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ABSTRACT 

 

The underlying physical mechanisms of destructive single event effects (SEE) 

from heavy ion radiation have been widely studied in traditional vertical double-diffused 

power MOSFETs (VDMOS).  Recently lateral double-diffused power MOSFETs 

(LDMOS), which inherently provide lower gate charge than VDMOS, have become an 

attractive option for MHz-frequency DC-DC converters in terrestrial power electronics 

applications [1].  There are growing interests in extending the LDMOS concept into 

radiation-hard space applications.  Since the LDMOS has a device structure considerably 

different from VDMOS, the well studied single event burn-out (SEB) or single event gate 

rapture (SEGR) response of VDMOS cannot be simply assumed for LDMOS devices 

without further investigation.   

A few recent studies have begun to investigate ionizing radiation effects in 

LDMOS devices, however, these studies were mainly focused on displacement damage 

and total ionizing dose (TID) effects, with very limited data reported on the heavy ion 

SEE response of these devices [2]-[5].  Furthermore, the breakdown voltage of the 

LDMOS devices in these studies was limited to less than 80 volts (mostly in the range of 

20-30 volts), considerably below the voltage requirement for some space power 

applications.   

In this work, we numerically and experimentally investigate the physical insights 

of SEE in two different fabricated LDMOS devices designed by the author and intended 

for use in radiation hard applications.  The first device is a 24 V Resurf LDMOS 

fabricated on P-type epitaxial silicon on a P+ silicon substrate.  The second device is a 
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much different 150 V SOI Resurf LDMOS fabricated on a 1.0 micron thick N-type 

silicon-on-insulator substrate with a 1.0 micron thick buried silicon dioxide layer on an 

N-type silicon handle wafer.  Each device contains internal features, layout techniques, 

and process methods designed to improve single event and total ionizing dose radiation 

hardness.  Technology computer aided design (TCAD) software was used to develop the 

transistor design and fabrication process of each device and also to simulate the device 

response to heavy ion radiation.  Using these simulations in conjunction with 

experimentally gathered heavy ion radiation test data, we explain and illustrate the 

fundamental physical mechanisms by which destructive single event effects occur in 

these LDMOS devices.  We also explore the design tradeoffs for making an LDMOS 

device resistant to destructive single event effects, both in terms of electrical performance 

and impact on other radiation hardness metrics. 
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CHAPTER ONE: INTRODUCTION 

 

Modern electronics systems are based in most part upon silicon metal oxide 

semiconductor field effect transistor (MOSFET) technology.  This technology is not only 

found in all types of modern digital electronics but also is the driving force within the 

power electronics circuits that drive those digital systems.  As with all modern MOS 

technology, the specialized transistors used in power supplies remain vulnerable to all 

types of damaging and destructive effects caused by ionizing radiation [6][7].  These 

effects do not represent a significant concern in most environments, however they are of 

paramount importance for electronics systems designed to operate in ionizing radiation 

environments such as nuclear power facilities, medical equipment, and especially the 

most hostile radiation environments – earth orbit and deep space.  Because ionizing 

radiation effects are only found in these and a few other unique environments, most MOS 

devices are not designed to withstand these effects.  Devices and systems that are 

specially designed to withstand ionizing radiation effects are termed “radiation-

hardened”, or simply rad-hard.   

In the case of power MOSFET technology, the differences between standard 

commercial devices and rad-hard devices are significant, not only in terms of cost, but 

also in terms of design and fabrication.  The special features and design methods found in 

today’s rad-hard power MOSFETs have arisen from decades of study of ionizing 

radiation effects in MOS devices, and specifically a wealth of study of one power device 

in particular – the planar VDMOS.  The planar VDMOS has exclusively dominated the 
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market of rad-hard power MOSFETs, but unfortunately this device offers no further 

potential in terms of improving electrical performance.  This leaves rad-hard power 

electronics technology at an impasse.  Without the development of a replacement power 

MOSFET technology, the further advancement of power electronics in radiation 

environments is basically halted.  For this reason, there has been a recent drive to develop 

alternatives to rad-hard VDMOS technology. 

One such alternative we are exploring is the power LDMOS.  Recently this device 

has found use in some of the most advanced MHz frequency DC-DC converter systems 

in the world.  The LDMOS therefore offers huge potential for the modernization of 

radiation hard power systems, but it also presents some unique challenges, not the least of 

which is a lack of previous scientific study of ionizing radiation effects in lateral power 

MOSFET structures.  A wealth of information is available for deep submicron NMOS 

devices, which are lateral structures, but these studies cannot take into account the 

radiation-induced failure mechanisms specific to higher voltage power MOSFET 

structures, specifically the single event effects such as single event burnout and single 

event gate rupture. 

As part of an investigation into destructive SEE in lateral power MOSFETs, the 

author has designed and fabricated two types of discrete power LDMOS device with 

features, layout, and fabrication methods intended to provide hardness against SEE and 

other ionizing radiation effects.  These devices are presented as characteristic 

representatives of two different power LDMOS technologies, both intended for use in 
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MHz frequency switching DC-DC converters, similar in terms of electrical performance 

to state of the art commercial trench VDMOS power MOSFET (TrenchFET) technology. 

 

 

Evolution of Modern Power Electronics and Power Semiconductor Devices 

 

Advancements in semiconductor device scaling and integration, especially in 

digital circuits, have largely driven the advancement of all types of modern electronics 

systems.  Across the history of their development, digital components have become 

smaller and faster, with ever increasing density and complexity.  Today’s 

microprocessors operate at ever decreasing voltages and increasing currents, and as the 

requirements of these systems have changed, the technology of power electronics must 

become more advanced in order to keep pace.  Figure 1 outlines some of the important 

relationships between advances in digital electronics and the accompanying demands 

placed on power electronics.  Without corresponding advances in power electronics, 

modern computer systems would be penalized both in terms of computing performance 

and electrical efficiency.   

The power electronics circuit which has the most impact on overall computer 

system electrical efficiency is the DC-DC converter.  Most computing systems run off a 

12 V DC bus, which is then stepped down to lower DC voltages throughout the system, 

depending on the demands of various computer components.  The various 

microprocessors, memories, controllers, fans, drives, and other components each may 
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come with different voltage and current requirements.  Power dissipation across these 

different loads may range from milliWatts to tens or even hundreds of Watts.  As such, an 

all-in-one DC-DC converter system does not yield ideal efficiency across such a wide 

variety of loads, especially when these loads are scattered throughout the computer 

system, with relatively large distances between components.   

 

 
 

The enablement of modern digital electronics systems through recent advances in power electronics 

technology. 

 

Figure 1: Coupling of Modern Digital Systems and Power Electronics 

 

 

Modern DC-DC converter technology has therefore evolved to match the 

distributed nature of these power demands with so-called distributed point-of-load (POL) 
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power architectures.  POL power architecture refers to a method of distributing multiple 

DC-DC converter circuits throughout a system, with each converter being placed in close 

proximity to its own specific load [4].  Each converter is designed to meet the voltage and 

current requirements of its load in the most efficient way possible.  An illustration of the 

distributed POL architecture is provided in Figure 2. 

 

 

Simplified illustration of a distributed POL power architecture for a battery-powered space satellite system 

 

Figure 2. Point-of-Load DC-DC Converter Architecture 

 

 

In addition to new types of power distribution architectures, many modern digital 

systems also demand miniaturization of surrounding power electronics circuits and 
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components.  The requirement for small volume, along with a need for faster transient 

load response, has driven power electronics circuits to operate at higher and higher 

switching frequencies, with some modern POL DC-DC converters now operating in the 

MHz frequency range.  By switching at higher frequencies, a smaller inductor can be 

used in the DC-DC converter circuit.  Since the inductor is by far the largest component 

in the circuit, this results in significant decrease in overall volume for the converter. 

This increase in switching frequency brings several challenges.  Switching tens of 

amps at MHz frequencies requires extremely low inductance packaging and routing.  At 

such high dI/dt, even small parasitic inductances can cause transient voltage spikes can 

easily damage sensitive digital components, not to mention the power semiconductor 

components themselves.  This requirement for low inductance design and packaging has 

resulted in a trend toward surface mounted “brick” DC-DC converter technology in 

desktop and server computers and monolithically integrated power system on chip 

(PSoC) technology for handheld devices, both of which are designed to operate at MHz 

frequencies with high volumetric power density (hundreds of W/in
3
). 

 

 

Introduction to Power MOSFET Design Considerations 

 

These new demands on power electronics circuits, specifically higher current, 

lower voltage, and higher switching frequency place new requirements on the power 

semiconductor devices which drive those circuits.  The power semiconductor device at 

the heart of the modern DC-DC converter is the n-channel power MOSFET.  The overall 
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efficiency of the power switching circuit is influenced primarily by power losses across 

the power MOSFET.  These power losses can be separated into two main types: 

conduction losses and switching losses.   

 

 

Conduction Losses in Power MOSFETs 

 

Conduction loss refers to power dissipation across the power MOSFET while it is 

operating in the “on” state, that is to say a positive VGS potential is applied, and the 

MOSFET is actively conducting current through the MOS channel.  Conduction power 

losses are determined primarily by the drain to source on-state resistance RDSON of the 

MOSFET, and the power loss relationship is simply IDS
2·RDSON, where IDS is the total on-

state current.  In terms of power MOSFET design, RDSON is influenced by many factors.  

The most direct influence on RDSON is the die size of the MOSFET.  A power MOSFET 

die is actually a plurality of hundreds or even thousands of smaller parallel transistor 

cells, with the drains and sources of each cell electrically connected together in parallel, 

and each tied to a common gate terminal.  Naturally, a larger die contains more area and 

therefore more parallel transistor stripes.  Thus RDSON has an inverse linear relationship 

with die size.  Die size, however, is more or less independent of device technology and 

transistor cell design, and comparing the RDSON of devices with two different die sizes 

tells very little about the merits of the technologies themselves.  In order to effectively 

compare competing technologies, the RDSON must be normalized to die area.  This 
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normalized measurement is known as “area-specific RDSON”, or simply “specific RDSON”, 

and is generally given in units of mΩ·mm
2
.  The lower the specific RDSON of a power 

MOSFET, the smaller die size will be required to achieve the same RDSON, and therefore 

the more efficient the technology.   

Specific RDSON is influenced by many components, the most important of which 

for medium to high voltage power MOSFETs are the transistor cell pitch and the 

transistor drift resistance.  Cell pitch is simply the length of the repeatable transistor 

structure, usually from contact to contact.  Specific RDSON has a linear relationship with 

transistor cell pitch, so the most direct method of reducing specific RDSON is to reduce the 

cell pitch.  Drift resistance refers to the resistance of the n-type lightly doped drain region 

(the n epitaxial layer in a VDMOS) between the N+ substrate and the P-Channel 

diffusion.  Figure 3 shows a typical planar VDMOS power MOSFET cell, with the cell 

pitch and drift resistance labeled.   

In terms of minimizing RDRIFT, the classic design tradeoff is between RDRIFT and 

drain to source breakdown voltage (BVDSS).  In any power MOSFET structure, BVDSS is 

primarily determined by two design variables, drift length (LD) and drift region doping 

concentration (ND), both of which directly affect RDRIFT.  Higher breakdown voltage 

requires a longer LD and a smaller ND, both of which increase RDRIFT.  Very little can be 

done to reduce LD for a device with a given BVDSS rating, because of the fundamental 

limitation of the critical electric field (ECRIT) in silicon, which is somewhat dependent on 

doping concentration and lies approximately between 2.5×10
5
 and 5.0×10

5
 V/cm.  Once 

the applied drain to source voltage (VDS) causes ECRIT to form within the silicon, high 
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levels of impact ionization occur within the device, and the MOSFET is unable to sustain 

the applied voltage without conducting large amounts of current.  In this condition, the 

MOSFET is said to be under avalanche breakdown, and the voltage at which this occurs 

is called the “avalanche voltage”.  The rated BVDSS which appears on a power MOSFET 

datasheet is always less than the actual avalanche voltage, generally by 10 – 20%.  This 

difference between the rated BVDSS and the avalanche voltage is called “de-rating”. 

 

 
 

Planar VDMOS structure showing cell pitch and drift resistance (RDRIFT) through the n epitaxial layer, 

which are the two most influential factors in determining area-specific on-resistance (RDSON) of medium to 

high voltage power MOSFETs. 

 

Figure 3: Planar VDMOS Device Structure 



10 

Since LD is more or less fixed for a given avalanche voltage, most methods of 

reducing RDRIFT focus on increasing ND for a given BVDSS.  Two such methods for 

increasing ND both rely upon the so-called reduced surface field effect principle, or 

“Resurf” principle [8][9].  The Resurf principle is a method of increasing the natural 

breakdown voltage of a p-n junction by using carefully designed doping distributions, 

field plates, or other special doping and device geometries to control the spatial 

distribution of the electric field around the reverse-biased p-n junction.  In an ideal Resurf 

design, the electric field at each point in the depleted semiconductor remains uniform.  

That is to say, there are no electric field “hot spots” in or around the depletion region 

which limit the breakdown voltage of the device.  In practice, a completely uniform 

electric field distribution is impossible to achieve, but the spatial electric field distribution 

in a well designed Resurf structure comes reasonably close and looks very different from 

a normal p-n diode, in which the peak electric field occurs at the junction and decreases 

linearly toward the edges of the depletion region.  The most popular Resurf design used 

in modern power devices is a so-called double Resurf or “superjunction” doping profile.  

A detailed discussion of this design technique is beyond the scope of this work, but a 

wealth of published literature is available on the subject.  Another Resurf technique 

which applies only to LDMOS power devices is SOI Resurf, which is discussed in detail 

later in this work.  Sufficed to say that implementation of Resurf designs has been the 

dominant influence on the reduction of RDRIFT in modern power MOSFETs. 

As mentioned before, the other important metric which directly affects RDSON for 

any power MOSFET is the transistor cell pitch.  By decreasing the cell pitch, more 
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parallel transistor stripes can be arranged per unit area on the MOSFET die, resulting in a 

direct linear relationship between transistor cell pitch and specific RDSON.  The cell pitch 

in a VDMOS device is primarily determined by the design of the source, channel, and 

junction field effect transistor (JFET) regions, which lie at the surface of the device.  The 

JFET region is the N epi region underneath the poly gate and between the two adjacent P-

channel diffusions.  This is also sometimes called the “neck” region, which is the 

preferred terminology in this dissertation, since the term “neck” can also be used in 

discussion of LDMOS device structure which do not contain a parasitic JFET.   

There is little that can be done to reduce the length of the source and channel 

regions of a power MOSFET, since these feature sizes are constrained by the limits of the 

available fabrication technology and also the need to prevent punch through or short 

channel effects between the drain and source.  Low RDSON VDMOS structures with 

reduced cell pitch have therefore resulted from the re-design of the more addressable 

JFET region, resulting in a new type of VDMOS structure known as the Trench Gate 

VDMOS or so-called “TrenchFET”.  A simplified TrenchFET device cross section is 

shown in figure 4.  In a TrenchFET, the JFET and poly gate regions are replaced by a 

trench, which is surrounded by a thin thermal oxide and then refilled with polysilicon.  

The MOS channel is then formed vertically along the sidewalls of the trench, rather than 

laterally across the silicon surface as is the case with the planar VDMOS.  By replacing 

the relatively wide JFET and channel regions with a much narrower trench gate, the 

TrenchFET results in a much smaller cell pitch than the planar VDMOS, and therefore 

boasts greatly reduced RDSON. 
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Simplified device cross sections for two types of vertical double diffused (VDMOS) power MOFETS.  The 

more modern Trench Gate VDMOS (TrenchFET) exhibits greatly reduced area-specific RDSON compared to 

the planar VDMOS, because of its reduced transistor cell pitch. 

 

Figure 4: Planar VDMOS and Trench Gate VDMOS Device Cross Sections 

 

 

Switching Losses in Power MOSFETs 

Switching losses refers to the power required to turn the MOSFET on and off 

during operation in the power switching circuit.  In terms of the switching efficiency of a 

DC-DC converter, this term could include power losses related to design of the MOSFET 

gate driving circuit, however, in a discussion of power semiconductor devices, the term 

refers only to power losses due to the internal capacitances of the power MOSFET.   
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The two most critical MOSFET parametrics which determine switching efficiency 

are gate charge (QG) and body diode reverse recovery charge (QRR).  Total gate charge is 

made up of the sum of gate to drain charge (QGD) and gate to source charge (QGS).  QGD is 

also referred to sometimes as “Miller” capacitance.  The ratio between QGS and QGD is 

determined by the power MOSFET device structure, i.e. how much the gate oxide 

overlaps either the source or drain regions within the transistor cell.  Total QG for a 

discrete power MOSFET is determined by the gate oxide thickness and the total gate 

oxide area on the die.  The doping concentrations in the silicon near the gate also have a 

secondary affect on QG, with lighter doping concentrations resulting in lower gate 

charge.  Equation 1 shows a simple method for calculating QG: 

ox

ox
G

t

AV
Q 0 

   (1) 

, where V is the applied voltage across the gate oxide, A is the gate oxide area, εox is the 

dielectric constant of the gate oxide (3.9 for SiO2), ε0 is the permittivity of free space, 

and tox is the gate oxide thickness. 

Figure 5 shows cross sections of the planar and trench VDMOS structures with 

the internal gate capacitances labeled.  As is the case with cell pitch, there are certain 

unavoidable device structure limitations which affect the magnitude of QG, specifically 

the length of the P-channel and N+ source regions.  As such, QGS for a given technology 

remains more or less fixed.  Most of the flexibility in terms of designing for low QG is in 

the reduction of QGD, which again is closely related to design of the neck region of the 

MOSFET.  In the planar VDMOS, QGD can be reduced by removing some portion of the 

poly gate which lies over the JFET region.  In the trench VDMOS, QGD can be reduced 
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by offsetting the polysilicon from the bottom of the trench with a thick insulator.  One 

drawback of the TrenchFET is that the increased cell density per unit area, which gives 

the device its low specific RDSON, also results in higher QG per unit area, which makes 

lowering QG the most challenging aspect of TrenchFET design. 

 

 
 

Device cross sections showing internal gate capacitances of the planar VDMOS and trench VDMOS power 

MOSFET structures.  Internal gate capacitance is the most important device parametric which influences 

power MOSFET switching efficiency. 

 

Figure 5: Internal Gate Capacitances in Planar and Trench VDMOS Structures 
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The other key device parametric for characterizing switching losses is QRR, which 

is the reverse recovery charge of the MOSFET’s internal body diode (the diode formed 

by the drain and source).  During normal operation in DC-DC converter circuits, the body 

diode of the power MOSFET is temporarily forward biased during each switching cycle.  

This results in an injection of electrons from the N+ drain into the drift region.  In order 

for the MOSFET to full turn off, these electrons must first be removed from the 

semiconductor.  The amount of charge which survives recombination and is collected at 

the device terminals is QRR, and the time required to collect this charge under a given 

current slew rate and biasing condition is TRR, the reverse recovery time. 

