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Abstract

A chordal graph is the intersection graph of a family of subtrees of a host tree. In this paper we
generalize this. A graphG = (V ,E) has an(h, s, t)-representation if there exists a host treeT of
maximum degree at mosth, and a family of subtrees{Sv}v∈V of T, all of maximum degree at mosts,
such thatuv ∈ E if and only if |Su∩Sv |� t . For givenh, s, andt, there exist infinitelymany forbidden
induced subgraphs for the class of(h, s, t)-graphs. On the other hand, for fixedh�s�3, every graph
is an(h, s, t)-graph provided that we taket large enough. Under certain conditions representations
of larger graphs can be obtained from those of smaller ones by amalgamation procedures. Other
representability and non-representability results are presented as well.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Intersection graph; Tolerance; Chordal graph;k-simplicial vertex; Subtree representation; Regular tree

1. Introduction

An intriguing theme in graph theory is that of the intersection graph of a family of subsets
of a set: the vertices of the graph are represented by the subsets of the family and adjacency
is defined by a non-empty intersection of the corresponding subsets. Prime examples are
interval graphs and chordal graphs.An interval graph is the intersection graph of a family of
closed intervals on the real line.A classical result is the characterization of interval graphs by
forbidden subgraphs by Lekkerkerker and Boland[18]. A chordal graph is a graph without
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induced cycles of length at least four. They were proven to be the intersection graphs of
a family of subtrees of a tree[2,8,24]. In [21] McMorris and Scheinerman observed that
this result may be sharpened in the following way: a graphG is chordal if and only if it is
the intersection graph of a family of leaf-generated subtrees of a full binary tree. Special
classes of chordal graphs are the vertex-intersection graphs or edge-intersection graphs of
subpaths of a tree, see[10,11,22]. For a survey on intersection graphs the reader is referred
to [20].
Golumbic and Monma[12] introduced a generalization of interval graphs using toler-

ances: each representing interval is assigned a positive real number, its tolerance, and two
vertices are adjacent if the length of the intersection of their corresponding intervals ex-
ceeds the minimum of the two tolerances, see also[13]. This idea of tolerance was used
in [14] to formulate a broad Master Plan on tolerance intersection graphs. Inspired by this
setup we study the case where a graphG = (V ,E) may be represented by ahost tree T
together with a family{Sv}v∈V of subtrees ofT and a tolerancet such thatuv ∈ E if and
only if |Su ∩ Sv|� t . If we do not put extra conditions on the host tree, the representing
subtrees, or the tolerance, then any graph can be represented, see Proposition 5 below. The
extra conditions we put on the trees (host tree and representing subtrees) will be bounds on
the maximum degree. Golumbic and Jamison[10,11] studied the case of vertex and edge
intersection graphs of paths in a tree, that is, the tolerance is either 1 or 2, the host tree has
unbounded degree, and the subtrees all have maximum degree 2. In[17] we focused on the
case where the maximum degree of the host tree and the subtrees as well as the constant
tolerance all are 3.
In Section 2 we present the basic definitions and rephrase a number of results from the

literature in our terminology. In Section 3 we discuss in what ways chordal graphs can be
represented as tolerance subtree graphs. Our main results are presented in Sections 4–6.
First, if we fix the maximum degree of the trees in the representations, then we can still
represent any graph, provided we choose our tolerance high enough (Section 4). Second, if
we fix both the tolerance and the maximum degree of the trees in the representation, then
there are infinitely many minimal graphs that do not have a representation of the required
type (Section 6). In Section 5 we discuss how to produce representations of larger graphs
from smaller ones using amalgamation. Finally, it turns out that complete bipartite graphs
are crucial with respect to the question of representability or non-representability. This is
the topic of Section 7. We close the paper with some concluding remarks. Note that so-
calledp-intersection graphshave been extensively studied, cf. e.g.[4–7]. Contrary to our
approach, in the case ofp-intersection graphs there is no structure presupposed on the host
set of the representing subsets.

