bio-

logical systems. In such scaling, the power spectral density of a time
series is governed by an inverse power-law:

PSD ∝ 1

fβ
(15)

where the exponent β is related to the color of the series, that is, to
the degree of autocorrelation. The human EEG reflects the ongoing
activity of the underlying complex system: the human brain. In one
of the first studies on the fractal-like behavior of the EEG, Pritchard
[1992] reported that the EEG exhibits significant 1f -like power scaling,
suggesting that the human brain is fractal in time. Moreover, he ob-
served that the EEG displays “more color” than a truly 1

f process,
meaning that the EEG is autocorrelated to a greater degree. The par-
ticular broad-band power spectrum of the EEG could be generated by
a high dimensional stochastic system where a large number of multi-
plicative subprocesses switch from log-normal to 1

f -like. However, the
unpredictability of the EEG could also be attributed to the sensitive de-
pendence on initial conditions of a low dimensional system governed
by deterministic chaos and described by a few nonlinear differential
(or difference) equations [Pritchard, 1992].

Although the origin of the 1f -like behavior of EEG power spectrum
still remains a mystery, the fractal analysis of the signal has become a
powerful tool for the characterization of many physiological and patho-
logical mechanisms involving complexity changes. Given the typical
1
fβ

power spectrum of the EEG (example in Fig. 22), with β in the
range 1-3, fractional Brownian motion turned out to be the most suit-
able mathematical model for its description. In these terms, EEG statis-
tical self-affinity can be equivalently characterized by the three scaling
parameters: the the Hurst index (H), the fractal dimension (FD) and
the power-law exponent (β).

4.8 time domain fractal approach
The study of the fractal-like behavior of the EEG can be approached
both in the time-domain and in the frequency-domain. In this the-
sis the attention is focused on the time-domain analysis, i.e., on the
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characterization of the EEG in terms of fractal dimension, to meet the
growing need for real-time systems. Several methods have been pro-Fractal dimension

posed to estimate the fractal dimension of a time series. One of the
early techniques for calculating the fractal dimension of a waveform is
the box-counting method [Mandelbrot, 1982], based on counting how
many 2D cells of size ε are required to cover the total length of the
curve. A similar method, based on the morphological covering of the
curve, was proposed by Maragos and Sun [1983]. Two of the most used
algorithms were developed in the late ’80s by Higuchi [1988] and Katz
[1988], the latter improved by Petrosian [1995] to reduce the execution
time. More recently, Sevcik [2006] and Paramanathan and Uthayaku-
mar [2008] proposed new procedures to estimate the fractal dimension
of waveforms.

In order to identify the most accurate and reliable algorithm, theAlgorithms for direct
estimation Author firstly selected three of the most used methods for the esti-

mation of EEG fractal dimension: the box-counting method, Katz’s
algorithm and Higuchi’s algorithm. The algorithms were then com-
pared by evaluating not only the ability to provide accurate estimates
but also their sensitivity to parameters like the sampling frequency of
the EEG and the estimation time window length. The results of this
research, presented in Chapter 5, are guidelines that will be applied
to the experimental investigations presented in Part II for the correct
fractal analysis of the EEG.

Despite the plethora of algorithms available for the fractal analysisfBm model for
indirect estimation of the EEG directly in the time domain, the use of the relationship 14

to derive FD from the calculated β exponent is widespread among
physicians. Conversely, sometimes the scaling exponent β is obtained
from the fractal dimension estimated in the time-domain to describe
the power-law of the EEG. The accuracy of the estimates obtained by
the application of Eq. 14 relies on the accuracy of the fBm model. At
present, a detailed model of the system that generates the EEG is far
from being feasible. Deviations from 1

f -like behavior may occur more
often than thought, not only owing to abnormalities introduced by
pathological states. Pritchard [1992], for example, observed that devi-
ations from log-log linearity are associated with the eyes-closed alpha
rhythm in resting state EEG. From this perspective, the values obtained
using the scaling relationship 14 may be inaccurate estimates of the
real parameters. A further research carried out during the PhD course,
aimed at empirically verifying the relationship existing between FD

and β to establish how much the EEG deviates from fBm, is presented
in Chapter 6.
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Figure 9: Example of EEG signal and its 1f -like power spectrum.
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This chapter provides the description of three algorithms widely
used for the estimation of the fractal dimension of waveforms: the box-
counting method [Mandelbrot, 1982], Katz’s algorithm [Katz, 1988]
and Higuchi’s algorithm [Higuchi, 1988]. The performances of the
aforementioned algorithms are compared in terms of accuracy, sensi-
tivity to the sampling frequency and dependence on the estimation
time window length. Aim of the study is the identification of the most
reliable algorithm to be applied for the fractal analysis of the EEG. The
investigation is performed in two steps: the algorithms are firstly ap-
plied to three synthetic series of known fractal dimension and then
used for the analysis of EEG traces acquired from twenty full-term
sleeping newborns. The chapter is based on Author’s publications 2

and 4.

5.1 introduction and motivation
As mentioned in Chapter 4, the complexity of many physiological sys-
tems can be assessed through the analysis of the irregular time series
they generate. Such time series, apparently random or aperiodic in
time, are frequently independent of scale and self-similar under mag-
nification [Mandelbrot, 1982]. The particular non-uniform scaling of a
time series which is invariant under a transformation that scales differ-
ent coordinates by different amounts is known as self-affinity [Mandel-
brot, 1985]. Self-affine time series are characterized, in the frequency
domain, by a power-law spectrum. Among the plethora of indexes
that can describe the irregularity of waveforms showing self-affinity in
time and power-law spectrum, the fractal dimension (FD) has gained
wide acceptance.
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The electroencephalogram is a fractal-like signal whose underlying
mechanisms reflect the complexity of brain activity [Acharya et al.,
2005; Bosl et al., 2011; Catarino et al., 2011; Chouvarda et al., 2011;
Mizuno et al., 2010]. For this reason it represents a rich source of
information about several pathophysiological phenomena. The frac-
tal dimension, for example, is a powerful EEG index in the monitor-
ing of the depth of anesthesia [Ferenets et al., 2006, 2007] as well as
in the identification of wake/drowsy states [Bojic et al., 2010; Inouye
et al., 1994] and of different sleep stages [Acharya et al., 2005; Car-
rozzi et al., 2004; Chouvarda et al., 2011]. It also represents a useful
parameter for the characterization of psychiatric brain diseases like
schizophrenia [Raghavendra et al., 2009] and autism [Ahmadlou et al.,
2010], for the diagnosis and monitoring of neurological disorders like
Alzheimer’s disease [Ahmadlou et al., 2011] and for epileptic seizure
detection and prediction [Accardo et al., 1997; Daneshyari et al., 2010;
Polychronaki et al., 2010].

The practice of obtaining FD estimates from spectral analysis by us-
ing the scaling relationship derived from Eq. 14, i.e., FD = (5−β)/2,
with β representing the exponent of the power-law, is widespread
[Phothisonothai and Nakagawa, 2009; Rankine et al., 2007]. However,
many methods have been proposed in order to estimate the fractal di-
mension of waveforms directly in the time-domain, allowing the analy-
sis of biological events also of brief duration [Higuchi, 1988; Katz, 1988;
Paramanathan and Uthayakumar, 2008; Petrosian, 1995].

Although some comparison studies [Accardo et al., 1997; Esteller
et al., 2001; Paramanathan and Uthayakumar, 2008; Raghavendra and
Dutt, 2009] have demonstrated that Higuchi’s algorithm [Higuchi, 1988]
is the most accurate in estimating the fractal dimension of waveforms,
other techniques, like box-counting method [Mandelbrot, 1982] and
Katz’s algorithm [Katz, 1988], have often been used to calculate EEG
fractal dimension. Moreover, regardless of the chosen algorithm, no
enough attention has been paid on the possible influence of the sig-
nal sampling frequency and the estimation time window length on FD
values.

As regard the sampling frequency, EEG traces are commonly ac-
quired at various rates ranging from about 100 Hz to 1024 Hz or higher.
Sometimes, especially to increase frequency resolution in spectral anal-
ysis, EEG signals are oversampled. Generally the oversampling does
not affect visual or traditional linear analysis of the EEG, provided
that a suitable filtering has been used. As far as the time window
length used for FD estimation, it is usually set according to the events
to be analyzed and therefore it is also very variable. However, it is
still unclear if oversampling of different time windows could produce
significant changes in the fractal analysis, which is based on geometric
characteristics of signals.

Raghavendra and Dutt [2009] compared the performances of Higu-State of the art

chi’s and Katz’s algorithms on four synthetic functions of known frac-
tal dimension and on one EEG sleep trace, testing the sensitivity of the
estimates to the sampling frequency only for one of the four synthetic
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functions and for three values of fractal dimension. However, the sam-
pling frequency of the synthetic functions was not set according to
the Nyquist-Shannon sampling theorem causing an undesired under-
sampling. The study of Esteller et al. [2001] also compared the perfor-
mances of Higuchi’s and Katz’s algorithms on one synthetic function
of known fractal dimension and on 16 intracranial EEGs of epileptic
patients. The effect of the estimation time window length was tested
only on the synthetic function. However, the window length incre-
ment did not correspond to an effective time increment but rather to a
sampling frequency increment. Moreover, also in this case, the condi-
tions of the Nyquist-Shannon sampling theorem were not fulfilled. A
similar procedure, applied also on EEG signals, was followed in the
study of Paramanathan and Uthayakumar [2008] for the comparison
of Higuchi’s and Katz’s algorithms.

In all the aforementioned studies the dependence of the algorithms
on the time window length was not correctly assessed and the inves-
tigation of their sensitivity to the sampling frequency could be invali-
dated by an inappropriate sampling procedure.

In order to circumvent the problems that may arise from an incor- Algorithms
comparisonrect selection either of the length of the time window or of the sam-

pling frequency, in the present study a detailed comparison of three
methods commonly used for the estimation of EEG fractal dimension
(the box-counting [Mandelbrot, 1982], the Katz’s [Katz, 1988] and the
Higuchi’s [Higuchi, 1988] algorithms) was carried out at the appropri-
ate sampling frequencies (greater than the Nyquist rate) and on dif-
ferent time windows. The sensitivity to both the sampling frequency
and the time window length was evaluated for all algorithms. The
study was performed in two steps: the algorithms were at first tested
on three synthetic functions of known fractal dimension for different
values of fractal dimension (FD), sampling frequency (FS) and time
window length (TWL). In the second step, the results were compared
with those achieved from the analysis of 20 neonatal EEGs for different
values of FS and TWL.

5.2 materials and methods

5.2.1 Fractal dimension estimation algorithms

5.2.1.1 Box-counting algorithm

One of the most common ways to measure the fractal dimension of a
time series is the box-counting method [Mandelbrot, 1982]. It consists
in covering the waveform with small cells of size ε. If M(ε) denotes
the number of such cells required to cover the waveform, then the
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box-counting dimension FDB (also known as Kolmogorov capacity or
capacity dimension) is defined as:

FDB = lim
ε→0

logM(ε)

log 1ε
(16)

In this work the procedure is repeated for cells whose size ε ranges
from 10 to 20 points. An estimate of FDB can be obtained by calculat-
ing the slope of the regression line when logM(ε) is plotted against
log 1ε .

5.2.1.2 Katz’s algorithm

According to Katz [1988], the fractal dimension of a planar curve can
be in general defined as:

FD =
logL
logd

(17)

where L is the total length of the curve and d is its planar extent
(or diameter). For a N-points time series x(1),x(2),...,x(N) the index
FD can be calculated considering L as the sum of the distances be-
tween successive points, i.e., L = sum(distance(i, i+ 1)) for i = 1,...,N
and d as the farthest distance between the first point and any other
point of the series, i.e., d = max(distance(1, i)) for i = 1,...,N. Under
this formulation, the fractal dimension is dependent on the particular
unit of measure used and cannot easily be compared. To overcome
the problem, Katz introduced a yardstick ā, a standard unit of mea-
sure defined as the average distance between successive points, i.e.,
ā = mean(distance(i, i+ 1)). Normalizing distances by ā and defining
n = L/ā as the number of steps in the series (one less the number of
points, i.e., n = N−1), the fractal dimension is estimated as:

FDK =
logn

logn+ log dL
(18)

5.2.1.3 Higuchi’s algorithm

Let x(1),x(2),...,x(N) be the N-points time series under investigation
and construct k new sequences as follows:

xmk =

[
x(m), x(m+ k), x(m+ 2k), ..., x

(
m+

⌊
N−m

k

⌋
k

)]
(19)

m = 1, 2, ...,k, k ∈N0

where m represents the initial time and k, ranging from 1 to kmax,
indicates the time delay. In this work, following the study of Accardo
et al. [1997], kmax was set equal to 6. The symbol bac denotes the

36



integer part of a. For each xmk constructed series the length Lm(k) is
calculated as:

Lm(k) =


bN−m

k c∑
i=1

|x(m+ ik) − x(m+ (i− 1)k)|

 N− 1⌊
N−m
k

⌋
k

 1
k

(20)

where the term

N−1

bN−m
k ck

is a normalization factor. An average length is computed for all time
series having the same delay k as the mean of the k lengths Lm(k) for
m = 1,2,...,k. This procedure is repeated for each k ranging from 1 to
kmax. If L(k) ∝ k−FDH , the time series x is fractal with dimension
FDH. Thus, if L(k) is plotted against 1/k on a double logarithmic
scale, the slope of the straight line fitting the data represents Higuchi’s
estimate of the fractal dimension [Higuchi, 1988].

