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Abstract

Modeling mobility and user behavior is of fundamental importance in testing the

performance of protocols for wireless data networks. While several models have been

proposed in the literature, none of them can at the same time capture important features

such as geographical mobility, user generated traffic, and wireless technology at hand.

When collectively considered, these three aspects determine the user-perceived QoS-level,

which, in turn, might have an influence on mobility of those users (we call them QoS-

driven users) who do not display constrained mobility patterns, but they can decide to

move to less congested areas of the network in case their perceived QoS-level becomes

unacceptable.

In this paper, we introduce the WiQoSM model which collectively considers all the above

mentioned aspects of wireless data networks. WiQoSM is composed of i) a user mobility

model, ii) a user traffic model, iii) a wireless technology model, and iv) a QoS model.

Components i), ii), and iii) provide input to the QoS model, which, in turn, can influence

the mobility behavior of QoS-driven users. WiQoSM is very simple to use and configure,

and can be used to generate user and traffic traces at the APs composing a wireless data

network.

Based on WiQoSM, we perform an extensive simulation-based analysis of network usage

under different combinations of network parameters, which discloses interesting insights

∗A preliminary version of this paper appeared in Proc. ACM/IEEE International Symposium on Modeling,

Analysis and Simulation of Wireless and Mobile Systems (MSWiM), 2006.
†Istituto di Informatica e Telematica del CNR, Pisa, ITALY. email:{giovanni.resta,

paolo.santi}@iit.cnr.it

1



and shows that WiQoSM, despite its simplicity, is able to capture important properties

observed in real-world network deployments.

Index terms: Mobility modeling, user behavior modeling, QoS-driven mobility, wireless

data networks.

1 Introduction

Thanks to the increasing popularity of 802.11-based products, wireless data networks have

become widespread in recent years: medium- to large-scale WLAN deployments are nowadays

common in campuses, enterprises, and so on, and also public areas such as airports, shopping

malls, and parks, are becoming increasingly covered by wireless access points (APs). The

proliferation of wireless data networks is expected to increase even further when the recently

introduced wireless Mesh technology will become mature [7].

In order to fulfill the promise of ubiquitous connectivity, forthcoming wireless data networks

must face several challenges, including the design of appropriate congestion control mechanisms

and interference mitigation protocols, whose performance should be carefully optimized depend-

ing on the scenario at hand. Given the high costs of on-the-field testing, simulation is often the

preferred option to test the performance of network protocols.

There are several factors that influence performance of a wireless data network, including

infrastructure (number and location of the APs), number of active users, their mobility and

traffic patterns, the wireless technology at hand, and so on. This implies that, in order to obtain

an accurate estimation of the performance of a certain protocol for wireless data networks,

none of these aspects should in principle be neglected at the simulation stage. Furthermore, a

mobility and user behavior model should be relatively simple, while at the same time general

enough to allow the simulation of a wide range of network settings.

Despite the considerable amount of research devoted to mobility and user behavior modeling

in recent years, to the best of our knowledge none of the models introduced in the literature

so far considers all the above mentioned aspects at the same time. On one hand, we have

synthetic models aimed at resembling user registration patterns observed in a certain real-world

deployment (e.g., the Dartmouth college [13, 19, 20], or the ETH Zurich campus [26]). While
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these models allow some flexibility in the choice of some parameters, such as number of users and

APs, they do not consider user traffic patterns. Most importantly, these models are tailored to

a very specific network deployment, and cannot be used to test the performance of wireless data

network protocols in different scenarios. On the other hand, we have ‘general purpose’ random

models that typically account for only one of the above mentioned aspects influencing wireless

data network protocols performance. For instance, we have separate synthetic models for user

mobility (such as the well-known random waypoint model [15]), traffic pattern, radio channel

characteristics, and so on. However, these models (especially for what concerns mobility) are

often considered too general, and not representative of any real-world scenario.

In light of the above, the need of more realistic, yet simple, mobility and user behavior

models for testing the performance of wireless data network protocols, which is mentioned in

[3] as one of the challenges related to the realization of ubiquitous wireless connectivity, has not

been satisfied yet. In this paper, we make a first step in this direction introducing WiQoSM,

an integrated mobility, user behavior, and wireless technology model which can be used in the

performance evaluation of wireless data network protocols.

A salient and novel feature of WiQoSM is that it allows mimicking a situation in which

a fraction of users displays constrained movement patterns (e.g., because they have to move

to a certain specific location within a certain time), while the remaining users are mainly

stationary, but they could decide to move to another location in case their perceived QoS

degrades considerably. In the remainder of this paper, we call users of the former type mobile

users, and users of the latter type QoS-driven users. We believe distinguishing users into

mobile and QoS-driven is representative of many WLAN or wireless Mesh deployments in

public areas such as airports, parks, shopping malls, and so on, as acknowledged also in [2, 24].

For instance, consider the case of a public park. In this situation, a fraction of users might be

seated somewhere in the park, using their wireless devices to browse the Web, sending emails,

downloading music files to listen with the iPod, and so on. For this class of users, what is

relevant is the perceived QoS: as long as the QoS is satisfactory, there is no reason to move to

another location. However, if the QoS degrades below an acceptable level, a typical user of this

class may decide to look for a better location in the park, becoming stationary again when the

perceived QoS is restored to an adequate level. It is not difficult to imagine similar scenarios

3



in other environments such as airports, shopping malls, campuses, and so on.

WiQoSM is composed of four components: a mobility model, a user traffic model, a wire-

less technology model, and a QoS model. The mobility model implements weighted random

waypoint mobility, where the next waypoint is chosen according to an AP popularity metric.

The fact that different APs in a wireless data network display very different popularity degrees

(i.e., number of registered users) has been recently observed in different types of wireless data

networks [4, 17, 25]. As such, we believe accounting for the popularity degree when choosing

the next waypoint contributes to improving the accuracy of our model. To model user traffic

behavior, we classify users into three classes depending on the amount of load offered to the

network. Note that this classification of users based on the offered load is (in principle) orthog-

onal to their classification into mobile or QoS-driven. The third fundamental building block

of WiQoSM is the wireless technology model, which is in turn composed of a channel access

and a radio propagation model. Currently, we have implemented two channel access methods

(data polling and time polling), and two radio propagation models (free space and log-normal

shadowing), but other models can be easily integrated in our framework. The mobility, user

traffic, and wireless technology models provide input to the QoS model, which estimates the

degree of satisfaction for each user in the network according to a simple criteria. If a user is

QoS-driven, he/she can decide to change its AP association and/or physical location depending

on the perceived QoS-level. The block diagram of our WiQoSM model is reported in Figure 1.