2. Preliminaries

In this paper all graphs will be connected, finite, simple, and loopless. For a graph
G = (V ,E) with vertex setV and edge setE, theorder |G| = |V | of G is the number
of vertices inG. TheneighborhoodN(u) of a vertexu is the set consisting of allneighbors
of u, i.e. vertices adjacent tou. Theclosed neighborhoodN [v] of v consists ofv and all its
neighbors. For two graphsG1 andG2, theintersectionG1∩G2 is the graph with vertex set
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V1∩V2 and edge setE1∩E2. If G1 andG2 and are two graphs with nonempty intersection
G1 ∩ G2, then the graphG1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2) is theamalgamationof G1 and
G2 along the common subgraphG1∩G2, or we just say thatG1∪G2 is the amalgamation
along the set of common verticesV1 ∩ V2. If G1 andG2 contain isomorphic copies of the
same graph as induced subgraph, then we can relabel the vertex sets such that this common
subgraph is of the formG1 ∩G2. Thus, we can amalgamate two graphs along isomorphic
copies of the same subgraph. Otherwise stated, we identify the two isomorphic subgraphs.
Recall that ak-cliquein a graph is a subset ofk vertices inducing a complete graph. If the
amalgamation is performed along ak-clique, then the graphG1 ∪ G2 is thek-sumof G1
andG2. The 0-sumof two graphs is just the disjoint union of the two graphs.
Let h, s andt be positive integers withh�s. A graphG= (V ,E) is an(h, s, t)-graphif

there exists ahost tree Tof maximum degree at mosth, and a family of subtrees{Sv}v∈V
of T, all of maximum degree at mosts, such that

uv E if and only if |Su ∩ Sv|� t.
We call (T , {Sv}v∈V ) an (h, s, t)-representationof G. We can think of this representation
also in terms of amappingv 
→ Sv. To distinguish between a graphGand its representation,
we will call the elements ofV theverticesof G, whereas we will speak of thenodesof the
host treeT and its subtrees. Clearly, every induced subgraph of an(h, s, t)-graph, is itself
an(h, s, t)-graph. Hence being an(h, s, t)-graph is ahereditaryproperty, which raises the
problem of characterizing these graphs by forbidden induced subgraphs.
We denote the class of(h, s, t)-graphs by[h, s, t]. If we do not impose restrictions on

the maximum degree of the host tree, we writeh= ∞. Similarly, we writes = ∞, if there
is no restriction on the degree of the representing subtrees. By definition, we have

[h, s, t] ⊆ [h, s∗, t], for any s∗ with s�s∗ �h,

[h, s, t] ⊆ [h∗, s, t], for anyh∗ �h.

In other words, the class[h, s, t] is monotone in the first two parametersh ands. Whether
it is monotone in the third parametert is a non-trivial question. We deal with this problem
in Section 4.
We review some terminology on trees. The nodes of degree 1 are theleavesof a tree, the

other nodes beinginternal nodes. A subtreeSof a treeT is leaf-generatedif all endnodes
of Sare leaves inT. An h-regular treeis a tree, in which all internal nodes have degreeh.
A cubic treeis a 3-regular tree. If we have an(h, s, t)-representation ofG with host tree
T of maximum degreeh, then we can add pendant nodes at internal nodes ofT to make
it h-regular without destroying any other properties of the representation. Hence we may
assumewithout loss of generality that the host tree is regular. Note that we cannot apply this
procedure to the representing subtrees, for then we may increase the intersections. In many
of the proofs it is convenient to consider the host tree as being rooted. A rooted treeT can
be viewed as a partially ordered set (poset) with its root as universal lower bound. Note that
this poset is ameet-semilattice. Theoutdegreed+(v) of a nodev is the number of nodes
coveringv. A leaf is a node of outdegree 0, the other nodes areinternal nodes. Any subtree
Sof Thas a minimal node in the ordering, itsmeet, which is the node ofSclosest to the root
of T. A rooted tree isd-ary if all its internal nodes have outdegreed. If all leaves have the
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same distance�=�(F ) to the root, then we callTa full d-ary treeof height �. A full tree is
also known as acomplete balanced tree. Thejth level is the set of nodes at distancej from
the root. Afull binary treeis a full 2-ary rooted treeF. Thus a full binary treeF is a poset,
in which the maximal elements (nodes) are the leaves ofF. Any other node ofF is covered
by exactly two nodes: itschildren, one of which is theleft child and the other is theright
child. Each node ofF distinct from the root covers exactly one node: itsparent. The nodes
above nodev are thedescendantsof v. Note that a leaf-generated subtree ofF contains
both children of its meet. The notions parent and descendant have their obvious analogues
in arbitrary tree posets. We can convert a fulld-ary tree simply into a(d + 1)-regular tree
by adding an extra node pending at the root. Furthermore, we can convert the host treeT
of maximum degree at mosth of a representation into anh-regular tree by adding the right
amount of pendant nodes to each internal node ofT. So, if necessary, we can assume the
host tree to be regular.
LetG= (V ,E) be a graph, and let(T , {Sv}v∈V ) be a representation ofG. The following