5.2.2 Synthetic series analysis

The performances of the three algorithms were firstly evaluated on Material

three synthetic functions of known fractal dimension. Two determin-
istic waveforms (Weierstrass-Mandelbrot cosine function and Takagi-
Landsberg function) and one stochastic process (fractional Brownian
motion) were employed in the study. The fractal dimension FD of Methods

each function was varied from 1.1 to 1.9 in steps of 0.1. Each function,
for each FD value, was firstly constructed with the minimum number
of points per second, fs1, in order (for a band-limited signal) to obey
the Nyquist-Shannon sampling theorem. Then, to evaluate the depen-
dence on the sampling frequency (FS) by producing oversampling, the
number of points of all functions was increased by a factor of 2, 3 and 4,
considering fs2, fs3 and fs4 points per second, respectively. To evalu-
ate the effect of the time window length (TWL), each function sequence
was divided into segments of four different lengths with no overlap.
Considering that EEG features are commonly analyzed in time inter-
vals ranging from 1 to 30 seconds, the window lengths chosen for EEG
analysis were: 1 s, 5 s, 10 s and 30 s. This choice corresponds to select
the shortest TWL ( wl1) as 0.4

fmin
being EEG’s lowest frequency fmin

of about 0.4 Hz, and the other three windows as 5, 10 and 30 times
the shortest TWL, respectively. Thus, in order to perform a consis-
tent comparison between synthetic series analysis and EEG evaluation,
synthesized function were firstly divided into successive segments of
wl1 = 0.4

fmin
s. Then, the TWL was increased by a factor of 5, 10 and 30,

considering estimation intervals of wl2, wl3 and wl4 seconds, respec-
tively. For each segment, FDB, FDK and FDH values were estimated
and then averaged on the whole function obtaining the mean values

¯FDB, ¯FDK and ¯FDH. Globally, sixteen mean values of fractal dimen-
sion, one value for each (fsi,wlj) pair, were obtained for each function
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and for each considered algorithm. Finally, the relationship between
FD and FS was evaluated for each wlj and the relationship between
FD and TWL was calculated for each fsi.

5.2.2.1 Weierstrass-Mandelbrot cosine function

Weierstrass-Mandelbrot cosine function [Berry and Lewis, 1980] is de-
rived from the complex Weierstrass-Mandelbrot function, defined by:

W(t) =

∞∑
n=−∞

(1− eiγ
nt)eiφn

γ(2−FD)n
(21)

where FD, the fractal dimension, must be in the range 1 < FD < 2,
γ > 1 and φn is an arbitrary phase that can be chosen to makeW(t) ex-
hibit deterministic or stochastic behavior. Let φn = 0; the Weierstrass-
Mandelbrot cosine function is obtained as the real part of W(t):

C(t) = <W(t) =

∞∑
n=−∞

1− cos(γnt)
γ(2−FD)n

(22)

Following the study of Raghavendra and Dutt [2009], γ was set equal
to 1.5. Although C(t) calculation involves the sum of an infinite num-
ber of components, all practical applications introduce both low and
high frequency cutoffs. If the infinite series is truncated so that the
summation is done only for |n| = nmax with nmax = 10, the func-
tion results in the superimposition of 2nmax+ 1 frequency compo-
nents centered at γn/2π Hz. In this way, since fmax = γnmax/2π, the
number of points per second required to correctly construct C(t) is
fs > 2fmax = 2(γnmax/2π). In this work the minimum sampling fre-
quency was set to 2.02 times fmax. Thus, being γ = 1.5 and nmax = 10,
it resulted that fs1 = 19. To oversample the function, the same curve
was built with fs2 = 38, fs3 = 57 and fs4 = 76 points per second,
corresponding to 2, 3 and 4 times fs1, respectively. Since fmin =

γ−nmax/2π = 0.0028 Hz, the C(t) longest period was of T = 362 s and
thus, the shortest window length was set to wl1 = 0.4T = 145 s. The
other three windows were therefore wl2 = 725 s, wl3 = 1450 s and
wl4 = 4350 s wide, corresponding to 5, 10 and 30 times wl1. In order
to estimate the fractal dimension in all the considered windows, the
function was constructed considering 50 cycles of the longest period,
i.e., for t in the range [1,18100] seconds. An example of the considered
function, for FD = 1.4 in the time range [0,362] seconds, is shown in
Fig. 10.
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5.2.2.2 Takagi-Landsberg function

The Takagi-Landsberg function, explored by Takagi [1903], is a curve
constructed by positive mid-point displacements of straight line seg-
ments. It is defined on the unit interval by:

T(t) =

∞∑
n=0

an∆(bnt) (23)

where a ∈ [0,1], b is an integer greater than 1 and ∆(x), defined by
∆(x) = mink∈Z |x− k|, represents the distance from x to the nearest
integer. This function is everywhere continuous but nowhere differ-
entiable if ab > 1. In this work, following the study of Raghavendra
and Dutt [2009], b = 2 and a ∈ [0.5,1] so that the fractal dimension
FD =

log4a
logb could be varied from 1.1 to 1.9 in steps of 0.1. If the infi-

nite summation is approximated by the finite superimposition of the
few first terms and nmax = 10, the function is the result of the sum-
mation of nmax+ 1 triangular waves of frequency bn Hz (neglecting
harmonic terms). In this way, being fmax about equal to bnmax , the
number of points required to correctly construct one period of T(t) is
fs > 2bnmax . The minimum number of points per second was cho-
sen as fs1 = 2.02fmax = 2068. To oversample the function, the same
curve was built with fs2 = 4136, fs3 = 6204 and fs4 = 8272 points per
second. Since fmin = 1 Hz, TWLs were set to wl1 = 0.4 s, wl2 = 2

s, wl3 = 4 s and wl4 = 12 s. In order to estimate FD for all window
lengths, the function was constructed considering 50 periods, i.e., for
t in the range [1,50] seconds. An example of the considered function,
for FD = 1.4 in the time range [0,1] seconds, is shown in Fig. 10.

5.2.2.3 Fractional Brownian motion

The fBm traces used in this work were generated following the wavelet-
based synthesis method proposed by Abry and Sellan [1996]. The orig-
inal time-series was built with 128 points per second, the same rate
that will be used to resample EEG traces, in order to produce a spectral
content limited to about 50 Hz and therefore similar to that of the elec-
troencephalogram. The series with sampling frequency fs1 = 128 Hz
was then interpolated to obtain oversampled fs2 = 256 Hz, fs3 = 384

Hz and fs4 = 512 Hz sequences with about the same frequency con-
tent. Since fmin = 1 Hz, as observed from the spectra of synthesized
signals, the shortest TWL was set to wl1 = 0.4

fmin
= 0.4 s. The other

three windows were therefore wl2 = 2 s, wl3 = 4 s and wl4 = 12 s
wide, corresponding to 5, 10 and 30 times wl1. An example of the
considered function, for FD = 1.4 in the time range [0,1] seconds, is
shown in Fig. 10.

5.2.3 EEG analysis

EEGs analyzed in the present study were recorded from 20 healthy Material
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full-term newborns (10 males and 10 females) for an investigation of
neonatal sleep-stage characteristics [Carrozzi et al., 2004]. Eight unipo-
lar derivations (Fp1, Fp2, C3, C4, T3, T4, O1, O2), common reference
Cz, were recorded by means of Ag/AgCl electrodes according to the
International 10-20 System. The EEGs were acquired within the first
week of life, during diurnal sleep. The signals were digitally filteredMethods

(Butterworth band-pass) between 0.4 and 50 Hz, sampled at 1024 Hz
and digitalized with a resolution of 12 bit. Since brain activity dur-
ing sleep was symmetric in the two hemispheres, the analysis was
carried out only on the four derivations of the left hemisphere (Fp1,
C3, T3 and O1). For each derivation, four signals EEGi (i = 1,...,4)
where obtained by resampling the original time series at fs1 = 128 Hz,
fs2 = 256 Hz, fs3 = 384 Hz and fs4 = 512 Hz. For each EEGi signal,
a stationarity test was performed by means of the nonlinear cross pre-
diction error algorithm [Schreiber, 1997]. The stationary sub-sequences
of each signal were then divided into successive segments of wl1 = 1

s, wl2 = 5 s, wl3 = 10 s and wl4 = 30 s, being EEG’s minimum fre-
quency of about 0.4 Hz. For each stationary sub-sequence, FDB, FDK
and FDH values were computed on each contained segment and then
averaged on the sub-sequence to obtain ¯FDB, ¯FDK and ¯FDH mean val-
ues. In this way, sixteen mean values of fractal dimension, one value
for each (fsi,wlj) pair, were obtained for each considered algorithm
in each stationary sub-sequence. Since FDH14 fractal dimensions (i.e.,
Higuchi’s estimates calculated on 30 s-windows for 128 Hz-sampled
EEG) showed a limited range of values (Fig. 11), the longest segments
with ¯FDH14 ∼ 1.3 and ¯FDH14 ∼ 1.4 were selected for each subject for the
successive analysis (Fig. 11). Finally, for both groups, the relationship
between the fractal dimension and the sampling frequency, for each
TWL and that between the fractal dimension and the time window
length, for each FS, were calculated.
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Figure 10: Fractal synthetic waveforms with FD = 1.4: Weierstrass-Mandel-
brot cosine function (left), Takagi-Landsberg function (middle) and
fractional Brownian motion (right).
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Figure 11: Histogram of FDH values estimated in all stationary sub-sequences
of all EEG derivation resampled at fs1 Hz and divided into succes-
sive segments of wl4 s (top), histogram of FDH14 values estimated
in the selected intervals of the EEG with ¯FDH14 ∼ 1.3 (bottom left)
and histogram of FDH14 values estimated in the selected intervals
of the EEG with ¯FDH14 ∼ 1.4 (bottom right).

5.3 results

5.3.1 Results on synthetic series

Figure 12 shows the plot of the estimated FD (obtained with the three
algorithms) versus the theoretical FD for the three considered synthe-
sized waveforms. The curves were generated with fs1 points per sec-
ond and the fractal dimension was obtained as the average of the val-
ues estimated in sliding windows of wl1 seconds. A perfect reproduc-
tion of the true fractal dimension should yield a straight line of slope 1

(solid gray line). The results show that Higuchi’s algorithm provided
the most accurate estimates of the fractal dimension for each consid-
ered function. Both Katz’s algorithm and box-counting method, on
the contrary, showed a nonlinear trend with large overestimation and
underestimation of the fractal dimension. The worst results, for both
algorithms, were found for the Weierstrass-Mandelbrot cosine func-
tion. In the next sections the effects of the sampling frequency (FS)
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Figure 12: Plot of estimated versus theoretical fractal dimension values for
Weierstrass-Mandelbrot cosine function (left), Takagi-Landsberg
function (middle) and fractional Brownian motion (right). The func-
tions were generated with fs1 points per second and the fractal
dimension was obtained as the average of the values estimated in
sliding windows of wl1 seconds by using the box-counting (red cir-
cles), the Katz’s (blue squares) and the Higuchi’s (green diamonds)
algorithms.

and of the time window length (TWL) are presented for each consid-
ered algorithm and function.

5.3.1.1 Effect of waveform sampling frequency

The sensitivity of the algorithms to the sampling frequency was tested
by varying the number of points per second, FS, of each base wave-
form from fs1 to fs4. By using a TWL of wl1 seconds and the Takagi-
Ladsberg function, the values estimated by the box-counting method,
FDB, slightly decreased when FS increased, underestimating in all
cases the theoretical FD (Fig. 13). The Katz’s algorithm showed a slight
overestimation for FD values in the 1.1-1.5 range and a strong sensitiv-
ity to the sampling frequency for FD values greater than 1.5 (Fig. 13)
overestimating, at all the considered FS, the theoretical FD and show-
ing a linear relationship between FDK and FS (example in Fig. 14 for
FD = 1.8). The Higuchi’s estimates, FDH, strongly decreased as sam-
pling frequency increased, for all FD values, following a linear law as
shown in the example of Fig. 14 for FD = 1.8. Higuchi’s most accurate
estimates were those obtained on the function generated with the min-
imum number of points, that is, with the minimum required sampling
frequency (Fig. 13). Higuchi’s algorithm was the only one that showed
the same behavior also for both Weierstrass-Mandelbrot cosine func-
tion and fractional Brownian motion. Similarly to the behavior for the
Takagi-Landsberg function, Katz’s algorithm, produced underestima-
tion for FD in the range 1.1-1.5 and overestimation for greater values of
FD also for fractional Brownian motion, even if FDK estimates resulted
to be linearly related to 1/FS. However, the algorithm resulted almost
insensitive to FS for Weierstrass-Mandelbrot function, always under-
estimating theoretical FD. Finally, the box-counting method mainly
underestimated FD for both functions, always resulting almost inde-
pendent from FS.
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Figure 13: Plot of estimated versus theoretical fractal dimension for the Takagi-
Landsberg function, for different values of FS, obtained with box-
counting method (left), Katz’s algorithm (middle) and Higuchi’s
algorithm (right) on estimation windows of wl1 seconds. fs1: red
circles, fs2: blue squares, fs3: green diamonds, fs4: black penta-
grams.
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Figure 14: Plot of estimated fractal dimension versus FS, for different values
of TWL, for the Takagi-Landsberg function of FD = 1.8, obtained
with box-counting method (left), Katz’s algorithm (middle) and
Higuchi’s algorithm (right). wl1: red circles, wl2: blue squares,
wl3: green diamonds, wl4: black pentagrams.

5.3.1.2 Effect of estimation time window length

The dependence on the time window length was studied by varying
TWL from wl1 to wl4 seconds considering a FS value of fs1. The box-
counting method turned out to be sensitive to the time window length
only for fBm function, with FDB slightly decreasing with TWL, while
it underestimated the theoretical FD for the other two functions in-
dependently from TWL (examples for the Takagi-Landsberg function
in Figs. 15 and 16). On the contrary, a clear dependence on the TWL
was exhibited by Katz’s algorithm for both fractional Brownian motion
and Takagi-Landsberg function (examples in Figs. 15 and 16) produc-
ing underestimation and overestimation of theoretical FD, respectively.
In both cases the FDK estimates decreased as TWL increased follow-
ing a nonlinear law. For the Weierstrass-Mandelbrot cosine function
FDK values were very close to 1 for all the considered TWL. Finally,
Higuchi’s algorithm turned out to be independent from the TWL for
all the considered functions (examples in Figs. 15 and 16).
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Figure 15: Plot of estimated versus theoretical fractal dimension for the Takagi-
Landsberg function, built with fs1 points per second, for different
values of TWL, obtained with box-counting method (left), Katz’s al-
gorithm (middle) and Higuchi’s algorithm (right). wl1: red circles,
wl2: blue squares, wl3: green diamonds, wl4: black pentagrams.
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Figure 16: Plot of estimated fractal dimension versus TWL, for different val-
ues of FS, for the Takagi-Landsberg function of FD = 1.8, obtained
with box-counting method (left), Katz’s algorithm (middle) and
Higuchi’s algorithm (right). fs1: red circles, fs2: blue squares, fs3:
green diamonds, fs4: black pentagrams.

5.3.2 Results on the EEG

Based on the results on the synthetic series, the performances of the
three considered algorithms were evaluated on EEG traces in terms of
sensitivity to both the FS and the TWL, considering the estimates of
the Higuchi’s algorithm as the most reliable ones.