WiQoSM generates user and traffic traces which can be easily fed to custom simulators

used to evaluate the performance of a specific wireless data network protocol. We believe using

WiQoSM-generated traces can considerably improve the accuracy of wireless data network

protocols’ performance estimation, in contrast to the current habit of using purely random

approaches (e.g., the traffic observed at an AP is generated uniformly at random between an

upper and lower bound).

Another interesting feature of WiQoSM is that the generated traces are accompanied by a

set of metrics such as balance index, user prevalence and persistence in AP association, average

data delivery rate, and so on, that can be used to assess relevant features of the generated

traces. For instance, the network designer might be interested in testing the performance of a

certain congestion relief protocol under different degrees of unbalancing of the observed load.
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Figure 1: Block diagram of the WiQoSM model.

By appropriately tuning WiQoSM input parameters, the designer can assess the average degree

of unbalancing of the generated traces through the balance index, and feeds the ones with the

desired degree of unbalancing to the custom simulator used to test the performance of the

designed protocol.

As a concrete example of WiQoSM utilization, we perform an extensive simulation-based

analysis of network usage under a wide range of different conditions in terms of number of

users, number of deployed APs, percentage of QoS-driven users, and wireless technology. The

main findings of our analysis are that the presence of QoS-driven users can significantly increase

the QoS-level in the network (especially when combined with the time polling channel access

method), and that, in order to avoid resource wastage, network designers should carefully

consider both the channel access method and the estimated fraction of QoS-driven users before

deploying additional (possibly scarcely utilized) resources. Most importantly, our analysis shows

that, despite its simplicity, WiQoSM is able to reproduce an important phenomenon which has

been observed in real-world network deployments, i.e. the loose correlation between the number

of registered users and the load observed at the APs.

The rest of this paper is organized as follows. In Section 2, we survey related work and

discuss the main contributions of this paper. In Section 3, we introduce the WiQoSM mobility
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and user behavior model, and in Section 4 we describe how WiQoSM can be used to generate

user/traffic traces for wireless data networks. In Section 5 we use WiQoSM to perform an

extensive simulation-based analysis of network usage under different settings. Finally, Section

6 concludes and discusses possible ways of extending/improving our model.

2 Related work and contribution

The characterization of user behavior in wireless data networks has been subject of intensive

research in recent years. By analyzing user traces collected at the various access points in

campuses [16, 17], corporate buildings [4], or conferences [1], typical user behaviors have been

analyzed, and phenomena such as different popularity levels of the APs, occasional network

congestion, low correlation between the number of users and load, and so on, have been ob-

served. More recently, some authors have derived synthetic models of user behavior which try

to mimic the observed user behavior in a certain environment. This is the case, for instance, of

the ModelT model proposed in [13], which is based on the traces collected from the Dartmouth

College campus over a period of 2 years. This model has been recently extended to account

for spatio-temporal correlation in the user registration patterns [20]. Other examples of syn-

thetic mobility models based on real-world traces are proposed in [19, 26]. While allowing the

network designer to have a certain degree of freedom in setting some network parameters such

as number of users and access points, synthetic models based on real-world traces have the

disadvantage of being representative of a very specific scenario (the one from which the traces

were collected). Furthermore, these models are built to capture the characteristics of existing

or past wireless networks, and it is not clear to what extent these models are representative of

future wireless network deployments.

Another related active area of research in recent years is the analysis of existing ‘general pur-

pose’ synthetic mobility models, such as the random waypoint and the random direction model,

which, mostly due to their simplicity, are the most commonly used in the simulation of wireless

ad hoc network protocols. Recent studies have characterized the long term node behavior in

these types of mobile networks [5, 18, 21, 23, 27, 28], outlining some undesired phenomena

such as node concentration in the center of the deployment region [5], and long term decay
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of the average nodal speed [27]. These phenomena could impair the accuracy of simulations

based on these synthetic mobility models, essentially because the initial network conditions

can be very different from the long term network conditions. Another acknowledged weakness

of random waypoint/direction -like mobility is that it is too general, and not representative

of any real-world scenario. In order to address some of the criticisms raised against random

waypoint/direction mobility, some authors have recently proposed more realistic and/or more

accurate synthetic mobility models, such as the obstacle model proposed in [14], and those

proposed in [6, 12, 22, 28]. For a survey on mobility models for wireless ad hoc networks the

reader is referred to [8].

Despite the considerable amount of research efforts referred above, to the best of our knowl-

edge none of the existing synthetic models of user behavior in wireless networks jointly con-

siders the three aspects that influence performance of wireless data network protocols, i.e., i)

geographical user mobility, ii) user traffic patterns, and iii) wireless technology at hand. Fur-

thermore, none of the existing models accounts for the fundamental observation that a fraction

of users might not display constrained movement patterns, but they could decide to move to a

better location in case their perceived QoS level drops below an acceptable level. We want to

remark that the fact that some users might be willing to move to another location to improve

their QoS has already been observed in [24], and explicitly suggested as a method to alleviate

congestion in [2]. In the latter paper, the authors introduce the concept of network-directed

roaming, which can be briefly explained as follows: if the required QoS cannot be guaranteed

to a certain user, the network itself indicates to the user where to roam in order to obtain the

desired level of service. This technique, combined with explicit channel switching, is shown to

considerably improve load balancing in the network.

The main contribution of this paper is the proposal of an integrated QoS-aware mobility

and user behavior model that jointly considers i), ii), and iii) above. The need of estimating

the degree of user satisfaction complicates a lot the model definition, since aspects such as user

offered load and channel access method have to be carefully modeled. To keep the complexity

of our proposed model to a reasonable level, we have decided to simplify the mobility part as

much as possible, while at the same time accounting for relevant aspects such as degree of AP

popularity. This explains our choice of modeling user movements according to the well-known
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RWP model, suitably modified to choose the waypoints according to an AP popularity metric.

As a concrete example of WiQoSM utilization, we also present an extensive analysis of

network usage under different scenarios. Note that, differently from [2], in this paper we are

not proposing any explicit congestion relief technique. Instead, motivated by previous work

showing the beneficial effect of QoS-driven users on load balancing [2], our aim is to carefully

investigate the effects on network congestion of having a fraction of QoS-driven users. This

outlines another major difference with respect to [2], in which it is implicitly assumed that

all the users are QoS-driven. We believe that in most real world scenarios only a fraction of

the users can be classified as QoS-driven, while other users display a constrained movement

pattern. Another difference with respect to [2] is that we are not assuming network-directed

roaming, in which a users decide to move after an explicit roaming message sent by the network

manager. Instead, in our model we assume that it is the user himself, based on the perceived

QoS level, who decides when to start moving, and the destination of the movement.