The power losses during reverse recovery are the product of the reverse recovery 

current multiplied by the junction potential of the body diode, which is usually estimated 

as 0.7 V.  The device designer has very little control over the body diode junction 

potential, so methods of minimizing reverse recovery power losses focus instead on 

reducing QRR.  There are two practical ways to minimize QRR.  One way is to control the 

amount of stored charge in the device, which is done by minimizing the volume of the 

body diode [10].  The other way is to increase the electron recombination rate in the body 

diode, which is done by increasing the doping concentration of the P-channel region, or 

the P-base as it is sometimes called.  A heavier p doping concentration results in a lower 

electron lifetime, meaning more electrons recombine in the P-base before being collected 

at the source electrode.   

As is the case for nearly all power MOSFET design considerations, these two 

methods do not come without tradeoffs.  The depth of the body diode is determined 
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primarily by the drift length, LD, and it was explained earlier that LD cannot be arbitrarily 

reduced without resulting in a decrease in BVDSS.  So for a VDMOS device, the reduction 

in charge collection volume is primarily a function of area, that is to say die size, and so 

the same techniques used to reduce specific RDSON and shrink the die size also help to 

reduce QRR.   

The other method – increasing minority carrier recombination in the P-base – 

requires either an increase in P-base doping concentration or an increase in channel 

length.  The first, an increase in doping concentration, will result in a corresponding 

increase in QGS and gate to source turn on voltage (VTH), if the p doping concentration 

near the gate oxide is increased.  If VTH becomes too high, then the device will not even 

function in the circuit.  So, any design which seeks to decrease P-base minority carrier 

lifetime must be done in such a way as to not strongly influence the doping concentration 

in the MOS channel region.  The second recombination control method, an increase in 

channel length, results in a decrease in transconductance (gm), which is reflected in higher 

RDSON.  Additionally, for a planar VDMOS structure, a longer channel results in a longer 

cell pitch, which again further increases RDSON.  For a TrenchFET, a longer channel 

requires a deeper gate trench, which in turns requires a thicker epi layer.  This results in a 

corresponding increase in stored reverse recovery charge, albeit an incremental increase 

for all but very low voltage devices.  In any case this method is not desirable, since it 

probably does not result in any net increase in device efficiency. 
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Recent Advances in Lateral Power MOSFET Technology 

 

As the demands of modern power electronics circuits have evolved toward lower 

output voltage, higher output current, and higher switching frequency, new demands have 

been placed on power MOSFETs which has prompted a re-examination of some of the 

fundamental design tradeoffs related to power MOSFET conduction losses and switching 

losses.  Table 1 illustrates some of the ways in which these new circuit requirements have 

influenced power MOSFET design in recent years, particularly power MOSFETs 

designed for use in POL DC-DC converters. 

 

Table 1. Requirements of Power MOSFETs in Modern POL DC-DC Converters 

 

 
 

The power regulation requirements of modern digital electronics drive corresponding advances in power 

semiconductor device technology.  
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Older DC-DC converter circuits operated at slower switching frequencies, and 

most power losses were a result of conduction losses in the MOSFET.  As such, the 

primary design tradeoff for older power MOSFETs was BVDSS vs. RDSON.  This is still an 

important tradeoff, but as power MOSFETs are operated at higher switching frequencies, 

the switching power losses are now equally if not more significant than the conduction 

losses.  Therefore the primary design tradeoff for modern power MOSFETs is no longer 

BVDSS vs RDSON, but is now instead RDSON vs QG.  This is expressed in the modern-day 

power MOSFET efficiency figure of merit (FOM), QG×RDSON.  From a first order 

consideration, the power MOSFET with the lowest FOM offers the best efficiency in a 

fast switching circuit [11]. 

Modern POL converters not only operate at higher switching frequencies but also 

at higher current levels.  This results in extremely high current slew rates, dI/dt.  Just as 

these high dI/dt’s have prompted a move toward low inductance packaging for DC-DC 

converter modules, so have they prompted similar advances in low inductance power 

MOSFET packaging.  Such advances include so-called DirectFET™ and flipchip 

packaging technology, as mentioned in Table 1.  Another method of reducing parasitic 

inductance is to co-package or even monolithically integrate multiple power MOSFET 

dies.  The extreme case of such integration is the power system on chip (PSoC), where 

the entire DC-DC converter circuit, including magnetic components, is integrated onto a 

single die.  These types of converters might be switched at frequencies in the tens of 

MHz in order to work with very small integrated inductors. 
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The higher current levels also demand MOSFETs with very low RDSON.  

Fortunately, this requirement for ultra-low RDSON comes with a corresponding relaxation 

of the BVDSS requirement.  As stated earlier, there are design tradeoffs involved which 

counterbalance BVDSS and RDSON, and the two generally have an inverse relationship – 

generally, but not always.  Unfortunately, as planar and trench vertical power MOSFETs 

are scaled to very low BVDSS, there comes a point at which there is no corresponding 

decrease in RDSON.  This occurs somewhere around 20 V, although the exact number of 

course depends very much on the specific technology.  The reasons behind this point of 

diminishing returns are simple.  First, as mentioned before, the cell pitch of a VDMOS 

transistor (either trench or planar), is more or less fixed for a given fabrication 

technology.  There is no decrease in cell pitch corresponding to a decrease in the BVDSS 

requirement.  This means the only methods for reducing specific RDSON in a VDMOS is 

in the vertical direction, by reducing the drift length (epi thickness) and reducing the 

parasitic N+ substrate resistance.  Modern low voltage trench MOSFETs employ 

methods such as using specially doped “red phosphorus” substrates with very low 

resistivity.  Manufacturers also thin down the wafers during processing to reduce the 

thickness of the N+ substrate down to just a few tens of microns, further reducing the 

substrate resistance.  Finally, the epi layers are kept as thin as possible for the given 

breakdown voltage and gate trench depth, but care must be taken to avoid placing the 

bottom of the gate trench too close to the N+ substrate.  Given the process tolerances 

involved with these methods, there are physical limitations to how much the epi and 
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substrate resistances can be reduced, and somewhere near BVDSS = 20 V, these parasitic 

resistances make up a large portion of the total device RDSON.   

Finally, it was mentioned in the previous section that the low specific RDSON of 

the TrenchFET comes with a corresponding tradeoff of high QG, due to increase in 

transistor cell density per unit area (high density of transistor gates).  When scaling to 

lower BVDSS with correspondingly lower VTH requirements, QG becomes even higher, 

due to the thinner gate oxide required to meet the lower VTH requirements.   

Taking into account all these design tradeoffs, device designers are driven toward 

the consideration of new device structures specifically for fast switching, low voltage 

power supplies.  One recently developed technology is the discrete lateral power 

MOSFET based on CMOS fabrication technology.  These power MOSFETs are based on 

LDMOS or NMOS transistor cell structures which are then integrated and arranged in 

parallel to form a large scale power MOSFET.  A basic LDMOS transistor cell structure 

is shown in figure 6.  Prior to the development of flipchip interconnect technology, it was 

not possible to create a large scale, low resistance lateral power MOSFET.  This is 

because a lateral MOSFET requires that both the source and drain metal interconnects be 

placed on the surface of the die, which contrasts the very low resistance metal planes on 

either side of a VDMOS die.  The resistance of the interdigitated source and drain metal 

stripes increase as the transistor is scaled to a larger area.  In the case of a low voltage 

MOSFET, this metal interconnect resistance would far outweigh the actual silicon 

resistance.  With the advent of flipchip technology, Shen et al presented a method by 
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which a lateral power MOSFET could be formed to an arbitrarily large die size, with no 

corresponding “lateral scaling penalty” in RDSON [1]. 

 

 

 
Simplified cross sectional drawing of a Resurf LDMOS transistor cell.  There are many types of n-channel 

LDMOS technologies, including some fabricated on an N substrate.  This example is fabricated on a P 

substrate with an LDD region which is formed adjacent to the poly gate using a self-aligned ion implant 

process.  This type of LDMOS offers very low QGD,which is a key metric of switching power efficiency. 

 

Figure 6: Resurf LDMOS Transistor Cell 
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Being able to overcome the lateral scaling penalty meant that very low voltage 

lateral power MOSFETs could be developed using submicron CMOS fabrication 

technology and then scaled to meet the high current demands of the modern POL 

converter.  The transistor cell pitch of these lateral power devices could be made very 

small – as small as was possible while still supporting the required BVDSS.  At the same 

time, the metal interconnect resistance of the flipchip design was so low, that there was 

no practical limit for scaling of RDSON and BVDSS.  The result of this work was the 

world’s first power MOSFET with RDSON < 1 mΩ with a BVDSS rating of only 7 V and a 

record setting QG×RDSON FOM. 

Later, the development of discrete lateral power MOSFETs branched into higher 

voltages using LDMOS technologies.  It was found that even though the specific RDSON 

of the LDMOS structure was far greater than the TrenchFET, the FOM of the lateral 

devices were comparable if not lower than the TrenchFET due to the naturally low QG of 

the LDMOS structure [11].  LDMOS devices have much lower area-specific QG than 

TrenchFETs for two main reasons.  The first reason is the larger cell pitch of the 

LDMOS, which results in fewer parallel gate stripes on the same chip area.  The second 

reason is the fabrication method by which the LDD region is self-aligned with the poly 

gate, which results in the smallest possible QGD of any fabrication technology.  Having a 

similar FOM with lower QG, along with the ultra-low inductance flipchip packaging, 

meant that the lateral FETs were especially well suited for use in POL converters 

operating in the MHz frequency range.  Power MOSFET technology had finally broken 

through into the very low voltage, very high current regime. 
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Motivation 

 

There is a long-standing disparity between terrestrial electronics and radiation 

hardened electronics in terms of performance and cost.  Although modern sub-micron 

CMOS technology shows proven radiation tolerance, radiation-hardened power 

electronics continue to fail to meet the requirements of state-of-the-art digital circuits and 

therefore limit their use.  This results in space craft being equipped with slower 

computers, less efficient power systems, and electronics of higher mass and volume than 

would be found on Earth in similar applications.  The slow pace of technological 

evolution in the rad-hard power MOSFET field is due mostly to the unique fabrication 

and design challenges involved in making a power MOSFET resistant to ionizing 

radiation, also in part to the rigorous and costly qualification testing required to certify a 

part as rad-hard, and finally to the natural reluctance of engineers in the high reliability 

electronics sector to adopt the risks associated with using unproven semiconductor 

technology in a harsh ionizing radiation environment.  Additionally, the cost of special 

radiation-hardened electronics remains very high due to low sales volume and a long 

development cycle.  The cost of developing hardened components, coupled with the 

financial risk inherent in competing within a niche market, has resulted in an overall lack 

of competition among manufacturers of this specialized technology.  This lack of driving 

market forces has resulted in an overall lack of development of new technologies, 

specifically in the arena of power semiconductor devices. 

As described in the previous section, the heart of modern low-voltage power 

supplies is the power MOSFET.  The performance of power electronics systems is most 
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affected by the technology of these transistors.  When compared with older systems, the 

power MOSFETs required to supply modern digital systems must switch at higher 

frequencies and exhibit lower conduction losses and internal capacitance.  There is 

presently a lack of rad-hard power transistors with these characteristics.  Rad-hard power 

MOSFET products have not benefited from recent advances in commercial power 

MOSFET technology, and therefore rad-hard power MOSFETs suffer from significantly 

higher specific RDSON and higher QG than their commercial counterparts.  Figure 7 

illustrates the differences in FOM between modern day commercial and rad-hard power 

MOSFETs.  

Present day rad-hard power MOSFETs are based on planar VDMOS technology, 

whereas TrenchFETs and lateral power MOSFETs (LDMOS) are used in today’s most 

advanced commercial power electronics products.  Although they lag far behind modern 

FETs in terms of performance, there are advantages to rad-hard planar VDMOS 

technology.  First is a proven track record after decades of flight time in radiation 

environments.  The second is a wealth of scientific study and understanding of the 

fundamental physical mechanisms that affect planar VDMOS device reliability in 

radiation environments.  However, without the development of an advanced rad-hard 

TrenchFET or LDMOS, or some other similarly-performing technology, the state of the 

art in rad-hard power electronics systems will continue to lag decades behind the 

commercial world.  At some point, it must be decided whether the risks inherent with 

adopting a new rad-hard technology are outweighed by the potential benefits in terms of 

being able to efficiently power more advanced digital systems in these environments. 
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Figure 7:  FOM Comparison of Rad-Hard vs Commercial Power MOSFETs 

 

 

Aside from the significant performance penalty associated with the use of 

outdated planar VDMOS technology, rad-hard power MOSFET performance is further 

hindered by the severe electrical de-rating required to safely operate power MOSFETs in 

a radiation environment which might produce single event radiation effects (SEE) [12]-

[14].  SEE refers to a broad array of disruptive, and sometimes catastrophically 

destructive, transient radiation events affecting semiconductor devices.  Power 

MOSFETs remain especially vulnerable to destructive SEE, because of their high 

operating voltages and correspondingly high electrical stresses.  The mechanisms of why 
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this is true will be explained in great detail later in this work.  Recently published data 

suggests that modern rad-hard planar VDMOS can experience destructive SEE failure at 

operating voltages less than 20% of their rated DC voltages [15][16].  This data will be 

discussed in more detail later in this work during the discussion of the physical 

mechanisms of destructive SEE.  Given the need for such extreme electrical de-rating, it 

is worthwhile to explore whether other power MOSFET structures exhibit SEE 

sensitivities similar to the planar VDMOS.  If an alternative power MOSFET structure 

with a lower performance FOM could be developed, which also demonstrates an 

improved SEE safe operating area, then the electrical performance benefit would be 

compounded by a relaxation of the de-rating requirement.  Furthermore, it is possible that 

the overall reliability of the rad-hard power electronics circuit could be improved. 
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Review of Ionizing Radiation Effects in Semiconductor Devices 

 

Carrier Generation 

 

Ionizing radiation generates electron-hole pairs as energy is transferred from a 

radiation source (photons, subatomic particles, or nuclei) to an absorbing material, such 

as a semiconductor.  A simplified illustration appears in figure 8, which shows a generic 

diagram of the energy bandgap between the conduction band and the valance band in an 

arbitrary target material.  In the simplest terms, ionization occurs as energy from the 

incident radiation is absorbed by electrons in the target material, which are then 

accelerated from the valence band into the conduction band, leaving a hole behind. 

 
Energy from ionizing radiation is absorbed by the target material, accelerating electrons from the valence 

band to the conduction band, leaving a hole behind. 

 

Figure 8: Electron-Hole Pair Production 
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Different carrier generation mechanisms are associated with radiation of different 

types and energies [6][17]-[20].  Particle radiation such as protons, neutrons, and larger 

nuclei generate carriers via direct ionization mechanisms, either through collisions with 

or Coulombic interactions with nearby atoms.  An example of Coulombic interactions 

would be a positively charge heavy ion passing through a material, wherein the positive 

charge of the large nucleus exerts enough Coulombic force to pull negatively charged 

electrons away from their orbital shells in nearby atoms. 

Another possible ionization mechanism associated with nuclear particle collisions 

is indirect ionization from nuclear decay [21].  In this case, the total energy absorbed by 

the target material can be more than was present in the original particle, due to the energy 

release of the nuclear fission reaction.  The by-products of nuclear fission, namely the 

smaller nuclei and any associated EM radiation, can also be ionizing in nature.  

Furthermore, long term localized ionization may occur as decayed atoms remain trapped 

within the lattice, causing a displacement defect.   

In the case of high energy photons (X-rays, γ-rays), there are three associated 

carrier generation mechanisms.  In order of energy required, these three effects are the 

photoelectric effect, the Compton effect (Compton scattering), and pair production.  In 

the case of the photoelectric effect, the entire energy of the photon is absorbed by an 

electron, which is energized into the conduction band, leaving a hole behind.  In the case 

of Compton scattering, the energy and momentum of the photon accelerates an electron 

into the conduction band, but the electron in turn recoils, giving back some kinetic energy 

and sending a photon of reduced energy off in a new direction.  For a wide spectrum of 
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photon energies (<0.1 to >10 MeV), Compton scattering is the dominant carrier 

generation mechanism in silicon [20].  Finally, in the pair production process, a high 

energy photon is absorbed and ejects both an electron and a positron.  The positron is 

quickly annihilated and releases two 0.51 MeV γ-rays, which may then cause further 

ionization.   

In terms of the spatial distribution of ionization, exposure to most EM radiation 

sources generally occurs more or less uniformly across the entire semiconductor device 

or integrated circuit (IC).  One notable exception would be an artificially-generated beam, 

such as a laser.  Naturally, ionization from particle radiation is much more localized, and 

free carriers are generated generally within a submicron radius along the path of the 

incident particle.  This path becomes a highly conductive region, which when caused by 

heavy ion radiation is sometimes referred to as an “ion shunt”.   

Linear Energy Transfer (LET) is the metric which quantifies the magnitude of 

energy deposition as radiation penetrates its target material.  Usually LET is used to 

describe energy transfer from particle radiation, although it can also be applied to EM 

radiation.   LET is expressed in units of deposited energy per unit length, and then 

normalized to material density, as shown in equation 2: 
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The LET-dependent rate of electron-hole pair production is shown in equation 3: 
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, where ρ is the density of the target material, ϕ is the fluence of the incident radiation, 

and Ep is the material-dependent energy required to generate an electron-hole pair.  For 

reference, Ep(Si) = 3.6 eV and Ep(SiO2) = 17 eV. 

LET is not constant for a given type of radiation as it passes through a material.  

As the radiation sheds its energy, its rate of energy transfer also changes.  In this way, the 

instantaneous LET is constantly changing.  So, in order to predict the LET of a given 

particle, both its mass and energy must be known, as well as the properties of the target 

material.  Comparing two particles of the same mass, fast moving particles generally shed 

less energy than slow moving particles.  At least this is the case until a particle slows to a 

specific energy, at which the linear energy transfer reaches a peak, known as the Bragg 

peak.  A energies below its Bragg peak, the particle will quickly deposit all of its 

remaining energy within the target material.  This behavior becomes very important when 

conducting radiation testing where the location of the Bragg peak plays a role in 

determining the response of the semiconductor device, as is later shown to be the case 

with power MOSFETs. 

Generation of electron-hole pairs in and of itself does not describe ionizing 

radiation effects in semiconductor devices.  The effects of interest actually occur during 

the subsequent transport and recombination of the generated carriers.  There are 

numerous classifications of ionizing radiation effects in semiconductor devices, but most 
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fall under the larger umbrellas of single event effects (SEE) or total ionizing dose (TID) 

effects.  The next sections introduce these two types of effects in more detail. 

 

 

Single Event Effects 

 

The term “single event effect” describes exactly what the name implies, that is an 

effect arising from a non-recurring interaction with a single radiation source or event.  

SEE are the effects of sudden events, not prolonged exposure, and they are normally 

associated with high photocurrent density in the semiconductor device.  For example, 

shining a household light bulb on a photodiode for a long time will produce a sustained 

photocurrent, but a household bulb is unlikely to produce sufficient current density to 

result in single event effects.  By contrast, exposing the same photodiode to a short high 

energy laser pulse will produce a sudden large increase in current, the effects of which 

could be classified as SEE.   