5.3.2.1 Effect of EEG sampling frequency

Figure 17 (left column) shows that the box-counting estimate, FDB, cal-
culated on the segments in which the Higuchi’s estimate ¯FDH14 was of
about 1.3 (or 1.4), decreased as FS increased in a different way for each
wlj value. On the other hand, both Katz’s and Higuchi’s estimates
linearly decreased with 1/fs according to the following relationship:

FDj =
mj

fs
+ qj (24)

for j = 1,...,4. The values of the m̄j and q̄j coefficients, obtained by
using Katz’s ( ¯mKj, ¯qKj) and Higuchi’s ( ¯mHj, ¯qHj) algorithms by aver-
aging on the subjects, for fractal values ( ¯FDH14 ) of about 1.3 and 1.4,
are listed in Tab. 3 and in Tab. 4, respectively.
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Table 3: Mean coefficients ±σ of the relationship 24 for ¯FDH14 ∼ 1.3.

Katz Higuchi
m̄K q̄K m̄H ¯qH

wl1 = 1 s 32.44±3.18 1.39±0.02 44.92±1.37 0.97±0.01

wl2 = 5 s 14.52±1.52 1.30±0.02 43.29±1.26 0.97±0.01

wl3 = 10 s 10.02±1.03 1.25±0.02 42.90±1.18 0.97±0.01

wl4 = 30 s 5.86±0.86 1.19±0.02 42.39±1.27 0.97±0.01

Table 4: Mean coefficients ±σ of the relationship 24 for ¯FDH14 ∼ 1.4.

Katz Higuchi
m̄K q̄K m̄H ¯qH

wl1 = 1 s 38.98±2.88 1.44±0.02 59.73±2.41 0.95±0.01

wl2 = 5 s 16.20±1.32 1.33±0.02 57.87±2.03 0.96±0.01

wl3 = 10 s 11.48±0.82 1.27±0.02 57.06±1.89 0.96±0.01

wl4 = 30 s 6.31±0.60 1.21±0.02 56.22±2.20 0.96±0.02

5.3.2.2 Effect of EEG estimation time window length

In Fig. 17 (right column) the relationships between FD and TWL for
the considered fsi are shown for a fractal dimension ¯FDH14 of about
1.3. The non linear relationship between TWL and both FDB and FDK
estimates, with values decreasing as the sampling frequency increased,
can be expressed in terms of an exponentially decreasing function in
the form:

FDi = aie
−biwl + ci (25)

for i = 1,...,4. The values of the āi, b̄i and c̄i coefficients, obtained by
using the box-counting method ( ¯aBi, ¯bBi, ¯cBi) and Katz’s algorithm
( ¯aKi, ¯bKi, ¯cKi), as the average on the subjects for fractal values ( ¯FDH14 )
of 1.3 and 1.4, are listed in Tab. 5 and in Tab. 6, respectively. The figure
confirms that Higuchi’s algorithm is not appreciably sensitive to the
time window length also on EEG signals.
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Table 5: Mean coefficients ±σ of the relationship 25 for ¯FDH14 ∼ 1.3.

Box-counting Katz
āB b̄B c̄B āK b̄K c̄K

fs1 = 128 Hz 0.11±0.01 0.19±0.05 1.21±0.03 0.48±0.04 0.20±0.01 1.24±0.02

fs2 = 256 Hz 0.11±0.01 0.25±0.02 1.18±0.02 0.36±0.03 0.18±0.01 1.22±0.02

fs3 = 384 Hz 0.04±0.01 0.25±0.00 1.17±0.01 0.32±0.02 0.21±0.11 1.22±0.03

fs4 = 512 Hz 0.08±0.01 0.24±0.00 1.14±0.01 0.29±0.02 0.19±.08 1.20±0.02

Table 6: Mean coefficients ±σ of the relationship 25 for ¯FDH14 ∼ 1.4.

Box-counting Katz
āB b̄B c̄B āK b̄K c̄K

fs1 = 128 Hz 0.12±0.01 0.18±0.05 1.24±0.02 0.58±0.04 0.21±0.02 1.27±0.02

fs2 = 256 Hz 0.13±0.01 0.27±0.03 1.22±0.02 0.44±0.03 0.19±0.02 1.24±0.02

fs3 = 384 Hz 0.05±0.01 0.21±0.07 1.21±0.01 0.37±0.03 0.18±0.02 1.23±0.02

fs4 = 512 Hz 0.09±0.01 0.25±0.02 1.19±0.01 0.34±0.03 0.18±0.02 1.22±0.02
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Figure 17: Left column: plot of estimated EEG fractal dimension versus FS for
wl1 (red circles), wl2 (blue squares), wl3 (green diamonds) and
wl4 (black pentagrams). Right column: plot of estimated EEG frac-
tal dimension versus wl for fs1 (red circles), fs2 (blue squares), fs3
(green diamonds), fs4 (black pentagrams). Example for subject 1

with ¯FDH14 ∼ 1.3.
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5.4 discussion

The test on the synthetic functions of known fractal dimension, per-
formed at the appropriate sampling frequency observing Nyquist-Shan-
non sampling theorem without oversampling, partially confirmed the
results of previous studies [Accardo et al., 1997; Esteller et al., 2001;
Paramanathan and Uthayakumar, 2008; Raghavendra and Dutt, 2009],
i.e., Higuchi’s algorithm provides the most accurate estimates of the
fractal dimension. However, some conflicting results have been ob-
tained when analyzing the dependence of FD estimates on the two con-
sidered factors: the sampling frequency and the time window length.

Contrary to the results of Raghavendra and Dutt [2009], in whichSensitivity to FS

Higuchi’s algorithm estimation accuracy improved as the sampling
frequency increased, with FDH values slightly affected by the sam-
pling frequency, the reported results showed that Higuchi’s method is
strongly dependent on the sampling frequency and FDH estimates im-
proved as the sampling frequency decreased toward the Nyquist rate,
i.e., to the lower bound for aliasing-free signal sampling. On the other
hand, in agreement with the aforementioned study, Katz’s algorithm
turned out to be dependent on the sampling frequency, providing esti-
mates that decreased with the sampling frequency.

With regard to the sensitivity to the time window length, the studySensitivity to TWL

of Esteller et al. [2001] showed that the fractal dimension estimates
obtained with Higuchi’s algorithm improved as the window length
increased, while the study of Paramanathan and Uthayakumar [2008]
did not report any dependence on TWL. The analysis performed in
the present study indicated that Higuchi’s estimates are correct inde-
pendently from the time window length, provided that a suitable sam-
pling frequency is used. Both the aforementioned studies highlighted
a slight sensitivity to TWL of Katz’s algorithm while the present study
showed a strong dependence on the time window length.

The fractal analysis of the EEG basically confirmed the results of the
investigation carried out on the synthetic functions. The box-counting
method turned out to be sensitive to both the sampling frequency and
the time window length, although a clear relationship could be ex-
pressed only between FDB and TWL. Moreover, the results supported
the dependence of Katz’s estimates on both factors and confirmed that
Higuchi’s algorithm is sensitive only to the sampling frequency.

Thus, although the fractal dimension of the EEG signals is not known
a priori, based on the results on synthetic signals it can be asserted that
the most correct estimates were those provided by Higuchi’s algorithm
at the lowest considered sampling frequency (128 Hz). This value, ob-
serving the Nyquist-Shannon sampling theorem, is about 2.5 times the
LP cut-off frequency, which was chosen according to the frequency
content of the EEG recorded from sleeping newborns, which is limited
to about 40 Hz. Hence, in order to conduct an accurate fractal anal-
ysis, it is of primary importance to adapt the sampling frequency to
the bandwidth of the considered EEG and, therefore, to the selected
low-pass cutoff frequency. A sampling frequency close to 2.5 times

48



the cutoff frequency of a third order low-pass filter could represent an
optimal choice to avoid underestimation of the fractal dimension due
to oversampling. This solution also prevents the reduction of the dy-
namic range of the fractal dimension. Higuchi’s algorithm, being not
sensitive to the time window length, it is also preferable for real-time
applications in which short epochs have to be examined.

It is nonetheless true that in some investigations it might be not inter-
esting the true value of the fractal dimension, but rather its fluctuation
over time or the differences among the values estimated in different
conditions. In this cases, methods different from Higuchi’s algorithm
could be also used for the fractal analysis. In any case, whenever two
or more studies have to be compared, it is necessary to take into ac-
count the sampling frequency and the time window length used in
each investigation.

5.5 conclusion
In this study the performances of three algorithms commonly used for
the estimation of EEG fractal dimension were compared in terms of
accuracy and sensitivity to the sampling frequency and to the time
window length. The investigation was carried out firstly on three
synthetic functions of known fractal dimension and then on 20 EEGs
recorded from as many sleeping newborns. Results indicate that the
box-counting algorithm is the least reliable method, providing incor-
rect estimates also dependent on both the sampling frequency and the
estimation window length. The Katz’s algorithm, though sensitive to
both factors, turned out to be more reliable and produced some accu-
rate estimates. However, the study suggests that Higuchi’s algorithm
is the most accurate of the considered methods, provided that the sig-
nals are not oversampled. Furthermore, it is appropriate to estimate
the fractal dimension of events of both brief duration as well as longer
EEG traces, being the estimates not dependent on the time window
length. In any case, information about the sampling frequency and
the time window length should always accompany the results of the
fractal analysis, since it is relevant for its correct interpretation.
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This chapter presents an investigation carried out to verify the ac-
curacy of fractional Brownian motion to model the EEG. The study
is inspired by the widespread practice of using fBm theoretical re-
lationships of Eq. 14 to equivalently characterize the scaling proper-
ties of the EEG. The fractal dimension (FD) and the power-law ex-
ponent (β) are independently estimated on 536 EEG traces acquired
from healthy full-term sleeping newborns, children, young adults and
elderly adults. Experimental relationships between FD and β are calcu-
lated and compared among the populations to detect possible scaling
differences related to age. Mean experimental relationships are then
calculated within each group and compared with the scaling relation-
ship of Eq. 14 in order to detect possible deviations from fBm. The
chapter is partially based on Author’s publication 3.

6.1 introduction and motivation

The scaling behavior of self-affine time series can be equivalently char-
acterized by the fractal dimension (FD), the power-law exponent (β)
and the Hurst index (H). Whereas the fractal dimension and the Hurst
index are related by the simple equation, FD = 2 −H, the relation-
ship existing between FD and β is unsettled [Higuchi, 1990]. Consider,
for example, the Weierstrass function, XH(t) [Bassingthwaighte et al.,
1994], of Fig. 8. As described in Chapter 4.5, this function consists of
an infinite summation of periodic terms, each of which has a frequency
that is a factor b larger than the preceding term and an amplitude that
is a times smaller. Whereas self-similarity represents the property of
the shapes to be identical under magnification, self-affinity expresses
the necessity to scale down XH and t by different amounts (∆XH and
∆t, respectively) to obtain two identical views. In particular, if a,b > 1

and bH = a then ∆XH = ∆tH, whit H ranging from 0 to 1. The re-
lationship between the fractal dimension and the power-law exponent
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for the Weierstrass function can be easily calculated and expressed as
follows:

FD =
4−β

2
(26)

The possibility to calculate only one of the two parameters and then
easily obtain the other one using a relationship like Eq. 26 may be use-
ful in some circumstances. For real-time analysis, for example, when
the number of available data is limited, time domain fractal analysis
could be a more efficient alternative to frequency domain fractal anal-
ysis [Rankine et al., 2007]. More often, the β exponent is estimated
from the power spectrum to subsequently obtain the fractal dimen-
sion, FD [Phothisonothai and Nakagawa, 2009]. To correctly character-
ize EEG by either FD or β indexes it is necessary to have a model that
accurately describes the considered process. The fractal dimension and
the power-law exponent of fractional Brownian motion, the mathemat-
ical model for the EEG, are interrelated by the following equation:

FD =
5−β

2
(27)

This scaling relationship, derived from Eq. 14, is widely used among
physicians and researchers to equivalently characterize the irregularity
of the EEG in terms of fractal dimension or power-law exponent. How-
ever, since a complete model of the EEG has not been found yet, devi-
ations of the EEG from 1

f -like behavior occur more often than thought
also in non-pathological EEG [Pritchard, 1992]. To verify the accuracy
of such a practice, in this study the relationship between the frac-
tal dimension and the β exponent was calculated on 8-channel EEGs
collected from healthy subjects belonging to 4 populations: full-term
sleeping newborns, children, young adults and elderly adults. The
obtained relationships were evaluated within the groups and among
the groups, in order to highlight possible age-related differences. The
mean relationship of each group was finally compared with that of
Eq. 27 in order to assess the accuracy of fractional Brownian motion
model.

6.2 materials and methods
Data analyzed in the present study were collected from 4 populationsMaterials

of healthy subjects composed by 20 full-term newborns (NB), 15 chil-
dren (CH), 21 young adults (YA) and 12 elderly adults (EA), respec-
tively. Sleep EEG (NB) or resting state EEG (CH, YA and EA) was ac-
quired at 256-1024 Hz from 8 unipolar channels (Fp1, Fp2, C3, C4, T3,
T4, O1 and O2, referenced by Cz) with Ag/AgCl electrodes positioned
according to the 10-20 system. All signals were resampled at 128 Hz,Methods

following the guidelines of Chapter 5, and digitally filtered between
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0.4 and 40 Hz with a second order high-pass and a third order low-
pass Butterworth filter, respectively. Nonstationarities were identified
using nonlinear cross prediction [Schreiber, 1997] and then rejected
from the analysis. The stationary intervals of each derivation were
divided into 50% overlapping segments of 10 s in which the fractal di-
mension (FD) was estimated with Higuchi’s algorithm [Higuchi, 1988].
Each segment was then fast Fourier transformed applying Hamming
windows to subsequently obtain the power spectral density (PSD) us-
ing the periodogram method. The β exponent was finally calculated as
the slope of the linear best fit of the PSD on a double logarithmic scale.
For each signal, FD values were plotted against β exponents to assess
whether a linear correlation was present in the considered populations.
After visual confirmation, slope and intercept of the least-squares re-
gression lines were calculated for all derivations of all subjects. Box-
and-whiskers plots were created in order to compare the calculated
coefficients among the 4 groups. The assumption of normality was
checked for each coefficient with the Kolmogorov-Smirnov test. Then,
slope and intercept were averaged, within each population, to obtain
a mean regression line. The four obtained relationships were finally
compared with that valid for the fractional Brownian motion [Berry,
1979; Mandelbrot and Van Ness, 1968].