In order to achieve our goal of investigating the effect of QoS-driven mobility on network

congestion, we consider a wide range of parameter settings, including not only the relative

fraction of QoS-driven users, but also the number of users, the number of APs, the channel

access method, and so on. To the best of our knowledge, this is the first such study presented

in the literature.

3 WiQoSM

In this Section we introduce our mobility and user behavior model, which we call WiQoSM

(Wireless QoS-aware Mobility). The model is composed of four main components: mobility

modeling, user traffic modeling, wireless technology modeling, and QoS modeling (recall Figure

1). We describe each of these components in a separate subsection.

3.1 Mobility model

As mentioned in the previous sections, in WiQoSM we assume that a certain fraction f , with

0 ≤ f ≤ 1, of the n network users is QoS-driven, while the remaining (1− f) · n users display

constrained movement patterns.
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Movement of QoS-driven users obeys the following rules. Users in this class are mostly

stationary, i.e. they are not willing to move unless their perceived QoS level drops below an

acceptable threshold. The determination of whether a certain QoS level is acceptable for the

user is left to the QoS model (see Section 3.4).

Since we assume that QoS-driven users are ‘lazy’, and that the only reason forcing them to

move is low QoS level, in our model we assume that an unsatisfied QoS-driven user first tries to

do a ‘virtual movement’ by simply changing AP association. Using the terminology introduced

in [2], we call this action channel switching.

In case channel switching is possible, user u changes AP association, selecting the AP which

provides him/her the best QoS. Estimating the QoS level achieved by surrounding APs is not

immediate, since the user perceived QoS depends not only on the quality of the wireless channel

connecting to the AP, but also on the load offered by the other users registered at that AP.

Hence, estimating the QoS achieved by surrounding access points requires information exchange

between the user and the APs, which might not be allowed or implemented in certain network

deployments. For this reason, in WiQoSM we simply assume that the user selects the AP to

switch to based on the signal quality, preferring the AP with the best signal (and, consequently,

data rate).

Note that in WiQoSM we are assuming that a typical network user is essentially selfish, i.e.,

he/she tries to improve his/her own QoS level, without considering possible degradation of the

QoS level of other users. An alternative is to assume that users are naturally willing to cooperate

with each other in order to optimize network performance, as it is assumed, for instance, in

[2]. However, cooperative user behavior is a reasonable assumption only in networks composed

of ‘homogeneous’ users, such as corporate networks. On the other hand, networks deployed

in public areas are likely to be used by very ‘heterogeneous’ users, and assuming spontaneous

cooperation between users seems a bit optimistic. This explains our choice of assuming selfish

user behavior, which can be considered as a sort of ‘worst-case’ behavior.

In case channel switching is not possible (because there is no overlapping of APs in the

current user’s position, or because also the other AP is overloaded and QoS level remain low),

an unsatisfied QoS-driven user decides to do a physical move. Again, there are many different

options to model movement of an unsatisfied user. To keep the model simple, we assume
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that unsatisfied QoS-driven users move according to the same rules governing the movement of

mobile users, i.e. AP popularity weighted RWP movement (see below).

Let us now consider mobile users. In order to reduce the complexity of our model, we

assume that mobile users follow a weighted waypoint mobility model similar to that proposed

in [12]1. Mobile users alternate between pause times at waypoints and traveling periods be-

tween successive waypoints. Initially, a user is assigned a certain waypoint according to a

weighted, non uniform distribution which resembles the different popularity of APs. The fact

that APs in a wireless data network display different popularity degrees is well documented in

the literature [1, 4, 17]. In our model, we initially assign each AP a with a popularity degree

p(a) ∈ [0, 1] according to a probability distribution resembling a power law (as suggested in

[13]). Alternatively, it is possible to manually specify popularity degrees (in the [0,1] range) for

each AP.

When selecting the initial or a new waypoint for a certain mobile user (or for an unsatisfied

QoS-driven user), first an AP is selected with a probability proportional to its popularity, then

a waypoint is selected uniformly at random within the coverage area of the selected AP. The

pause time at waypoints is chosen according to a Poisson distribution with intensity λp. In order

to avoid degenerate situations of excessively long or short pause times, we have imposed an

upper and lower bound to the pause time at the waypoints. The trajectory between consecutive

waypoints is linear, and the velocity is chosen uniformly at random in an interval [vmin, vmax].

3.2 User traffic model

In WiQoSM, users are divided into three different classes of offered load: low, medium, and

high load. The lowest class of traffic accounts for users who are using the network for emailing,

chatting, and light web browsing. The average bandwidth requirement of this class of users

is a tunable parameter, but the actual bandwidth requirement is very variable, since users in

1We are aware that more realistic mobility models such as, for instance, the obstacle model of [14], could

have been used in WiQoSM. However, this would have increased a lot the complexity of the simulator and

the simulation running time. For this reason, we have opted for a simple model such as random waypoint

mobility, but enriched with ‘more realistic’ salient features such as weighted choice of waypoints according to

AP popularity.
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this class typically generate bursty traffic. In the study reported in Section 5, the average

bandwidth requirement of this class of users is set to 64 Kb/sec.

The medium class of traffic accounts for users who are using the network for intensive

web browsing, file downloading, audio streaming, and so on. The average user bandwidth

requirement in this case is also a tunable parameter, and the generated traffic displays a more

uniform pattern. To maintain the complexity of the simulator at a reasonable level, we assume

users in this class generate UDP-like traffic. In the study reported in the following, we have set

the average bandwidth requirement of medium users to 256 Kb/sec.

Finally, the highest class of traffic accounts for users who make an intensive use of the

network, such as video streaming. The average user bandwidth requirement is again a tunable

parameter. Similarly to the case of medium traffic, also high traffic users typically display a

relatively uniform bandwidth usage. Hence, we assume UDP-like traffic for these users, with a

rate which is set to 2 Mb/sec in the study reported in the following.

The allocation of users to the various traffic classes is performed according to a certain mix

l,m, h, where l is the fraction of low traffic users, m is the fraction of medium traffic users,

and h = 1 − (l + m) is the fraction of heavy traffic users. These fractions can be different for

QoS-driven and mobile users.

3.3 Wireless technology model

The wireless technology model is composed of two sub-models: radio channel model and channel

access model.