properties emerge as important in the study of these representations. The representation
is leaf-generatedif all the representing subtreesSv are leaf-generated subtrees of the host
treeT. We denote the class of graphs having a leaf-generated(h, s, t)-representation by
LG[h, s, t].
The representation isfaithful if representing subtrees that share a leaf of the host tree

necessarily represent adjacent vertices in the graph. Note that we do not require the repre-
sentation to be leaf-generated (contrary to what we did in[17]). Any representation can be
easily turned into a faithful one by pending a new leaf at each leaf of the host tree. The im-
portance of faithfulness only emerges when combined with other properties, as we will see
below.Wedenote theclassof graphshavinga faithful, leaf-generated(h, s, t)-representation
by FLG[h, s, t].
The representation isorthodoxif it is leaf-generated and representing subtrees share a

leaf if and only if they represent adjacent vertices in the graph.We denote the class of graphs
having an orthodox(h, s, t)-representation by ORTH[h, s, t].
It was shown in[17] that LG[3, 3, 3] = FLG[3, 3, 3]. Furthermore, it was shown that

the class ORTH[3, 3, 3] is properly contained in FLG[3, 3, 3] and FLG[3, 3, 3] is properly
contained in [3, 3, 3].
Next we rephrase results from the literature in the terminology and notation developed

above. Finite interval graphs, by definition, are the graphs in class [2, 2, 1]. The result on
constant tolerances in[12] is equivalent to the statement that [2, 2,t] = [2, 2, 1], for any
t�1. The classical result on chordal graphs, as being the intersection graphs of subtrees of
a tree, reads as follows: a connected graphG is chordal if and only ifG is in [∞,∞,1].
The result of McMorris and Scheinerman mentioned above then essentially reads as

[∞,∞,1] =ORTH[3,3,1].

This result was mentioned in[21] without proof. In Section 3 we present a proof.
The path-graphs and EPT-graphs sensu Golumbic and Jamison[10,11] are the classes

[∞,2,1] and[∞,2,2], respectively. Theorem 2 in[11] asserts that[3,2,1] = [3,2,2] =
[∞,2,1] ∩ [∞,2,2]. Theorem 3 of Sysło in[23] asserts that[∞,∞,1] ∩ [∞,2,2] ⊆
[∞,2,1]. Actually, Sysło showed even that[∞,∞,1] ∩ [∞,2,2] ⊆ [3,2,1]. In fact, by
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combining this result with Theorem 2 from[11] one may deduce that

[3,2,1] = [3,2,2] = [∞,∞,1] ∩ [∞,2,2].

Thus this result characterizes the chordal EPT-graphs as being the path-graphs (or equiva-
lently, the EPT-graphs) with cubic host tree.
Theorem 3 of[11] sheds light on complexity questions: it is NP-complete to decide

whethera(∞,2,1)-representablegraph is(∞,2,2)-representable,whence it isNP-complete
to decide whether a graph is in[∞,2,2]. On the other hand, we know that the recognition
of (∞,2,1)-graphs is polynomial, cf.[9].

3. Chordal graphs

The following result is essentially due to McMorris and Scheinerman[21]. We present a
proof here, so that we can use this proof in the sequel. A sketch of this proof was already
given in[17].

Theorem 1. A graphG = (V ,E) is chordal if and only if it has an orthodox(3, 3, 1)-
representation.