Technically, single event effects can occur as a result of sudden exposure to 

sufficient levels of any type of ionizing radiation, but the term SEE is used most 

commonly when discussing exposure to particle radiation, usually nuclei.  These are the 

SEE referred to in this work.  The “single event” itself will be defined as the highly 

localized interaction between the semiconductor device and a single particle.  The “single 

event effects” describe the transient response of a semiconductor device to the localized 

generation of free electrons along the path of the incident particle.  The localized electron 
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generation associated with SEE is frequently referred to as “charge deposition”, and the 

total amount or concentration of generated electrons is called the “deposited charge”.  A 

simple illustration of charge deposition is shown in figure 9.   

 
 

This example shows electron-hole pair generation around the trajectory of a heavy ion passing through an 

arbitrary target material.  Linear energy transfer (LET) describes how radiation sheds its energy per unit 

length as it passes through a target material.  The rate of electron-hole pair generation is proportional to 

LET.  When a heavy ion passes through an electric field in a semiconductor device, the highly conductive 

trajectory of the ion is sometimes referred to as an “ion shunt”. 

 

Figure 9: Heavy Ion Charge Deposition 
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In a semiconductor device, SEE are caused by the transport and collection of 

deposited charge at the device terminals.  There are many classifications of SEE, most of 

which do not apply to power MOSFETs. 

 

Single Event Upset and Single Event Latchup 

 

Single event upset (SEU) and single event latchup (SEL) are the most frequently 

studied SEE in integrated circuits but do not apply to power MOSFETs.  SEU refers to a 

short spike of photocurrent which upsets the input or output of a node within an 

integrated circuit.  In fast switching logic circuits, whose function relies on precise timing 

and control of current pulses, such SEU frequently generates data errors.  Similar 

photocurrent perturbations in analog circuits must either be filtered out, or they can lead 

to erroneous operation of the circuit.  Device and circuit designers cannot eliminate the 

photocurrent pulses which SEU.  They can only try to minimize and contain the resulting 

circuit effects through careful design, which among others includes techniques related to 

circuit layout, fabrication process, and error handling.  In cases where the photocurrent 

does not cause an adverse effect in the operation of the circuit, the photocurrent current 

pulse is known simply as a single event transient (SET).   

SEL by contrast is a destructive effect which occurs in devices with a four-layer 

structure with three back-to-back p-n junctions.  This type of structure is often referred to 

as a parasitic thyristor, after the power semiconductor device of the same name.  Multiple 

well bipolar and CMOS technology usually contain these parasitic thyristor structures.  
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The parasitic thyristor can be represented as an NPN and PNP bipolar junction transistor 

(BJT) connected in a self-amplifying configuration, where the emitter of each transistor is 

tied to the base of the other.  At a given critical charge, under a given bias condition, the 

BJT pair “latches up”.  That is to say, it enters a self-sustaining regime of current 

amplification and positive feedback.  Eventually the current density reaches a point at 

which the power dissipation heats the semiconductor lattice to its melting point. 

Due to the small feature sizes of modern deep submicron CMOS devices, a 

relatively small amount of deposited charge is required to generate SEE in those devices.  

Consequently, SEE in deep submicron CMOS devices can arise from interaction with 

alpha particles and even subatomic particles. 

 

Single Event Burnout 

 

Single-event burnout (SEB) is a destructive SEE that occurs primarily in N-

channel power transistors [7].  SEB is most often associated with heavy ion radiation, but 

it can occur as a result of any type of radiation which produces high levels of 

photocurrent within the device.  The basic mechanism is similar to SEL, except SEB 

occurs in devices where there is no parasitic thyristor structure.  Instead, all that is 

required to cause SEB is a single parasitic bipolar junction transistor.  SEB occurs when 

the parasitic BJT is put into a self-sustaining forward active operating mode as a result of 

high photocurrent.  The forward active operation is initiated and sustained by a complex 

mechanism, which is described in detail later in this work.  Whether or not SEB occurs 
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for a particular device depends on a combination of factors.  Independent of device 

design, the most influential factors on SEB are the LET and trajectory of the radiation 

(assumed to be a heavy ion), and the biasing conditions at the device terminals [22].  It 

should be noted that N-channel devices are more susceptible to SEB, because their 

parasitic NPN bipolar transistor has higher current gain than the parasitic PNP bipolar 

transistor of a P-channel MOSFET.  Unfortunately, N-channel devices are almost 

exclusively used in power switching applications, in part because their RDSON is typically 

half that of a similar P-channel device, and also because power switching circuits 

generally require a normally “OFF” power MOSFET. 

 

Single Event Gate Rupture 

 

Single Event Gate Rupture (SEGR) is another destructive SEE mostly associated 

with power MOSFETs and heavy ion radiation.  SEGR occurs when a power MOSFET is 

biased in the OFF state, and a high electric field, on the order of MV/cm is applied across 

the gate dielectric of a power MOSFET.  When a heavy ion passes through the gate oxide 

under these biasing conditions, it generates electron-hole pairs within the oxide, 

according to the ion LET and the electric field-dependent generation rate inside the 

dielectric.  At almost the same instant, electron-hole pairs are being generated. both 

within the polysilicon above the gate oxide, and also in the silicon layers along the ion 

trajectory underneath the oxide.  In this way, an ion shunt is formed through the gate 

oxide, connecting the gate terminal at ground potential to some portion of the drain 
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region of the MOSFET, which lies at a higher potential.  This potential difference results 

in high photocurrent density below the gate oxide and high electrical stress across the 

gate oxide.  It is thought that SEGR occurs as a result of interaction between the 

temporary conductivity of the oxide and the high electric stress across the oxide, resulting 

in a localized current filament through the oxide [23].   

In some cases, SEGR manifests as a small increase in gate-to-source leakage 

current, suggesting highly localized damage [24].  In other cases, SEGR is 

catastrophically destructive, resulting in much higher levels of gate leakage current and 

loss of control over the MOSFET.  Another case occurs in which both SEGR and SEB 

occur more or less simultaneously.  Conclusions about the physical mechanisms behind 

this type of failure can be drawn based on which bias conditions caused the failure.  It is 

likely that in some cases SEGR leads to SEB, whereas in other cases SEB leads to SEGR 

[7]. 

 

 

Total Dose Effects 

 

The quantitative measure of accumulated energy absorbed from ionizing radiation 

is called the “dose”.  The SI unit for radiation dose is the Gray [Gy], however when 

discussing ionizing radiation effects in semiconductor devices, the dose is commonly 

measured in units of rads [rd].  One Gray represents the dose of ionizing radiation 

required to transfer 1 J of energy per kilogram of target material, and 1 Gy = 100 rads.  
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Both units are material-specific, because the amount of generated electron-hole pairs 

corresponding to a given type and energy of radiation varies according to the properties 

of the target material.  These units are therefore a way of normalizing radiation dose 

measurement across different materials.  In the notation of radiation dose units, the 

material name appears in parentheses after the unit.  For example, rads(Si) are units of 

absorbed radiation dose for silicon, whereas rads(SiO2) are units for silicon dioxide. 

In contrast to SEE, total ionizing dose (TID) effects, refer to the effects of 

accumulated ionizing radiation exposure and the resulting damage within a 

semiconductor device.  TID effects can be categorized into two major types – charge 

trapping effects and displacement damage.  Charge trapping effects occur in the 

semiconductor device insulating layers, whereas displacement damage can occur within 

the semiconductor crystal lattice itself.  Displacement damage is caused by exposure to 

high energy protons, neutrons, and nuclei, where the incident particle deposits sufficient 

energy to displace atoms either through collision or via a nuclear reaction.  Charge 

trapping effects can be caused by any type of ionizing radiation, and the effects are highly 

dependent on the characteristics of both the incident radiation and the semiconductor or 

insulator target material [25].  In most cases, charge trapping effects in MOS devices 

manifest as a gradual degradation of device performance and functionality due to the 

buildup of charge in the MOSFET gate oxide.  In bipolar devices, charge trapping effects 

are normally associated with a decrease in transistor gain and cutoff frequency, due to the 

increase in recombination that occurs in the charge trapping sites.  Microdose effects are 

a very specific type of TID effect that arise due to exposure to heavy ion radiation. 
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The mechanism of charge trapping in silicon dioxide has to do with the difference 

in electron and hole mobility in SiO2, where electron mobility is more than 10,000 times 

greater than that of holes.  This means that as electron-hole pairs are generated within 

SiO2, the electrons can be swiftly swept away by any applied electric field, whereas the 

holes remain more or less fixed within the oxide.  For this reason, most of the electrons 

and holes are not able to recombine within the oxide, and a large number of holes become 

trapped within the oxide bulk.  Meanwhile, electrons remain trapped at the Si/SiO2 

interface.  At the interface, dangling bonds are present between the amorphous SiO2 and 

the silicon crystal lattice.  These interface states act as charge trapping centers by 

allowing electrons to remain at energy levels that fall within the normally forbidden 

energy bandgap of silicon.   

Because charge transport is the underlying mechanism behind TID charge 

trapping, the ratio of unrecombined holes as a fraction of generated electron-hole pairs is 

highly dependent on electric field.  A stronger electric field will sweep away the electrons 

more quickly, resulting in a higher fraction of unrecombined holes.  At fields near 5 

MV/cm, the fraction of unrecombined holes approaches almost 100% [26].  Trapped 

charge density is also highly dependent on oxide thickness.  From a first order 

perspective, the magnitude of bulk trapped charge is linearly proportional to oxide 

thickness, whereas interface trapped charge density is proportional to the square of oxide 

thickness [27].  Finally, the “quality” of the oxide, which generally describes the density 

of bulk and interface states prior to radiation, has a severe impact on the susceptibility to 

TID effects. 
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The most commonly studied TID effects are threshold voltage shifts and 

increased leakage current in MOS devices.  Threshold voltage shifts are attributed to the 

accumulation of trapped charge within the gate oxide and along the gate oxide interface.  

Positive trapped charge lowers the magnitude of the threshold voltage (VTH) of NMOS 

devices, while negative trapped charge has the same effect for PMOS devices.  Threshold 

voltage shifts over time can become so dramatic that N-channel transistors become 

normally “ON” devices [28]. 

Increased leakage current is the other commonly observed effect, particularly in 

CMOS integrated circuits.  Aside from leakage through the MOS channel of a severely 

affected transistor, parasitic leakage paths also commonly occur along the shallow trench 

isolation (STI) oxides used in many IC layouts to isolate circuit elements.  The deposited 

STI oxide generally contains more bulk and interface states than a thermally grown gate 

oxide.  Also, the thickness of the STI oxide is several orders of magnitude larger than that 

of a typical gate oxide.  The combination of an extremely thick oxide with a high number 

of bulk and interface states means that a lower radiation dose is required to generate the 

same amount of oxide and interface trapped charge.   

Leakage around STI oxides occurs when the oxides lie over lightly doped regions 

which connect otherwise isolated device structures.  As charge accumulates in the STI 

oxide, the lightly doped silicon underneath can become easily inverted, much the same 

way inversion occurs in the channel of a MOSFET as it is turned ON.  These parasitic 

channels can be eliminated through careful layout techniques and also by avoiding the 
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placement of STI over lightly doped regions.  Methods of hardening ICs using such 

techniques are referred to as “hardening by design”. 
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CHAPTER TWO: SINGLE EVENT RADIATION EFFECTS IN 

POWER MOSFETS 

 

More destructive single event effects occur in power MOSFETs than in low 

voltage integrated circuits, due to the fact that power MOSFETs operate at higher 

voltages with large inductive and capacitive loads.  From the point of view of a power 

MOSFET designer, the only two single event effects of any real concern are the 

destructive effects of SEB and SEGR.  These effects occur almost exclusively in power 

MOSFETs and are not generally observed in low voltage integrated circuits.  Conversely, 

many other SEE are applicable only to integrated circuits and do not apply to power 

MOSFETs.  These include the effects of single event upset and single event latchup.  

Single event transients can and do occur in power MOSFETs, however whether these 

SETs cause an upset in the power electronics circuit is more dependent on circuit design 

than MOSFET design.  Therefore, in terms of hardening power MOSFETs against SEE, 

the focus is on SEB and SEGR.   

Furthermore, in practical application, these two effects are almost always 

associated with heavy ion radiation.  The focus of hardening the devices can be further 

narrowed down to deal with only this particular type of radiation.  It is known that SEB 

can also occur from other types of radiation exposure, but regardless of the type of 

radiation, the internal physical mechanisms behind SEB remains the same, and so the 

same hardening methods are assumed to apply regardless of the type of radiation.  Except 

in cases where SEGR occurs as a result of SEB, the author knows of no known radiation 

source except heavy ions that are associated with SEGR.  So the discussion in this work 
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from this point forward will focus entirely on SEE in power MOSFETs as a result of 

heavy ion radiation.   

 

 

Single Event Burnout in Planar VDMOS 

 

As stated previously, single event burnout occurs due to the activation and self-

sustained operation of the parasitic NPN bipolar junction transistor inherent in the N-

channel power MOSFET device structure.  Figure 10 shows a simplified cross section of 

a planar VDMOS with the parasitic NPN bipolar junction transistor clearly labeled.  The 

figure insert shows another representation of the parasitic BJT, with the base, collector 

and emitter terminals drawn together with their corresponding device features.  

Externally, the emitter and base of the parasitic NPN are tied to the same potential at the 

source contact of the MOSFET.  Internally, there is a distributed resistance within the P-

Channel diffusion, which makes up the base of the NPN.  This so-called base resistance 

is labeled RB in the insert.   
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Each transistor cell of an N-channel power MOSFET contains a parasitic NPN bipolar junction transistor 

(BJT) structure.  The activation and sustained operation of the parasitic NPN can lead to single event 

burnout. 

 

Figure 10:  Planar VDMOS and Parasitic NPN Bipolar Junction Transistor 

 

 

Figure 11 shows a cross section of a planar VDMOS where the gate and source 

terminals are tied together at the same potential (VGS = 0), and a positive potential is 

applied between drain and source (VDS > 0).  These are the biasing conditions normally 

associated with single event burnout.  As a heavy ion traverses the VDMOS device 

structure, it deposits a wake of electron-hole pairs in its path, known as an “ion shunt”.  

Because of the externally applied VDS bias, electron current drifts through the N epi 
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collector to the N+ substrate / drain.  Hole current is swept into the P-Base, to be 

collected at the P+ source contact.  Hole current must flow through the distributed 

resistance of the P-Base, RB, which causes a voltage drop VBE between the P-Base and 

the N+ source / emitter.  Since the base / collector p-n junction already reverse biased, all 

that is required to initiate forward active BJT operation is for a sufficient voltage drop 

across RB to forward bias the base / emitter p-n junction.  But activation of the parasitic 

NPN is not enough in and of itself to cause SEB.  The activation of the parasitic NPN is 

only the first step which sets off a more complicated series of events in the transient 

process of SEB.  In fact, it is entirely possible that SEB might not occur, even though the 

NPN is temporarily activated. 

 

 

Physical Mechanisms of Single Event Burnout 

 

In order to understand the deeper physical mechanisms of SEB, it is first 

necessary to explain what happens when a reverse biased p-n junction is penetrated by a 

heavy ion.  In the case of a power MOSFET, the reverse biased p-n junction is between 

the P-Channel (base) and N Epi (collector).  Recall the basic one-dimensional case of a 

one-sided p-n junction.  This is a good approximation of the P-Channel / N Epi junction 

in a power MOSFET.  When such a p-n junction is reverse biased, the electric field 

spreads away from the junction as the charge in the semiconductor around the junction is 

depleted.  As more voltage is applied to the junction, the depletion region spreads further 
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and further to deplete a correspondingly larger amount of charge.  Meanwhile, even 

though the depletion region is expanding to accommodate the increase in voltage, the 

magnitude of the peak electric field at the junction does not necessarily remain constant.  

The field at the junction increases as more voltage is applied.  Eventually, if the voltage is 

fixed at a constant level, the depletion region will cease expanding, and the balanced 

charge on each side of the junction will sustain the depletion region, thereby preventing 

the flow of current.  If the voltage does not remain fixed, but instead keeps increasing, 

eventually the electric field at the junction will reach the critical electric field of the 

semiconductor, resulting in high levels of impact ionization.  In this case, the depletion 

region becomes flooded with charge and the device conducts large amounts of current. 

Understanding the mechanisms of how the depletion region forms and can 

subsequently collapses due to impact ionization is critical in understanding the physical 

mechanisms of single event burnout.  Before SEB occurs, the externally applied VDS bias 

of the power MOSFET is sustained across the depleted N-Epi region, and the blocking 

junction occurs between the N Epi and P-Base.  In this case, the electric field across the 

depleted N-Epi is more or less uniform, whereas a slightly higher electric field exists at 

the blocking junction.   
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Holes and electrons deposited by the heavy ion are collected at the P+ source and N+ drain of the MOSFET 

respectively, which make up the base and collector of the parasitic NPN BJT.  Hole current flows through 

the distributed resistance of the P-Base, causing a voltage drop between the base and emitter of the parasitic 

NPN.  Sufficient voltage between the base and emitter cause the parasitic NPN to enter forward active 

operation, acting as a current amplifier.  This is the first step in a domino effect which results in SEB. 

 

Figure 11.  Planar VDMOS and Heavy Ion Charge Collection 

 

 

Figure 12 shows the simplified time evolution of charge transport and generation 

which leads to single event burnout.  When heavy ion traverses a p-n junction in the 

blocking state, the depletion region along the ion shunt is flooded with deposited charge.  

The deposited charge is represented by the electron and hole current sources in figure 

12a, with a dashed line representing the depletion region.  Where deposited charge is 
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present, current is able to flow, and the ion shunt is highly conductive due to the high 

density of deposited mobile carriers.  The resulting flow of hole and electron current is 

shown in the blue and red arrows respectively, in both the device cross section and the 

adjacent NPB BJT diagram. 

Where the depletion region in the N epi was one comprised of fixed ions with no 

mobile charge carriers, that region is now full of mobile electron-hole pairs deposited by 

the heavy ion.  This means that the depletion region which existed around the ion shunt is 

no longer able to sustain the voltage which continues to be applied externally across the 

p-n junction.   

In order to sustain the externally applied voltage in the presence of the deposited 

charge, the depletion region must expand.  Depending on the concentration of deposited 

charge and the size of the remaining undepleted N epi, there may or may not be enough 

lightly doped epi to accommodate the expanding depletion region.  In this case, the 

depletion region will attempt to expand beyond the boundaries of the epi region and into 

the more highly doped P-Channel and N+ substrate regions.  Since these highly doped 

regions cannot be depleted without exceeding the critical electric field in silicon, high 

levels of impact ionization begin to occur [29].  This expansion of the depletion region 

and resulting impact ionization is represented in figure 12b.  Note that the current sources 

in the figure insert in 12b are due to impact ionization, not ion deposited charge. 