The radio channel model is as follows. For given user u and AP a, we estimate the quality

of signal between u and a according to a radio propagation model. In the current version of

the model, we have considered free-space and log-normal shadowing propagation, but other

propagation models can easily be integrated into WiQoSM. The quality of signal is used to

determine the achievable data rate between u and a, if u is actually within the coverage range

of AP a. We have considered the eight possible data rates available in 802.11a, i.e. 6, 9, 12,

18, 24, 36, 48 and 54Mbs. The nominal radio range of an AP at the various data rates is

set according to what reported in the data sheets of the CISCO Aironet 1240AG access point

11



Nominal (Mbs) Actual (Mbs)

54 25

48 24

36 19.5

24 16

18 12.8

12 9.6

9 7.2

6 5,4

Table 1: Actual data rates achieved with 802.11a.

[9]. The nominal ranges are used in combination with the free space radio propagation model

to determine the highest possible available data rate between u and a. In case of log-normal

shadowing, the distance between u and a cannot be directly converted into a data rate value,

due to the random component in the signal attenuation caused by shadowing. Hence, the

geographical distance between u and a is converted into a ‘virtual distance’ accounting for the

actual signal attenuation between u and a, and the highest available data rate is obtained by

comparing this ‘virtual distance’ with the nominal radio ranges.

As mentioned in the Introduction, WiQoSM implements two channel access methods: data

polling and time polling. Data polling is similar to the 802.11 a/b/g MAC layer with PCF

coordination: registered users are polled by the AP. In case a polled user u has a packet to

send/receive to/from the AP a, the packet is sent at the highest possible data rate available

between u and a. If a polled user has nothing to send/receive, the next registered user is polled,

and so on. Note that, from a high level point of view, there is little difference between DCF

and PCF coordination in 802.11, since DCF is designed to give the same long term probability

of accessing the channel to contenders [11]. Hence, our data polling model is representative

also of 802.11 a/b/g networks with DCF coordination.

In order to keep the complexity of simulation at a reasonable level, in WiQoSM we have not

implemented any exchange of control messages. However, we have accounted for the overhead

caused by control message exchange and channel access time by using an actual data rate for

sending packets which is significantly lower than the nominal data rate. In particular, we have

used the actual data rates reported in Table 1, which are obtained from the measurements

reported in [10].

The current implementation of the 802.11 a/b/g MAC layer is known to have major ineffi-
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ciencies. In particular, both DCF and PCF access methods suffer when registered users have

different data rates, because the slowest user reduces the throughput of the other users down

to the value of the slowest user2. This performance anomaly, which has been observed in [11],

is caused by the data polling approach, in which a user, once gained access to the channel,

transmits a packet, independently of his/her data rate. Hence, the time allotted to each user

can be very different, and slower users tend to use the channel for longer times, driving down

the throughput of faster users.

The second access model used in WiQoSM, time polling, solves this problem by assigning

to each polled user a time slot, instead of whatever time is necessary to send a packet. With

this approach, all the users gain access to the channel for an approximately equal share of

time, and faster users can transmit more packets than slower ones. Time polling resembles the

basic functioning of the 802.11e MAC extension for QoS support, which is in the final stage of

standardization.

A final consideration about channel access in WiQoSM is that we assume adjacent APs use

different (orthogonal) channels, so that interference between users registered at adjacent APs

is not an issue.

3.4 QoS model

To determine whether the QoS level is acceptable for a certain user u, we measure the number

of buffer overflow/underflow (depending on whether we are sending or receiving packets) ex-

perienced by u during the last Γ seconds, where Γ is a tunable parameter which can be used

to smooth temporary variations in the QoS level. The status of the buffer is checked every γ

seconds, with γ � Γ, where a check is successful if there is no overflow/underflow, unsuccessful

otherwise. If at least a fraction of rq(u) checks are successful, where rq(u) is a tunable pa-

rameter modelling the minimum QoS level that user u considers acceptable, then u is satisfied,

otherwise it is unsatisfied.

Note that the degree of user satisfaction is evaluated for both mobile and QoS-driven users.

In case the user is mobile, the experienced QoS level is simply tracked and returned as one of

2This is true under the assumption that all the registered users always have a packet to send in their queues.
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the output parameters of the model. In case the user is QoS-driven, the experienced QoS level

can influence user mobility (recall Section 3.1).

4 Using WiQoSM

WiQoSM is written i C++ under a Linux environment. This section describes how WiQoSM

can be used to generate user and traffic traces for wireless data networks.

4.1 Network deployment and user distribution

Two options are available for AP deployment: guided random and manual. In case of guided

random deployment, a number m of APs is distributed in a square deployment region R,

which is assumed to have a 1Km long side (this parameter can be arbitrarily set). APs are

distributed according to a ‘guided uniform’ distribution, which is designed to provide at least

a certain degree of coverage of the deployment region. More specifically, R is divided into 25

squares of side 200m, and approximately m/25 APs are distributed uniformly at random in

each square. If m is below 25, m squares are randomly selected in the deployment region,

and one AP is distributed uniformly at random in each of the selected squares. Each deployed

AP a is then assigned with a degree of popularity p(a) ∈ [0, 1], which reflects its potential

of attracting network users. The degree of popularity of APs is computed according to a

probability distribution resembling a power law (see [13]). In case of manual deployment, both

the location and the popularity degree (in the [0,1] interval) for each AP are provided as input

parameters.

After AP deployment, a number n of users is distributed in the network according to the

following rules. First, each user is assigned a mobility class (QoS-driven/mobile) and a traffic

class (low/medium/high) according to the defined parameters f, l, m, and h. Then, he/she is

assigned with an initial position by first randomly selecting an AP according to the popularity

metric, and then choosing a position uniformly at random in a bounded vicinity (within the

coverage area) of the selected AP. To model users joining/leaving the network, we assume

that each user is randomly assigned an active/sleep state, where the active/sleep transition is

governed by a Poisson law with parameter λa, and the sleep/active transition is governed by a

14



Poisson law with parameter λs. Hence, n must be intended as the maximum possible number

of network users, and the actual number of users using the network at a given time is in general

lower. In order to avoid degenerate situations of excessively long or short transition times, we

have imposed an upper and lower bound to the active/sleep and sleep/active transition time.

Once all the input parameters has been set and network deployment has been done, WiQoSM

can be instructed to generate traffic traces for a certain period of simulated network time.

4.2 Performance metrics

An interesting feature of WiQoSM is that the generated traces are accompanied by a set of

metrics which can be useful to the network designer to assess some of their relevant features.