Proof. It suffices to prove the only-if part. So letG = (V ,E) be a chordal graph with
(T , {Sv}v∈V ) as(∞,∞,1)-representation. First we convert this representation into an or-
thodox one. For each nodexof T, we add a new nodepx pending atx, so that the new nodes
are the leaves of the extended host treeT ∗. If a subtreeSv contains a nodey in T, then we
add the new nodepy to Sv pending aty in T ∗. The extended host tree and the extended
subtrees clearly are an orthodox(∞,∞,1)-representation ofG.
If T ∗ contains an internal nodexwith neighborsz1, z2, . . . , zk, for somek >3, then we

replacex by a pathPx with verticesx1, x2, . . . , xk and we joinxi to z, for i = 1, . . . , k. In
the extended representing subtrees we make the according adjustments. Now we have an
orthodox (3, 3, 1)-representation. This is easily transformed into an representation with a
full binary tree as host tree, without changing the required characteristics of the represen-
tation. �

Theorem 2. LetG = (V ,E) be an(h, s,2)-graph withh�3. Then any induced cycle in
G has length at most h.

Proof. Let (T , {Sv}v∈V ) be an(h, s,2)-representation ofG, and letC=v1 → v2 → · · · →
vk → v1 be an induced cycle inG of lengthk�3. We may assume thatT is a rooted tree.
Among the subtrees representing the vertices ofC, choose one with maximal meetm in
T. We will show that there is a path of length at leastk − 2 in C, all of whose vertices
are represented by subtrees with meetm. Assume to the contrary that, say, the subtrees
representingv2, v3, . . . , vj all have meetm, whereasv1 andvj+1 do not havem as meet,
with 2�j < k − 1. Sincev1 andvi+1 are not adjacent inG, their subtrees share at most
one node inT. On the other hand, sincev1 is adjacent tov2 andvj+1 is adjacent tovj , both
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their subtrees contain nodem. Hence their meets are strictly belowm, so that both contain
the parent ofmas well. This contradiction settles our claim.
Without loss of generality, let the subtrees representingv2, v3, . . . , vk−1 all have the same

meetm, and let the subtrees representingv1 andvk have eitherm as meet or some other
node not abovem. In any case, these subtrees also containm, so that their meets arem or
strictly belowm. Now the representing subtrees of any two consecutive vertices onC share
an edge, whence share an edge incident with nodem. On the other hand, the representing
subtrees of any two non-consecutive vertices (being nonadjacent inG) share nodembut no
other node ofT. This means that we can assign to any edge ofCa unique edge inT incident
with nodem, which is contained in the two subtrees representing the end vertices of that
edge ofC. Hence, sinceT is of maximum degreeh, there are at mosth edges onC in G,
which completes the proof.�

Corollary 3. A (3, 3, 2)-graph is chordal.

Theorem 4. [∞,∞,1] = [3,3,1] =ORTH[3,3,1] = [3,3,2] =ORTH[3,3,2].

Proof. By definition, we have ORTH[3,3,1] ⊆ [3,3,1] ⊆ [∞,∞,1], and by Theorem
1, we have equality. Take the (3, 3, 1)-representation constructed in the proof of Theorem
1. For any leafx of the host tree, we add an extra nodeyx to the host treeT pending atx,
and addyx to all the representing subtrees containingx. Thus we get an orthodox (3, 3,
2)-representation. Thus we have shown that[∞,∞,1] ⊆ ORTH[3,3,2]. By Corollary 3,
we have[3,3,2] ⊆ [∞,∞,1]. This gives the remaining equalities.�
The result in Theorem 4 is quite special in the sense that, in general, we cannot reduce the

degree of the host tree or the subtrees without destroying representability. Here are a few
examples.A cycle of lengthn, withn�4, is in[n,2,2], but it is not chordal, whence it is not
in [3,2,2] ⊆ [3,3,2]. The graph�(2,2,2) consisting of two nonadjacent verticesu and
v joined by three internally disjoint induced paths of length 3 has a (4, 3, 3)-representation,
and the graphK2,6 has a (4, 4, 3)-representation. Both representations are relatively simple
to construct, see[17]. But, by Theorem 7 in[17], neither of them is in [3, 3, 3].

4. Representability

In this section we study the monotonicity of the various subclasses of[h, s, t] with
respect to the parametert. Proposition 5 is the tolerance-analogue of the classical result of
Marczewski that each graph is an intersection graph[19].

Proposition 5. LetG=(V ,E) be a connected graph.ThenG is in[∞,∞, t], for anyt�2.

