1,689 research outputs found

    The fabrication and integration of pillar array channels for chip based separations and analysis

    Get PDF
    The fundamental motivations for scaling existing technological platforms down to lab on chip dimensions are applicable in nearly all scientific disciplines. These motivations include decreasing waste, improving throughput, and decreasing time consumption. Analytical tools, such as chromatographic separation devices, can additionally benefit from system miniaturization by utilizing wafer-level fabrication technology, allowing for the rational design and precise control of variables which ultimately affect separation performance. With the use of microfabrication techniques, we have developed an original processing sequence for the fabrication of silicon oxide enclosed pillar arrays integrated within a fluidic channel. These pillar arrays create a highly uniform submicron scale architecture of solid supports for subsequent stationary phase – mobile phase interactions, while demonstrating substantial improvements in separation efficiency and permeability over traditional packed bed and monolithic columns. The general performance of these microfluidic devices is studied by optimizing the chip architecture and instrumental design to improve the stability of the pillar arrays, improve the sample injection, enhance the pillar surface characteristics, and improve the separation performance. We additionally explore simple and straightforward stationary phase modification techniques for partition based chromatography. Finally, we address the detection challenges of our design by creating the first fully integrated microfluidic chip based platform to combine separation capabilities with real time surface enhanced Raman detection

    Distortion Analysis of CMOS Based Analog Circuits

    Full text link
    The amplifiers are the vital part of the analog circuit designs. The linearity of the CMOS is of most important concern in the design of many analog circuits. There are several aspects regarding nonlinear distortion analysis in analog circuits implemented in CMOS technology. Basically, the investigations visualize the nature of the total harmonic distortion (THD) dependence on the amplitude and frequency of the input signals. In this paper, the basic building blocks of analog integrated circuits such as Common source amplifier with diode connected load and Differential amplifier with current mirror load have been presented for distortion analysis. The MOSFET model used for simulation is BSIM3 SPICE model from 0.13-μm and BSIM4 SPICE model from 22-μm CMOS process technology. HSPICE circuit simulator tool is used for distortion analysis of CMOS circuits. It is evident that the above function gives remarkable insight of the nonlinear behavior of the considered circuits and it is worth considering for further investigations

    Exploration of advanced CMOS technologies for new pixel detector concepts in High Energy Physics

    Get PDF
    This thesis presents the author’s original concepts for the development of radiation hard monolithic pixel sensors that can replace hybrid pixel sensors in high energy physics experiments. It presents one of the first practical implementations of monolithic pixel sensors that potentially offer performance figures similar to those of the hybrid pixel technology with fewer material and for a fraction of the cost. Various pixel sensor prototypes in different technologies have been designed and manufactured for the first time. Prototypes allowed the characterization of the basic components of active pixel sensors and the evaluation of device parameters. Presented devices show strong indications that monolithic sensors can achieve very high radiation tolerance with parameters similar to the existing hybrid technology. Other application areas like X-ray imaging may also benefit from this development

    Critical dimension control influencing factors and measurement

    Get PDF

    Ultrasmall InGa(As)P dielectric and plasmonic nanolasers

    Full text link
    Nanolasers have great potential as both on-chip light sources and optical barcoding particles. We demonstrate ultrasmall InGaP and InGaAsP disk lasers with diameters down to 360 nm (198 nm in height) in the red spectral range. Optically pumped, room-temperature, single-mode lasing was achieved from both disk-on-pillar and isolated particles. When isolated disks were placed on gold, plasmon polariton lasing was obtained with Purcell-enhanced stimulated emission. UV lithography and plasma ashing enabled the fabrication of nanodisks on a wafer-scale, with intended random size variation. Silica-coated nanodisk particles generated stable sub-nanometer spectra from within biological cells across an 80 nm bandwidth from 635 to 715 nm.Comment: 25 pages, 5 main figures, 8 supplementary figures, 3 supplementary table

    Modeling of Total Ionizing Dose Effects in Advanced Complementary Metal-Oxide-Semiconductor Technologies

    Get PDF
    abstract: The increased use of commercial complementary metal-oxide-semiconductor (CMOS) technologies in harsh radiation environments has resulted in a new approach to radiation effects mitigation. This approach utilizes simulation to support the design of integrated circuits (ICs) to meet targeted tolerance specifications. Modeling the deleterious impact of ionizing radiation on ICs fabricated in advanced CMOS technologies requires understanding and analyzing the basic mechanisms that result in buildup of radiation-induced defects in specific sensitive regions. Extensive experimental studies have demonstrated that the sensitive regions are shallow trench isolation (STI) oxides. Nevertheless, very little work has been done to model the physical mechanisms that result in the buildup of radiation-induced defects and the radiation response of devices fabricated in these technologies. A comprehensive study of the physical mechanisms contributing to the buildup of radiation-induced oxide trapped charges and the generation of interface traps in advanced CMOS devices is presented in this dissertation. The basic mechanisms contributing to the buildup of radiation-induced defects are explored using a physical model that utilizes kinetic equations that captures total ionizing dose (TID) and dose rate effects in silicon dioxide (SiO2). These mechanisms are formulated into analytical models that calculate oxide trapped charge density (Not) and interface trap density (Nit) in sensitive regions of deep-submicron devices. Experiments performed on field-oxide-field-effect-transistors (FOXFETs) and metal-oxide-semiconductor (MOS) capacitors permit investigating TID effects and provide a comparison for the radiation response of advanced CMOS devices. When used in conjunction with closed-form expressions for surface potential, the analytical models enable an accurate description of radiation-induced degradation of transistor electrical characteristics. In this dissertation, the incorporation of TID effects in advanced CMOS devices into surface potential based compact models is also presented. The incorporation of TID effects into surface potential based compact models is accomplished through modifications of the corresponding surface potential equations (SPE), allowing the inclusion of radiation-induced defects (i.e., Not and Nit) into the calculations of surface potential. Verification of the compact modeling approach is achieved via comparison with experimental data obtained from FOXFETs fabricated in a 90 nm low-standby power commercial bulk CMOS technology and numerical simulations of fully-depleted (FD) silicon-on-insulator (SOI) n-channel transistors.Dissertation/ThesisPh.D. Electrical Engineering 201

