11 research outputs found

    Characterizing intersection graphs of substars of a star by forbidden subgraphs

    Get PDF
    Starlike graphs are the intersection graphs of substars of a star. We describe characterizations by forbidden subgraphs for starlike graphs and for a special subclass of it

    Constant tolerance intersection graphs of subtrees of a tree

    Get PDF
    AbstractA chordal graph is the intersection graph of a family of subtrees of a host tree. In this paper we generalize this. A graph G=(V,E) has an (h,s,t)-representation if there exists a host tree T of maximum degree at most h, and a family of subtrees {Sv}v∈V of T, all of maximum degree at most s, such that uv∈E if and only if |Su∩Sv|⩾t. For given h,s, and t, there exist infinitely many forbidden induced subgraphs for the class of (h,s,t)-graphs. On the other hand, for fixed h⩾s⩾3, every graph is an (h,s,t)-graph provided that we take t large enough. Under certain conditions representations of larger graphs can be obtained from those of smaller ones by amalgamation procedures. Other representability and non-representability results are presented as well

    Families of induced trees and their intersection graphs

    Get PDF
    This paper is inspired in the well known characterization of chordal graphs as the intersection graphs of subtrees of a tree. We consider families of induced trees of any graph and we prove that their recognition is NP-Complete. A consequence of this fact is that the concept of clique tree of chordal graphs cannot be widely generalized. Finally, we consider the fact that every graph is the intersection graph of induced trees of a bipartite graph and we characterize some classes that arise when we impose restrictions on the host bipartite graph.Facultad de Ciencias Exacta

    Investigation of the robustness of star graph networks

    Full text link
    The star interconnection network has been known as an attractive alternative to n-cube for interconnecting a large number of processors. It possesses many nice properties, such as vertex/edge symmetry, recursiveness, sublogarithmic degree and diameter, and maximal fault tolerance, which are all desirable when building an interconnection topology for a parallel and distributed system. Investigation of the robustness of the star network architecture is essential since the star network has the potential of use in critical applications. In this study, three different reliability measures are proposed to investigate the robustness of the star network. First, a constrained two-terminal reliability measure referred to as Distance Reliability (DR) between the source node u and the destination node I with the shortest distance, in an n-dimensional star network, Sn, is introduced to assess the robustness of the star network. A combinatorial analysis on DR especially for u having a single cycle is performed under different failure models (node, link, combined node/link failure). Lower bounds on the special case of the DR: antipode reliability, are derived, compared with n-cube, and shown to be more fault-tolerant than n-cube. The degradation of a container in a Sn having at least one operational optimal path between u and I is also examined to measure the system effectiveness in the presence of failures under different failure models. The values of MTTF to each transition state are calculated and compared with similar size containers in n-cube. Meanwhile, an upper bound under the probability fault model and an approximation under the fixed partitioning approach on the ( n-1)-star reliability are derived, and proved to be similarly accurate and close to the simulations results. Conservative comparisons between similar size star networks and n-cubes show that the star network is more robust than n-cube in terms of ( n-1)-network reliability

    Cooperation in Networks and Scheduling

    Get PDF
    This thesis deals with various models of cooperation in networks and scheduling. The main focus is how the benefits of this cooperation should be divided among the participating individuals. A major part of this analysis is concerned with stability of the cooperation. In addition, allocation rules are investigated, as well as properties of the underlying situations and games.

    Cooperation in Networks and Scheduling.

    Get PDF
    This thesis deals with various models of cooperation in networks and scheduling. The main focus is how the benefits of this cooperation should be divided among the participating individuals. A major part of this analysis is concerned with stability of the cooperation. In addition, allocation rules are investigated, as well as properties of the underlying situations and games.

    Related Orderings of AT-Free Graphs

    Get PDF
    An ordering of a graph G is a bijection of V(G) to {1, . . . , |V(G)|}. In this thesis, we consider the complexity of two types of ordering problems. The first type of problem we consider aims at minimizing objective functions related to an ordering of the graph. We consider the problems Cutwidth, Imbalance, and Optimal Linear Arrangement. We also consider a problem of another type: S-End-Vertex, where S is one of the following search algorithms: breadth-first search (BFS), lexicographic breadth-first search (LBFS), depth-first search (DFS), and maximal neighbourhood search (MNS). This problem asks if a specified vertex can be the last vertex in an ordering generated by S. We show that, for each type of problem, orderings for one problem may be related to orderings for another problem of that type. We show that there is always a cutwidth-minimal ordering where equivalence classes of true twins are grouped for any graph, where true twins are vertices with the same closed neighbourhood. This enables a fixed-parameter tractable (FPT) algorithm for Cutwidth on graphs parameterized by the edge clique cover number of the graph and a new parameter, the restricted twin cover number of the graph. The restricted twin cover number of the graph generalizes the vertex cover number of a graph, and is the smallest value k ≥ 0 such that there is a twin cover of the graph T and k−|T| non-trivial components of G−T. We show that there is also always an imbalance-minimal ordering where equivalence classes of true twins are grouped for any graph. We show a polynomial time algorithm for this problem on superfragile graphs and subsets of proper interval graphs, both subsets of AT-free graphs. An asteroidal triple (AT) is a triple of independent vertices x, y, z such that between every pair of vertices in the triple, there is a path that does not intersect the closed neighbourhood of the third. A graph without an asteroidal triple is said to be AT-free. We also provide closed formulas for Imbalance on some small graph classes. In the FPT setting, we improve algorithms for Imbalance parameterized by the vertex cover number of the input graph and show that the problem does not have a polynomially sized kernel for the same parameter number unless NP ⊆ coNP/poly. We show that Optimal Linear Arrangement also has a polynomial algorithm for superfragile graphs and an FPT algorithm with respect to the restricted twin cover number. Finally, we consider S-End-Vertex, for BFS, LBFS, DFS, and MNS. We perform the first systematic study of the problem on bipartite permutation graphs, a subset of AT-free graphs. We show that for BFS and MNS, the problem has a polynomial time solution. We improve previous results for LBFS, obtaining a linear time algorithm. For DFS, we establish a linear time algorithm. All the results follow from the linear structure of bipartite permutation graphs

    Collection of abstracts of the 24th European Workshop on Computational Geometry

    Get PDF
    International audienceThe 24th European Workshop on Computational Geomety (EuroCG'08) was held at INRIA Nancy - Grand Est & LORIA on March 18-20, 2008. The present collection of abstracts contains the 63 scientific contributions as well as three invited talks presented at the workshop
    corecore