Whereas the ion’s deposited charge was sufficient to overwhelm the depletion 

region and create impact ionization, the generation rate of electron-hole pairs resulting 

from the impact ionization itself can be orders of magnitude larger than the generation 
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rate associated with the deposited charge.  It is the high current density associated with 

impact ionization which leads to a resistive voltage drop across the base of the parasitic 

NPN which eventually forward biases the base-emitter junction.  This is shown in figure 

12c, where VBE is now greater than 0.7 V and electrons are being injected from the N+ 

source / emitter.  This is the point at which the fate of the device is decided.  If the gain of 

the NPN is sufficiently low, the device may recover, even after the emitter starts injecting 

electrons.  However, if the gain of the NPN is too high, and the biasing conditions are too 

stressful, the electron injection from the emitter, through the base, into the collector will 

cause the collector to enter a high injection regime.  This means that the concentration of 

electrons flowing through the collector is greater than the background doping 

concentration of the collector.  When high injection occurs, the depletion region pushes 

further into the N+ substrate and the levels of impact ionization there begin to rapidly 

increase.  The hole current generated by this impact ionization is swept through the 

depleted collector (epi) and into the P-Base, which is now functioning as the base of the 

forward active BJT.  This increase in base current then causes an increase in electron 

injection from the emitter, which is the well-known amplification effect of a textbook 

example NPN BJT.  As more base current feeds more electron injection, the injected 

electrons from the emitter pass back into the collector, further feeding the impact 

ionization at the N+ substrate, and the entire bipolar amplification process repeats itself 

[7][30].  This is the self-sustaining bipolar operating mode, shown in figure 12d, which 

results in single event burnout. 
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Figure 12a:  Heavy Ion Charge Deposition 

 

 

 
 

Figure 12b:  Impact Ionization Caused by Expansion of Depletion Region 
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Figure 12c:  Activation of Parasitic NPN BJT 

 

 

 
 

Figure 12d:  High Injection and Self-Sustained Bipolar Current Amplification 

 

Figure 12:  Time Evolution of Single Event Burnout in Planar VDMOS 
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Hardening Against SEB in Vertical Power MOSFETs 

 

Table 2 outlines some of the design considerations which most affect the single 

event burnout safe operating area (SOA) of a power MOSFET.  SOA is a term used to 

describe the upper bounds of the operating voltages or currents under which a device may 

be operated without causing damaging or destructive effects.  The SEB safe operating are 

of power MOSFETs is generally described in terms of LET vs. VDS.  Before such design 

methods were implemented, SEB was a major limiting factor in the reliability of power 

MOFSETs.  By contrast, the SEB SOA of modern rad-hard power MOSFETs is generally 

very good, with some devices being theoretically immune to the effect.  Today, SEB is 

not so much of a concern as SEGR, which remains the limiting factor in determining the 

device’s overall SEE safe operating area. 

 

Table 2: Design Considerations for Improving SEB Safe Operating Area 

Design Consideration Impact on SEB Resistance 
Potential Impact on 

Device Performance 

Decrease P-Base Resistance 
Reduce Bipolar Current 

Gain 
Negligible 

Increase P-Base Length 
Reduce Emitter Injection 

Efficiency 

Increased RDSON;  

Decreased gm 

Decrease Base Minority 

Carrier Lifetime 

Reduce Emitter Injection 

Efficiency 

Increased IDSS Leakage 

Current; Requires Exotic 

Processing Methods 

Decrease N+ Source 

Doping Concentration 

Reduce Emitter Injection 

Efficiency 
Increased RDSON 

Increase N Epi Thickness Increase Avalanche Voltage Increased RDSON, QRR 

Include Highly Doped N 

Epi Drain Buffer Layer 
Resistance to High Injection Increased RDSON 
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Single Event Gate Rupture in Planar VDMOS 

 

Single event gate rupture (SEGR) refers to a destructive single event effect which 

occurs after a power MOSFET gate oxide has been penetrated by a heavy ion.  Today, 

SEGR is still a major concern when operating power MOSFETs exposed to heavy ion 

radiation.  There are several reasons for this.  First, the real-world SEGR safe operating 

area of a power MOSFET is not easy to determine.  The fundamental physical 

mechanisms which cause SEGR are difficult to simulate in a way which is both reliable 

and practical for power MOSFET designers.  Even more important, the SEGR response 

of a power MOSFET is very difficult to determine even when performing real-world 

heavy ion testing.  The SEGR SOA is dependent on many factors, which complicates 

efforts to reliably test or simulate the response.  These factors include but are perhaps not 

limited to VDS, VGS, gate oxide thickness, ion trajectory, ion energy, epi thickness, and 

device design and doping profiles. 

Earlier works in developing mathematical formulae for predicting SEGR were 

very helpful in providing guidelines for device designers [31].  The first formula 

describes what is commonly referred to as the capacitor response of a MOS capacitor, 

and is shown in equation 4. 
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, where TOX is the oxide thickness and EOX_BR is the natural critical electric field of 

the oxide, usually assumed to be 10 MeV/cm.  This equation was found to be a fairly 

accurate empirical fit of the actual SEGR voltage of simple MOS capacitor structures, but 

it does not help predict the SEGR sensitivities of more complex devices, such as power 

MOSFETs, in which biases are applied at three or more terminals.  Later, the same 

authors expanded their work to develop a so-called drain coupling factor, which was then 

appended to the original equation.  The drain coupling factor was also an empirical fit, 

taken from a wealth of SEGR test data on planar VDMOS power devices.  The complete 

equation, along with the drain coupling factor, is shown in equation 5, which is 

sometimes called the Titus-Wheatley approximation, after two of the authors who 

developed the equation. 

 

)
53

1(

))((
))(1)(84.0(

_17

LET

TE
VeV

OXBROX

DS

LET

GS







  (5) 

 

The drain coupling coefficients attempt to simulate what is commonly termed the 

“substrate response” of the MOSFET, which is a way of describing how the electric field 

in the depleted MOSFET drift region enhances the electrical stress across the gate oxide 

during the heavy ion event.  These terms were all fits to a wealth of empirical data from 

heavy ions striking normal to the silicon surface of planar VDMOS devices.  Later test 

data consistently found that an ion strike normal to the silicon surface is the worst case 
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strike angle for planar VDMOS, implying that the vertical direction of the electric field in 

the depletion region played a strong role in determining the SEGR response [32]. 

Later work focused on developing a more comprehensive understanding of the 

substrate response, taking into account not just peak LET and VDS, but also ion energy 

and the power MOSFET device structure [33][34].  This includes studies of ions with 

similar peak LET but different penetration depths.  It was found that the substrate 

response was highly dependent on the average amount of energy deposited in the 

depleted epitaxial layer by the ion, not just the ion’s peak LET.  This had strong 

implications towards methods of conducting radiation hardness assurance testing of 

power MOSFETs.  If the SEGR response of the MOSFET depends on the energy 

deposited in the epitaxial layer, then the safe operating area could no longer be defined 

simply by VGS, VDS, and LET.  For a given LET, deeper penetrating ions would have to 

be used to test higher voltage MOSFETs with correspondingly deeper epitaxial layers.  

Similarly, lower energy ions, which deposit their energy in a shallower region, would 

have to be used for lower voltage MOSFETs.  This meant in some cases that different 

power MOSFETs would have to be tested at different radiation testing facilities, since 

each facility only offers a limited selection of ion beams. 

Recent test results illustrate how the substrate response greatly influences the 

SEGR threshold of modern power MOSFETs [15][16].  These works presented test data 

on six different planar VDMOS devices with breakdown voltage ratings spanning the 

range between 100 V and 600 V.  In the typical case, the minimum SEGR threshold 

voltage was around 20% of the rated VDS for the MOSFET.  In [16], each device was 
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tested using ions of similar LET but different penetration depth, and the results clearly 

showed that SEGR occurred at much lower VDS for ions whose penetration depth fell 

between the middle of the epitaxial region and the bottom of the epitaxial region near the 

N+ substrate.  Ions that penetrated the epitaxial region and deposited most of their energy 

within the N+ substrate caused SEGR at much higher voltages, at or near the rated VDS of 

the MOSFET.  Similarly, ions that deposited the majority of their energy near the surface 

of the epitaxial region allowed for a much higher VDS.   

The strong interaction between the design of the power MOSFET epitaxial 

structure and the vertical energy deposition profile of the ion demonstrates the inherent 

weakness of the vertical power MOSFET structure with respect to SEGR.  Despite 

hardening efforts, such as the inclusion of heavily doped source ties extending under the 

channel, and the elimination of extraneous gate areas in the neck region, modern planar 

VDMOS devices still demonstrate an unacceptably poor SEGR safe operating area.  For a 

wide range of ion strike trajectories, there is a high likelihood of the heavy ion creating a 

conductive shunt between the poly gate and a zone of high potential in the epitaxial 

region – the conditions which lead to SEGR.  This is because the poly gate and the 

epitaxial drain region lie in perpendicular planes with respect to each other.  Later in this 

work, it will be shown how the lateral power MOSFET structure may offer an inherently 

improved SEGR safe operating area, due to the positioning of the poly gate and the drain 

region along the same plane. 
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CHAPTER THREE: MODELING AND DESIGN METHODOLOGY 

 

Device modeling and design was conducted using the Sentaurus TCAD 

(technology computer aided design) software tools.  TCAD tools allow for simulation of 

microelectronic device fabrication and device operation using a wide variety of physical 

models.  More detailed discussion of critical design and process parameters related to 

each specific power MOSFET are contained in later chapters. 

 

 

Overview of Design Methodology 

 

The design process begins with creating rough models of the device, using 

manually-defined device structures and doping profiles.  In this way, several design 

iterations can be quickly simulated without the time consuming process of performing a 

full physics-based fabrication simulation.  The device boundary is defined using a pre-

defined materials database, which includes physical constants for materials relevant to 

semiconductor device fabrication.  Doping profiles in this type of rough model are user-

defined analytical distributions, usually a Gaussian distribution, emanating from user-

specified spatial coordinates.  These doping profiles include variables such as doping 

species, doping concentration, junction depth, and lateral diffusion coefficient.  This type 

of distribution mimics the thermal diffusion of dopants during a real world fabrication 
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process and allows for the creation of a reasonably realistic device structure with smooth 

grading of doping concentration near the p-n junctions.   

The Sentaurus Device software was used to simulate the electrical operation of 

the device structure.  These simulations include the extraction of critical DC parametrics 

including drain to source breakdown voltage (BVDSS), gate to source threshold voltage 

(VTH), and drain to source specific on-resistance (RDSON).  After the desired device 

structure and DC operation is achieved, transient simulations were performed using the 

built-in heavy ion radiation model, which is detailed in the next section.   Once the 

transistor cell design is fixed using this rough modeling method, the next stage in the 

design process is to develop a real world process flow and mask layout in order to 

fabricate the device. 

Fabrication process simulations were conducted with Sentaurus Process, which is 

a physics-based semiconductor device fabrication process simulator.  In these 

simulations, real world device fabrication conditions are specified, including mask 

dimensions, photoresist polarity, ion implant conditions, thin film deposition and etching, 

and thermal processes such as furnace anneals and thermal oxidation.  The devices in this 

work were fabricated at two different 0.35 μm CMOS foundries.  Some process 

conditions, especially those related to thermal oxidation and also furnace ramp-up and 

ramp-down rates, were pre-defined by the wafer foundry, however the majority of the 

fabrication processes were heavily modified from the foundries’ standard CMOS 

processes, in order to achieve the desired power MOSFET structure.  These structures 

were then again used an inputs to the Sentaurus Device simulator, for the extraction of 
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DC parametrics and evaluation of SEE performance.  In this way, the physics-based 

process simulations were used to define a fabrication process design space for each 

device. 

 

 
 

Figure 13:  Power MOSFET Modeling Workflow 

 

 

 

It is unrealistic to experimentally explore every possible set of fabrication process 

variables, so a subset of critical process flow variables had to be identified, while the 

majority of the fabrication process remained fixed.  There is a potential for complex 

interactions between process conditions, so defining the fixed versus variable process 
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conditions requires careful consideration of the potential secondary effects of each 

process condition.  The task of designing a radiation-hardened power device adds another 

layer of complexity to this fabrication process development.  Often it was found that 

device features and process conditions which improved electrical performance did so at 

the expense of radiation hardness.  It was also frequently the case that features which 

improved hardness against one type of radiation often sacrificed hardness against a 

different type of radiation.  So, in terms of power MOSFET design considerations, there 

are all the tradeoffs normally associated with optimizing electrical performance, but now 

they interact with an additional set of tradeoffs to preserve radiation hardness. 

Once the fabrication process and transistor cell design were fixed, the final design 

task is mask layout.  As with the fabrication process, there are also special mask layout 

considerations for radiation hardened devices.  Most of the layout considerations are 

related to the avoidance of parasitic leakage current paths that might develop as the 

device accumulates a high total ionizing dose (TID).  Since TID effects are due to charge 

buildup in the insulating layers of the device, the leakage current paths most often 

associated with TID effects occur along the boundaries of oxide layers such as the gate 

oxide and shallow trench isolation (STI).  As a general rule, any lightly doped area 

adjacent to an insulating material has the potential to become inverted as a result of TID 

effects.  Leakage along STI patterns is especially a concern for integrated circuit design, 

where TID effects can create a parasitic bridge between normally isolated devices.  There 

are similar concerns in the layout of power devices, since a parasitic leakage path or 

parasitic channel might develop between the drain and source or between a plurality of 
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transistor stripes.  Specific layout concerns for each power MOSFET are discussed in 

subsequent chapters. 

 

 

TCAD SEE Modeling 

 

SEE modeling was conducted using the built-in heavy ion radiation model in 

Sentaurus Device.  Input parameters for the heavy ion model were sometimes taken from 

the Stopping and Range of Ions in Matter (SRIM) computer program.  The radial charge 

distribution along the ion track was modeled as an exponential function with a 

characteristic radius of 100 nm.  In each 2-D simulation, an area scaling factor of 100 nm 

is used, consistent with the ion track characteristic radius, in order to scale the current and 

charge values to a reasonable order of magnitude.   
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Figure 14:  Representation of Heavy Ion LET and Trajectory Input from SRIM 
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CHAPTER FOUR: 25 V LDMOS ON P-TYPE EPITAXIAL SILICON 

 

In order to efficiently implement a POL DC-DC converter system, low voltage 

power MOSFETs with low RDSON×QG figure of merit are required.  In non radiation 

hardened commercial applications, these needs are met by trench VDMOS and Resurf 

LDMOS power MOSFETs.  In a rad-hard application, the requirements of low FOM is 

still required, however there are also the additional requirements of high TID and SEE 

resistance.  Specifically, in the case of low power MOSFETs, a high degree of resistance 

to SEGR is required.  SEGR resistance cannot be accomplished by simply replacing a 

low voltage device with a severely de-rated higher voltage device, as is commonly done 

with rad-hard planar VDMOS.  As such, unless the low voltage power MOSFET has 

some inherently improved resistance to SEGR compared to the planar VDMOS, the FOM 

requirements for an efficient POL converter cannot be met.  Since trench VDMOS are 

based upon a similar vertical structure as planar VDMOS, it is thought that their 

susceptibility to SEGR might be very similar to that of planar VDMOS.  In other words, 

without empirical data to suggest otherwise, it is thought that trench VDMOS would have 

to undergo severe de-rating in order to resist SEGR. 

The requirement for significant improvement in SEGR safe operating area 

suggests that radically different power MOSFET structures be considered.  The 

alternative low voltage power MOSFET structure to a trench VDMOS is the lateral 

double diffused power MOSFET.  LDMOS transistors have long been implemented in 

CMOS-based mixed signal integrated circuits.  They are favored for use in ICs, because 

their lateral structure is naturally compatible with the substrates and fabrication processes 
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normally used to develop CMOS and BiCMOS integrated circuits.  Also, the switching 

efficiency of LDMOS transistors has historically been much better than VDMOS 

transistors, due to the lower area-specific gate charge of the lateral transistor structure.  

One widespread use of LDMOS devices is in so-called “smart power” technology, with 

on-chip voltage and current regulation.  Figure 15 shows a few typical LDMOS structure 

which might be used in low cost commercial smart power circuits.  

 

 

Prior Art LDMOS Device Structures 

 

Figure 15a is a simple N-channel LDMOS formed on a P substrate with a self-

aligned LDD implant process.  This means that the poly gate is patterned prior to the 

LDD implant, and then the relatively thick poly gate serves as the masking layer for the 

LDD ion implant.  This means that no photolithography process is required to form the 

LDD region, which helps minimize fabrication costs.  It also means that the overlap 

between the LDD and the poly gate, typically referred to as the “neck” region, is smaller 

than what is achievable with photolithographic patterning.  This very small overlap 

between the poly gate and the drain results in very low Miller capacitance for this 

LDMOS structure.  This results in very low QGD, which helps keep the overall QG of this 

device very low. 

The N-channel LDMOS structure in figure 15b is similar to that of 15a, except it 

is formed on an N-type substrate or within an N well.  In this case, the N well or N 
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substrate is electrically tied to the N+ drain of the MOSFET and serves as the lightly 

doped drain.  This forms a more or less one-sided p-n junction between the LDD and the 

P-Channel, with the LDD region being much more lightly doped than the P-Channel.  In 

this device structure, the P-Channel diffusion may be self-aligned to the poly gate, 

however the LDD is not self-aligned.  The overlap between the poly gate and the LDD 

region instead depends heavily upon the lithographically-defined length of the poly gate 

and the depth of the LDD / P-Channel junction (the body diode junction), which is 

defined by both process and starting material.  In this type of process, the factors which 

influence the location of the body diode junction include the background N substrate or 

Nwell doping concentration, the P-Channel ion implant dose and energy, the time and 

temperature of the processing steps following the P-Channel ion implant, the amount of 

boron segregation from the P-Channel implant into the gate oxide during processing, and 

finally the density of interface states between the gate oxide and the silicon substrate.  

Some of the conditions which define the spacing of the neck region can be very precisely 

controlled, while others such as substrate resistivity should be expected to experience 

more variation.  Additionally, there is a limitation on what P-Channel process conditions 

can be used while still achieving the desired VTH, gm, and RDSON specifications of the 

transistor.  In some cases, it may not be possible to develop a reliable process which 

meets all device performance specifications while still achieving a very small Miller 

capacitance. 

The N-channel LDMOS structure shown in figure 15c can be formed on either an 

N or P type background (well or substrate).  The key feature of this device is the shallow 
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trench isolation (STI) oxide between the poly gate and the LDD.  The purpose of this 

oxide is to allow the use of a more heavily doped LDD region in order to significantly 

reduce the drift resistance, RD, of the MOSFET.  Recall that for almost all LDMOS 

structures, RD forms the most significant portion of the overall RDSON of the MOSFET.  

Therefore, reducing RD is a very effective way of reducing overall RDSON.  Normally, as 

the LDD doping concentration in an LDMOS is increased, the device in the OFF state 

will exhibit a higher magnitude electric field between the LDD and the gate.  If the LDD 

doping concentration is made too high, the resulting high electric field between the gate 

and LDD will cause avalanche breakdown in the neck region.  This behavior in and of 

itself is not desirable, because repeated avalanche stress of the device will lead to hot 

carrier injection (HCI) reliability issues with the gate oxide.  Specifically, hot holes will 

be injected into the gate oxide during avalanche breakdown, and over a long period of 

time the accumulation of hot holes will degrade the characteristics of the device.  If the 

LDD doping concentration is increased even further, in addition to HCI reliability issues, 

the avalanche breakdown in the neck region may occur at a voltage which is lower than 

the desired BVDSS of the MOSFET.  So these issues naturally cause some upper limit on 

the resistivity of the LDD region for a given blocking voltage. 