Proof. We construct stars as follows. A fixed nodez is the central node of the host star and
all representing substars. For an edgee= uv ofG, we introducet − 1 extra nodes adjacent
to z in the host star and add these nodes to the substars representingu andv. Now substars
representing adjacent vertices ofGhavet nodes in common, whereas substars representing
nonadjacent vertices ofG only havez in common. �
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Note thatwe could haveuseda similar construction in the caseof non-constant tolerances.
Also note that, if we use representations involving stars only, then thesplit graphsare
precisely the graphs representable with constant tolerance 1.
We will call two subtreesr-intersectingwhenever they share at leastr nodes. Now we

address the question what can be said about representability if we enlarge the tolerancet.

Proposition 6. Let G = (V ,E) be an orthodox(h, s, t)-graph. Then G is an orthodox
(h, s, t + 1)-graph.

Proof. Let (T , {Sv}v∈V ) be an orthodox(h, s, t)-representation ofG. Take any leafx of
T. We add a pendant node adjacent tox to T and to all representing subtrees containingx.
Since the representation is orthodox all subtrees in{Sv}v∈V containingx represent adjacent
vertices ofG, and hence are mutuallyt-intersecting. In the extended representation they are
now(t+1)-intersecting. On the other hand, subtrees that were nott-intersecting still aren’t.
Clearly the new representation is orthodox.�

Proposition 7. LetG = (V ,E) be an(h, s, t)-graph with t�2, and let k be a positive
integer. Then G is an(h, s, r)-graph, for any integer r withk(t − 2)+ t�r�k(t − 1)+ t .
Proof. Let (T , {Sv}v∈V ) be an(h, s, t)-representation ofG, and letr be an integer with
k(t − 2) + t�r�k(t − 1) + t . Subdivide each edge inT and allSv by insertingk new
nodes. Ifuandv are adjacent vertices ofG, thenSu andSv share at leastt nodes and at least
t − 1 edges ofT. Hence, in the subdivided situation, they share at leastk(t − 1)+ t nodes
and thus arer-intersecting. Ifu andv are nonadjacent vertices ofG, thenSu andSv share
at mostt − 1 nodes andt − 2 edges ofT. Hence, in the subdivided situation they share at
mostk(t − 2)+ t − 1 nodes ofT, so that they are notr-intersecting. �

Corollary 8. LetG= (V ,E) be an(h, s, t)-graph witht�2. If r�(t −3)(t −2)+ t , then
G is also an(h, s, r)-graph.

Proof. Consider the intervalsIk = {r|k(t − 2) + t�r�k(t − 1) + t}, for k�0. If we
want to avoid gaps between two consecutive intervalsIk and Ik+1, then the inequality
k(t − 1)+ t + 1�(k + 1)(t − 2)+ t should hold. Straightforward calculation tells us that
this holdswheneverk� t−3.Since the left-handendpoint of intervalIt−3 is(t−3)(t−2)+t ,
the assertion follows. �

Note that we have[h, s,2] ⊆ [h, s,3] ⊆ [h, s, r], for all r�4. In Section 6 we will
see thatK4,4 has a faithful, leaf-generated (3, 3, 4)-representation but not an orthodox (3,
3, 4)-representation. So, from Corollary 8, we can deduce thatK4,4 is a (3, 3, 6)-graph,
but we cannot deduce from Proposition 6 thatK4,4 is a (3, 3, 5)-graph. On the other hand,
by subdividing some special edges in the (3, 3, 4)-representation ofK4,4 in Fig. 3, we
can construct a (3, 3, 5)-representation. But as yet we do not have such constructions for
arbitrary graphs.

Conjecture. LetG = (V ,E) be an(h, s, t)-graph witht�2. Then G is an(h, s, t + 1)-
graph.
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Now we present the main result of this section. Recall that thebandwidthof a connected
graphG= (V ,E) of order|V | = n is the minimum, over all the numbering of the vertices
with thenumbers 1,2, . . . , n, of themaximumdifferencebetween labels of adjacent vertices
(cf. [25]).

Theorem 9. LetG= (V ,E) be a graph with bandwidth b and maximum degree�. Let�2
be the maximum number of common neighbors of pairs of nonadjacent vertices in G, and
let l=�log2��.Then G has an orthodox(3,3, t)-representation, for everyt�b+�2l+1.