The metrics computed by WiQoSM are the following:

– total network load (NL): total number of packets exchanged in the network during the

simulated time interval.

– data delivery rate: we trace the average data delivery rate experienced by network users

during the last log interval. The data delivery rate is defined as the ratio between the

number of bytes correctly sent/received to the number of bytes offered to the network.

We also compute the average data delivery rate experienced by network users during the

entire simulated time interval.

– balance index: let Li denote the load observed at the i-th AP. The balance index [2] is

defined as

β =
(
∑m

i=1 Li)
2

m ·
∑m

i=1 L2
i

.

The balance index is used to measure the deviation in utilization of the different APs:

if the load is equally divided amongst the APs, we have β = 1; conversely, with highly

unbalanced network load we have β ≈ 1/m. Similarly to the data delivery rate, the

balance index is averaged both in the log interval, and in the entire simulation time.

– prevalence and persistence: these metrics, which are used also in [4], model the mobility

of users independently of the duration of simulation and of the amount of time a user
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spends in the network. Prevalence of user u, denoted prev(u), measures the overall

fraction of time user u spends with the AP is registered with for a longer time. Prevalence

accounts for the total registration time with a certain AP, and does not take into account

the duration of each session with the given AP. To account for this, we consider also

persistence, denoted pers(u), which measures the average amount of time user u stays

associated with an access point before being forced to move to another AP or leaving the

network. We separately compute these metrics for QoS-driven and mobile users.

The many parameters used in WiQoSM, and their setting in the network usage analysis

reported in Section 5, are summarized in Table 2.

Parameter Meaning Values

m number of APs 25, 30, 40, 50

simulated time interval 14400 sec (4 hours)

p(a) degree of popularity of AP a chosen according to a power law (guided random)

manually set (manual)

n maximum number of users 100 – 800

λa intensity of Poisson law governing active/sleep transition 5 min. (min) - 90 min. (avg) - 180 min, (max)

λs intensity of Poisson law governing sleep/active transition 5 min. (min) - 20 min. (avg.) - 90 min. (max)

rq(u) required QoS value for user u 0.90

Γ window lenght to determine user satisfaction at current location 5 sec.

γ buffer check interval 0.05 sec

λp intensity of Poisson law governing pause times at waypoints 5 min. (min) - 60 min. (avg) - 120 min. (max)

vmin, vmax min and max velocity of mobile users vmin = vmax = v = 1m/sec

f fraction of QoS-driven users 0, 0.125, 0.25, 0.5

l,m,h relative fraction of low, medium, and high traffic users 0.33, 0.33, 0.33

pathLoss radio propagation model free space, log-normal shadowing

packSize packet size (in the data polling model) 1Kb

timeSlot time slot length (in the time polling model) 200 µsec

NL total network load

DDR data delivery ratio

β balance index

prevq(u) prevalence of QoS-driven user u

persq(u) persistence of QoS-driven user u

prevm(u) prevalence of mobile user u

persm(u) persistence of mobile user u

Table 2: Parameters used in the WiQoSM model, and their setting in the network usage analysis

of Section 5.

4.3 Input/output

A typical input file of the WiQoSM model is reported in Figure 2. The user can specify the

number of AP or, in case of manual deployment, the name of an ASCII file containing a set of

16



(location, popularity degree) pairs (one for each access point). The second row of the input file

selects the channel access method, and the packet size (in case of data polling), or the time slot

duration (in case of time polling). Then, the user can specify the (maximum) number of active

users, and their relative subdivision into QoS-driven/mobile and in the three traffic classes. This

subdivision is expressed through six numbers: the first group of three numbers corresponds to

QoS-driven users with low/medium/high traffic, respectively; the second group of number has

similar meaning for mobile users. For instance, if we set the traffic fractions as 121 233, we have

1/12=8.3% of QoS-driven users with low traffic and high traffic, and 2/12=17% of QoS-driven

users with medium traffic, for a total of 4/12=33% QoS-driven users in the network. Similarly,

we can obtain the relative fraction of mobile users and their subdivision into the three traffic

classes. Next, the user can choose the average data rate for the three classes of traffic considered,

the buffer size for users in the three classes of traffic, and the interval at which packets arrive

in the buffer (the number of packets arriving in the buffer is determined by the data rate of the

user’s traffic class). The next parameter is the probability that a user is in sleep state at the

beginning of the simulated time interval. The user can then specify the number of available

data rates, their (actual) values, the corresponding theoretical transmitting radius assuming

free space propagation, and the radio propagation model. We then have a set of parameters

determining the average pause, sleep and awake time of a user, with lower and upper bounds

which are used to avoid extremal values. Then, there is a group of parameters concerning the

QoS model, i.e. the length of the window used to check QoS level, and the fraction of successful

packet insertion/removal operations in the buffer which is considered acceptable by QoS-driven

users. Finally, the user can set the log interval, the duration of the simulated time interval,

and the random seed.

WiQoSM produces three types of output traces, which are identified by suffix *.alog, *.Tr,

and *.log, respectively.

*.alog traces (see Figure 3 for a sample) reports, for each log interval, a 3-tuple for each

AP. The first value of the tuple is the number of registered users at the expiration of the last

log interval. Then, we have the load (in Mb) observed at the AP in the last log interval, and

the cumulated load (also in Mb) since the beginning of the simulation.

*.Tr traces give a finer view of what is happening in the network. A sample *.Tr trace
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Number of APs or name of a file containing APs locations and popularity

25

# TimePolling = 0 DataPolling = 1 and duration (sec) or packet size (bytes) (0

# 0.2 / 1 1024 are default values)

0 0.2

# Number of users

300

# Qos-driven LMH and mobile LMH traffic class (fractions)

1 1 1 1 1 1

# The 3 data rates for the 3 class (L,M,H) (Kb/sec)

64 256 2048

# the 3 buffer size for the 3 class (Kb)

256 1024 8192

# data arrive step (sec)

0.05 0.05 0.05

# Probability of being initially sleepy

0.25

# Number of Data Rates

8

# Data rates (Mb/sec)

25

24

19.5

16

12.8

9.6

7.2

5.4

# Radii corresponding to data rates (m)

30

91

130

152

168

183

190

198

# Radio propagation (0 Free space, 1 LogNormal - if LogNormal, specify also path loss exponent and variance)

0

# Min and max user velocity (m/sec)

1 1

# Min ave max PauseTime (minutes)

5 60 180

# Min max sleep time (minutes)

5 20 90

#min max Awake time (minutes)

5 60 120

# qos window (sec)

10

# qos ratio (move if less than this value).

0.90

# log every seconds

60

# stop after seconds

300

# random seed (0 = time dependent)

0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 2: WiQoSM input file.
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 1 105 105 2 113 113 1 8 8 4 12806 12806 2 12692 12692

2 1 105 211 2 113 227 1 8 16 4 12816 25622 2 12702 25395

3 1 105 317 2 113 341 1 8 24 4 12817 38439 2 12702 38098

4 1 105 423 2 113 455 1 8 32 4 12816 51256 2 12702 50801

5 1 105 529 2 113 569 1 8 40 4 12817 64073 3 12702 63503

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 3: Sample *.alog trace. The first column reports the progressive log interval index.