In order to be able to dope the LDD more heavily and reduce RD, the STI oxide is 

placed in the vulnerable region between the gate and drain where avalanche breakdown 

would normally occur in the silicon.  The dielectric strength of the STI oxide is 

approximately 10 times higher than that of silicon, so the STI is able to sustain a very 

high electric field without undergoing rupture.  Now, as the doping concentration of the 
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LDD region is increased, the electric field in the STI oxide gets correspondingly stronger 

at a given VDS, but the magnitude of the electric field in the surrounding silicon remains 

below the critical value for silicon.  This allows the device to simultaneously have a high 

breakdown voltage and a more heavily doped drift region.  Using this design technique, 

the structure in figure 15c should have the lowest specific RDSON of the three examples.   

The drawback of using the STI structure in figure 15c is that the alignment of the 

poly gate, the STI, and the LDD can severely impact both RDSON and QG and therefore 

imposes significant layout and process constraints on the design of the MOSFET.  The 

first design consideration is RDSON.  In this design, when the device is in the ON state, the 

drain to source electron current must flow through the LDD region, underneath the STI 

oxide, and then through the neck region back up toward the silicon surface, where the 

current eventually finds the MOS channel.  This makes the LDD regions both underneath 

the STI and also in the neck region potential regions of high resistance for drain to source 

current.  These so-called “bottleneck” regions must be made sufficiently wide and 

heavily doped to avoid a significant increase in RDSON.   

In the vertical direction, this requires balancing the LDD junction depth against 

the STI depth.  The STI depth should be expected to have a significant process variation, 

so this tradeoff requires a large design margin.  In the horizontal direction, the spacing of 

the neck region is strongly influenced by the alignment between three different mask 

layers, as well as the diffusion of the P-Channel implant, which can be self-aligned to the 

poly gate.  This means that the design tolerances for defining the neck region are 

significantly impacted by the resolution of the photolithographic process, and the 
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expected misalignment between the three mask layers is on the same order of distance as 

the length of the poly gate itself.  The result of these complex design and process 

dependencies is a transistor which requires a longer gate and a wider neck region than 

structures 15a and 15b.  This means that despite having the lowest RDSON of the three 

structures, the STI oxide LDMOS also has the highest gate charge.  Further, as this 

device is scaled to very low voltages, the structure of the gate and neck regions remains 

more or less fixed, and the drift length of the device remains limited by the space 

required to accommodate the STI oxide.  In short, the device reaches a saturation point at 

which further reduction in cell pitch is not possible, and the RDSON×QG FOM begins to 

increase disproportionally to the voltage rating.  Finally, the other major drawback of this 

structure is cost.  This structure requires the most photolithographic processing of the 

three examples, and therefore it is the costliest to fabricate. 

For the development of a 25 V LDMOS for MHz frequency POL converter, it 

was deemed that the low gate charge, specifically low QGD, of the self-aligned LDMOS 

on P substrate would offer the most efficient switching performance.  Also, this LDMOS 

offered the simplest process flow and highest chance of success for engineering a 

functional device with limited process iterations.  Furthermore, published literature 

suggested that a P substrate is the preferred starting material for rad-hard N-channel 

devices, due to its lower mobility, which should result in an increased percentage of 

radiation generated carriers being recombined in the substrate during a heavy ion strike.  
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(a) 

 

 
(b) 

 

 

 
(c) 

 
Three simplified LDMOS device structures commonly used in smart power ICs for on-chip voltage and 

current regulation.  Each device structure is compatible with a typical CMOS or BiCMOS fabrication 

process flow.  LDMOS fabricated on a P substrate using a self-aligned LDD implant process (a);. LDMOS 

fabricated on an N substrate (or in an N well), where the LDD region is not self-aligned to the poly gate 

(b); LDMOS fabricated on either an N or P substrate or well, with a thick STI oxide between the gate and 

LDD region.  The LDD region and STI are not self-aligned to the poly gate (c). 

 

Figure 15:  Prior Art LDMOS Device Structures 
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25 V Rad-Hard LDMOS Device Concept 

 

Figure 16 shows a comparison of the standard LDMOS device structure on P 

substrate, and the proposed rad-hard LDMOS device structure on a P epitaxial layer 

grown on a P+ substrate.  The use of a thin P epi layer on a P+ substrate is a well known 

technique for hardening integrated circuits against SEE.  This is because the short 

minority carrier lifetime in the P+ substrate helps to recombine much of the deposited 

charge during a heavy ion strike or other similar ionizing radiation event.  In effect, 

almost all the electrons which are deposited in the P+ substrate will recombine before 

reaching the sensitive junction of the device.  Therefore, the collection of photocurrent is 

limited primarily to only the charge deposited in the more lightly doped epitaxial layer, 

where the minority carrier lifetime is much longer.  In this situation , the epi region is 

often referred to as the charge collection volume or sensitive volume when discussing 

SEE sensitivity.  By limiting the charge collection volume with a thin epi, less 

photocurrent is collected, which should lead to lower levels of impact ionization during a 

heavy ion strike.  The use of this substrate is therefore the first method in hardening the 

device against SEB from heavy ion radiation. 
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(a) 

 

 
(b) 

 
Device cross section drawingss of the standard LDMOS (a) and proposed rad-hard LDMOS (b).  The rad-

hard LDMOS is fabricated on a P epi silicon on top of a P+ silicon substrate.  The P+ source contact is 

moved to the bottom of the P+ substrate, to divert photocurrent away from the sensitive base-emitter p-n 

junction, in hopes of avoiding activation of the parasitic NPN bipolar junction transistor. 

 

Figure 16:  Standard LDMOS and Proposed Rad-Hard LDMOS 
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The second method of hardening the device has to do with the suppression of the 

parasitic NPN bipolar junction transistor.  The P+ body tie contact normally found 

adjacent to the N+ source in the standard LDMOS, Figure 16a, has been eliminated.  

Instead, a backside metallization is performed, and the P+ substrate is tied externally to 

the source of the MOSFET.  In this way, the P+ substrate forms the base terminal of the 

parasitic NPN BJT.  As the device is biased in the OFF state, the electric field between 

drain and source will cause holes to drift downward toward the P+ substrate, to be 

collected at the backside contact.   

Because the P+ substrate is very highly doped and many orders of magnitude 

larger than the volume of the deposited charge, the P+ substrate presents a very low 

resistance path for the collection of hole current.  Since the substrate offers the lowest 

resistance path for the collection of holes, it is thought that the vast majority of hole 

current will be immediately drawn into the substrate, and very little hole current will flow 

through the P-Channel region.  This means the vast majority of the hole current will be 

diverted away from the N+ source p-n junction, which forms the sensitive base-emitter 

junction of the parasitic NPN BJT.  With the hole current diverted safely away from the 

base-emitter junction, the voltage drop VBE across that junction should remain low, and 

the parasitic BJT will not be pushed into forward active operating mode.  Figure 17 

shows an illustration of the supposed flow of photocurrent in the rad-hard LDMOS 

device, contrasted with the photocurrent flow in a planar VDMOS device. 

  



72 

 
 

 
 

Theorized collection of deposited holes (blue) and electrons (red) in rad-hard LDMOS (top) and planar 

VDMOS (bottom).  LDMOS hole current is diverted away from the sensitive base-emitter junction. 

 

Figure 17:  Theorized Charge Collection in Rad-Hard LDMOS and Planar VDMOS 
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The same diversion of hole current which is thought to provide added hardness 

against SEB should also improve the SEGR safe operating area of the device.  One 

theoretical cause of SEGR in VDMOS transistors is the high transient electric field 

caused by accumulation of radiation-generated holes underneath the gate oxide.  After 

being deposited by a heavy ion, holes are driven from the N epi toward the gate oxide by 

the vertical electric field.  This accumulation of holes results in a highly localized 

increase in the electric field across the gate oxide, which has an additive effect with any 

externally-applied negative VGS bias [23][35].  In the case of the proposed rad-hard 

LDMOS, the vertical electric field in the epi layer is pointing in the opposite direction of 

that in a VDMOS.  Because holes are driven downward in an LDMOS, there should be 

no accumulation of holes near the gate oxide during a heavy ion strike.  This should 

theoretically cause reduced transient electric field stress across the gate oxide in an 

LDMOS, compared to a VDMOS. 

An additional improvement in SEGR SOA is expected to result from the 

geometry of the electric field distribution between gate, source and drain in the lateral 

device.  As explained previously, vertical power MOSFET SEGR threshold voltages 

exhibit a strong dependence on the penetration depth and the vertical charge deposition 

profile of the heavy ion.  Deeper penetrating ions which deposit their energy closer to the 

N Epi / N+ Substrate junction cause SEGR at lower voltages than shallower penetrating 

ions of the same LET [15][16].  Another way to consider this is that deeper penetrating 

ions deposit their charge in higher potential zones inside the depletion region.  This 

suggests that the worst case for SEGR is when the heavy ion shunt occurs between the 
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gate oxide and the point of highest potential in the depletion region near the drain.  Figure 

18 shows cross-sectional drawings of the approximate heavy ion angles of incidence 

which would produce such a strong gate to drain shunt in the LDMOS and planar 

VDMOS devices. 

 

 

 
 

The heavy ion angles of incidence subtended by the pink shaded area within the dashed lines represent 

trajectories theorized to be most likely to create a strong gate to drain shunt in the LDMOS (left) and planar 

VDMOS (right) device structures.  These are thought to be the trajectories which cause the most sensitivity 

to SEGR in each power MOSFET.  The range of supposed sensitive ion angles is much smaller in the 

LDMOS than the VDMOS, suggesting the LDMOS may have a statistically lower probability of exhibiting 

SEGR in a real-world operating environment. 

 

Figure 18:  Heavy Ion Trajectories Shunting Gate to Drain 

 

 

If the shunting effect between gate and drain is indeed the mechanism which most 

affects the SEGR safe operating area of the device, then the LDMOS should be less 
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vulnerable to SEGR at most angles of incidence, with the exception being a grazing strike 

along the surface of the LDMOS device.  In contrast, a grazing strike along the surface of 

the VDMOS is known to cause the least SEGR sensitivity, and the worst case strike angle 

is known to be one perfectly normal to the silicon surface.  So in terms of SEGR angular 

sensitivity, the lateral and vertical devices should be completely opposite of one another.  

It is also possible, due to the lateral orientation of the electric field between the LDMOS 

gate and drain, the lateral component of the transient electric field stress across the gate 

oxide will be stronger than the vertical component.  Given the almost wild nature in 

which the electric field is redistributed during a heavy ion strike, it is unknown if this 

would actually be the case.  However, if this is the case, then the overall magnitude of the 

transient electric field across the thin vertical dimension of the gate oxide would be 

further reduced in an LDMOS, even in the case of a direct gate to drain shunt. 

In summary, it is theorized that the proposed rad-hard LDMOS structure will 

provide the required electrical performance for low voltage MHz frequency power 

switching applications.  It is also thought that the lateral device structure on P+ substrate 

could offer inherently improved SEB and SEGR performance compared to existing rad-

hard planar VDMOS device geometries.  Such improved SEE hardness would reduce the 

need for performance-degrading electrical de-rating commonly necessary for VDMOS 

power transistors.  Furthermore, excellent TID hardness is expected to result by basing 

the LDMOS fabrication process on a slightly modified version of a known TID-hard 

CMOS fabrication process at Sandia National Laboratories. 
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Design Considerations 

 

Figure 19 is a cross sectional drawing of the rad-hard LDMOS structure, showing 

the critical design dimensions for the device.   

 

 
 

Figure 19:  LDMOS Critical Design Dimensions 
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This device is fabricated using a silicided drain, source and gate, similar to the 

self-aligned silicide (salicide) process commonly used in CMOS device fabrication.  In 

the case of the LDMOS, a masking layer is necessary to prevent formation of the silicide 

over the LDD region.  Any silicide formed over the LDD region would short that region 

to the N+ drain, making it incapable of sustaining a depletion region.  This would 

degrade the blocking voltage of the LDMOS.  In order to prevent the formation of silicide 

over the LDD, a patterned nitride masking layer (hard mask) is formed over the LDD 

prior to silicidation.  LNIT represents the spacing between the nitride silicide blocking 

layer and the drain contact plug.  If the nitride layer is too far from the drain contact, the 

silicide will encroach into the LDD region.  If the nitride is placed too close to the drain 

contact, then it will interfere with the contact etching process, and the contact area in the 

drain will be smaller than desired.  In the best case, this would lead to increased contact 

resistance, which would impact RDSON and might present a reliability concern.  In the 

worst case, it would result in the complete loss of Ohmic contact to the drain, resulting in 

a non-functioning device.  For the most part, LNIT is dictated by the resolution of the 

photolithography process. 

LN represents the drift length of the device and is defined as the lateral spacing 

between the poly gate and the N+ drain diffusion.  This is essentially the portion of the 

LDD region which is capable of being depleted when the device is in the OFF state.  It is 

also the length that defines RD, or drift resistance, which is the largest component of 

RDSON in an LDMOS device of this voltage rating.  Note that for lower voltage LDMOS, 

as LN becomes smaller, the drift resistance and channel resistance eventually become 
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equal to each other, and at very low voltages, the channel resistance can actually be 

higher than the drift resistance.  So, in terms of its impact on electrical performance, LN 

controls the tradeoff between BVDSS and RDSON.  Both more or less exhibit a direct linear 

proportionality to LN. 

LG is the gate length of the device, the lower bound of which is defined by the 

limits of the photolithographic process.  LG influences a number of electrical 

characteristics, including RDSON, QG, and gm.    LG also affects the gain of the parasitic 

NPN bipolar transistor, which is formed at the device surface between the LDD and the 

N+ source, however this was not considered during the first design iteration.  This effect 

will be discussed in more detail during the later discussion of experimental results. 

LPCH determines the overlap of the P-Channel region and the poly gate.  Since this 

design does not rely on the P-Channel region to conduct avalanche hole current, the 

primary purposes of the P-Channel are to control VTH and prevent drain to source punch 

through when the device is in the OFF state.  Aside from affecting these parametrics, a 

longer LPCH will also result in higher channel resistance, which in turn leads to higher 

overall RDSON. 

Finally, tepi refers to the thickness of the lightly doped epi layer.  Epi thickness 

can affect both BVDSS and SEE performance.  If the epi is made too thin, then BVDSS will 

be limited vertically between the N+ drain and the highly doped P+ substrate.  However, 

if the epi is too thick, then SEE hardness will suffer, due to the thicker epi providing a 

larger charge collection volume. 
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Table 3 shows a simplified version of the simulated LDMOS process flow, which 

was used to define the process design space for meeting the required electrical 

specifications.  The design goals for this device are BVDSS > 25 V and 1.5 V < VTH < 3.5 

V.   

A series of process and device simulations were performed prior to designing a 

test element group mask set for fabrication.  These simulations served to explore the 

design space of both the transistor geometry and fabrication process conditions.  The 

results of these simulations are presented in figures 20 – 28.   
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Table 3:  Simulated 25 V LDMOS Fabrication Process 

 

 

Step Name Description 

1 Initialization Low resistivity <100> p+ silicon substrate 

2 Epitaxy 

Lightly doped p- epitaxial layer 

 

Thickness must support vertical component of electric 

field for device in OFF state. 

3 P-Body Implant 

Low energy boron implant patterned in the source side of 

the MOSFET 

 

Prevents punch through from LDD to N+ source. 

 

Strongly influences VTH 

4 P-Body Drive 

Controls P-Body implant junction depth and lateral 

diffusion. 

 

Strongly influences VTH 

5 Gate Oxidation 

Thermal oxidation time, temperature and ambient are 

adjusted to produce desired oxide thickness 

 

Strongly influences VTH, gm, and SEGR 

6 Polysilicon Deposition 
Polysilicon doping affects work function difference of 

MOS capacitor 

7 Gate Stack Etch Patterning of poly gate 

8 LDD Implant 

Low energy phosphorus implant self-aligned to the poly 

gate 

 

Strongly influences BVDSS and RDSON 

9 N+ Implant 
Patterned low energy arsenic implant to form Ohmic 

contact regions for source and drain 

10 Source-Drain Anneal Furnace Anneal 

11 ILD Deposition and Etch Deposited oxide and contact window etch 

12 Finalization 
Write completed structure to compatible file format for 

device simulation 
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Figure 20:  Simulated 25 V LDMOS Structure 
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Figure 21:  Simulated 25 V LDMOS ON-State Operation 
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The top plot shows electrostatic potential (red) and electric field (blue) along a slice taken in the lateral 

direction along the silicon surface.  The middle plot shows potential lines in the device cross section near 

the surface.  In this simulation, the device supports a BVDSS of 29 V (bottom plot). 

 

Figure 22:  Simulated 25 V LDMOS Surface Potential and Electric Field 
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The results of the device simulations on the resulting structures are presented in 

the following set of figures.  The first set of simulations varied the LDD Implant dose 

while other parameters were kept constant.  Figure 23 illustrates the primary tradeoff 

related to LDD implant dose, which is BVDSS vs. RDSON.  A heavier LDD implant dose 

will always reduce RD, which in turn reduces RDSON.  However, beyond an optimal LDD 

dose, the reduction in RDSON is accompanied by a reduction in BVDSS.  Figure 24 shows 

that VTH, unsurprisingly, is not affected by changes in LDD dose. 

 
The primary design tradeoff related to LDD implant dose is BVDSS vs. RDSON.  BVDSS remains high for 

low implant doses, because the LDD region can be fully depleted without before creating a high electric 

field.  In the cases of low LDD doses, BVDSS is dictated by the drift length (distance between the N+ drain 

and the poly gate).  When the LDD dose is increased beyond a certain point, the electric field builds up at 

the gate and causes avalanche before the drift region becomes depleted, resulting in decreased BVDSS. 

 

Figure 23:  Simulated LDD Implant Dose versus BVDSS and RDSON 
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Threshold voltage is determined primarily by the P-Channel implant and gate oxide thickness.  Variations 

in LDD implant dose have no effect on VTH. 

 

Figure 24:  Simulated LDD Implant Dose versus Threshold Voltage 

 

 

The next set of simulations varied the p-body implant dose while keeping other 

design parameters constant.  The primary design tradeoff related to the p-body implant 

dose is RDSON vs VTH, shown in figure 25.  The increased on-resistance occurs because a 

weaker inversion layer forms in a more highly doped p-type region for a given gate bias, 

meaning that a given gate voltage creates a less conductive channel.  The increase in 

threshold voltage simply shows that a higher gate bias is necessary to invert a more 

heavily doped channel.  The purpose of simulating this effect is to determine what dose is 

necessary to achieve a threshold voltage closest to 2.5 V, as dictated by the design 
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specifications.  The effect of the p-body implant dose on BVDSS should be negligible, as 

shown in figure 26, long as the p-body concentration is heavy enough to prevent punch 

through between the drain and source. 