Proof. Let v1, v2, . . . , vn denote an ordering of the vertices ofG realizing the bandwidth
b of G.
We construct a binary host treeT starting from a pathP = x1 → x2 → · · · → xn rooted

at x1. Adjoin a new childzi to eachxi in P. Now at eachzi , adjoin a full binary treeDi
of heightt with zi as its root. The host tree consists ofP and the descendant binary trees
D1,D2, . . . , Dn, and its root isx1.
The idea is to represent vertexvi by subtreeDi together with a specially chosen path in

Dj , for eachvj adjacent tovi with j < i, and a subpath ofP connectingDi to all these
paths in the otherDj .
Let vk be a vertex ofG, and letN+(vk) denote the set of neighborsvi of vk with i > k.

Sinced(vk)���2l , we can assign distinct 0,1-strings�(i, k) of lengthl to the verticesvi
in N+(vk). Thus, for each fixedk, the strings�(i, k) are all different.
Now let vi be any vertex ofG. For each neighborvk of vi with k < i, construct a path

Qik as follows. Start atzi , go down toxi , walk viaP from xi down toxk, then go up to
zk. Now read the 0,1-string�(i, k) from left to right while moving upwards inDk, where 0
means moving to the left child and 1 means moving to the right child. This takes usl < t

levels up intoDk. FinishQik by moving up the remainingt − l levels in an arbitrary way
to a leaf ofDk.
Denote byRi the union of the pathsQik with k < i andvk adjacent tovi .Wenow represent

vertexvi by the leaf-generated subtreeSi =Di ∪Ri of T. Note that,b being the bandwidth
of G, we have

|Si ∩ P | = |Ri ∩ P |�b + 1.

Let vi andvj be adjacent vertices inG. Suppose thatj < i. ThenQij ⊂ Si contains a
subpath witht nodes inDj , so|Si ∩Sj |� t . Moreover,Qij contains a leaf ofDj , soSi ∩Sj
contains a leaf of the host treeT.
Now let vi andvj be non-adjacent vertices ofG. Again suppose thatj < i. Note that

Rj does not containxi because the pathsQjk go down fromxj and never up toxi . Hence
|Ri ∩ Rj |< |Ri ∩ P |�b + 1.
For any common neighborvk of vi andvj , with k < j < i, the subtreesSi andSj will

have common nodes inDk. These start atzk whereQik andQjk both enterDk and continue
as long as the two 0,1-strings�(i, k) and�(j, k) are the same. But�(i, k) and�(j, k) were
chosen to be different, so the pathsQik andQjk must diverge in the firstl steps intoDk.
Hence|Qik ∩ Qjk ∩ Dk|� l. There are at most�2 common neighborsvk of vi andvj .
Hence we conclude thatSi ∩ Sj has less thanb + 1 nodes onP and at most�2l nodes in
the variousDk. Thus,|Si ∩Sj |<(b+1)+�2l� t as desired. Since the pathsQik andQjk
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diverge before reaching the level of the leaves inDk, the subtreesSi andSj cannot share a
common leaf of the host tree. Therefore, the representation is orthodox.�

Given a graphG, it seems to be a non-trivial problem to determine the smallest value of
t for whichG is in [3,3, t]. We do not address this question here, and leave it as an open
problem.

5. Amalgamation

It sometimes happens that the larger members of a graph class can be built by amalga-
mating smaller members of the class together. For example, a graph is chordal if and only
if each of its blocks (maximal 2-connected subgraphs) is chordal. This allows a reduction
in the study of chordal graphs to the 2-connected case. Since the tree-tolerance classes we
are considering are hereditary, one direction generalizes trivially: every block of a graph in
the class is again in the class. However, as the interval graphs illustrate, the gluing required
for the converse can be problematic. A triangle with a pendant edge attached at each vertex
is a classical forbidden subgraph for interval graphs, although each of its blocks is in a
trivial way an interval graph. Two pendant edges can be attached to the triangle, but the
third creates a problem.
Generally speaking, we would like to amalgamate two representations by gluing their

host trees together at suitable nodes. Endnodes are the natural candidates because of the
degree restrictions that we are imposing. If a representing subtree is in the interior of the
host tree, then as in the case of interval graphs, there is no way to attach another block at the
corresponding vertex of the graph and still guarantee representability. The extra conditions
of leaf-generated, faithful, and orthodox, introduced earlier in the paper, provide a means
of overcoming this difficulty. The goal is to find suitably large classes in which gluing can
occur indefinitely. The arguments are easy but the details are somewhat subtle, and it is for
that reason that we will treat them carefully here.
A cliqueC of an(h, s, t)-graphG is anorthodox cliqueif, with respect to some(h, s, t)-