6.3 results
A linear relationship between the fractal dimension and the power-law
exponent of the EEG was observed in each subject independently from
the population to which the subject belongs. Figure 18 shows, as an
example, how FD is linearly related to β in all derivations of a sleeping
newborn EEG. However, visual analysis suggested that the observed
relationships are slightly different from the theoretical one valid for the
fBm process (Eq. 27). Moreover, subjects belonging to different popula-
tions exhibited different relationships. The notched box-and-whisker
plots of the calculated coefficients grouped by population are shown
in Fig. 19. As can be seen, the medians of both the slope and the in-
tercept are very similar among CH, YA and EA populations. On the
contrary, since the notch of NB do not overlap with those of CH, YA
and EA, in both box-plots, the medians of both coefficients are signifi-
cantly different with 95% confidence. Since the Kolmogorov-Smirnov
test proved normal distribution of both coefficients in all groups, al-
though the box-plots of Fig 19 revealed slight skewness in some cases,
their probability density functions were calculated within each popu-
lation (Fig. 20). Mean and standard deviation of both the slope and
the intercept are provided in Tab. 7. The mean regression lines ob-
tained with the mean coefficients are plotted in Fig. 21 for a visual
comparison with the line representing the relationship of Eq. 27 valid
for fractional Brownian motion.
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Figure 18: Fractal dimension against power-law exponent for the 8-channel EEG acquired from a sleeping newborn. The dashed red lines are the calculated
relationships while the solid gray lines, from left top corner to right bottom corner, represent the relationship of Eq. 27 valid for the fBm process
(slope = -0.5, intercept = 2.5).
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Figure 19: Notched box-and-whiskers plots of slope and intercept values in
the four considered groups.

6.4 discussion
In the hypothesis that the EEG evolves like a fractional Brownian mo-
tion process, the scaling relationship of Eq. 27 is widely used by physi-
cians and researchers in particular to indirectly estimate the fractal
dimension from the power-law exponent.

As hypothesized, the experimental relationships between FD and
β are different from the scaling relationship of fractional Brownian
motion. As can be seen in Fig. 21, for calculated β values lower than
approximately 2.2 (CH), 2.4 (NB and YA) or 2.5 (EA) the use of the
theoretical relationship causes FD overestimation. On the contrary, as
the power-law exponent approaches 3, the obtained fractal dimension
becomes more and more underestimated.

However, an interesting observation can be made based on the re-
sults. Considering the distributions of Fig. 20 and the correspondent
mean coefficients reported in Tab. 7, a clear distinction can be made
between the scaling behavior observed in the neonatal EEG and that
found in the EEG of all other groups. This result may find an expla-
nation in the fact that neonatal EEG has significantly different char-
acteristics compared with that of children and adults. In support of
this hypothesis, low differences were found among the coefficients of
children, young adults and elderly adults. The mean regression line,
obtained as the average of the relationships of all CH, YA and EA sub-
jects, is:

FD = −0.14β+ 1.66 (28)

Before to conclude that the proposed fBm model does not accurately
describe the EEG, it would be interesting to understand the reason
why the experimental relationship 28 does not match the theoretical
one (27). A possible explanation could concern the phase distribution
of the EEG. According to Higuchi [1990] and Penn and Loew [1997],
the phase distribution of a series, at constant power-law, may strongly
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Figure 20: Distributions of slope and intercept values: red for newborns, blue
for children, green for young adults and black for elderly adults.

Table 7: Mean and standard deviation of the distributions of Fig. 20.

m̄± σ q̄± σ
Newborns -0.27±0.02 1.96±0.08

Children -0.11±0.04 1.66±0.13

Young adults -0.13±0.11 1.63±0.21

Elderly adults -0.18±0.14 1.70±0.22
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Figure 21: Mean regression line built for each population with the coefficients
of Tab. 7: red for newborns, blue for children, green for young
adults and black for elderly adults. The thick gray line represents
the relationship of Eq. 27 valid for fractional Brownian motion.
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affect its behavior in the time domain, producing very different values
of fractal dimension. Future investigation should attempt to explore
the possible influence of EEG phase distribution on the scaling rela-
tionship between FD and β.

6.5 conclusion
The self-affinity of the EEG can be characterized equivalently by either
fractal dimension or power-law beta exponent. Fractional Brownian
motion, applied to the modeling of the EEG, provides a useful rela-
tionship between FD and β, which is currently exploited by many re-
searchers and physicians. The results of the study presented in this
chapter highlight the inaccuracy of the adopted model which intro-
duces errors in the quantitative description of the scaling properties
of the EEG. Every time absolute values of FD are required for analysis
purposes, direct estimation provides more correct values than those in-
directly obtained by applying the fBm relationship 27 with lower com-
putational effort. Further investigations are necessary to assess how
would the experimental relationships presented in this work change,
for example, with pathology or according to the mental task. Based on
the preliminary results reported in this chapter, there is little chance
that a single scaling relationship could be found for the description of
the fractal-like behavior of the EEG.
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Part II

Clinical applications
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EEG monitoring during carotid endarterectomy is the commonest
method used to reduce the risk of intraoperative brain ischemia. Be-
side visual assessment of the EEG, some quantitative parameters, based
on spectral information, have been recently suggested as additional
criteria for shunt need decision. This chapter explores new linear
(HLF ratio) and nonlinear parameters (ZC and FD) which can assist
the physician in real-time decision whether a shunt is required or not.
The results obtained with the proposed parameters are compared with
those achieved by means of three previously explored measures: the
desynchronization index, the sBSI and the tBSI. This chapter is based
on Author’s publication 1.

7.1 introduction and motivation
Carotid endarterectomy (CEA) is a well-known surgical procedure for Carotid

endarterectomythe prevention of stroke in patient with high-grade carotid stenosis
and is generally performed with selective shunting [Kalkman, 2004].
Intraoperative ischemia during carotid cross-clamping in patients un- Intraoperative

ischemiadergoing CEA is a major complication and prompt recognition of insuf-
ficient collateral blood supply is crucial (occlusion of the controlateral
internal carotid artery is considered to have a significant impact on the
outcome of CEA).

Different methods have been used to prevent intraoperative stroke: State of the art

the measurement of carotid back pressure [Moore et al., 1973], the as-
sessment of the awake patient under regional anaesthesia [Shah et al.,
1994], the transcranial Doppler measurement [Ghali et al., 1997], the
monitoring of somatosensory evoked potentials [Schweiger et al., 1991],
and the continuous EEG monitoring [McFarland et al., 1988; Pinkerton,
2002; Plestis et al., 1997; Salvian et al., 2012; Visser et al., 1999]. The lat-
ter is still the most used form of monitoring cerebral hypoperfusion
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during CEA. As EEG visual analysis is subject to human error and
makes quantification of signal’s alterations difficult, it is evident that a
quantitative measure should identify more reliably those patients who
need a shunt during carotid clamping. To this aim, several parameters
based on EEG spectral analysis, producing reasonable results, have
been recently proposed for the monitoring of CEA [Cursi et al., 2005;
van Putten, 2006; van Putten et al., 2004]. They are supported by the
fact that a decrease in relative alpha and beta band powers as well as
possible hemispheric asymmetry represent clear signs that the brain is
at risk during CEA [Minicucci et al., 2000; Visser et al., 2001]. In order to
support the physician in a prompt decision whether or not shunting is
needed, the possibility of reliable real-time evaluation and the ease of
interpretation represent specific characteristics that quantitative EEG
measures should have.

Based on these requirements, in this chapter some linear and non-Adopted approach

linear EEG parameters that could be useful to monitor the cerebral
response to significant blood flow reduction are investigated and com-
pared with those proposed in the literature [Cursi et al., 2005; van Put-
ten, 2006; van Putten et al., 2004]. The new linear parameter (HLF ratio)Proposed parameters

is based on the observation that in presence of brain suffering the spec-
tral power decrease in the 8-15 Hz band is very often associated to a
power increase in the low frequency band. In order to take into ac-
count both behaviors, the ratio between the signal power in the 8-15

Hz and in the 0.5-5 Hz will be considered. The nonlinear parameters
that will be examined are Higuchi’s fractal dimension (FD) and the
zero-crossings (ZC), an index for the description of nonlinear systems
which is dependent on the dominant frequency (or band) of the signal.

7.2 materials and methods

7.2.1 Patients

A total of 140 patients who underwent carotid endarterectomy at the
AOTS Hospital of Trieste in 2003-2006 were retrospectively examined.
Since artifacts, well recognized by the human observer, are not trivially
eliminated or compensated for by computer programs, the 5 cases in
which the EEG was so corrupted to make unreliable also the expert
assessment were rejected from the study. The remaining 46 female
and 89 male patients (age of 70±8 years) were considered for the in-
vestigation. All CEAs were performed under general anesthesia and
decision to shunt was based on intraoperative EEG monitoring. Selec-
tive shunt was advised (21 patients) if the visual inspection of EEG,
as interpreted by an experienced neurophysiologist during clamping
procedure, showed significant mono- or bilateral EEG changes. These
alterations included a decrease in fast activity and/or an increase in
slow activity (slowing down in running EEG), or an attenuation of the
whole EEG activity (voltage reduction). The accurate EEG off-line re-
analysis finally permitted to reclassify two patients who belonged to
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the non-shunted group as to be shunted. Hence, on the whole, 112

non-shunted and 23 shunted patients were considered for the classifi-
cation.

7.2.2 EEG recording and analysis

EEGs were recorded according to the international 10-20 system with Recording

Ag/AgCl electrodes. The acquisition was performed using Galileo
System (EBNeuro, Florence, Italy) with a 128 or 512 Hz sampling fre-
quency. Ten bipolar derivations were used for the analysis (F4-C4,
C4-P4, P4-O2, F8-T6, T6-O2, F3-C3, C3-P3, P3-O1, F7-T5, T5-O1). Al-
though some EEG derivations may be more sensitive to anomalies dur-
ing carotid endarterectomy than others [Laman et al., 2012], in this
work all EEG derivations were equally weighted in order to simplify
the procedure. The off-line investigation was carried out during the
3 min before and 3 min after the artery clamping, separately for right
and left hemisphere derivations. The signal coming from each deriva- Pre-processing

tion was resampled (if necessary) at 128 Hz, according to the guide-
lines of Chapter 5 for the estimation of the fractal dimension, digitally
processed with a Butterworth band-pass filter between 0.4 and 40 Hz
and divided into 50% overlapping segments of 20 s (2560 points), each
of which was detrended and Hamming windowed. All parameters Parameters

calculationwere calculated in these epochs and averaged among all the deriva-
tions of the same hemisphere, obtaining one value per parameter and
hemisphere every 10 seconds. The baseline for all parameters was
evaluated from the first 3 min preceding the clamping procedure (ref-
erence period), using the median value in this period. Finally, pos-
sible variations of the parameters after clamping with respect to the
baseline value were quantified by calculating for each parameter and
hemisphere, at each step t, two different functions: the percent relative
variation, R(t), and the Z -score, Z(t), defined as:

R(t) =
P(t) − P̄

P̄
· 100 (29)

and

Z(t) =
P(t) − P̄

σ
(30)

where P(t) represents the generic parameter value at step t; P̄ and σ
correspond to the median and the standard deviation values, respec-
tively, of the parameter P calculated in the reference period. The R(t)
function determines the percent parameter change during clamping
compared to the reference period, while the Z(t) function measures
the significance of the difference between post-clamping and reference
period values. Linear analysis considered some spectral parameters
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calculated from the power spectral density (PSD) estimated using pe-
riodogram method:

PSD =
1

N
|DFT |2 (31)

DFT being the Discrete Fourier Transform of the EEG. From PSD, theSpectral parameters

power in the traditional EEG sub-bands (delta 0.5-4 Hz, theta 4-8 Hz,
alpha 8-13 Hz and beta 13-18 Hz) and the power in a low frequency
band (LF: 0.5-5 Hz) and in a high frequency band (HF: 8-15 Hz) were
computed. In addition also the ratio HF/LF (HLF ratio) was calculated.
The HLF ratio and the HF index were used in the following. It should
be underlined that the HF parameter is basically identical to the desyn-
chronization index described by [Cursi et al., 2005]. Beside these linear
parameters, Higuchi’s fractal dimension (FD) and the zero-crossings
(ZC) were calculated on the same epochs. The ZC count is a nonlinearZero-crossings

parameter used in the analysis of random signals [Kedem, 1986]. Due
to the fruitful connections existing between ZC and the dominant fre-
quency, ZC index is expected to be able to identify possible changes
in dominant spectral components during carotid clamping. The algo-
rithm for the calculation of this parameter is described in Appendix A.
The FD was computed by means of Higuchi’s algorithm as describedFractal dimension

in Chapter 5.2.1.3. The estimation of both nonlinear parameters is
faster than spectral analysis and can be reliably performed also on
short epochs. The behavior of the three proposed indexes (HLF ratio,Previously proposed

indexes ZC and FD) was compared to that of the HF (or desynchronization in-
dex) [Cursi et al., 2005] and of the sBSI and tBSI parameters suggested
by van Putten et al. [2004] and van Putten [2006]. The sBSI index is a
normalized measure for interhemispheric spectral symmetry defined
as:

sBSI =
1

N

N∑
i=1

∥∥∥∥∥∥ 1M
M∑
j=1

Rij − Lij
Rij + Lij

∥∥∥∥∥∥ (32)

where Rij (Lij) are the Fourier coefficients belonging to frequency
i = 1,...,N of the right (left) hemispheric bipolar derivations j = 1,...,M =

5. In the present study N = 50 (frequency range 1-25 Hz, with spec-
tral bandwidth of 0.5 Hz). Before calculating the FFT transform, the
EEG data were resampled at 256 Hz in order to replicate the work
of van Putten [2006]. On the other hand the tBSI index is sensitive to
diffuse EEG changes. With the aim of eliminating the contribution of
a possible spatial asymmetry the tBSI is calculated as:

tBSI =
2tBSI ′ − sBSI

2
(33)
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with tBSI ′, a measure of temporal EEG changes, defined as:

tBSI ′ =
1

N

N∑
i=1

∥∥∥∥∥∥ 1K
K∑
j=1

Sij − Srefij
Sij + Srefij

∥∥∥∥∥∥ (34)

where Sij are the Fourier coefficients belonging to frequency i = 1,...,N
of the right and left hemispheric bipolar derivations j = 1, ...,K = 2M,
and N = 50 as before [van Putten, 2006]. All van Putten’s parameters
were calculated on 10 s intervals.