Then, we have a 3-tuple of each AP.

is reported in Figure 4. Initially, the trace reports a summary of the current model settings.

Then, for each log interval, the following information are reported:

– Data delivery rate, during the last log interval and cumulated since the beginning of the

simulation;

– Balance index, during the last log interval and cumulated since the beginning of the

simulation;

– Prevalence and persistence of QoS-driven and of mobile users;

– Number of (active) QoS-driven users who are currently moving;

– Number of active users who are currently disconnected;

– Number of registered users at each access point;

– Number of users in sleep state;

– Total number of network users (disconnected+registered+sleep);

– Total number of (active) moving users, and their subdivision into QoS-driven and mobile

users;

– Number of active QoS-driven users, and number of them who are satisfied;

– Number of active mobile users, and number of them who are satisfied.
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AP = 25

Channel access method is TimePolling

TimeSlot = 200 microsec

800 Users

qos LQ:MQ:HQ = 33 33 33

mob LM:MM:HM = 235 233 233

Users data classes: 64 256 2048

Buffers in Kb: 256 1024 8192

Data incr every 0.05 0.05 0.05 sec.

Initial prob. of sleep 0.25

8 datarates (nominal range):

25(30), 24(91), 19.5(130), 16(152), 12.8(168), 9.6(183), 7.2(190), 5.4(198),

PauseTime min ave max = 5 60 180

SleepTime min ave max = 5 20 90

WakeTime min ave max = 5 60 120

QosWindow 10 sec.

Qos Ratio 0.9

Log every 60 sec.

Stop after 14400 sec.

Random Seed 732761

Ok

APs init Ok

Users Init Ok

sleepy = 186

Sec. 60

DDR=19019/28292 (0.672255) cumDDR=19019/28292 (0.672255) Bal (act/cum)=0.387753 0.387753

qprev = 1 qpers = 15.8983 mprev = 0 mpers = 0 qosmoving 3 disc = 0

AP/users : 10 52 6 10 36 11 58 20 6 19 13 16 10 29 11 70 53 47 23 16 25 13 21 30 9

Sleep: 186 TotalUsers = 800 mov:3=3+0 qos/sat (76/73) mob/sat (538/415)

Sec. 120

DDR=19485/28315 (0.688153) cumDDR=38505/56608 (0.680207) Bal (act/cum)=0.383973 0.387422

qprev = 1 qpers = 15.8983 mprev = 0 mpers = 0 qosmoving 3 disc = 0

AP/users : 10 52 6 10 36 11 58 20 6 19 13 16 10 29 11 70 53 47 23 16 25 13 21 30 9

Sleep: 186 TotalUsers = 800 mov:3=3+0 qos/sat (76/73) mob/sat (538/409)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 4: Sample *.Tr trace.

The *.log trace is a spreadsheet friendly version of the *.Tr trace, in which the raw data are

reported without descriptions. Actually, the information reported in a *.log trace is slightly

different from the one reported in a *.Tr. For each log interval, it is reported, in order: log

interval progressive number, DDR, cumulated DDR, Balance index (current/cumulated), qprev,

qpers, mprev, mpers, min and max number of registered users at an AP, QoS-driven users who

are currently moving, number of users in sleep state, total number of registered users, number

of QoS-driven users, number of satisfied QoS-driven users, number of mobile users, and number

of satisfied mobile users. The *.log trace corresponding to the *.Tr trace reported in Figure

4 is reported in Figure 5.
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 19019 28292 0.672255 19019 28292 0.672255 0.387753 0.387753 1 15.8983 0 0 6 70 3 186 614 76 73 538 415

2 19485 28315 0.688153 38505 56608 0.680207 0.383973 0.387422 1 15.8983 0 0 6 70 3 186 614 76 73 538 409

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 5: Sample *.log trace.

5 Analysis of network usage

In this section, we report an extensive study of network usage under different scenarios per-

formed using our proposed WiQoSM model.

5.1 Increasing number of users

In the first set of experiments, we have analyzed network usage as the number of APs is fixed

to 25, and the maximum number of users increases from 100 to 800. We have considered both

channel access methods, and different fractions of QoS-driven users. Radio channel propagation

is free space. The other simulation parameters are summarized in Table 2. The purpose of

these experiments is to investigate how network usage changes as the network becomes more

and more saturated (the number of AP is fixed, and the number of users increases). Due to

the relatively long simulation time3 and the many different parameter settings used in our

experiments, we have used a sample size of 10 simulation runs4.

Figure 6 reports the average data delivery rate at the end of the 14400 seconds of simulated

time for increasing values of n and different values of f . As seen from the graphics, QoS-driven

users have a beneficial effect on the DDR: as f varies from 0 to 0.5, the DDR value increases

from 0.66 to 0.75 with data polling channel access and 800 users (14% increase), and from

0.69 to 0.83 in case of time polling (20% increase). Hence, time polling channel access has the

potential of getting more benefits than data polling from having a fraction of QoS-driven users

in the network. Concerning the relative performance of time polling vs. data polling access

method, using time polling increases DDR of about 4% with respect to data polling with 800

3Depending on the channel access method (time polling is about twice as fast as data polling) and the

machine, the simulation time of a single instance with 800 users varied between 24min. and 90min.
4We have verified in preliminary simulation runs that the variance is already acceptable with a sample size

of 10 runs.
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Figure 6: Data Delivery Rate for increasing values of n and different values of f . Channel access

method is Data Polling (left) and Time polling (right). Free space radio channel propagation.

users when f = 0, and of about 12% when f = 0.5.

Similar trends can be observed for the total network load, which is reported in Figure 7.

In this case, the performance increase of having a fraction 0.5 of QoS-driven users is 12% in

case of data polling, and 19% in case of time polling (when n = 800). Concerning the relative

advantage of time polling over the data polling channel access method, it is about 4% when

f = 0, and about 11% when f = 0.5.