representation ofG, the subtrees representing the vertices ofC all share a common leaf of
the host tree. Ak-sum of two(h, s, t)-graphsG andH is anorthodox k-sumif the k-cliques
being identified are orthodox inG andH. It is easy to represent an orthodoxk-sum. Simply
join the two leaves involved by an edge, thus joining the host trees.Also use this new edge to
join the representing subtrees of corresponding vertices in thek-cliques that are identified.
The drawback of this procedure is that the identified clique may lose its orthodoxy in the
gluing process, so the operation cannot be repeated. Worse, the process may destroy the
orthodoxy of other cliques also ending at the same leaves, making future gluing at these
cliques impossible. To overcome these obstacles, we need to modify the construction and,
to be sure that the modifications are allowed, we need to invoke additional properties of the
representation. Roughly speaking, orthodoxy allows the amalgamation of two cliques and
faithfulness preserves orthodoxy after amalgamation.
An (h, s, t)-representation of a graphG is vertex orthodoxif every representing subtree

contains at least one leaf of the host tree. That is, each vertex ofG is an orthodox 1-clique.
Similarly, a representation isedge orthodoxif the representing subtrees of any two adjacent
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Table 1
Properties of representations

Symbol Name Description

VO Vertex orthodox EverySv contains a leaf ofT
LG Leaf-generated EverySv is generated by leaves ofT
EO Edge orthodox uv ∈ E ⇒ Su ∩ Sv contains a leaf ofT
LGEO LG and EO
FAITH Faithful uv ∈ E ⇐ Su ∩ Sv contains a leaf ofT
FVO FAITH and VO
FLG FAITH and LG
FEO FAITH and EO
ORTH Orthodox FAITH and LG and EO

vertices share a leaf in common. That is, all edges ofG are orthodox 2-cliques.We will use
the symbolsVO,EO, FVO, andFEO in conjunctionwith the parameter list(h, s, t) to denote
the classes of graphs which have(h, s, t)-representations with the specified property. For
example, FVO[h, s, t] denotes the class of graphs with a faithful, vertex orthodox(h, s, t)-
representation.
Table 1contains a quick-reference list of the various properties of representations in-

troduced here. The conditions VO, LG, EO, and LGEO will be referred to collectively as
orthodoxy conditions. Note that LG is a “global” version of VO. The first two results below
illustrate these ideas in the simple case of disjoint unions. We allow∞ as a possible value
of the parametersh ands.

Theorem 10. For t�1 andh�s�2, the following closure results hold.

(i) The class[h, s, t] is closed under0-sums.
(ii) The classesFVO[h, s, t], FLG[h, s, t], FEO[h, s, t], and ORTH[h, s, t] are closed

under0-sums, for h�3.
(iii) The class[h, s, t] is closed under orthodox k-sums.
(iv) The classFLG[h, s, t] is closed under orthodox k-sums, for h�3.
(v) The classesFVO[h, s, t], FEO[h, s, t], andORTH[h, s, t] are closed under orthodox

k-sums, for h�s�3.

Proof. LetG1 andG2 be twographs in thegivenclass. Let thek-sumbeperformedalong the
orthodox cliquesC1 inG1 andC2 inG2, with |C1|=|C2|=k. Take(h, s, t)-representations
of the given type ofG1 andG2 with host treesT1 andT2, respectively. Letxi be a leaf in
Ti of the orthodox cliqueCi , for i = 1,2. In the case of 0-sums in (i) and (ii), letxi just be
any leaf ofTi , for i=1,2. The host treeTofG in (i) and (iii) is obtained fromT1 andT2 by
joining x1 andx2 by a new edge. In the cases (ii), (iv), and (v), the host tree is obtained by
extending this treeTwith two extra nodesy1 andy2, whereyi is adjacent tox, for i= 1,2.