 

 
 

Figure 25:  Simulated P-Body Implant Dose versus VTH and RDSON 
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Figure 26:  Simulated P-Body Implant Dose versus BVDSS 

 

 

The final set of simulations show the effect of the lateral diffusion of the P-

Channel implant.  Figure 27 shows that the overlap between the poly gate and the P-

Channel diffusion must remain within a narrow range to prevent an adverse effect on 

BVDSS.  If the P-Channel is formed too close to the LDD, then a high electric field will 

form between the LDD and P-Channel.  This results in a decrease in BVDSS.  On the other 

side of the design space, if the P-Channel implant has too small of an overlap with the 

poly gate, then the depletion region between the LDD and the P-Channel can extend all 

the way to the N+ source junction.  This type of punch through behavior results in low 

BVDSS and can also result in high IDSS leakage current. 
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Figure 27:  Simulated P-Body/Gate Overlap versus BVDSS 

 

 

So long as the P-Channel diffuses a sufficient distance underneath the gate to 

prevent punch-through, the main concern becomes the trade-off between threshold 

voltage and on-resistance.  Figure 28 shows how increases in channel resistance can 

significantly increase the total specific RDSON of the transistor cell. 

Once a suitable design space was simulated, a test element group (TEG) mask 

was created.  The primary variables among the TEG designs are shown in Figure 19 at 

the beginning of this section.  The exact design values for each transistor are not 

authorized for public release at the time of this dissertation. 
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Figure 28:  Simulated P-Body/Gate Overlap versus VTH and RDSON 
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First Iteration Experimental Results 

 

Functional devices were obtained from the first TEG fabrication lot with BVDSS 

ranging from approximately 20 V to 34 V.  The most critical design dimension proved to 

be the overlap between the P-Channel and the poly gate (LPCH).  Typical measurements 

for functional devices are shown in Figures 29 – 32.  For functional devices with sharp 

BVDSS and forward IV characteristics, VTH was about 2 V higher than predicted by the 

TCAD modeling.   

Figure 32 shows the measured VTH versus LPCH for different designs on the same 

wafer.  Devices with small LPCH were not functional (VTH < 0.5 V) and exhibited low 

BVDSS.  Devices with nominal LPCH exhibited a high variability in VTH with no 

discernible influence from other layout variables.  Only devices with the largest LPCH 

showed any consistency in parametric yield. 
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Figure 29:  Measured Forward IV Characteristic of PCM Test Transistor 

 

 

 

 
 

Figure 30:  Measured BVDSS of PCM Test Transistor 
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Figure 31:  Measured VTH of PCM Test Transistor 

 

 

 

 
 

Figure 32:  Measured Threshold Voltage vs. P-Channel Length 
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First Iteration SEE Test Results 

 

Devices with BVDSS of approximately 28 V and gate oxide thickness of 350 Å 

were tested for both SEB and SEGR by engineers from Sandia National Laboratories.  

The capacitor-response SEGR voltage was found to be approximately 14 V, which is 

consistent with predictions from the Titus-Wheatley formula.  This suggests that lateral 

and vertical power MOSFETs exhibit similar capacitor response SEGR threshold 

voltages.  Based on the structure of the devices and the nature of the capacitor response 

bias conditions (VGS < 0, VDS = 0), there was no prior expectation of any difference 

between the capacitor response of the two device types.   

The SEB response of the device was found to be much worse than expected.  

Figure 33 shows measured SEB threshold voltages for different LET ions.  At LETs at 

and above 42 MeV·cm
2·mg

-1
, devices failed due to SEB near VDS = 7 V, or about 25% of 

the device’s avalanche voltage. 



94 

 
 

 

Figure 33:  Measured SEB Threshold Voltage vs. LET 
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Second Iteration Modeling and Design 

 

In order to explain the worse than expected SEB safe operating area, a series of 

two-dimensional heavy ion simulations were conducted using TCAD.  No such SEE 

simulations had been performed prior to the original device design and fabrication.  The 

results of these simulations provided insight into the fundamental physical mechanisms 

of single event burnout in the 25 V LDMOS structure.   

The first set of SEE simulations were performed on the original design, which 

features a grounded P+ substrate and no P+ source body tie contact.  The ion trajectory 

was a vertical strike through the N+ drain.  Bias conditions are VDS = 25 V, VGS = 0 V.  

The bottom of the P+ substrate is tied to the same circuit ground as the N+ source, 

however different electrode names for the substrate and source are used in the simulation.  

This allows the substrate current to be plotted separately.  Figure 34 shows a 2-D cross 

section of the simulated transistor half-cell, with the location and trajectory of the 

simulated heavy ion indicated by the red arrow. 

In each transient simulation, the heavy ion charge generation peaks at 10 

picoseconds.  One goal of the simulations was to observe the transient response of 

voltage and current within the 2-D device cross section during the heavy ion strike.  The 

first step was to perform a transient simulation to determine at which times critical 

changes in current were likely to occur.  Then, 2-D device snapshots at those times were 

programmed into future simulations.  The results are a series of time snapshots on a 

roughly logarithmic scale, which illustrate the physical mechanisms of SEB. 
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The red arrow illustrates the simulated trajectory of the heavy ion.  Biasing conditions for SEE simulations 

with this structure are VDS = 25 V, VGS = 0 V.  The substrate and N+ source are tied to a common ground 

node, but use different electrode names, so the current in the substrate can be plotted separately from N+ 

source current.  The dashed line encloses the area shown in many subsequent figures, which illustrate the 

transient response of the device. 

 

Figure 34:  LDMOS Structure for SEE Simulations (Design 1) 
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Figure 35 shows the transient single event burnout waveform in both linear and 

logarithmic time scales.  At time = 10 ps, the heavy ion charge generation reaches its 

transient peak.  This corresponds to the first peak in current in Figure 35b.  Between time 

= 100 ns and 200 ns, it appears that most of the heavy ion charge has been collected, and 

the total current decreases  Until this time, the vast majority of current flow has been 

between the drain and substrate.  After this time, the current suddenly increases again, 

and this time the vast majority of current is flowing from the N+ drain to the N+ source.  

At the end of the simulation, time = 1.5 µs, the device has been experiencing a self-

sustained high level of current for over 1 µs, indicating that single event burnout has 

occurred. 

Figures 36 – 41 show the 2-D transient snapshots of electrostatic potential, 

electric field magnitude, impact ionization, total current density, electron current density, 

and hole current density for the same simulation.  It can be noted that around time = 100 

ns, high levels of impact ionization are observed in three distinct regions – the N+ drain, 

the neck region, and the P+ substrate junction below the drain.  At this time, it can also be 

seen that the entire surface of the device has floated up to a slightly higher voltage than in 

the previous time frame at time = 50 ps.  Hole and electron current begins to flow through 

the source region at the surface of the device, indicating that the source-body p-n junction 

has become forward biased.  From that point forward, the current flow is almost 

exclusive at the device surface.  The MOSFET features at the device surface are 

operating together as an open-base NPN BJT. 
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(a) 

 

 
 

(b) 

 
Linear time scale (a) and logarithmic time scale (b) of terminal currents during single event burnout 

simulation.  Just before time = 1 ns, the parasitic NPN bipolar transistor is activated, and the majority of the 

drain to source current stops flowing through the substrate and instead flows through the N+ source. 

 

Figure 35:  Simulated Single Event Burnout Waveforms (Design 1)  
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Wide view (top) and zoomed-in view (bottom) of transient electrostatic potential during heavy ion strike 

through the N+ drain.  VDS = 25 V, VGS = 0 V, LET = 86 MeV·cm
2·mg

-1
. 

 

Figure 36:  Simulated Electrostatic Potential During Heavy Ion Strike (Design 1) 
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Wide view (top) and zoomed-in view (bottom) of transient electric field magnitude during heavy ion strike 

through the N+ drain.  VDS = 25 V, VGS = 0 V, LET = 86 MeV·cm
2·mg

-1
. 

 

Figure 37:  Simulated Electric Field During Heavy Ion Strike (Design 1) 
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Wide view (top) and zoomed-in view (bottom) of transient impact ionization during heavy ion strike 

through the N+ drain.  VDS = 25 V, VGS = 0 V, LET = 86 MeV·cm
2·mg

-1
. 

 

Figure 38:  Simulated Impact Ionization During Heavy Ion Strike (Design 1) 
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Wide view (top) and zoomed-in view (bottom) of transient total current density during heavy ion strike 

through the N+ drain.  VDS = 25 V, VGS = 0 V, LET = 86 MeV·cm
2·mg

-1
. 

 

Figure 39:  Simulated Total Current Density During Heavy Ion Strike (Design 1) 
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Wide view (top) and zoomed-in view (bottom) of transient electron current density during heavy ion strike 

through the N+ drain.  VDS = 25 V, VGS = 0 V, LET = 86 MeV·cm
2·mg

-1
. 

 

Figure 40:  Simulated Electron Current Density During Heavy Ion Strike (Design 1) 
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Wide view (top) and zoomed-in view (bottom) of transient hole current density during heavy ion strike 

through the N+ drain.  VDS = 25 V, VGS = 0 V, LET = 86 MeV·cm
2·mg

-1
. 

 

Figure 41:  Simulated Hole Current Density During Heavy Ion Strike (Design 1) 
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It was determined from these simulations, that despite the P+ substrate providing 

a very low resistance path for the collection of hole current during the heavy ion strike, 

the parasitic NPN bipolar transistor at the surface of the device was still being activated.  

Therefore, it was concluded that a low resistance P+ source body tie should be added to 

the top surface of the device, to eliminate the open-base NPN BJT.  We developed a new 

structure, shown in Figures 42 and 43, which incorporates the P+ body tie as well as a 

highly doped P+ buried layer, which runs underneath the P-Channel region.  The P+ 

buried layer is degenerately doped for very low resistance.  This type of structure was 

thought to provide a very low base resistance at the surface.  Also, any electrons being 

injected from the N+ source would have to travel across the wide P+ buried layer, which 

would recombine many of the electrons and reduce the gain of the parasitic NPN.  The 

P+ buried layer was placed approximately 0.5 µm deep, in order to prevent incursion into 

the channel region, so that it would not significantly increase VTH of the MOSFET. 

We theorized that the P+ source body tie and P+ substrate would work in parallel 

to share the hole current during the ion strike, but we still expected most of the hole 

current to flow through the large P+ substrate.  We also recognized, however, that the 

grounded P+ substrate was a source of impact ionization during the simulated ion strike.  

By fixing the potential at the P+ substrate junction, that junction formed an electrostatic 

potential barrier at which a high electric field would form during the transient, as had also 

been reported for N-channel devices [29].  We therefore decided to explore the option of 

leaving the P+ substrate floating, to observe how the electric field might be reshaped and 

whether we could eliminate or suppress that source of impact ionization. 
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Cross sectional drawings of original (top) and redesigned (bottom) 25 V LDMOS with P+ buried layer 

source body tie.  The P+ body tie and N+ source are silicided and tied to a common contact. 

 

Figure 42:  First and Second Iteration 25 V LDMOS Designs 
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Wide view (top) and zoom-in view (bottom) of redesigned 25 V LDMOS with P+ buried layer source body 

tie.  The P+ body tie and N+ source are tied to a common contact, indicated by the green shaded area at the 

top left corner of the device. 

 

Figure 43:  Redesigned 25 V LDMOS with P+ Buried Layer Source Tie 
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The results of the two sets of simulations on the improved device structure, one 

set with a grounded substrate and one set with a floating substrate, are presented in 

Figures 44 – 50.  These simulations used the same heavy ion model and same VDS and 

VGS biasing conditions as the previous set of simulations for the original device structure 

without P+ buried layer.  In both cases, grounded or floating substrate, no SEB was 

predicted for the new design with P+ buried layer.  Additionally, no activation of the 

parasitic NPN bipolar transistor could be observed in the simulations.  In the waveform 

shown in figure 45, for the device with the grounded substrate, it can be seen that almost 

all the current is carried between the drain and substrate, with very little current flowing 

through the topside source contact. 

The option of floating the P+ substrate did not result in reduced levels of impact 

ionization.  The floating substrate instead became electrically coupled to the drain by the 

highly conductive ion shunt, and the substrate floated up almost to the rail voltage.  At 

that point, almost the entire VDS voltage had to be sustained between the P+ substrate and 

the P+ buried layer.  The electric field hotspot and associated impact ionization simply 

moved from the P+ substrate junction, in the case of the grounded substrate, to the P+ 

buried layer, in the case of the floating substrate.  The floating substrate was thought to 

be a worse case than the grounded substrate, because of the close proximity of the impact 

ionization to the base-emitter p-n junction, and the increased current flow through the P+ 

buried layer, which made it more likely to induce a resistive voltage drop across the base.  

The grounded P+ substrate seemed to distribute the current and electrical stress much 

more evenly throughout the device, which should translate to improved SEB SOA.  
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Linear scale (top) and log scale (bottom) single event transient waveforms for the redesigned structure with 

P+ buried layer and a floating P+ substrate.  No activation of the parasitic NPN bipolar transistor was 

observed.  This simulation uses the same biasing and LET conditions (VDS = 25 V, VGS = 0 V, LET = 86 

MeV cm
2
 mg

-1
) that resulted in SEB during simulation of the original MOSFET design. 

 

Figure 44:  Simulated Single Event Transient Waveforms  

(Design 2 Floating Substrate) 



110 

 

 
 

Linear scale (top) and log scale (bottom) single event transient waveforms for the redesigned structure with 

P+ buried layer and a grounded P+ substrate.  No activation of the parasitic NPN bipolar transistor was 

observed.  This simulation uses the same biasing and LET conditions (VDS = 25 V, VGS = 0 V, LET = 86 

MeV cm
2
 mg

-1
) that resulted in SEB during simulation of the original MOSFET design. 

 

Figure 45:  Simulated Single Event Transient Waveforms  

(Design 2 Grounded Substrate) 
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Potential contours during heavy ion strike for floating substrate (top) and grounded substrate (bottom). 

 

Figure 46:  Simulated Electrostatic Potential During Heavy Ion Strike (Design 2) 
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Electric field during heavy ion strike for floating substrate (top) and grounded substrate (bottom). 

 

Figure 47:  Simulated Electric Field During Heavy Ion Strike (Design 2) 
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Impact ionization during heavy ion strike for floating substrate (top) and grounded substrate (bottom). 

 

Figure 48:  Simulated Impact Ionization During Heavy Ion Strike (Design 2) 
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Total current density during heavy ion strike for floating substrate (top) and grounded substrate (bottom). 

 

Figure 49:  Simulated Total Current Density During Heavy Ion Strike (Design 2) 
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Hole current density during heavy ion strike for floating substrate (top) and grounded substrate (bottom). 

 

Figure 50:  Simulated Hole Current Density During Heavy Ion Strike (Design 2) 
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Second Iteration Experimental Results  

 

A second design matrix containing transistors with varied drift length was used to 

generate a new TEG mask, and a second wafer lot was run using wafers with varied epi 

layer thicknesses.  Also, the nominal gate oxide thickness for the device was increased 

from 350 Å to 600 Å, to increase SEGR hardness.  As mentioned previously, drift 

resistance RD makes up a large portion of the total RDSON of the LDMOS.  Increasing drift 

length LN increases both BVDSS and RDSON of the MOSFET.  Similarly, increasing the 

gate oxide thickness leads to an increase in VTH and a decrease in gm, which leads to an 

increase in channel resistance.  Channel resistance accounts for another large portion of 

the total RDSON of the transistor.  The increase in drift length, compounded by the increase 

in gate oxide thickness, produced significantly higher RDSON for the second iteration 

devices.  Additionally, to compensate for the higher VTH due to the thicker oxide, the P-

Channel implant dose had to be reduced, which increases the base resistance of the 

parasitic NPN bipolar transistor near the surface of the MOSFET.  Similarly, the P+ 

buried layer implant dose and energy had to be tuned to avoid up-diffusion of the P+ 

buried layer implant into the MOS channel region, which would have resulted in high 

RDSON.   

The result of the second iteration design was an improvement in SEB safe 

operating area, as shown in Figure 51.  At LET = 14 MeV cm2 mg-1, first iteration 

devices with normalized LN = 0.75 had an SEB threshold voltage of only 12 V.  The SEB 

threshold voltage was improved to 17 V in the second iteration design with the same drift 
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length.  Devices with longer drift lengths from the same wafer were able to achieve SEB 

threshold voltages up to 28 V, however those devices had 30% higher RDSON.   

Further SEB safe operating area improvements were accomplished by using 

thinner epi layers to reduce the charge collection volume of the MOSFET, as well as 

varying the P+ buried layer implant conditions, as shown in Figure 53.  SEB threshold 

voltages increased from approximately 28 V to 38 V with further optimization of these 

design metrics.   

 

 
 

Measured SEB threshold voltage vs. drift length for second iteration designs with P+ buried layer.  Longer 

drift length improve SEB safe operating area but also increases RDSON.  LET = 14 MeV·cm
2·mg

-1
 

 

Figure 51:  Measured SEB Threshold vs. Drift Length (Second Iteration) 

 

 

0 

5 

10 

15 

20 

25 

30 

0.6 0.8 1 1.2 1.4 

SE
B

 T
h

re
sh

o
ld

 V
o

lt
ag

e
 (

V
) 

Drift Length (A.U.) 

Measured SEB Threshold Voltage vs. Drift Length 



118 

 
 

 
Measured RDSON and BVDSS vs. Drift Length for second iteration designs with P+ buried layer. 

 

Figure 52:  Measured BVDSS and RDSON vs. Drift Length (Second Iteration) 
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Improvements in SEB safe operating area due to variation in epi layer thickness and P+ buried layer 

process conditions.  LET = 14 MeV·cm
2·mg

-1
 

 

Figure 53:  SEB Threshold Voltage vs. Epi Thickness and P+ Buried Layer Implant 
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CHAPTER FIVE: 150 V SOI RESURF THIN FILM LDMOS 

 

This chapter described the development of a medium voltage LDMOS power 

MOSFET, which is designed with resistance to single event radiation effects.  Compared 

to bulk silicon, thin layer SOI substrates render LDMOS devices a considerably 

improved breakdown voltage vs. on-resistance trade-off due to the more ideal electric 

field distribution – the so called SOI Resurf principle [36]-[39].  This is especially true in 

the voltage range over 100 volts.  In addition, the thin SOI layer significantly reduces the 

reverse recovery charge of the inherent body diode of the LDMOS device, further 

lowering the total switching power loss [10].  Furthermore, we hypothesize that the 

silicon volume affected by the heavy ion irradiation is limited to the thin SOI layer, 

resulting in a much reduced photo current and subsequently improved single event 

radiation hardness.  Previous reports on the radiation response of SOI MOSFETs were 

primarily focused on TID effects, particularly on the buildup of radiation-induced trapped 

charge in the buried oxide (BOX) layer [40]-[44].  Most such literature focused on the 

response of SOI logic devices such as NMOS and PMOS, rather than higher voltage 

power devices such as LDMOS.  No published studies specifically explored the heavy 

ion radiation response of SOI lateral power devices.   