7.2.3 Patients classification

To decide if a subject should be identified as to be shunted or not, Automatic
classification criteriathe values for each hemisphere of the four parameters (HF, HLF ratio,

ZC and FD) during the post-clamp period were compared with suit-
able thresholds. Different thresholds for R(t) functions were manually
tested starting from values that visually could discriminate the pre-
post clamp changes when present (see for example Subject3 in Fig. 23).
The thresholds that produced the best classification (in terms of accu-
racy) are reported in Tab. 8. For Z(t) functions a threshold of -1.2,
very poor for the significance level (p > 0.23) but representing a good
compromise to achieve the best accuracy, was set for the parameters.
It was established that shunting has to be advised if the parameter ex-
ceeds, at least in one of the two hemisphere, the threshold value for
at least 30 s. A procedure was then implemented in order to auto-
matically recognize each CEA as belonging to “shunted group” or to
“non-shunted group”. For the tSBI and sBSI indexes the classification
criterion followed the thresholds on ∆tBSI and ∆sBSI reported in van
Putten [2006]. To estimate the effectiveness of a correct patient classi-
fication (shunted or not), for each parameter a truth table (scheme in
Tab. 9) was calculated by comparing the parameter classification with
that of the electroencephalography expert (this corresponds to the real-
time clinical choice followed by off-line re-analysis). Starting from each
truth table the results were statistically described in terms of sensitiv-
ity (true positive/[true positive+false negative]), specificity (true nega-
tive/[true negative+false positive]), and accuracy ([true positive+true
negative]/total number of maps), which are classical statistical mea-
sures of the performance of a binary classification test related to the
concepts of type I and type II errors.

7.3 results
The analysis of the EEGs showed that hypoperfusion was generally
associated to a decrease (monolateral or diffuse) of the power in the
alpha, beta and HF bands and frequently also to an increment in the
delta band, confirming previous results [Minicucci et al., 2000; Visser
et al., 1999]. The HLF ratio also decreased during suffering while FD
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Table 8: Threshold values for the parameters used in the subject classification.
The values are expressed in terms of percent relative variation, R(t),
during clamping compared to the pre-clamp reference period. For
the sBSI and tBSI parameters the thresholds described in van Putten
[2006] were used.

R(t) threshold
FD -5%
ZC -15%
HLF ratio -40%
HF/desync index -35%
∆sBSI 0.05

∆tBSI 0.02

showed different behavior during clamping: for more than 50% of
shunted cases it increased rather than decreasing even if it was able
to point out asymmetries (as shown, for example, in the Subject2 of
Fig. 23). Examples of EEG traces and corresponding parameters time
courses in typical patients who underwent a CEA are shown in Figs. 22

and 23, respectively. Figure 22 presents 5 s during the pre-clamping
and 5 s during the post-clamping periods of EEG traces of a patient
who did not need the shunt (Subject1) and of two patients showing,
after clamping, monolateral changes (Subject2) or mainly diffuse suf-
fering (Subject3). While the EEG changes are evident in Subject3, for
all the EEG channels, these are visible only on the left derivations in
Subject2; in Subject1 the EEG remains substantially unchanged. In
Fig. 23 the R(t) function trends of FD, ZC, HLF ratio, HF, sBSI and
tBSI parameters during 3 min before and after the clamp, in the three
typical patients of Fig. 22, are shown. The vertical line corresponds to
the clamp start time while the horizontal lines represent the threshold
values reported in Tab. 8. Points below (for FD, ZC, HLF ratio and HF
parameters) or above the threshold (for sBSI and tBSI parameters) are
considered as indicators of suffering. For FD, ZC, HLF ratio and HF
parameters, the selected thresholds correspond to those that produced
the best subject classification (in terms of accuracy); the thresholds
for sBSI and tBSI parameters were selected following the criteria re-
ported in van Putten [2006]. These refer to a difference between the
actual value during clamp and the mean value during pre-clamp pe-
riod. Left column of Fig. 23 shows that in five of the six monitored
parameters, changes due to clamping are not able to exceed the thresh-
old, confirming that no changes occurred in the EEG analysis (Subject1
in Fig. 22). Only the tBSI parameter fluctuates around the threshold,
which proves to be too low. In a second example shown in Fig. 22

(Subject2), visual EEG analysis recognizes severe changes in the left
hemisphere, correctly reflected in a more or less asymmetric reduction
in four of the examined parameters (central column of Fig. 23). In
this case both the tBSI and sBSI parameters correctly point out the
monolateral suffering. In the third case, a decision to shunt was based
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Table 9: Scheme of the truth table used in the classification process. A and D
represent the number of true positive and true negative cases, respec-
tively. B is the number of false negative and C is the number of false
positive cases.

Automatic classification based
on the thresholds of Tab. 8

Shunted Non-shunted
Neurophysiologist Shunted A B
classification Non-shunted C D

on the appearance of alterations in the activity of both hemispheres,
detectable in the curves shown in Fig. 22 (Subject3) as well as in the
behavior of the three new proposed parameters and of the HF index
(right column of Fig. 23). In this case the sBSI parameter alone is not
able to identify the suffering, showing its intrinsic limitation due to the
demand of an altered EEG symmetry in order to operate in a correct
way. On the contrary, the tBSI parameter well highlights the situation.
It should be noted that even if the FD parameter shows the presence
of asymmetry (Fig. 23, central column) or of evident gap (Fig. 23, right
column), it does not exceed beyond doubt the preset threshold. Be-
haviors similar to those of the R(t) functions are presented by the four
parameters expressed in terms of Z-score functions. In the latter case
a fixed threshold of -1.2 was used for all the considered parameters.
Table 9 shows the truth table scheme used in the classification process.

In order to analyze the classification outcomes, the results obtained
from each examined parameter by using both the R(t) and the Z(t)
functions are shown in Tab. 10. The classification is expressed in terms
of number of subjects correctly classified in the two classes (shunted:
true positive and non-shunted: true negative) to which they were as-
signed by the visual EEG analysis. In the same table, the sensitivity, the
accuracy and the specificity of each parameter are also displayed. The
classification obtained from the R(t) functions is slightly better than
that gained from the Z(t) ones, and hereafter only the R(t) functions
were considered. The ZC and HLF ratio parameters presented the best
results, correctly classifying all the considered subjects, demonstrating
a complete correlation with hypoperfusion complications. Also the
HF parameter showed a very good discrimination power producing
only four false positives. The FD parameter as well as the sBSI in-
dex, though having maximum specificity (100% of non-shunted cases
correctly classified), unfortunately were not able to correctly identify
the cases to be shunted (60-70% of wrong cases). On the contrary, the
tBSI index permitted to recognize all the shunted cases but produced
a large quantity (25%) of false positives.
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Figure 22: Five seconds of EEG traces during pre- (left column) and post-
clamp (right column) periods in three typical patients present-
ing no changes (Subject1), monolateral differences (Subject2), and
mainly diffuse suffering (Subject3). Subject1 was not shunted while
the remaining two were shunted.
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Figure 23: Percent relative variation, R(t), time courses of the considered pa-
rameters, corresponding to the three typical situations in Fig. 22.
Left column: Subject1 presenting no changes; central column: Sub-
ject2 with asymmetric differences; right column: Subject3 showing
mainly diffuse suffering. For the FD, ZC, HLF ratio and HF parame-
ters ’x’ represents the right hemisphere and ’o’ the left hemisphere.
Vertical lines: clamping start; horizontal lines: threshold values.
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Table 10: Sensitivity, accuracy and specificity together with the number of
shunted (TP=true positive) and of non-shunted (TN=true negative)
subjects correctly classified on 23 and 112 total cases, respectively.
The values refer to each considered parameter and to both the per-
cent relative variation, R(t), and the Z-score, Z(t), functions.

Parameter TP TN Sensitivity Accuracy Specificity
FD-R(t) 7 112 0.30 0.88 1.00

FD-Z(t) 8 110 0.35 0.87 0.98

ZC-R(t) 23 112 1.00 1.00 1.00

ZC-Z(t) 22 112 0.96 0.99 1.00

HLF ratio-R(t) 23 112 1.00 1.00 1.00

HLF ratio-Z(t) 21 112 0.91 0.99 1.00

HF-R(t) 23 108 1.00 0.97 0.96

HF-Z(t) 23 106 1.00 0.96 0.95

sBSI 9 112 0.39 0.90 1.00

tBSI 23 84 1.00 0.79 0.75

7.4 discussion
Although visual analysis of the EEG represents the standard method-
ology to decide when the shunt is necessary during CEA, it is current
opinion that this procedure is subject to human error and requires
great experience in interpreting the graphs’ alterations. This is the rea-
son why quantitative real-time EEG analysis becomes every day more
and more required, representing a useful additional information as-
sisting in the decision for selective shunting. In the literature some
parameters, e.g., BSI [van Putten et al., 2004], sBSI and tBSI [van Put-
ten, 2006], have been proposed even if their validity has been evalu-
ated only preliminarily on few cases [Cursi et al., 2005; van Putten,
2006; van Putten et al., 2004]. In this study three new parameters (HLF
ratio, ZC and FD) for the monitoring of cerebral hypoperfusion due
to artery clamping, were proposed and evaluated, on a large number
of CEA cases, and their performances and reliability were compared
with those of the indexes suggested in the literature. The HLF ratio
and ZC parameters yielded the best results with 100% correct identifi-
cation of both shunt and non-shunt situations, while FD did not yield
satisfactory results and produced many (about 70%) false negatives.
At first, the differences in the classification (Tab. 10) obtained by using
R(t) and Z(t) functions were examined: for all the parameters, R(t)
functions allowed the correct classification of one or two more cases
than by using Z(t) functions. This very small difference may be due
to the use, for the Z(t) functions, of a single threshold value (i.e., -1.2)
for all the parameters while, for the R(t) ones, the thresholds were op-
timized for each index (see Tab. 8). This fixed value represented only
a compromise to achieve the best accuracy; in fact a threshold of 1.96,
corresponding to a significant (p < 0.05) difference between pre- and
post-clamp mean values, is more correct from a statistical point of view

70



but is inappropriate for a good classification. However, the Z(t) func-
tions are also influenced by the signal variability and consequently by
the noise present on the EEG: more noise produces larger variance and
smaller Z(t) changes, making harder to exceed the threshold. Another
remark concerns the EEG derivations used in the parameter calcula-
tion: even if some authors [Laman et al., 2012] suggest to use selected
derivations because of their higher sensitivity in detection of anoma-
lies occurring during carotid surgery than others, in this work good
results were also obtained using equally weighted bipolar EEG chan-
nels; consequently, a channel selection was not considered necessary.
A main result of this work is to show that the R(t) functions of two of
the new examined parameters, i.e., the ZC and the HLF ratio, were able
to correctly identify all cases presenting either mono- (asymmetric) or
bilateral (diffuse) hemispherical suffering (as suggested by visual EEG
analysis). In these cases the left and right R(t) time courses presented,
for no less than 30 s, a significant decrease below a threshold of -15%,
for ZC, and of -40%, for the HLF ratio, of the pre-clamp mean values,
thus providing precise indications of possible cerebral ischemia. In ad-
dition, the two parameters were also able to correctly discriminate all
the cases in which the shunt was not required, corresponding to no
significant EEG changes, showing they could capture EEG variations
due to any kind of intra- or interhemispheric suffering. Furthermore,
the simultaneous use of two R(t) curves, one for each EEG side, per-
mits to immediately identify possible asymmetries present in the EEG
changes during CEA.

The HLF ratio was based on the hypothesis, described in the litera- HLF ratio

ture [Blume et al., 1986; Minicucci et al., 2000; Salvian et al., 2012], that
alpha and beta EEG spectral powers decrease in presence of brain hy-
poperfusion followed by an increase of delta power, the latter being
frequently not significant. Based on a similar idea, but limited only
to the alpha and beta bands, Cursi et al. [2005] suggested the desyn-
chronization index (corresponding in this study to the R(t) function
of the HF parameter). As reported in the results, the HF was able to
correctly identify all the subjects to be shunted and only four cases
of non-shunted patients were wrongly classified. Moreover, the opti-
mal threshold value found in this study for the HF index is the same
suggested in [Cursi et al., 2005]. Adding the information coming from
lower frequencies (0.5-5 Hz band), used as the denominator in the HLF
ratio parameter, improves the HF performance: exact subject classifica-
tion is achieved. This work confirms that the 8-15 Hz frequency range
is the band which is most sensitive to possible cerebral suffering dur-
ing CEA [Cursi et al., 2005; Minicucci et al., 2000]. Moreover, the results
support the hypothesis that the utilization of the information included
into the 0.5ñ5 Hz band may slightly improve the specificity, producing
a more accurate identification of the cases that do not require shunting.

The ZC parameter, recently proposed for studying dementia, sleep- Zero-crossings

stage characteristics and background activity [Carrozzi et al., 2004; Hen-
derson et al., 2006; Lin et al., 2006] from EEG series, turned out to be
capable of sensing reduction of fast activity as well as possible slow
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activity changes, thus producing an indicator that can assist in the de-
cision whether to proceed with shunting during CEA. The ZC param-
eter, measuring possible dominant frequency (or band) modifications,
proved to be strongly correlated with the visual assessment of the EEG
changes due to brain suffering. It is underlined that the ZC parameter
is very easily calculated directly from temporal signals and it does not
require power spectrum evaluation of the EEG (as the HLF ratio or the
HF index do). Hence, it is suitable for a real time implementation and
its time course, added as a further signal in the visualization of the
EEG derivations, may permit the successful outcome of the surgical
procedure.

The third examined new parameter, FD, did not yield satisfactoryFractal dimension

results. It produced many (about 70%) false negatives (i.e., it did not
identify many subjects to be shunted), even if it correctly recognized all
the subjects that did not need shunting. This situation was mainly due
to an uncertain decrement of the FD values in many cases of cerebral
hypoperfusion: the FD changes were too small and an increase of the
threshold value produced a very large increment of false positive cases.
The FD parameter, measuring the fractal behavior of the EEG signal,
was not able to recognize generalized EEG decreases, since it does not
change if the signal is merely rescaled in amplitude; thus it produced
many classification errors. Furthermore, the EEG complexity changes
sensed by the FD were so small they did not exceed the threshold.

