4,288 research outputs found

    Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments

    Full text link
    The increased penetration of uncertain and variable renewable energy presents various resource and operational electric grid challenges. Micro-level (household and small commercial) demand-side grid flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, but literature and field deployments exploring the necessary information and communication technologies (ICTs) are scant. This paper presents an exploratory framework for enabling information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response pilot implementation. FlexBox field data has begun shedding light on relationships between ambient temperature and load energy consumption, load and building envelope energy efficiency challenges, latency communication network challenges, and opportunities to engage existing demand-side user behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop new technologies, system architectures, and implementation approaches that can easily scale across regions, incomes, and levels of development

    Topology patterns of a community network: Guifi.net

    Get PDF
    This paper presents a measurement study of the topology and its effect on usage of Guifi.net, a large-scale community network. It focuses on the main issues faced by community network and lessons to consider for its future growth in order to preserve its scalability, stability and openness. The results show the network topology as an atypical high density Scale-Free network with critical points of failure and poor gateway selection or placement. In addition we have found paths with a large number of hops i.e. large diameter of the graph, and specifically long paths between leaf nodes and web proxies. The usage analysis using a widespread web proxy service confirms that these topological properties have an impact on the user experience

    WiQoSM: An Integrated QoS-Aware Mobility and User Behavior Model for Wireless Data Networks

    Get PDF
    Modeling mobility and user behavior is of fundamental importance in testing the performance of protocols for wireless data networks. While several models have been proposed in the literature, none of them can at the same time capture important features such as geographical mobility, user generated traffic, and wireless technology at hand. When collectively considered, these three aspects determine the user-perceived QoS-level, which, in turn, might have an influence on mobility of those users (we call them QoSdriven users) who do not display constrained mobility patterns, but they can decide to move to less congested areas of the network in case their perceived QoS-level becomes unacceptable. In this paper, we introduce the WiQoSM model which collectively considers all the above mentioned aspects of wireless data networks. WiQoSM is composed of i) a user mobility model, ii) a user traffic model, iii) a wireless technology model, and iv) a QoS model. Components i), ii), and iii) provide input to the QoS model, which, in turn, can influence the mobility behavior of QoS-driven users. WiQoSM is very simple to use and configure, and can be used to generate user and traffic traces at the APs composing a wireless data network. Based on WiQoSM, we perform an extensive simulation-based analysis of network usage under different combinations of network parameters, which discloses interesting insights and shows that WiQoSM, despite its simplicity, is able to capture important properties observed in real-world network deployments

    WiQoSM: An Integrated QoS-Aware Mobility and User Behavior Model for Wireless Data Networks

    Full text link

    Understanding the WiFi usage of university students

    Get PDF
    In this work, we analyze the use of a WiFi network deployed in a large-scale technical university. To this extent, we leverage three weeks of WiFi traffic data logs and characterize the spatio-temporal correlation of the traffic at different granularities (each individual access point, groups of access points, entire network). The spatial correlation of traffic across nearby access points is also assessed. Then, we search for distinctive fingerprints left on the WiFi traffic by different situations/conditions; namely, we answer the following questions: Do students attending a lecture use the wireless network in a different way than students not attending a lecture?, and Is there any difference in the usage of the wireless network during architecture or engineering classes? A supervised learning approach based on Quadratic Discriminant Analysis (QDA) is used to classify empty vs. occupied rooms and engineering vs. architecture lectures using only WiFi traffic logs with promising results

    A bridging-based solution for efficient multicast support in wireless mesh networks

    Get PDF
    Proceedings of: The 34th Annual IEEE Conference on Local Computer Networks (LCN 2009), October 20-23, 2009, Zurich, SwitzerlandWireless mesh networking is a promising, cost effective and efficient technology for realizing backhaul networks supporting high quality services. In such networks, multicast data are transmitted blindly without any mechanism protecting data from loss, ensuring data reception, and optimizing channel allocation. The multicast services may undergo, then, very high data loss ratio which is exacerbated with the number of hops. In this paper, we propose a Reliable Multicast Distribution System (RMDS) to optimize multicast packets transmission in bridged networks. Relying on a modification of the IGMP snooping protocol, RMDS enables reliable services provisioning support in common wireless mesh networks. In particular, RMDS only exploits the local knowledge of a particular node to compute the multicast tree, which significantly reduces the signalling overhead in comparison with network layer and overlay solutions. Simulation results elucidate that RMDS optimizes resources’ allocation by reducing significantly the network load, the media access delay and the data drop rate compared to the classical approach, which is based on the combination of spanning tree algorithm and IGMP snooping protocol.European Community's Seventh Framework ProgramPublicad
    • …
    corecore