In this work, we focus on developing rugged LDMOS transistors on SOI substrate 

with very low gate charge which are optimized for MHz frequency switching applications 

and hardness against single event radiation effects.  The concept behind this device is to 

improve the tradeoff between BVDSS and RDSON using the SOI Resurf effect, to minimize 

the charge collection volume during a heavy ion strike by using a thin SOI device layer, 
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and to incorporate device features to enhance avalanche ruggedness and minimize gate 

charge. 

 

Prior Art of SOI Resurf LDMOS 

 

Figures 54 and 55 show two different prior art SOI LDMOS structures.  The 

structure in Figure 54 is a classic ultra-thin film SOI Resurf LDMOS.  Previous work on 

this type of SOI LDMOS was mainly focused on optimizing the tradeoff between BVDSS 

and RDSON based on the SOI Resurf principle [36]-[39].  Those works analytically defined 

the optimization of the lateral doping profile of the LDD region of the power MOSFET, 

where the heaviest LDD doping concentration occurs near the N+ drain, and the doping 

concentration is linearly decreased toward the source/drain p-n junction.  This gives the 

theoretically optimal tradeoff between BVDSS and RDSON for an SOI LDMOS.  Those 

structures were fabricated on thin SOI device layers, generally on the order of 100-200 

nm thick.  This allows the N+ drain to diffuse all the way to the buried oxide layer, 

thereby reducing the optimization of the LDD doping profile to a 1-D problem in the 

lateral direction.  While this linearly-graded thin SOI LDMOS structure provides for the 

lowest possible RDSON, the issues of gate charge, switching losses, and SOA were not 

discussed.  It is thought that this type of device would not be very rugged, because the 

thin SOI device layer does not allow for a low resistance P+ body contact, thereby 

making the parasitic NPN bipolar transistor more susceptible to activation during 

avalanche. 
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Some designs were also reported which focused on using “adaptive Resurf” and 

other techniques in order to form a rugged LDMOS, however those works also did not 

include gate charge or switching efficiency as part of the design optimization equations 

[45]-[48].  In fact, the switching efficiency of many of these LDMOS structures is 

assumed to be quite low, due to high Miller capacitance.  This is because the popular 

LDMOS design requires the poly gate to double as a field plate, overlapping the drain 

region and thereby reducing the peak electric field between the drain and the gate oxide.  

Normally a thick field oxide is present between the poly gate and the drain, which helps 

limit the Miller capacitance to some degree but does not eliminate the penalty entirely.  

An example of such a structure is shown in Figure 55. 

Note that the structure in Figure 55 uses a thicker SOI device layer than the ultra-

thin film SOI LDMOS in Figure 54.  This allows for the inclusion of two features which 

enhance avalanche ruggedness.  Once is the deeper PCH region, which contains more 

charge and can be more heavily doped than the thin PCH region in the ultra-thin film 

transistor.  This allows for a lower base resistance to suppress the parasitic NPN 

transistor.  The second major feature to improve avalanche ruggedness is the N buffer 

around the N+ drain.  This region is doped approximately one order of magnitude higher 

than the surrounding N Drift region.  Its purpose is to prevent punch through into the N+ 

drain when the N drift region enters high injection during avalanche or bipolar activation. 
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Ultra-thin film LDMOS transistor.  This device structure uses the SOI Resurf effect to produce a superior 

tradeoff between RDSON and BVDSS.  The SOI Resurf effect allows the vertical component of the electric 

field to be sustained across the buried oxide layer.  This design technique requires that the handle wafer 

underneath the buried oxide is fixed at a low voltage, usually the source voltage. 

 

Figure 54:  Ultra-Thin Film SOI Resurf LDMOS 

 

 

 

 

 
 

This type of SOI device can be made very rugged against avalanche current, but it is thought that the gate 

charge is too high for efficient MHz frequency power switching applications.  This device would suffer 

from high QGD, because of the large overlap between poly gate and the lightly doped N drift region.  The 

inclusion of the drain buffer helps to improve avalanche ruggedness.  This is the so-called “adaptive 

Resurf” design. 

 

Figure 55:  SOI LDMOS on N-Type SOI with Field Oxide and Gate Field Plate 
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Device Concept 

 

Unlike previously reported ultra-thin film SOI Resurf devices, we use a relatively 

thick 1.0 μm p-type SOI device layer on top of a 1.0 μm buried oxide.  The device 

features a P+ buried layer tied to the source and an N-buffer region surrounding the N+ 

drain, both of which are features intended to increase avalanche ruggedness.  The STI 

oxide runs along a portion of LDD, and a source metal extension over the drift region 

acts a field plate to reduce the electric field between drain and gate.  A cross-sectional 

drawing and SEM micrograph of the new SOI LDMOS are shown in figures 56 and 57 

respectively.   

The P+ buried layer is implanted at a depth near the buried oxide interface and 

tied to the P+ source using contacts spaced every 1 μm along the width of the transistor.  

This provides a very low resistance path to divert hole current away from the sensitive 

base-emitter junction of the parasitic NPN bipolar transistor.  The SOI layer is 

sufficiently thick so that the vertical diffusion of the heavily doped P+ buried layer does 

not significantly affect the P-channel doping concentration near the surface.  This allows 

for a “body-under-source” design [41] to eliminate back channel leakage, a TID effect 

commonly associated with SOI LDMOS.  This also allows the design of the P+ buried 

region to be decoupled from the MOSFET threshold voltage to such a degree that the P+ 

buried layer can be degenerately doped. 



125 

 
 

 

Figure 56:  Cross Section Drawing of SEE-Hardened 150 V SOI Resurf LDMOS 

 

 

The LDD region is formed differently from previously reported SOI LDMOS.  In 

previous works, the lateral grading of the LDD doping concentration was achieved by 

patterning successively larger LDD implant windows from source to drain.  In this 

device, two discrete LDD regions are patterned and then formed using different 

phosphorus implant doses.  The LDD1 implant covers the entire drift region, while the 

LDD2 implant is patterned only in the portion of the drift region near the drain side.  The 

doping concentration of the LDD2 region is defined by the sum of the LDD1 and LDD2 

implant doses.  After implant, the two LDD implants are driven together by a high 

temperature furnace anneal.  The balance of LDD implant doses and patterning, in 

conjunction with the LDD drive, allows the lateral diffusion of the LDD implants to form 
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a near ideal linear grading of doping concentration in the lateral direction in accordance 

with the SOI Resurf principle. 

 

 
 

This SEM cross section shows the source region and a portion of the drift region of the 150 V SOI Resurf 

LDMOS.  The approximate locations of the N+ source and body diode p-n junctions are shown by thin 

white lines. 

 

Figure 57:  150 V SOI LDMOS SEM Cross Section 

 

 

A 0.35 µm thick TEOS-based shallow trench isolation (STI) runs underneath the 

drain edge of the polysilicon gate and along a portion of the lightly doped drain (LDD). 

Effectively, this creates a thin gate oxide between the gate and source but a very thick 
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oxide between the gate and drain.  The primary purpose of the STI is to protect the device 

from SEGR by shielding the thin gate oxide from the high electric field between the gate 

and drain in the event of heavy ion irradiation.  Taking into account the geometric 

relationship between the SOI device layer thickness and the LDD drift length, the STI is 

patterned in such a way as to prevent a heavy ion strike from directly shunting the gate 

oxide to the N+ drain.  In the case of heavy ion trajectory passing across the STI region, 

the induced electric field across the gate oxide caused by the drain-gate shunt will be 

considerably reduced with the STI region sustaining a large portion of the drain-to-gate 

voltage.  

As mentioned previously, STI is typically associated with TID effects such as 

parasitic drain to source leakage in MOS devices and integrated circuits.  Since the STI 

region in our LDMOS has a race track layout pattern and is entirely contained within the 

LDD region of each transistor cell, it does not provide a leakage path directly linking the 

drain to the source of the LDMOS. No special processing techniques were used in this 

work to minimize charge trapping effects in the BOX or STI, although such processing 

techniques have been previously reported [49]-[51]. 

The shallow trench isolation (STI) is formed after the LDD drive, so a portion of 

both LDD implants are consumed by the STI process.  In each design, the drift length and 

transistor cell pitch remain fixed, while the spacing between the STI and the N+ drain 

was varied.  Increasing this spacing causes a greater amount of the LDD1 and LDD2 

implant doses to be preserved in the silicon near the N+ drain, compared to the rest of the 

drift region.  This more heavily doped LDD region acts as a buffer to suppress the so-
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called Kirk effect and improve avalanche ruggedness.  Prior work in LDMOS has 

established the effectiveness of such a buffer technique [45][46][48].  Studies involving 

heavy ion radiation in VDMOS have also established that such a buffer translates to 

improved SEB safe operating area [52]. 

In order to minimize Miller capacitance, we try to minimize both the gate-drain 

overlap and also the LDD doping concentration near the gate.  Instead of being self-

aligned, the LDD1 implant is patterned some distance away from the poly gate and then 

diffused laterally during the aforementioned drive.  Extensive process simulations were 

performed to determine the proper spacing between the LDD1 implant and the poly gate 

to ensure that the drain-source p-n junction is formed on the source side of the STI but 

with minimal overlap of the poly gate.  The location of this junction is also dependent on 

lateral diffusion of the P+ buried layer during the source-drain anneal.  This process 

results in a very low LDD doping concentration underneath the poly, according to 

simulation.   

To further minimize QGD, we avoid the use of the poly gate as a field plate over 

the drain, and instead we extend the source metal across a wide portion of the LDD.  The 

source metal field plate affects BVdss differently depending on the ILD thickness and the 

length of the metal extension over the drift region, the mechanics of which are well 

described in previous literature.  One effect of this design is that the STI is not necessary 

at all to achieve a high breakdown voltage, provided the LDD doses are tuned 

accordingly; however this precludes the formation of the N buffer and was shown to 

sacrifice ruggedness. 

METAL 2 
 
 

METAL 1 
 
 
 
BOX 
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Modeling and Design 

 

TCAD simulation was used extensively in the optimization of the design and 

process.  A variety of designs were incorporated into a test mask array to explore design 

and process tradeoffs.  Figure 58 shows some of the critical design dimensions associated 

with the 150 V SOI LDMOS Structure. 

 

 
 

 

 

Figure 58:  Critical Layout Dimensions of 150 V SOI Resurf LDMOS 
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Whereas the major tradeoff in designing the 25 V epi LDMOS was BVDSS vs. 

RDSON, the major electrical performance tradeoff for the 150 V SOI Resurf LDMOS is 

RDSON vs. QG.  The majority of this tradeoff occurs around the neck region of the 

MOSFET.  LNECK, denoted in Figure 58, is controlled by the combined patterning of the 

PCH, Gate, STI, and LDD masks, along with the time and temperature of the LDD drive.  

If LNECK is made too small, then the conduction of electron current from the drain to the 

MOS channel will be inhibited, resulting in high RDSON.  If the neck is made too large, 

then QGD of the MOSFET will be unnecessarily high.  The other critical dimension in 

determining QGD is the overlap of the source metal field plate over the drift region.  The 

field plate length has a secondary effect on RDSON, due to the change in metal 

interconnect resistance along the first layers of drain and source metal, but the primary 

impacts of  the field plate are on BVDSS and QGD.  There is an optimal field plate length 

corresponding to the device geometry and LDD doping profile.  BVDSS is strongly 

influenced by not only the length of the field plate, but also the vertical distance between 

the field plate and the silicon surface.  In this experiment, we did not vary the thickness 

of this interlayer dielectric, but prior literature has documented the effect [53]. 

LBUFFER has a primary effect on both BVDSS and avalanche ruggedness and a 

secondary effect on RDSON.  The buffer length must be tuned together with the two LDD 

doses and LDD drive conditions, as well as the field plate length, to achieve the desired 

combination of BVDSS and avalanche ruggedness.   

Figure 59 shows the simulated potential contours of a typical design at 150 V.  

The substrate is grounded to the source, and the vertical electric field component between 
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drain and source is is sustained across the buried oxide layer.  For a device rated at 150 

V, the peak electric field across the 1 µm buried oxide is 1.5 mV/cm.  This is well below 

the expected critical electric field of the buried oxide, which is estimated to be between 5 

– 10 MV/cm.   

 

 

 
 

Simulated equipotential contours of the SOI LDMOS biased at VDS = 145 V and VGS = -16 V.  The spacing 

between potential lines indicates the strength of the electric field.  Closely spaced lines indicate a stronger 

field.  The inclusion of the source metal field plate overhanging the drift region, along with the STI field 

oxide, helps to prevent the high electric field in the neck region from limiting the avalanche voltage of the 

MOSFET. 

 

Figure 59:  Simulated Equipotential Contours of SOI LDMOS at VDS = 150 V 
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Figure 60:  Simulated Doping Concentration  

of 150 V SOI Resurf LDMOS Without Buffer 

 

 

 

 
 

 

Figure 61:  Simulated Electrostatic Potential Lines at Avalanche Breakdown  

for SOI LDMOS Without Buffer  
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Figure 62:  Simulated Electric Field Magnitude During Avalanche Breakdown  

for SOI LDMOS Without Buffer 
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Fabrication Process 

 
 

(a) 

 

 

 

 
 

(b) 
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(c) 

 

 

 

 

 
 

(d) 
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(e) 

 

 

 

 

 
 

(f) 

 

 

Figure 63:  150 V SOI Resurf LDMOS Fabrication Process Flow 
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SEE Modeling 

 

2D device simulations were conducted with Sentaurus TCAD using the built-in 

heavy ion radiation model.  The goals of these simulations are to gain a fundamental 

understanding of the mechanisms which might cause SEB within the device and to 

predict whether the SEE hardening features offered the intended capability.  In order to 

accomplish these goals, the time evolution of the heavy ion event was observed in a 

method similar to the 25 V LDMOS.   

 Because the SOI device layer is only 1.0 µm thick, accurate modeling of the 

exact location of the Bragg Peak was not deemed necessary, and the simulations instead 

assume a constant LET along the length of the ion track.  The ion track penetrated the 

entire simulated device structure, through the top silicon device layer, into the buried 

oxide, and completely through the substrate.  The LDMOS source terminal and the 

bottom of the N-type substrate each have their own electrodes in the simulation, with 

both being set to ground potential, so that displacement current within the substrate could 

be independently monitored.  It was quickly determined that the magnitude of the 

displacement current was insignificant compared to the total drain to source current 

during the single event transient.   

The initial series of simulations focused on characterizing the sensitivity of the 

device to strikes at different locations along the lateral device structure.  The goal was to 

determine at which location a strike would produce the largest single event transient or 

was most likely to induce SEB.  This location would then be used as a worst-case 
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coordinate for subsequent simulations, as a control, in order to explore the effects of other 

variables such as LET and various bias conditions.  The results shown in Figure 64 

illustrate, in the case of a strike normal to the silicon surface, that the device is most 

vulnerable near the center of the LDD region.  It should be noted that the peak current 

shown in Figure 64 follows the same trend as the total collected charge for each 

simulated event.  

 

 
 

Initial series of simulated single event transients for heavy ion of LET = 87 MeV·cm2/mg striking different 

locations along the lateral device structure.  This laid the groundwork for subsequent series of simulations, 

which investigated the sensitivity of the LDMOS to more complex heavy ion trajectories. 

 

Figure 64:  Simulated SOI LDMOS Sensitivity to Ion Strike Location 
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In order to determine the spatial distribution of the electrical stress during the 

single event transient (SET), we first observed the SET waveform to determine the time 

at which the peak stress occurred.  During each solve iteration, the simulator calculated 

and recorded the magnitude of the peak electric field in four distinct insulating regions of 

the device – the gate oxide, the STI, the BOX, and the interlayer dielectric.  An example 

of a commonly observed transient response is shown in Figure 65.  This plot includes 

heavy ion charge generation, avalanche charge generation, and peak gate oxide electric 

field.  The charge terms are integrated throughout the entire device structure.   

 

 
 

Peak electric field across the gate oxide was calculated automatically by the simulation.  The Heavy Ion 

Generation and Avalanche Generation are integrated throughout the silicon device layer. 

 

Figure 65:  Simulated Single Event Transient Waveform 
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In each simulated case, the total collected charge was several orders of magnitude 

higher than the charge deposited by the ion.  Avalanche generation accounted for nearly 

all of the collected drain to source current.  The peak electric field in the gate oxide has 

two distinct peaks, each corresponding to different influences.  The first peak occurs 

around 50 picoseconds, shortly after the initial deposition of heavy ion charge.  The 

second peak occurs near 1 ns and coincides with the peak generation of avalanche charge.  

This “twin peaks” waveform of the gate oxide electric field was characteristic of all 

simulations where the ion trajectory passed through the middle of the LDD region.  

Once the magnitude and time of the peak transient electrical stress was known, we 

observed the 2-D device cross section that had been generated during the solve iteration 

corresponding to the time of interest.  This allowed us to determine the exact spatial 

distribution of electrical stress within the device.  The peak electric field in the gate oxide 

occurs in the “neck” region, where the poly gate overlaps the STI and the LDD.  This is a 

region normally associated with high electric fields in LDMOS devices, where the gate 

and drain are strongly coupled.  As the depletion region is perturbed by the deposition 

and collection of heavy ion charge, the fixed potential at the gate creates a boundary at 

which no further depletion of the LDD can occur, resulting in high transient electric field 

stress during the heavy ion event.   

The final series of simulations explores the effects of angled ion strikes to 

investigate whether device stress is dependent on total deposited charge, ion angle of 

incidence, or some combination of both.  In each of the simulated conditions, the ion 

trajectory is oriented around the center point of the LDD region, as shown in Figure 66.  
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Effective LET provides a measure of total deposited charge and is calculated as LET / 

cos(θ), where theta represents the angular difference (in degrees) between the ion 

trajectory and a line normal to the silicon surface.   

TCAD includes the necessary charge transport models to simulate the SEB failure 

mechanism.  TCAD is not so well suited toward the prediction of SEGR or microdose 

effects, since more fundamental atomic-scale physics are involved in those failure 

mechanisms.  Therefore only a relative comparison of gate oxide electrical stress for 

various heavy ion conditions is presented as an indicator of possible susceptibility to 

damaging effects in the oxide.   

Figure 67 shows the simulated peak current density during ion strikes at various 

angles of incidence.  SEB appears primarily dependent on the total deposited charge 

(LETEFF), independent of the normal ion LET.  It should be noted that the simulator 

predicted a worse SEB safe operating area (SOA) than was demonstrated in the 

experimental data.  These simulations should not be taken as an accurate prediction of 

expected real-world SOA, but instead serve only to illustrate a general trend in the 

relationship between SEB, deposited charge, and ion angle of incidence.  Further 

experimental investigation would be required to calibrate the TCAD model to predict a 

real world safe operating area with any degree of confidence. 