The sBSI parameter produced slightly better results than FD. ThesBSI

index corresponds to the previously proposed [van Putten et al., 2004]
brain symmetry index (BSI) and it should quantify hemispheric changes
in spectral symmetry. Unfortunately, the sBSI index excluded about
60% of the subjects to be shunted (false negative), confirming the limits
already underlined by [van Putten, 2006] even if on a limited number
of cases (4). In fact, the sBSI parameter was able to detect only the
cases presenting asymmetric spatial changes in the EEG, showing on
the contrary insensitivity to distributed attenuation of fast activity or
to diffuse increase of delta activity.

In order to overcome this limitation and to be also sensitive to tem-tBSI

poral changes in spectral characteristics, a further index (tBSI) was
proposed by van Putten [2006]. The tBSI index yielded 28 wrongly
classified cases, on a total of 112 (25% of false positive), suggesting
shunt when it was not necessary. It should be noted that the combined
use of the sBSI and tBSI indexes did not improve the results; prob-
ably both sBSI and tBSI parameters are able to identify asymmetric
changes. It is evident that the equation 33 used by van Putten could
be not sufficient to cancel the influence of spatial asymmetries on tBSI,
or (alternatively but improbably) all the cases here considered show-
ing asymmetry also included diffuse EEG changes sensed by the tBSI
parameter. However, in all the examined subjects the tBSI index alone
produced the same classification result as when used with the sBSI
contribution. Furthermore, since the tBSI index calculation considers
the absolute value of the pre/post-clamp difference (Eq. 34), it is mod-
ified not only by a signal decrease but also by a signal increase that
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generally indicates activation [Visser et al., 1999], as it could happen
when the haematic flow increases or anesthesia becomes less deep.
This situation is signaled by the tBSI parameter as a need of shunt
when it is actually not required; this fact could explain some of the
false positives obtained with this index.

7.5 conclusion
Since routine shunting may increase the risk of perioperative stroke
[Salvian et al., 2012], EEG monitoring, based on quantitative measures
of the EEG changes, proved to be a useful tool for shunt decision dur-
ing CEA. In this study the R(t) functions of some new parameters,
in particular the HLF ratio and the ZC indexes, showed to be able
to correctly identify cases presenting mono- or bilateral hemispheric
changes capturing both asymmetric and diffuse suffering situations.
As proved by the retrospective analysis, in those patients where the
mean value of the HLF ratio or the ZC parameters go below -40%
and -15% thresholds, respectively, in the 3 min before clamping, visual
EEG analysis showed significant changes, and shunting was advised.
Slightly worse results (4% of false positives) had been achieved with
the HF/desynchronization index (previously proposed by Cursi et al.
[2005]) while the pair of sBSI/tBSI parameters (or the tBSI alone) pro-
duced about 25% of false positives. Finally, the FD parameter and the
sBSI index alone did not yield good results, and generated large clas-
sification errors. In conclusion, the R(t) function of the ZC parameter
represents the best choice both for a correct classification and for the
possibility of real-time implementation. The contemporary utilization
of the R(t) left and right functions permits an immediate quantification
of possible asymmetries as well as, when used as continuous display
beside the EEG derivations, the identification of EEG changes due to
artifacts or anesthesia. Thus, the Author proposes to use the ZC param-
eter to support the visual assessment of the EEG during CEA, offering
a quantitative measure for EEG alterations due to cerebral hypoperfu-
sion.
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The assessment of the depth of anesthesia based on the analysis of
the EEG is an active field of research. Although many methods, in-
cluding BISTMsystem, have been developed over the years to quantify
unconsciousness during anesthesia, intraoperative awareness is still a
major clinical problem. This chapter explores an alternative approach,
based on the nonlinear analysis of the EEG, aimed at reducing both the
incidence of intraoperative awareness and the computational complex-
ity of BIS. The standalone fractal dimension (FD) and zero-crossings
(ZC), as well as the burst suppression compensated FD (bsFD) and ZC
(bsZC), as measures of the depth of anesthesia, are evaluated in this
preliminary study and compared with BIS index. The chapter is based
on Author’s publication 5.

8.1 introduction and motivation
The monitoring of anesthesia based on EEG parameterization is in-
tended to help anesthesiologists maintain suitable level of hypnosis in
order to provide optimal working conditions to surgeons and to ensure
patient’s safety. While, on the one hand, too deep anesthesia must be
avoided in order to prevent over dosing side effects, on the other hand,
low doses of hypnotic agents can cause some form of intraoperative
awareness. In this situation patients may hear conversations, have vi- Intraoperative

awarenesssual perceptions, feel pressure or pain and be unable to communicate
their sensations [Schwender et al., 1998]. After operation, patients can
recall all of the details of the procedure and can experience unpleasant
further effects like anxiety, sleep loss, nightmares and panic attacks.
A severe anxiety disorder, namely the post-traumatic stress disorder
(PTSD), can develop as a result of these postoperative effects [Jones,
1994; Osterman et al., 2001].

Several depth-of-hypnosis assessment methods, based on linear and State of the art

nonlinear measures of the EEG, have been proposed in the last decade
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to provide a quantitative objective measure of the depth of anesthe-
sia. Multiscale rescaled range analysis [Liang et al., 2011], wavelet-
based bicoherence [Li et al., 2011], spectral entropy [Ferenets et al., 2007;
Klockars et al., 2011], approximate entropy and Lempel-Ziv complex-
ity [Jordan et al., 2006] are mentioned as examples. Some commercial
systems, based on the Patient State Index (PSI) [Drover et al., 2002], the
Narcotrend monitoring [Kreuer et al., 2003] and the EntropyTMmethod
[Viertiö-Oja et al., 2004] have been recently introduced in the operat-
ing room. The benchmark comparator for all these monitors is theBISTMindex

Bispectral Index Score BISTM of Aspect Medical Systems (Newton,
MA) [Kelley, 2010]. Bispectral index is a parameter that integrates
several electroencephalographic measures into a unit-less number be-
tween 100 (fully awake) and 0 (flat line EEG). Although the exact al-
gorithm used to synthesize the index is still unknown, some studies
referenced in Morimoto et al. [2004] brought new insight into the BIS-
calculation process. After artifacts removal, the EEG is firstly analyzed
for suppression detection and quantification through the burst sup-
pression ratio. Then the signal is fast Fourier transformed (FFT) to
compute a relative beta ratio and to derive the bispectrum, from which
the relative synchrony of fast and slow waves is calculated. These pa-
rameters are combined to generate the BIS index, whose values, up-
dated every second, should be maintained within the recommended
range (40 to 60) for patient safety during surgery.

Despite the use of such monitors, the incidence of awareness duringRationale

general anesthesia that can be recalled explicitly after operation has
been reported to be 1.1% in total intravenous anesthesia (TIVA) and
0.59% in balanced anesthesia [Errando et al., 2008]. Sometimes anesthe-
siologists have to rely on objective autonomic measures such as heart
rate, blood pressure, respiration pattern and body temperature [Miller,
2005] or even on subjective assessments based, for example, on the
Ramsay sedation scale [Ramsay et al., 2012]. For this reason, research
in the field of EEG-based monitoring of anesthesia is still very active.

The present study proposes an alternative methodology with theAdopted approach

twofold aim of minimizing the incidence of intraoperative awareness
and reducing the computational complexity of BIS [Miller et al., 2004;
Schneider et al., 2004]. Two nonlinear indexes, the fractal dimension
(FD) and the zero-crossings (ZC), are off-line calculated and then com-
bined with the burst suppression ratio (BSR) to produce the bsFD and
bsZC indexes. The indexes, proposed to monotonically quantify the
depth of anesthesia, are compared with BIS by means of Pearson’s cor-
relation analysis. The comparison with BIS is made also in terms of
ability to detect the onset of possible awareness.

76



Figure 24: The BIS sensorTMused for the recording of both BIS and raw EEG.

8.2 material and methods

8.2.1 Patients

The methodology proposed in the present research was applied to
EEG recordings from 6 patients who underwent surgery under general
anesthesia. The study was approved by the Ethics Committee of the
IRCCS “Burlo Garofolo” Scientific Institute of Trieste. General anes-
thesia was induced by intravenous propofol (hypnotic agent), fentanyl
(analgesic) and rocuronium/vecuronium (muscle relaxants). Anesthesia
was maintained, under BIS control, by administration of inhalational
agent sevoflurane (balanced anesthesia, 4 patients) or propofol (total in-
travenous anesthesia, 2 patients). Some patients were premedicated
with 1-2 mg of midazolam.

8.2.2 EEG recording and analysis

In order to minimally interfere with the standard surgical procedure, Recording

the BIS sensorTM(Aspect Medical Systems, Newton, MA), applied to
the forehead of the patients before the induction of anesthesia, was
used to acquire both the BIS index and raw EEG data (Fig. 24). The ac-
quisition started at least 2 minutes before the induction of the hypnotic
agent in order to have a baseline for the successive evaluations. At the
end of the surgical procedure data were transferred from the BIS Mon-
itor to a laptop computer via USB. EEG signals were A/D converted
with a sampling frequency of 128 Hz, according to the guidelines of
Chapter 5, and 16-bit accuracy. The EEG derivation selected for the Pre-processing

analysis corresponds to the Fp1-Fpz bipolar derivation of the 10-20 sys-
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tem. EEG signals were processed with a Butterworth bandpass filter
(second order high-pass and third order low-pass) between 6 and 50

Hz. The choice of removing low frequencies was made in order to pre-
serve and highlight high-frequency oscillations considered as a marker
of the conscious state [Sleigh et al., 2001]. EEG traces were then divided
into 50% overlapping segments of 10 s. Higuchi’s fractal dimensionParameters

calculation (FD) and the zero-crossings (ZC) were calculated in these epochs as
explained in Chapter 5.2.1.3 and Appendix A, respectively. To detect
and quantify possible EEG suppression, that would heavily modify
the characteristics of the signal, the burst suppression ratio (BSR) was
calculated as explained by Doyle and Matta [1999]. EEG suppression
is defined as those epochs longer than 500 ms during which EEG volt-
age does not exceed ±5 µV (example of burst suppression pattern in
Fig. 25). The BSR is defined as the percentage of the suppression time,
Ts, against the time duration of the segment under investigation, T :

BSR =
Ts

T
· 100 (35)

The BSR is calculated on the same segments used for the estimation
of FD and ZC, therefore on intervals of T = 10 s. A burst suppression
ratio of 100% implies isoelectric EEG. Supposing that EEG’s parame-
terization could be corrupted by EEG burst suppression, compensated
fractal dimension (bsFD) and zero-crossings (bsZC) were calculated as
proportional reductions of FD and ZC, respectively:

bsFD = FD ·
(
1− 0.8 · BSR

100

)
(36)

bsZC = ZC ·
(
1− 0.8 · BSR

100

)
(37)

In correspondence to the large artifacts introduced in the EEG by
the automatic impedance check performed every ten minutes on the
electrodes, the values of the parameters were replaced by the last value
preceding the artifact. FD, ZC, bsFD and bsZC parameters were then
monitored in all phases of anesthesia: pre-induction, induction, burst
suppression (if present), maintenance and recovery, in order to com-
pare the performances of the proposed parameters with the BIS index.
Pearson’s correlation coefficient was used to assess and quantify de-
pendence between each parameter and BIS index.

8.3 results
As can be seen in the example of Fig. 26, both FD and ZC decreased as
BIS decreased and increased as BIS increased for BIS > 35. However,
erroneous behavior is exhibited by both parameters for lower values
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Figure 25: Example of EEG burst suppression pattern.

of BIS. On the other hand, BIS values in the range 30-0, as reported
by Bruhn et al. [2000], are linearly correlated with BSR > 40%. The
compensation of both FD and ZC parameters with BSR circumvents
the sensitivity of the measures to the burst suppression, as shown
by bsFD and bsZC indexes in Fig. 27. The combined parameters are
able to follow the depth of hypnosis distinguishing all the phases that
characterize a typical anesthesia: pre-induction (0-2 min), induction
(2-3.3 min), burst suppression (3.3-20 min), maintenance (20-29.3 min)
and recovery (29.3-35 min). The analysis conducted on the 6 patients
confirmed that neither FD nor ZC standalone parameters are able to
characterize all phases of anesthesia (Tab. 12). The compensation with
BSR, obviously able to describe only burst suppression, improved, as
expected, the performances of both parameters. Table 11 presents Pear-
son’s correlation coefficients calculated for the relationships BIS-bsFD
and BIS-bsZC observed in each patient. Both parameters were linearly
correlated with BIS in almost all patients. Table 11 highlights that the
linear correlation between bsFD (bsZC) and BIS was barely of 61%
for Patient 6 (Tab. 11). Patient 6 is a subject who most likely experi-
enced intraoperative awareness. As referred by the anesthesiologist,
the patient showed marked movements and slurring of speech, twice
during surgery, at about minute 22 and minute 28 of the operation. As
shown in Fig. 29, while BIS index showed only slight increase in cor-
respondence of the two episodes, bsFD and bsZC abruptly increased
reaching values similar to those recorded before induction and after
recovery of anesthesia. Moreover, to the strong decrease of BIS index
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right before the first event did not correspond a significant reduction of
none of the proposed parameters. The spectrogram of Fig. 30 revealed
high EEG activity in the range 15-48 Hz, completely abnormal in anes-
thetized subjects. For comparison, the spectrogram of a typical EEG
during anesthesia with no awareness is shown in Fig. 28. Although
bsZC index showed the highest correlation with BIS, its discriminative
power resulted lower than that of bsFD parameter. This fact may be
explained considering that both pre-induction and recovery have short
duration with respect to burst suppression and maintenance. Thus,
they probably don’t have much weight in the calculation of Pearson’s
correlation. Figure 31 shows the exponential relationship found be-
tween mean bsFD and BIS values, calculated for each subject in the
available phases. Table 13 compares BIS and bsFD index ranges for
each clinical state.

8.4 discussion
With the twofold aim of identifying a reliable index for the correct
quantification of the depth of anesthesia and to reduce the compu-
tational complexity of BIS system, in this study 4 easy-to-calculate
parameters based on nonlinear and fractal analysis of the EEG were
explored. Standalone FD and ZC parameters and burst suppression
compensated fractal dimension and zero-crossings (bsFD and bsZC)
were evaluated on 6 EEG signals recorded under general anesthesia.
To assess their ability to follow the depth of anesthesia, all parameters
were compared with BIS index, off-line transferred to a laptop together
with the EEG.