The balance index at the end of the simulated time interval for increasing values of n and

different values of f is reported in Figure 8. As seen from the plots, the major factor influencing

β is the number of users n, while the channel access method and the fraction of QoS-driven

users seem to have little influence on β.

The balance index shows a decreasing trend until n is 200/300, then it starts to increase

with n. This behavior is displayed independently of the channel access method and of the

fraction of QoS-driven users. A possible explanation for this behavior is the following. When

the number of users is relatively low (n ≤ 200), the network is far from saturation, and the

difference between the maximally and the minimally loaded AP (which clearly influence the

value of β) tends to increase with n (and, consequently, the balance index decreases). This can

be understood by observing that, due to the different popularity degree of APs, the minimally

loaded AP is likely to have close to zero load, and the maximally loaded AP is likely to have
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Figure 7: Total network load for increasing values of n and different values of f . Channel access

method is Data Polling (left) and Time polling (right). Free space radio channel propagation.

a load which increases with n. However, when a relatively large number of users (n ≥ 300)

is present in the network, the maximally loaded AP is likely to be close to saturation, while

the minimally loaded AP is likely to observe an increasing load with n. Hence, the difference

between the maximally and minimally loaded AP decreases (implying a higher value of β) with

n if n is sufficiently large.

It is also interesting to observe that when the network is in the “increasing β” regime

(n ≥ 300), the fraction of QoS-driven users present in the network begins to play a significant

role. More in particular, when the network approaches saturation (this happens when n is

about 500 in case of data polling channel access, and when n is about 600 in case of time

polling), many QoS-driven users are likely to be unsatisfied, and begin to move (or perform

channel switching) to increase their QoS level. Interestingly, as clearly seen from Figure 8, these

“selfish” actions of QoS-driven users aimed at incresing their own level of satisfaction have a

positive effect on network-wide load balancing.

Although referring to a quite different scenario, it is worth qualitatively discussing the

results concerning the balance index obtained in our simulations and those reported in [2].

The simulation setting of [2] is the following: 100 users, 6 APs, data polling channel access

scheme. The authors show that the balance index is increased of about 30% when the fraction

of QoS-driven users increases from 0 to 1. We recall that in [2] unsatisfied QoS-driven users
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Figure 8: Balance index for increasing values of n and different values of f . Channel access

method is Data Polling (left) and Time polling (right). Free space radio channel propagation.

are explicitly directed to another area of the network, so that network capacity is maximized

(directed roaming). In our experiments, the fraction of QoS-driven users is at most 0.5 and,

most importantly, QoS-driven users are not explicitly directed to ‘optimal’ network locations,

but they instead move ‘at random’ (if channel switching is not possible), according to the

popularity degree based RWP model described in Section 3.1. Nevertheless, when n = 800 and

channel access method is data polling, increasing the fraction of QoS-driven users from 0 to

0.5 results in a 14% improvement of the balance index (12% in case of time polling), which is

about half of the improvement reported in [2] (which, however, referred to the case f = 1).

This seems to indicate that somewhat random movement of QoS-driven users is in principle

sufficient to achieve significant load balance increase.

Figure 9 shows the prevalence and persistence of QoS-driven and mobile users for increasing

values of n when the fraction of QoS-driven users is f = 0.5. Both prevalence and persistence

of mobile users are not influenced by n, nor by the channel access method. This is reasonable,

since the movement pattern of mobile users is not influenced by the perceived QoS-level, nor

by the number of active users in the network. The situation is different for QoS-driven users,

who decide to change AP association and/or to move when the perceived QoS level is not

satisfactory. Hence, we can expect that both prevalence and persistence are proportional to the

fraction of satisfied QoS-driven users in the network. This behavior can actually be observed in
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Figure 9: Prevalence (left) and persistence (right) for increasing values of n with f = 0.5. Free

space radio channel propagation.

Figure 9: as n increases, the network load gets closer to the saturation point, and the fraction

of unsatisfied QoS-driven users increases. As a consequence, both prevalence and persistence

of QoS-driven users decrease with n. Comparing data polling with time polling channel access

method, we observe a relatively higher prevalence and persistence with the time polling method,

which reflects the fact that the average QoS level in the network is higher with time polling

with respect to the case of data polling (see Figure 6).

In order to get a better understanding of the network usage evolution with time, we report

the traces obtained from a single simulation run, referring to the following scenario: n = 800,

f = 0.5, time polling channel access method. Figure 10-left reports the load vs. time registered

at the maximally loaded (max AP), minimally loaded (min AP), and ‘close to average’ AP

(avg AP) at the beginning of the simulated time interval. The ‘close to average’ AP is chosen

by first computing the average AP load at the beginning of the simulated time interval, and

then selecting the AP whose load is closer (in absolute value) to the computed average. Figure

10-right reports the number of registered users vs. time for the same three APs. It is interesting

to note that the load at the max AP changes a lot during the simulated time interval, and shows

a decreasing trend. We believe this relatively unstable load observed at the max AP is due to

the presence of QoS-driven users: when the load is very high, users becomes unsatisfied, and if

a few of them are QoS-driven they decide to change AP association, causing a sudden decrease
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Figure 10: Total load (left) and number of registered users (right) at the maximally loaded,

minimally loaded, and ‘close to average’ loaded access point, as a function of the simulated

time. Parameter n is set to 800, f is 0.5, and channel access method is time polling.

of the max AP load. However, the max AP is likely to have a relatively high popularity degree,

attracting a relatively high number of mobile and/or newly activated users. Thus, the load at

the max AP tends to increase again, until saturation is reached again, and so on. On the other

hand, the observed load at the avg AP is more stable, and shows a slightly increasing trend.

Combining the fact that the load observed at the max AP shows a decreasing trend, and the

load at the avg AP shows an increasing trend, we can conclude that load balancing is improved

with respect to the initial network conditions. As mentioned above, this better load balancing

at the end of the simulated time interval is due to the presence of QoS-driven users.

Another interesting observation is the relatively low correlation between the observed load

at the AP (Figure 10-left) and the number of registered users at the same AP (Figure 10-right):

while the number of registered users at the avg AP is consistently higher than that observed

at the max AP5 (62 vs. 40 at the beginning of the simulated time interval), the observed load

at the max AP is often considerably higher than that observed at the avg AP. We want to

remark that the fact that the load observed at the APs and number of registered users are

only loosely correlated have been observed in several papers that have analyzed user traces

collected from real-world network deployments [1, 4, 17, 25]. Thus, our WiQoSM model is

5We recall that max and avg refers to the load, not to the number of users.
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Figure 11: Fraction of QoS-driven and mobile satisfied users, as a function of the simulated

time. Parameter n is set to 800, f is 0.5, and channel access method is time polling.

able to reproduce one of the most important behaviors observed in real-world deployments of

wireless data networks, i.e. the low correlation between the number of registered users at an

AP and the observed load at the AP.