Figure 68 shows the simulated peak electric field in the gate oxide during the 

same set of simulations shown in Figure 67.  The plotted electric field is the first peak of 

the characteristic transient electrical stress waveform described previously and shown in 

the example waveform in Figure 65.  This peak is strongly associated with the initial 
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distribution of heavy ion generated charge and initial collapse of the depletion region, 

occurring prior to the majority of avalanche generation and before the activation of the 

parasitic NPN bipolar transistor.  

The simulations show that the magnitude of the gate oxide electric field is closely 

associated with the heavy ion angle of incidence.  For simulated strikes with the same 

deposited charge but different angles of incidence, the simulator predicts that a steeper 

angle of incidence will produce a higher electric field in the gate oxide.  Gate oxide 

electrical stress is consistently higher during ion strikes that occur at shallower angles.  

One possible explanation of this is due to the positioning of the deposited charge relative 

to the gate oxide.  More charge is deposited near the gate during an angled strike.  

However, no significant change in electric field is observed for ions of different LETs at 

the same angle of incidence, until the strike actually intersects the gate, which is only the 

case in a simulated 76 degree angle.  This trend indicates that there may be a stronger 

coupling of the gate and drain, as the ion angle becomes steeper and penetrates into zones 

of higher potential in the drift region. 
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Diagram illustrating the modeled heavy ion trajectory for strikes at varied angles of incidence passing 

through the center point of the LDD region. 

 

Figure 66:  Diagram of Heavy Ion Angled Trajectory 
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Simulated magnitude of peak current density vs Effective LET for different LET ions.  VDS = 120 V, VGS 

= 0 V. 

 

Figure 67:  Simulated 150 V SOI LDMOS SEB Safe Operating Area 

 

 

 
 

Simulated magnitude of gate oxide electric field vs. ion angle of incidence for different LET ions.  VDS = 

120 V, VGS = 0 V.  Steady state gate oxide electric field = 1.1×10
6
 V/cm. 

 

Figure 68: Simulated Gate Oxide Electrical Stress vs. Ion Angle of Incidence  
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Analysis of SEB Failure Mechanism 

 

Figure 69 shows the simulated transient current waveforms of the LDMOS device 

during heavy ion irradiation with a passing case observed at VDS of 120V but a failing 

case at VDS of 150V. In the passing case, the transient drain to source current recovers to 

zero quickly after the ion strike, whereas the transient current becomes self-sustaining in 

the failing case.  Snapshots of internal physical quantities are plotted in Figure 70 to 

better illustrate the time evolution of the electric field and avalanche generation during a 

heavy ion strike.  These simulations are for strikes within the LDD, which the simulator 

predicts is the most sensitive region of the SOI LDMOS structure in terms of inducing 

SEB.   

Heavy ion charge generation peaks at 10 picoseconds.  Shortly afterwards, a wide 

portion of the space charge region collapses near the strike location due to the large 

number of mobile carriers generated by the incident ion.  These generated electrons and 

holes are swept laterally toward the drain and source terminals respectively.  Because the 

depletion region in the center of the LDD has collapsed, the electric field is redistributed 

to either edge of the drift region, near areas of fixed potential, including the highly doped 

N+ drain, the P+ buried source layer, and the LDD region immediately adjacent to the 

poly gate.  The resulting high electric fields at both lateral ends of the LDD generate high 

levels of impact ionization near the N+ drain diffusion and near the source/drain p-n 

junction, that is, the base/collector junction of the parasitic bipolar transistor, underneath 

the poly gate.  This spatial distribution of electric field and avalanche generation is shown 
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at time = 100 ps in Figure 70.  This corresponds to the first characteristic transient peak in 

the gate oxide electric field, shown in Figure 65. 

Avalanche generation typically reaches a peak near time = 1 ns.  This peak in 

avalanche generation corresponds in time to the second peak in the characteristic gate 

oxide electric field waveform.  At this time, the activation of the parasitic bipolar 

transistor is observed in most simulated cases, passing or failing.  Forward-active NPN 

conduction is indicated by a sharp increase in the electron current flowing through the N+ 

source/emitter electrode.  The temporary activation of the parasitic BJT by itself does not 

necessarily lead to SEB failure.  Nevertheless, it is advantageous to suppress the NPN 

BJT by including a P+ buried layer to assist in recombining the electrons injected from 

the N+ source, reducing the gain of the NPN BJT, and allowing the device more time to 

collect the avalanche-generated charge as the depletion region is re-established. 

Near 5 ns is the most critical time for the device, in which sufficient levels of 

avalanche generation can drive the device into a sustained bipolar operating mode, 

resulting in SEB.  Near this time, the BJT operation of the passing case in Figure 8 starts 

to diminish, and the depletion region begins to be re-established to support the VDS 

voltage without creating a high electric field in the device.  However, for the failing case 

shown in Figure 8, its BJT operation is not only sustained but also enters into a second 

breakdown mode.  This is because the very high BJT collector current causes a 

redistribution of the electric field in the depletion region, creating a new peak electric 

field region (“hot spot”) near the N+ drain.  The new “hot spot” induces more avalanche 

generation, which in turn reinforces the BJT operation.  This is the so-called Kirk effect, 
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wherein the collector is operating in a high injection regime, and the depletion region 

extends all the way to the N+ drain diffusion.  The inclusion of a drain buffer helps to 

suppress this effect, by preventing the depletion region from punching through to the N+ 

drain and thereby reducing avalanche generation in the collector.  In cases where stresses 

are sufficient to extend the depletion region into the N+ drain, the device is unlikely to 

survive. 

 

 
 

 
Simulated SEE transient current waveforms for passing and failing cases.  These cases are for the same ion 

LET and trajectory, simulated at two different drain to source voltages.  Strong activation of the parasitic 

NPN bipolar in the failing case (VDS = 150 V) is indicated by a sharp rise in emitter electron current. 

 

Figure 69:  Simulated Single Event Transient and Single Event Burnout Waveforms 
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Figure 70:  150 V SOI LDMOS Time Evolution of Heavy Ion Strike  

and Single Event Burnout 
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Experimental Results 

 

Devices were fabricated in a 0.35 μm CMOS foundry on a SmartCut® SOI 

substrate.  Device performance varied across a wide range of designs and process 

conditions using a test element group mask of 34 different designs, and a wafer lot 

containing 25 process splits.  DC electrical characterization was performed on-wafer 

using a FET tester, and the probe data was analyzed to select candidate samples for UIS 

testing and AC characterization.  SEE Testing was conducted on pre-screened samples 

which were wirebonded and mounted on evaluation boards with the top of the surface 

exposed to the air. 

 

 

DC and AC Electrical Characterization 

 

Figure 71 shows the BVDSS curve for a design without drain buffer, with a 

measured BVdss = 180 V.  BVDSS of a design which included the drain buffer was 165 V.  

Figure 72 shows the measured forward I-V characteristics of the same device.  RDSON 

values measured at Ids = 4 A and Vgs = 8V, 10V, and 12V were 115 mΩ, 109 mΩ, and 

102 mΩ respectively.   

The device is designed with very low gate-to-drain charge and reverse recovery 

charge in order to improve switching efficiency at MHz switching frequencies.  Figure 73 

shows the typical gate charge waveforms. QGD for this design is only 0.8 nC measured at 
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Ids = 4 A, Vds = 72 V and Vgs = 8 V.  Figure 74 shows the reverse recovery current 

waveform.   

Even with the inclusion of the P+ buried layer and drain buffer, ruggedness varied 

across a wide array of designs and processes.  A strong relationship was noted between 

the LDD dose and UIS capability, as shown in Figure 75.  Self-driven UIS current was 

limited to 45 A, using the JEDEC UIS test method with a 25 Ω gate to source resistor.  

Separate UIS testing without the gate resistor displayed an avalanche current capability of 

73 A without failure, at a peak voltage of 230 V. 

Table 4 summarizes basic device performance of the SOI LDMOS as compared to 

a state of the art 150 V commercial trench power MOSFET [54] and a 150 V rad-hard 

VDMOS [55].  The SOI LDMOS device demonstrates a specific on-resistance of 918 

mΩ·mm
2
.  Although modern power trench MOSFETs typically offer a higher cell density 

and a lower area-specific on-resistance, the significantly smaller gate charge of the 

LDMOS more than compensates for this disadvantage and results in an electrical 

performance figure of merit (FOM) QGD×RDSON of 37% better than the trench MOSFET 

and 20x better than the rad-hard VDMOS.  This FOM directly indicates the total 

MOSFET power loss including conduction, switching, and gate drive power losses.  

Additionally, the smaller reverse recovery charge (QRR) of the SOI LDMOS offers a 

further advantage in reducing switching losses, which is not accounted for in the figure of 

merit. 
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Figure 71:  Measured BVDSS of SOI Resurf LDMOS 

 

 

 
 

Figure 72:  Measured Forward IV Characteristic of SOI Resurf LDMOS 
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Figure 73:  Measured Gate Charge Waveform of SOI Resurf LDMOS 

 

 

 

 
 

Figure 74:  Measured Body Diode Reverse Recovery Waveform of SOI Resurf LDMOS 
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Figure 75:  Measured UIS Current vs Drain Buffer Length for Various Process Splits 

 

 

 

Table 4: Key Electrical Parametrics: Comparison Against  

Modern 150 V Power MOSFETs 

 

Parametric This Work 

 

150 V 

Commercial 

Trench VDMOS 

[54] 

 

150 V Rad-Hard 

VDMOS [55] 

On-State Resistance 

RDSON (mΩ) 
102 56 90 

Total Gate Charge 

QG (nC) 
4.6 8.9 50 

Gate-to-Drain Charge 

QGD (nC) 
0.8 2.0 18 

Body Diode Reverse Recovery Time 

TRR (ns) 
36 61 300 

Body Diode Reverse Recovery Charge 

QRR (nC) 
32 71 2600 

Figure of Merit 

RDSON × QG 
469 498 4500 

Figure of Merit 

RDSON × QGD 
82 112 1620 
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SEE Testing Results 

 

Heavy ion radiation testing was conducted using the Texas A&M University 

Cyclotron Institute K500 cyclotron.  All runs were performed at room temperature using 

the 15 MeV/amu Au beam to a fluence of 1.0×107 ions/cm2.  Linear energy transfer 

(LET) within the 1.0 µm thick SOI device layer was calculated at 87 MeV cm2 / mg, 

based on overlayer thickness of the device.  A summary of SEB and SEGR test data is 

summarized in Table 5. 

Testing was conducted in accordance with MIL-STD 750E Method 1080 – test 

method for SEB and SEGR testing of power MOSFETs.  In accordance with the test 

standard, the ion beam was oriented normal to the device surface during all runs.  The 

device samples were wirebonded to a small PCB evaluation board with the top surface of 

the die exposed.  A low inductance test fixture was used which supplied ample gate-to-

source and drain-to-source capacitance, using high speed capacitors mounted in close 

proximity to the DUT.  Drain-to-source and gate-to-source DC leakage currents were 

monitored using Keithley precision multimeters.  Voltage and current waveforms were 

monitored on a 2.5 GS/s digital oscilloscope.  Each sample was electrically tested for 

both BVdss and Vth prior to placement in the test chamber and again upon removal.   

Due to the limited number of available beam runs, it was necessary to forego 

characterization of the capacitor response of the gate oxide and instead proceed directly 

to testing the SEB and SEGR safe operating areas (SOA) of the device.  SEB tests were 

conducted with the gate and source power terminals connected to a common ground.  The 

DC drain-to-source breakdown voltage of each sample was similar – approximately 164 
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V.  During SEB tests, the devices were biased up to 160 V with no destructive failures 

observed. 

SEGR testing was done by simultaneously applying gate-to-source and drain-to-

source voltages, with the understanding that this represented the worst-case test condition 

for SEGR.  Devices were biased with VGS = -16 V and VDS = 160 V (within 4 V of the 

DC breakdown voltage) simultaneously with no destructive SEGR failures observed.  

Unfortunately these devices were not further tested to failure at even more stressful 

biasing conditions due to the limited beam time, however the measured data 

demonstrated a rectangular SEE safe operating area matching the VGS and VDS 

maximum ratings for this class of power MOSFETs. This represents a significant 

improvement over conventional power VDMOS devices that typically have a SEB and 

SEGR SOA considerably below their maximum VGS and VDS DC ratings [52].  Gate 

oxide thickness for each sample is 55 nm, which should support a capacitor SEGR 

voltage of approximately 21 V, according to the Titus-Wheatley estimation for a gold ion 

strike at normal incidence. 
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Table 5:  Heavy Ion SEB / SEGR Experimental Results 

 

 

VDS (V) VGS (V) 
VGS / tox 

(V/cm) 

Ion 

Species 

LET 

(MeV∙cm2/mg) 

Flux 

(ions/cm2/s) 

Fluence 

(ions/cm2) 

Deposited 

Dose 

(rads(Si)) 

SEB 

(Y/N) 

SEGR 

(Y/N) 

145 0 N/A Au 87 2.6E+4 1.0E+7 13.9k N N 

160 0 N/A Au 87 3.4E+4 1.0E+7 13.9k N N 

145 -12.8 2.3E+6 Au 87 2.7E+4 1.0E+7 13.9k N N 

145 -16.0 2.9E+6 Au 87 3.4E+4 1.0E+7 13.9k N N 

160 -16.0 2.9E+6 Au 87 3.6E+4 1.0E+7 13.9k N N 

160 -16.0 2.9E+6 Au 87 3.8E+4 1.0E+7 13.9k N N 

 

 

Heavy ion test data of six device samples (one sample per test condition) using designs from the same 

wafer.  BVDSS of these samples is approximately 164 V with a gate oxide thickness of 55 nm.  The ion 

beam is oriented normal to the silicon surface for all runs.  Gate-to-source leakage current pre- and post-

irradiation remained unchanged at levels below 1 nA.  Devices began showing increased drain-to-source 

leakage current (IDSS) at fluences between 2E+6 and 8E+6 ions/cm
2
.  The leakage current was reduced 

substantially after a short room temperature anneal, during which each sample remained biased at the same 

VDS and VGS conditions as during irradiation. 
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CHAPTER SIX: CONCLUSIONS AND FUTURE WORK 

 

Summary 

 

This work reports on two new classes of SEE hardened lateral power MOSFETs 

intended for MHz frequency power switching applications.  Both lateral devices were 

fabricated in a CMOS foundry and offer the possibility of monolithic integration into 

power integrated circuits.  The first reported device is a low voltage 25 V Resurf LDMOS 

fabricated on P-type epitaxial silicon on a P+ silicon substrate.  The second reported 

device is a 150 V SOI Resurf Thin Film LDMOS fabricated on a SmartCut™ SOI wafer, 

with a 1.0 µm thick P-type silicon device layer with a 1.0 µm thick buried SiO2 layer on 

top of an N handle wafer.  Both devices incorporates features to improve avalanche 

ruggedness and switching efficiency, both of which are primary concerns for high 

frequency power switching.  The improvement in avalanche ruggedness also provides 

additional hardness against single event burnout.   

The 25 V Epi LDMOS was originally designed with no top-side P+ source body 

tie, with a strategy of providing the P+ body tie at the bottom of the P+ substrate.  This 

design did not produce the expected avalanche ruggedness, since the parasitic NPN 

transistor structure at the surface of the device could still be activated.  Later, the device 

was redesigned to provide a top-side P+ source body tie which connected to a P+ buried 

layer extending underneath the poly gate.  The purpose of this device feature is to provide 

very low resistance path for the diversion of hole photocurrent and avalanche hole current 

away from the sensitive base-emitter junction of the parasitic NPN BJT.  This device 



158 

demonstrated a significant improvement in SEB threshold voltage.  Optimization of the 

epitaxial layer thickness and P+ buried layer process were shown to have a significant 

impact on single event burnout threshold voltage.   

The length of the drift region had a similar impact on SEB threshold voltage, 

which scaled with BVDSS.   This leads to a significant tradeoff between single event 

radiation hardness and RDSON.  The 25V LDMOS demonstrated lower specific RDSON than 

state of the art radiation hardened power MOSFETs, because it was designed with a 

much lower BVDSS.   

The 150 V SOI LDMOS demonstrate improved electrical performance over state 

of the art commercially available 150 V power MOSFETs while at the same time 

demonstrating single event radiation hardness improved over state of the art radiation 

hardened planar VDMOS.  This device exhibited very low QGD and a correspondingly 

low RDSON×QG figure of merit.  The device also exhibited approximately 50% lower QRR 

than state of the art 150 V commercial TrenchFET, which suggests an additional 

improvement in switching efficiency not accounted for in the figure of merit.  The SOI 

LDMOS device also exhibited extreme avalanche ruggedness due to the incorporation of 

both a P+ source buried layer and an N drain buffer region.  Unclamped inductive 

switching tests demonstrated a peak avalanche power capability of over 1.85×10
5
 W/cm

2
.  

Testing was performed at the Texas A&M University Cyclotron Institute, using 

the most highest available LET ion beam.  Testing with the 15 MeV/amu Au ion beam 

shows that SEB did not occur, even when the LDMOS is biased within a few volts of its 

DC drain-to-source breakdown voltage.  No SEGR failures were observed when the 
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maximum possible VDS and -16 V VGS were applied simultaneously, demonstrating a 

SEGR safe operating area much improved from the traditional VDMOS devices.  These 

tests were all performed using ion strikes at an angle of incidence normal to the silicon 

surface, per MIL-STD 750E Method 1080.  SEB performance against a normal incidence 

strike is enhanced by the small collection volume afforded by the thin SOI device 

structure.  Further SEB resistance was accomplished through implementation of 

customized doping profiles and device features to enhance avalanche ruggedness. 

Measured data shows that the SOI LDMOS offers a high degree of resistance to 

SEGR, when the ion strike is normal to the silicon surface.  This may be because a 

normal incidence strike naturally prevents a direct shunt between the gate oxide and the 

high potential zones of the depletion region in the lateral structure.  Prior work 

[16[33][56] in evaluating worst case test conditions for VDMOS structures indicates that 

penetration into high potential zones of the depletion region has a strong effect on the 

SEGR response, and so we suspect the same might be the case for LDMOS.  In that case, 

an angled strike may be a worse case for inducing SEGR and other damaging effects in 

the oxide, however this theory must be tested in future work. 

 

Future Work 

 

Further heavy ion testing of the 25 V LDMOS should be conducted using ions of 

higher LET.  The SEB and SEGR safe operating area of the device should be 

characterized with respect to LET and ion angle of incidence.  If the device fails to 
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demonstrate an acceptable SEB safe operating area for typical applications, then 

additional design optimizations should focus on the P+ buried layer process conditions.  

If the device fails to exhibit an acceptable SEGR safe operating area, then more radical 

design changes should be considered, which might help to further reduce the electrical 

coupling between the gate and drain. 

Regarding the 150 V SOI LDMOS, simulations suggest that the small collection 

volume afforded by a 1.0 µm thin SOI device layer would not guarantee SEB immunity.  

In simulation, the SOI LDMOS remains susceptible to SEB, however an accurate real 

world safe operating area could not be predicted, due to no failures being observed 

experimentally.  In terms of experimentally inducing SEB in this device using today’s 

SEE test facilities, an angled ion strike would be necessary.  Future heavy ion testing on 

both devices should be conducted to test the response to ion angle of incidence.   
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