Since the amplitude of the high frequency components decreases as
anesthesia deepens, with a concomitant increase of the amplitude of
the low frequency waves [Rampil, 1998], FD was expected to decrease
with propofol infusion. Similarly, according to the dominant frequency
principle [Kedem, 1986], ZC was supposed to decrease with induction
of anesthesia. However, both parameters failed to follow the depth
of anesthesia for high doses of hypnotic agents which imply a burst
suppression ratio greater than 40%. On the one side, the failure of
FD may be explained by a loss of fractal-like geometry due to EEG
suppression. On the other side, burst suppression patterns do not
have a dominant frequency/band and therefore can’t be described by
zero-crossings count.

Since BSR > 40% is linearly correlated with BIS in the range 30-0
[Bruhn et al., 2000], it was decided to compensate FD and ZC with
BSR. By using Eqs. 36 and 37 two new parameters, bsFD and bsZC,
respectively, were defined. The compensation with BSR improved the
performances of both the fractal dimension and the zero-crossings, al-
lowing the quantification of the depth of anesthesia also in correspon-
dence of burst suppression patterns, i.e., for high doses of hypnotic
agents. Both parameters were linearly correlated with BIS with a mean
Pearson’s coefficient of 0.75±0.11 for bsFD and of 0.79 ±0.11 for bsZC.
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Figure 26: BIS index, burst suppression ratio (BSR), fractal dimension (FD)
and zero-crossings (ZC) for patient 5 who underwent surgery un-
der TIVA anesthesia. Dashed vertical lines represent the induction
of anesthesia.

The lowest correlation coefficients were obtained for Patient 6, who,
twice during the operation, showed marked movements and slurring
speech. This form of awareness was caused by too light anesthesia,
not accurately reflected by BIS index. The parameters proposed in
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Figure 27: BIS, bsFD and bsZC indexes for the same patient of Fig. 26.

Figure 28: Spectrogram of the Fp1-Fpz derivation of the same patient of
Figs. 26 and 27. All phases of anesthesia can be easily distin-
guished. Pre-anesthesia: 0-2 min; burst suppression: 3.3-20 min;
maintenance: 20-29.3 min; recovery: 29.3-35 min.
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Figure 29: BIS, bsFD and bsZC indexes for patient 6 who experienced proba-
ble awareness under TIVA anesthesia.

Figure 30: Spectrogram of Fp1-Fpz derivation of the same patient of Fig. 29.
Abnormal activity in the range 15-45 Hz is evident at min 22 and
28. Similar activity was registered with the recovery of the patient.
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Table 11: Pearson’s correlation coefficients between BIS and both bsFD and
bsZC parameters.

BIS-bsFD BIS-bsZC
Patient1 0.88 0.89

Patient2 0.71 0.77

Patient3 0.77 0.84

Patient4 0.64 0.75

Patient5 0.87 0.89

Patient6 0.61 0.61

Table 12: Ability to distinguish among the different phases of anesthesia of
the considered parameters.

pre-anesthesia burst suppression maintenance recovery
BSR

√

FD
√ √ √

ZC
√

bsFD
√ √ √ √

bsZC
√ √

this study, on the contrary, clearly increased in correspondence to both
episodes (Fig. 29). The analysis of the spectrogram (Fig. 30) confirmed
the presence of abnormal high activity in the range 15-48 Hz, which
reflects changes in the conscious state [Sleigh et al., 2001]. As can be
seen in the spectrogram of a successful anesthesia (Fig. 28), mainte-
nance is characterized by the presence of a 13 Hz oscillation with no
high frequency activity observed.

One trend revealed by this preliminary study is the high variability
of the proposed indexes in the pre-anesthesia phase. The reason for
this behavior may be related to the concomitant administration of dif-
ferent drugs. Further investigations should attempt to clarify the cause
of this variability since a more stable baseline is desirable.

Although bsZC had the highest correlation with BIS, the index that
yielded the best results discriminating among all possible levels of se-
dation was bsFD. This information warrants further investigations to
better establish whether bsFD or bsZC represents the most reliable
monitoring tool. In any case, the power of the proposed parameters
lies in the ability of reflecting changes occurring both in the low spec-
trum and in the high frequency range, though calculated directly in
the time domain.
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Figure 31: Mean BIS versus bsFD during pre-anesthesia (circles), burst sup-
pression (squares) and maintenance (triangles). The solid blue line
represents the exponential relationship between the two indexes.
Dashed green lines separate the 5 ranges for the different clinical
states listed in Tab. 13.

Table 13: Clinical state and correspondent index range for BIS and bsFD.

Clinical state BIS bsFD

I Awake 80-100 >1.6
II Light/Moderate sedation 60-80 1.45-1.6
III General anesthesia 40-60 1.3-1.45

IV Deep hypnotic state 20-40 1-1.3
V Bust-suppression 0-20 <1

8.5 conclusion

A correct parameterization of the depth of anesthesia is necessary to
ensure patient safety in operating room. Although several methods
have been developed for the monitoring of anesthesia, the incidence
of intraoperative awareness is still too high. This study proposes some
nonlinear parameters and explores their ability in quantifying the hyp-
notic level during general anesthesia. The results presented in this
chapter are preliminary as the number of patient is very limited. How-
ever, some interesting conclusions can be drawn. Similarly to BIS in-
dex, the fractal dimension of the EEG, properly combined with the
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burst suppression ratio, is able to monitor the depth of anesthesia dis-
tinguishing among all different clinical states (Fig. 31 and Tab. 13).
Moreover, bsFD index detects two episodes of intraoperative aware-
ness whose onset was not clearly indicated by BIS monitor. The pro-
posed parameter, combination of two time domain measures, is of low
computational cost and therefore more suitable for real-time imple-
mentation. Should such preliminary results be confirmed on a larger
sample, anesthesiologists could be provided with an easy-to-calculate
reliable index for the monitoring of the depth of anesthesia and the
reduction of the incidence of intraoperative awareness.
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The characterization of the macro-structural organization of the EEG
in autism, with respect to that of mental retardation, has not been pre-
viously studied. Some preliminary investigations have been conducted
to differentiate autistic and normal electroencephalographic activity.
However, most of the studies carried on the autistic EEG principally
aimed at analyzing the co-occurrence of autism and epilepsy. In this
chapter the problem of autistic macro-structural neuronal organization
is addressed through linear and nonlinear quantitative analysis of the
EEG recorded in the three major electrical states: awake state, light
sleep (stages 1 and 2) and deep sleep (stages 3 and 4). A statistical
analysis is performed in order to identify the measures the best dis-
criminate between the populations of autistic children and children
with mental retardation. The chapter is based on Author’s publication
6.

9.1 introduction and motivation
Autism is defined as a behavioral, cognitive and brain developmental Autism

disorder characterized by impairments in social interaction and com-
munication, as well as by the presence of restricted and repetitive be-
haviors, interests and activities [Rapin, 1997]. Abnormalities in gross
brain structure, neuronal growth patterns, abnormal connectivity and
neurotransmitter profiles have been extensively studied [Belmonte et
al., 2004; Penn, 2006; Rippon et al., 2007]. The study of the autistic brain
has been approached with different investigation techniques such as
EEG, MEG, magnetic resonance imaging (MRI) and functional MRI
(fMRI) [Mengotti et al., 2011; Philip et al., 2012; Wilson et al., 2007]. The
search for objective measures that can help in screening for autistic
children is of primary importance since, till now, most of the tools
available to physicians rely on subjective observations. Autism be-
longs to the autism spectrum disorders (ASD), a broad classification
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that includes also Asperger’s Syndrome and pervasive developmental
disorder not otherwise specified. Moreover, overlap among other be-
havioral and developmental disorders can produce false positives and
subsequently poor test specificity. A correct early diagnosis would
improve treatment and patient’s longterm quality of life.

The EEG represents a promising diagnosis tool, since it providesState of the art

a low-cost description of brain activity dynamics with high temporal
resolution. To date, most of the studies based on the EEG address
the problem of the co-occurrence of autism and epilepsy [Tuchman
et al., 2010]. However, some investigations aimed at the characteri-
zation of autistic brain activity, with no reference to epileptic abnor-
malities, have been recently published. On the basis of conventional
linear analysis, Grice et al. [2001] observed higher power for gamma
sub-band of autistic EEG when compared with non-ASD signals. On
the other hand, Chan et al. [2009] reported a significant reduction of
theta activity in the anterior regions of the brain, while the results
presented by Pop-Jordanova et al. [2010] indicated increased delta and
theta power in the frontal derivations. However, the highly nonlinear
and complex dynamics of the brain, brought to light in the last few
decades, may not be exhaustively explained by traditional linear tech-
niques. For this reason, chaos theory and fractal analysis have been
recently introduced in ASD research as tools for the study of autis-
tic brain features from a nonlinear perspective. Ahmadlou et al. [2010]
recently proposed an automated EEG-based diagnosis methodology
which combines wavelet decomposition, fractal analysis and neural
networks. In the study of Catarino et al. [2011], EEG complexity of
ASD patients is assessed by means of multiscale entropy analysis.

This study represents an investigation of the macro-structural or-Adopted approach

ganization of the EEG in autism. To this extent, EEG signals were
recorded in the three major electrical states: awake, light sleep (stages
1 and 2) and deep sleep (stages 3 and 4). The rationale for the in-
clusion of sleep EEG analysis lies in the fact that sleep disturbances
are well-known correlates of autism disorder. On the one hand, ir-
regular sleep, frequent night awakenings and severely reduced sleep
time are the most referred problems [Malow, 2004]. On the other hand,
REM sleep has recently been implicated in important cognitive func-
tions like memory consolidation and emotions processing and hence
it could represent an indicator of brain plasticity [Hobson and Pace-
Schott, 2002; Maquet, 2001]. Thus, since abnormal sleep architecture
may reflect abnormal neurotransmission, some investigations have been
conducted in order to assess relative ratios or REM and non-REM
sleep [Buckley et al., 2010] or to investigate EEG synchronization dur-
ing non-REM sleep [Kulisek et al., 2008]. In this study, the issue was
addressed from both a linear and a nonlinear point of view. Firstly,
a linear spectral analysis was performed on the traditional EEG sub-
bands in terms of percent power. Successively, both Higuchi’s fractal
dimension and the zero-crossings count were evaluated directly in the
time domain. Mentally retarded children, matched with autistic pa-
tients for cognitive functioning, served as control group.
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9.2 materials and methods

9.2.1 Patients

A total of 19 autistic children and 19 children with mental retarda-
tion were included in the study. Participants were recruited at the
Developmental Psychopathology Unit at the IRCCS “Eugenio Medea”
Scientific Institute of Udine. The autism and comparison groups were
matched for age (5-13 years), gender (17 boys and 2 girls) and IQ. None
of the children were taking, or had ever taken, any psychotropic med-
ication. Parental written informed consent was obtained for all the
children. This research was approved by the local Ethics Committee.

9.2.2 EEG recording and analysis

Participants underwent an EEG assessment, in which a total of 3 record- Recording

ings were collected. About 5 min of resting EEG in the awake state
were firstly acquired. During data acquisition children were instructed
to minimize head movements. Then, subjects underwent two further
recordings during afternoon sleep after being sleep-deprived the night
before the test. The first registration was performed under light sleep
conditions (stages 1 and 2), while the second EEG was acquired when
subjects fell into deep sleep (stages 3 and 4). Both sleep EEGs had a
duration of about 10 minutes. Hereafter the first recording will be re-
ferred to as AW (awake) EEG, the second one as LS (light sleep) EEG
and the third one as DS (deep sleep) EEG. Unfortunately, not all reg-
istrations were available for the analysis. Some recordings in the AW
state had to be excluded because of the poor quality of registration ei-
ther due to lack of cooperation or extensive movement artifact. On the
other hand, sleep EEG was not acquired for those patients who could
not achieve natural sleep (lack of both LS and DS recordings) or awoke
before deep sleep was reached (lack of DS recording). The number of
registrations available for each group in each state are summarized in
Tab. 14. EEG signals were acquired with Ag/AgCl electrodes accord-
ing to the 10-20 system of electrode positioning. Nineteen unipolar
derivations (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3,
Pz, P4, T6, O1 and O2) and sixteen bipolar derivations (Fp1-F3, F3-
C3, C3-P3, P3-O1, F7-T3, T3-T5, T5-O1, Fp2-F4, F4-C4, C4-P4, P4-O2,
F8-T4, T4-T6, T6-O2, Fz-Cz and Cz-Pz) were used for the analysis. Sig-
nals were sampled at 256 or 512 Hz. In order to correctly compare Pre-processing

Table 14: Number of subjects analyzed in the different electrical states.

Autism Mental retardation
AW 17 17

LS 14 15

DS 12 12
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Table 15: Groups of unipolar derivations and corresponding brain regions
considered for the analysis.

Left Right Midline
Frontal Fp1 F3 F7 Fp2 F4 F8

Temporal T3 T5 T4 T6

Central-parietal C3 P3 C4 P4

Occipital O1 O2

Midline Fz Cz Pz

Table 16: Groups of bipolar derivations and corresponding brain regions con-
sidered for the analysis.