    DESIGN, FABRICATION AND TESTING OF HIERARCHICAL MICRO-OPTICAL STRUCTURES AND SYSTEMS

    Get PDF
    Micro-optical systems are becoming essential components in imaging, sensing, communications, computing, and other applications. Optically based designs are replacing electronic, chemical and mechanical systems for a variety of reasons, including low power consumption, reduced maintenance, and faster operation. However, as the number and variety of applications increases, micro-optical system designs are becoming smaller, more integrated, and more complicated. Micro and nano-optical systems found in nature, such as the imaging systems found in many insects and crustaceans, can have highly integrated optical structures that vary in size by orders of magnitude. These systems incorporate components such as compound lenses, anti-reflective lens surface structuring, spectral filters, and polarization selective elements. For animals, these hybrid optical systems capable of many optical functions in a compact package have been repeatedly selected during the evolutionary process. Understanding the advantages of these designs gives motivation for synthetic optical systems with comparable functionality. However, alternative fabrication methods that deviate from conventional processes are needed to create such systems. Further complicating the issue, the resulting device geometry may not be readily compatible with existing measurement techniques. This dissertation explores several nontraditional fabrication techniques for optical components with hierarchical geometries and measurement techniques to evaluate performance of such components. A micro-transfer molding process is found to produce high-fidelity micro-optical structures and is used to fabricate a spectral filter on a curved surface. By using a custom measurement setup we demonstrate that the spectral filter retains functionality despite the nontraditional geometry. A compound lens is fabricated using similar fabrication techniques and the imaging performance is analyzed. A spray coating technique for photoresist application to curved surfaces combined with interference lithography is also investigated. Using this technique, we generate polarizers on curved surfaces and measure their performance. This work furthers an understanding of how combining multiple optical components affects the performance of each component, the final integrated devices, and leads towards realization of biomimetically inspired imaging systems

    Lateral Power Mosfets Hardened Against Single Event Radiation Effects

    Get PDF
    The underlying physical mechanisms of destructive single event effects (SEE) from heavy ion radiation have been widely studied in traditional vertical double-diffused power MOSFETs (VDMOS). Recently lateral double-diffused power MOSFETs (LDMOS), which inherently provide lower gate charge than VDMOS, have become an attractive option for MHz-frequency DC-DC converters in terrestrial power electronics applications [1]. There are growing interests in extending the LDMOS concept into radiation-hard space applications. Since the LDMOS has a device structure considerably different from VDMOS, the well studied single event burn-out (SEB) or single event gate rapture (SEGR) response of VDMOS cannot be simply assumed for LDMOS devices without further investigation. A few recent studies have begun to investigate ionizing radiation effects in LDMOS devices, however, these studies were mainly focused on displacement damage and total ionizing dose (TID) effects, with very limited data reported on the heavy ion SEE response of these devices [2]-[5]. Furthermore, the breakdown voltage of the LDMOS devices in these studies was limited to less than 80 volts (mostly in the range of 20-30 volts), considerably below the voltage requirement for some space power applications. In this work, we numerically and experimentally investigate the physical insights of SEE in two different fabricated LDMOS devices designed by the author and intended for use in radiation hard applications. The first device is a 24 V Resurf LDMOS fabricated on P-type epitaxial silicon on a P+ silicon substrate. The second device is a iv much different 150 V SOI Resurf LDMOS fabricated on a 1.0 micron thick N-type silicon-on-insulator substrate with a 1.0 micron thick buried silicon dioxide layer on an N-type silicon handle wafer. Each device contains internal features, layout techniques, and process methods designed to improve single event and total ionizing dose radiation hardness. Technology computer aided design (TCAD) software was used to develop the transistor design and fabrication process of each device and also to simulate the device response to heavy ion radiation. Using these simulations in conjunction with experimentally gathered heavy ion radiation test data, we explain and illustrate the fundamental physical mechanisms by which destructive single event effects occur in these LDMOS devices. We also explore the design tradeoffs for making an LDMOS device resistant to destructive single event effects, both in terms of electrical performance and impact on other radiation hardness metric

    Classical and fluctuation-induced electromagnetic interactions in micronscale systems: designer bonding, antibonding, and Casimir forces

    Full text link
    Whether intentionally introduced to exert control over particles and macroscopic objects, such as for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in otherwise neutral bodies, leading to unwanted stiction between nearby mechanical parts, electromagnetic interactions play a fundamental role in many naturally occurring processes and technologies. In this review, we survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange of electromagnetic momentum, their dramatically different origins, involving either real or virtual photons, lead to different physical manifestations and design principles. Specifically, we describe recent predictions and measurements of attractive and repulsive optomechanical forces, based on the bonding and antibonding interactions of evanescent waves, as well as predictions of modified and even repulsive Casimir forces between nanostructured bodies. Finally, we discuss the potential impact and interplay of these forces in emerging experimental regimes of micromechanical devices.Comment: Review to appear on the topical issue "Quantum and Hybrid Mechanical Systems" in Annalen der Physi
    • …
    corecore