Figure 11 reports the fraction of satisfied QoS-driven users over the total number of active

QoS-driven users vs. time, and the same fraction vs. time relative to mobile users6, for the

same simulation run as above. It is interesting to note that, while at the beginning of the

simulated time interval QoS-driven users have approximately the same degree of satisfaction

of mobile users, as time goes by QoS-driven users increases their degree of satisfaction, which

becomes considerably higher than that observed by mobile users. This is a consequence of the

fact that, contrary to mobile users, QoS-driven users change their behavior depending on the

experienced QoS-level.

In order to investigate the effect of the radio propagation model on network usage, we

have repeated the experiments (10 runs for each parameter setting) using the log-normal radio

propagation model with path loss exponent equal to 2 and σ = 4.

The average data delivery rate for increasing values of n is reported in Figure 12. The are

two notable differences with respect to the case of free space radio propagation: i) the benefit

6We recall that our simulator computes the perceived QoS level also for mobile users, although QoS has no

influence on their behavior.
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Figure 12: Data Delivery Rate for increasing values of n and different values of f . Chan-

nel access method is Data Polling (left) and Time Polling (right). Log-normal radio channel

propagation.

of using time polling channel access is only marginal (about 2.6% DDR increase with respect to

the case of data polling), and ii) QoS-driven users have a more beneficial effect on DDR with

respect to the case of free space radio propagation (about 24% increase in DDR when n = 800

and f = 0.5 with respect to the case of f = 0, with both data and time polling channel access).

Similar trends can be observed for the total network load.

The balance index for increasing values of n is reported in Figure 13. The trend is similar to

the one observed with free space radio propagation: independently of the value of f , β initially

decreases with n, and, after reaching a minimum value around n = 300−400, it starts increasing

again. With respect to the case of free space propagation, we observe relatively higher values

of β for small values of n, and relatively lower values of β for large values of n.

5.2 Increasing AP density

In the second set of experiments, we have fixed the number n of users to 800, and considered

four different values m of deployed AP (25, 30, 40, 50). The purpose of this second set of

experiments is to investigate the effect of different AP deployment densities on network usage.

Similarly to the results presented in the previous section, all the results presented in this section

are averaged over 10 simulation runs. Radio channel propagation is free space.
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Figure 13: Balance index for increasing values of n and different values of f . Channel access

method is Data Polling (left) and Time Polling (right). Log-normal radio channel propagation.

Figure 14 reports the average data delivery rate (left) and the total network load (right) for

increasing AP deployment densities, and different values of f . It is interesting to note that a

100% increase in the number of deployed resources (50 instead of 25 APs) results at most in a

36% increase in both DDR and total network load when f = 0 and the channel access method

is data polling. The relative benefit of deploying more APs becomes lower as the fraction of

QoS-driven users increases to 0.5, and the channel access method is time polling: when f = 0.5

and channel access method is time polling, a 100% increase in deployed resources results in

only a 18% increase in DDR and total network load.

The above described results have interesting implications on network planning, as they

suggest that, in order to avoid resource wastage, network designers should carefully consider

both the channel access method and the estimated number of QoS-driven users in the network

before deploying additional, possibly scarcely utilized, network resources.

Figure 15 reports the balance index for increasing AP density and different values of f .

We can observe a decreasing trend of β for increasing number of deployed APs, which can be

explained as follows: as the number of AP increases and the number of users is fixed, QoS-

driven users tend to become more and more satisfied, i.e. stationary. Hence, as a consequence

of the different popularity degree of the APs, the relative difference between the maximally and
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Figure 14: Data Delivery Rate (left) and total network load (right) for increasing density of

AP deployment and different values of f .

minimally loaded AP becomes larger as m increases.

Finally, Figure 16 reports the prevalence (left) and persistence (right) of QoS-driven and

mobile users as the number m of deployed AP increases. As expected, as m increases, both

prevalence and persistence of QoS-driven users increases, since QoS-driven users tend to be

more satisfied when the number of deployed APs increases. On the other hand, the movement

and AP registration pattern of mobile users is not influenced by the average QoS level in the

network. It is also worth noting that the time polling channel access method displays higher

prevalence and persistence with respect to the data polling method, as a consequence of the

fact that the average QoS-level in the network is higher with time polling channel access.

6 Conclusions

In this paper, we have introduced the first synthetic mobility and user behavior model which

explicitly takes the degree of user satisfaction into account. In particular, in our WiQoSM

model a fraction f of the users is assumed to change AP association and/or to move in case

the perceived QoS-level drops below an acceptable level.

Based on WiQoSM, we have performed an extensive investigation of network usage under

different conditions, which has disclosed interesting insights, and has shown that our model is
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able to reproduce phenomena which have been observed in real-world deployments (different

AP popularity degrees, low correlation between number of registered users and load observed at

the APs). As such, we believe our model can be successfully used in the simulation of wireless

data networks, such as public area WLAN and wireless Mesh deployments. In this respect,

our model can be considered as a response to the need of more realistic, yet simple, mobility

and user behavior models for wireless hotspots outlined in [3]. With respect to recent models

such as those proposed in [13, 19, 20, 26], our model is more general and flexible, as several

parameters such as number of users and APs, traffic mix, fraction of QoS-driven users, and

wireless technology at hand can be easily modified.

WiQoSM is intended to be an open source model which can be freely used by the wireless

networking community in the simulation of wireless data networks. For this reason, the source

code of the model, as well as a very simple user manual, is available on the web at the fol-

lowing URL: http://www.iit.cnr.it/staff/giovanni.resta/WiQoSM . We encourage other

researchers to extend and improve WiQoSM in order to incorporate more accurate models of

user mobility and/or traffic, other wireless technologies, different QoS models, and so on. In

this sense, the model described in this paper must be intended as a starting point, rather than

a complete and mature model for wireless data network simulation.

On our side, we are currently working on modeling bursty traffic for users belonging to the

low load class. Furthermore, we are planning to use the traces generated by WiQoSM to accu-
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Figure 16: Prevalence (left) and persistence (right) for increasing density of AP deployment

with f = 0.5.

rately investigate the performance of different WLAN and wireless Mesh networks protocols.
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