Left Right Midline
Anterior Fp1-F3 F3-C3 Fp2-F4 F4-C4

Frontal-temporal F7-T3 T3-T5 F8-T4 T4-T6

Central-parietal C3-P3 C4-P4

Posterior P3-O1 T5-O1 P4-O2 T6-O2

Midline Fz-Cz Cz-Pz

EEG signals sampled at different rates, EEGs acquired at 512 Hz were
resampled at 256 Hz. All EEGs were also resampled at 128 Hz for
the successive fractal analysis according to the guidelines reported in
Chapter 5. Both groups of 128 and 256 Hz EEGs were processed with
a Butterworth bandpass filter between 0.5 and 60 Hz and with a 50 Hz
notch filter. After detrending, each trace was then divided into 50%
overlapping segments of 10 s. For the calculation of the spectral pa-Parameters

calculation rameters, after Hamming windowing, each segment was fast Fourier
transformed in order to derive the power spectral density (PSD) es-
timated by periodogram method using Eq. 31. From the PSD, the
percent power in the traditional EEG sub-bands (delta 0.5-4 Hz, theta
4-8 Hz, alpha 8-13 Hz, beta 13-30 Hz and gamma 30-60 Hz) was cal-
culated. Higuchi’s fractal dimension (FD) and the zero-crossings (ZC)
were calculated in the same segments as explained in Chapter 5.2.1.3
and Appendix A, respectively. For each unipolar and bipolar deriva-
tion, a mean value of each parameter was calculated as the average
among all 10 s segments. The 19 unipolar derivations and the 16 bipo-
lar derivations were then clustered into 9 unipolar and bipolar groups,
respectively, according to the brain region as shown in Tabs. 15 and 16.
Mean values within each of the 18 groups were finally calculated for
each parameter. Pairwise differences between groups on all parame-Statistical analysis

ters were thus evaluated and statistical significance was assessed via
the nonparametric Mann-Whitney U test. Tests were two-sided and a
p-value < 0.05 was considered to indicate statistical significance.
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9.3 results
For the sake of clarity, results will be presented for each electrical state
(AW, LS and DS) separately. In the AW EEG, increased relative delta Awake state

activity in the temporal and posterior bipolar derivations of the right
hemisphere was revealed in autistic children with respect to the men-
tally retarded controls. Moreover, Higuchi’s fractal dimension FD was
higher in Fp1 channel as well as in the unipolar midline group (Fz
Cz Pz) (Fig. 32). With respect to the comparison group, LS EEG of Light sleep

autistic children exhibited higher relative delta activity in the tempo-
ral bipolar derivation of the left hemisphere (T3-T5) with a contextual
reduction of the percent beta power, observed also in the occipital and
the parietal-occipital derivations of the same hemisphere (O1 and P3-
O1). Moreover, higher relative gamma activity was registered for the
autistic children in the left frontal bipolar derivation (Fp1-F3) and in
the frontal bipolar region (Fp1-F3 F3-C3) (Fig. 33). Similar results were Deep sleep

obtained for DS EEG, showing higher percent delta power in the T3-T5

bipolar derivation and concomitant reduction of relative beta activity
in T3-T5 and P3-O1 bipolar derivations as well as in (P3-O1 T5-O1)
bipolar region. The increased percent power of the gamma band was
maintained in autistic children also in deep sleep and was registered
in particular in the Fp1-F3 bipolar derivation (Fig. 34). Significant pa-
rameters, associated loci and corresponding p-values are presented in
Tabs. 17, 18 and 19 for AW, LS and DS EEG, respectively. There were
no statistically significant differences between the two groups for nei-
ther theta nor alpha percent power in none of the considered electri-
cal states. Also ZC was unable to discriminate between autistic and
mentally retarded children in all cases. The AW EEG could also not
be described in terms of percent gamma and beta power while both
light and deep sleep showed no significant differences also for FD. To
summarize the results, higher complexity, quantified by FD, was reg-
istered in the left frontal-polar derivation and in the midline region of
autistic children. At the same time, the autistic AW EEG showed an in-
creased delta activity in the right posterior derivations. During sleep,
almost independently from the stage, increased relative delta activity
was observed in the temporal derivations of the left hemisphere with
a contextual reduction of percent beta power also highlighted in the
contiguous posterior derivations.
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Table 17: Sites of the significant differences and correspondent p-values in the awake state (AW EEG).

%PW delta %PW beta %PW gamma FD

unipolar Fp1 Cz Pz
derivation 0.046 0.027 0.042

unipolar Fz Cz Pz
region 0.032

bipolar P4-O2 T4-T6 T6-O2

derivation 0.027 0.046 0.030

bipolar P4-O2 T6-O2

region 0.021

92



1.2

1.4

1.6

1.8

AU MR
F

D

Fp1

1.2

1.4

1.6

1.8

AU MR

F
D

Cz

1.2

1.4

1.6

1.8

AU MR

F
D

Pz

1.2

1.4

1.6

1.8

AU MR

F
D

Fz Cz Pz

20

40

60

80

AU MR

%
P

W
 d

el
ta

P4−O2

20

40

60

80

AU MR
%

P
W

 d
el

ta

T4−T6

20

40

60

80

AU MR

%
P

W
 d

el
ta

T6−O2

20

40

60

80

AU MR

%
P

W
 d

el
ta

P4−O2 T6−O2

Figure 32: Box plots showing the statistically significant differences between autistic children group (AU) and mentally retarded group (MR) in the awake
state with the indication of the site (derivation or group of derivations).
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Table 18: Sites of the significant differences and correspondent p-values during light sleep (LS EEG).

%PW delta %PW beta %PW gamma FD

unipolar O1

derivation 0.014

unipolar O1

region 0.014

bipolar T3-T5 P3-O1 T3-T5 Fp1-F3

derivation 0.017 0.047 0.017 0.008

bipolar Fp1-F3 F3-C3

region 0.031
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Figure 33: Box plots showing the statistically significant differences between autistic children group (AU) and mentally retarded group (MR) during light
sleep with the indication of the site (derivation or group of derivations).
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Table 19: Sites of the significant differences and correspondent p-values during deep sleep (DS EEG).

%PW delta %PW beta %PW gamma FD

unipolar
derivation

unipolar
region

bipolar T3-T5 P3-O1 T3-T5 Fp1-F3

derivation 0.019 0.023 0.012 0.001

bipolar P3-O1 T5-O1

region 0.040
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Figure 34: Box plots showing the statistically significant differences between autistic children group (AU) and mentally retarded group (MR) during deep
sleep with the indication of the site (derivation or group of derivations).
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9.4 discussion

The study presented in this chapter is the first one in which the EEG of
autistic children is compared with that of mentally retarded subjects,
matched for cognitive functioning, in the three major electrical states:
awake state, light sleep and deep sleep. The relative power in the tradi-
tional EEG sub-bands (delta, theta, alpha, beta and gamma), Higuchi’s
fractal dimension and the zero-crossings were calculated and aver-
aged for each unipolar/bipolar derivation and for each unipolar/bipo-
lar group of derivations. Although available literature is very recent
and limited, some preliminary studies on the comparison of autistic
and normal EEG in the awake state have been published. Conflict-
ing results, obtained with linear analysis, indicated increased gamma
power [Grice et al., 2001], reduced theta activity in the anterior regions
of the brain [Chan et al., 2009] and higher power of the delta and theta
band in the frontal loci [Pop-Jordanova et al., 2010]. The fractal anal-
ysis carried out by Ahmadlou et al. [2010] using Higuchi’s algorithm
showed significant differences in the frontal channels (F4, F7 and F8).
Such results, difficult to interpret, have been presumptively correlated
to the cognitive, social and communication impairment, typical of neu-
rological and developmental disorders.

The results achieved by the present investigation indicated higher
irregularity of autistic awake EEG, quantified by Higuchi’s fractal di-
mension, in the left frontal-polar channel (Fp1) and in the unipolar
midline group (Fz Cz Pz). This finding suggests that, for the same
IQ, the neuronal activity is more organized in autistic subjects than
in mentally retarded controls. As regards spectral analysis, the delta
sub-band was the only one that provided percent power values dis-
criminative in distinguishing among awake autistic and awake men-
tally retarded EEG. Significant higher relative delta activity was found
averaging the bipolar derivations in the right posterior region (P4-O2

T6-O2). This result becomes more interesting when associated to those
achieved by sleep EEG analysis. Although nonlinear parameterization
did not highlight significant differences, linear analysis revealed in-
creased relative delta activity in T3-T5 derivation and a concomitant
reduction of beta percent power in the left posterior bipolar region
(P3-O1 T5-O1). In other words, a shift in slow activity from right to
left hemisphere was observed in the wake-to-sleep transition. Such
a result, deserving further investigation, is not of immediate under-
standing. However, a possible explanation may concern information
processing and memory consolidation deficits, as well as abnormal
transcallosal transfer of information, which occur during sleep. Higher
relative gamma oscillations during light sleep were observed in autis-
tic children with respect to mentally retarded controls in the left an-
terior region of the brain. Since high frequency activity is related to
perceptual and cognitive processes, partly impaired also in mental re-
tardation, a higher percent power in the gamma sub-band may be an
indicator for autistic perceptual and cognitive impairment.
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9.5 conclusion
The study presented in this chapter was conducted with the aim of
characterizing the macro-structural organization of the EEG of autis-
tic children with respect to that of mentally retarded controls. Frac-
tal analysis suggests that the complexity of EEG signal in the awake
state is higher for autistic children with respect to controls, although
subjects were matched for cognitive functioning. Linear analysis re-
vealed a posterior slow activity shift between awake and asleep states
from the right to the left hemisphere, which may be related to autis-
tic deficits in information processing and memory consolidation, as
well as to abnormal transcallosal transfer of information. Moreover,
higher relative gamma activity, associated with cognitive processes,
was highlighted in autism. Future studies, to be performed on a larger
sample of recruited subjects including also normal children, should
attempt to clarify and hopefully confirm these findings. Quantitative
EEG-based measures would be very important because early diagnosis
allows early intervention with increased effectiveness.
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10 C O N C L U S I O N

For the purpose of EEG nonlinear analysis, the possibility of fruit-
fully exploring brain complexity directly in the time domain without
the need for phase space reconstruction would undoubtedly be advan-
tageous.

After a review of the methods available in the literature for the anal-
ysis of the fractal-like behavior of the EEG directly in the time domain,
the Author selected and compared three widely used algorithms for
the estimation of the fractal dimension of waveforms. Higuchi’s algo-
rithm outperformed box-counting and Katz’s methods, producing cor-
rect estimates of the fractal dimension also on short traces, provided
that minimum sampling rate required to avoid aliasing is used. The
use of the scaling relationship of fractional Brownian motion to obtain
indirect estimates of the fractal dimension from the power-law expo-
nent is, on the contrary, not recommended, since deviations from fBm
were observed by the Author. As long as a complete model of the EEG
is lacking, direct estimation of the fractal dimension with Higuchi’s
algorithms is preferable.

Higuchi’s fractal dimension was used to address three clinical is-
sues: 1) the monitoring of carotid endarterectomy for the prevention
of intraoperative stroke, 2) the assessment of the depth of anesthesia
to monitor unconsciousness during surgery and 3) the analysis of the
macro-structural organization of the EEG in autism with respect to
mental retardation.

In the first study the fractal dimension was expected to reflect the
possible complexity drop due to hypoperfusion caused by artery clamp-
ing. The efficacy of the parameter as a criterion to determine whether
a shunt is indicated was evaluated on 140 surgical procedures. The pa-
rameter did not achieve satisfactory results since the threshold selected
to minimize identification errors produced a sensitivity of barely 30%
with 100% specificity. Higher thresholds improved sensitivity at the ex-
pense of a fall in specificity. Both HFL linear index and ZC nonlinear
parameter, on the contrary, obtained 100% overall accuracy resulting
better indicators of cerebral suffering.

In the second investigation the fractal dimension was expected to re-
flect the level of unconsciousness induced by the hypnotic agents dur-
ing general anesthesia. The ability of the parameter to follow the depth
of anesthesia from induction to recovery was assessed in 6 patients.
Whereas the standalone parameter was not able to monitor too deep
unconsciousness, characterized by burst suppression patterns, the frac-
tal dimension compensated for burst suppression correctly quantified
the depth of anesthesia in all its phases.
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In the discrimination of autism from mental retardation, the frac-
tal dimension was significantly different in the anterior regions of the
brain and along the midline, while differences in some spectral pa-
rameters were observed mainly in the posterior areas, suggesting that
linear analysis and fractal analysis capture complimentary information
on brain functioning. The results of the fractal analysis, in particular,
revealed that autistic children have more complex EEG sources with
respect to mentally retarded controls.

The results of the clinical studies suggest that, although linear spec-
tral analysis still represents a valuable technique for the investigation
of the EEG, time domain fractal analysis provides additional informa-
tion on brain functioning which traditional analysis cannot achieve,
making use of techniques of low computational cost. In conclusion,
nonlinear processing of the EEG based on the analysis of the fractal-
like behavior of the signal represents a powerful tool for the compre-
hension of neuronal activity.
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A A P P E N D I X

The zero-crossings (ZC) is a nonlinear parameter used in the analysis
of random signals [Kedem, 1986]. It is computed by counting the num-
ber of baseline crossings in a fixed time interval. Let x(1),x(2),...,x(N)

be a zero-mean stationary Gaussian time series. Consider the associ-
ated clipped binary series y1(n) defined by:

y1(n) =

{
1, if x(n) > 0

0, if x(n) 6 0

(38)

with n = 1,2,...,N and let y2(n) be the associated series defined as:

y2(n) = y1(n+ 1) (39)

with n = 1, 2, ...,N− 1, where y2(N) = y2(N− 1). Three further binary
series are defined by:

z1(n) = y1(n) OR y2(n)

z2(n) = y1(n) NAND y2(n)

z3(n) = z1(n) AND z2(n)

(40)

Then the ZC count is defined by the sum:

ZC =
∑
n

z3(n) (41)

Fruitful connections exist between ZC count and dominant frequency.
When a certain frequency band becomes dominant, it attracts the nor-
malized expected zero-crossings and ZC

2(N−1) admits values in this
band. Likewise, when a certain frequency f0 becomes significantly
dominant then ZC

2(N−1) ' f0. In the extreme case when only f0 is

present, ZC
2(N−1) = f0. This tendency of zero-crossings was called the

dominant frequency principle. As an example, consider the signal x(n):

x(n) = A cos(0.8n) +B cos(1.25n)

for n = 1,2,...,N with N = 200. ZC is a function of the weights A and
B. When A = B = 1 there is no dominant frequency (Fig. 35). It results
ZC = 69 and πZC

199 = 1.095 which is in the range 0.8-1.25 as expected.
When A = 0.8 and B = 1, the frequency 1.25 is dominant (Fig. 35).
It results ZC = 79 and πZC

199 = 1.247 which is very close to 1.25 in
agreement with the dominant frequency principle.
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Figure 35: Demonstration of dominant frequency principle. Top plot: x(n) =
cos(0.8n)+ cos(1.25n): none of the oscillations is dominant. Bottom
plot: x(n) =0.8cos(0.8n) + cos(1.25n): 1.25 component is dominant.
πZC
199 = 1.247.

Thus, ZC is an index that may reflect possible changes in dominant
spectral components. Moreover, the calculation of this parameter is
very fast and can be performed also on short epochs.
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