(i) This is trivial: take as representation host treeT and the representing subtrees ofG1
andG2 in T1 andT2, respectively. Notice that this construction does not increase the
maximum degree of the host tree, but it does destroy the endnodesx1 andx2.
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(ii) In addition to the construction in (i), we have to recover lost endnodes. We use the
new endnodesy1 andy2 for this purpose. Extend the representing subtrees forG1 that
formerly terminated atx1 to containy1 as well. This will preserve whatever orthodoxy
G1 initially possessed. Note that the subtrees that containedx1 now have an additional
nodey1 in common. This increases the cardinality oftheir intersections. However,
faithfulness ensures that the subtrees ending atx1 represented adjacent vertices inG1,
so no unwanted new adjacencies appear. Since the representing subtrees that end in
y1 correspond to those that previously ended inx1, faithfulness is also preserved. An
analogous procedure may be applied atx2 andy2 for G2. The addition ofy1 andy2
makesx1 andx2 into nodes of degree three in the joined host. This is allowed since
h�3. Since the edgex1x2 is unused by representing subtrees, no new vertices of degree
three appear in the representing subtrees, so their maximum degrees are unchanged.

(iii) In addition to the construction in (i), we perform the following operation: if vertexv1
of C1 is identified with vertexv2 of C2, then we join their representing subtrees by the
new edgex1x2 to obtain the subtree representing the amalgamated vertex ofG. The
maximum degrees of the host tree and the representing subtrees are not increased.

(iv) Loosely speaking, we combine the constructions in (ii) and (iii). The host tree also
containsy1 andy2. If vertexv1 of C1 is identified with vertexv2 of C2, then we join
the representing subtrees by the new edgex1x2 to obtain the subtree representing the
amalgamated vertexv1 = v2 of G. As in case (ii), this introduces new nodes of degree
three in the host, but not in the representing subtrees.Any subtree terminating atx1 that
represents a vertex inG1 − C1 is extended toy1. Similarly, any subtree terminating
at x2 that represents a vertex inG2 − C2 is extended toy2. Thus, only new vertices
of degree two are introduced in these representing subtrees. Representing subtrees of
vertices not identified in the amalgamation remain leaf-generated since the roles ofx1
andx2 are taken over byy1 andy2. Each joined subtree is still leaf-generated since
its two halves contain leaves of their hosts. The representation is still faithful, because
representing subtrees that share a leaf shared a leaf before and hence corresponded to
adjacent vertices.The faithfulnessof theoriginal representationsguarantees that adding
y1 andy2, while increasing certain overlaps, will not introduce unwanted adjacencies.

(v) In the previous construction orthodoxy might be destroyed. We can cover this by
extendingall subtrees terminating atxi in the representation ofGi to yi , for i = 1,2,
whence also those of the identified vertices. This preserves orthodoxy, but it introduces
twonodes of degree three into the representing subtrees of the identified vertices.Hence
the conditions�3 is necessary in this case.�

Corollary 11. For t�1, the following closure results hold.

(i) The classFLG[h, s, t] is closed under1-sums, for h�s�2,with h�3.
(ii) The classesFVO[h, s, t], FEO[h, s, t],andORTH[h, s, t] are closed under1-sums, for

h�s�3.

Proof. Each of the orthodoxy conditions VO, LG, and ORTH imply that all vertices are
orthodox. EO implies that all non-isolated vertices are orthodox. But amalgamating along
an isolated vertex can be rephrased as a 0-sum, which is covered by Theorem 10(ii).�
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In certain cases, a representation may be made faithful without losing its orthodoxy. A
result of this kindwasproved in[17],which in our current languagemaybestatedas follows:
every LG[3, 3, 3]-graph has an FLG[3,3,3]-representation. Thus, LG[3, 3, 3]= FLG[3, 3,
3], so LG[3, 3, 3] is also closed under 1-sums by the above corollary. This kind of “faithful
for free” result holds in three others cases (h = ∞, s = 2, andt = 3) which are presented
below, but it seems unlikely that it holds in general.

Proposition 12. For t�1 and s�2, the class[∞, s, t] coincides with the classFLG
[∞, s, t] and hence is closed under1-sums.

Proof. Consider any(h, s, t)-representationof agraphG.At eachendnodeof a representing
subtree, appendanew leaf corresponding to that subtreeand that endnode.Thismay increase
themaximumdegree of the host, but as that is not bounded, it is allowed. Every representing
subtreebecomes leaf generated, andsinceeachnew leaf lies inaunique representingsubtree,
the representation is trivially faithful.�

As we will see later in Theorem 21, the class[∞, s, t] does not contain all graphs, so
the above result does have content. A similar approach could be applied to ORTH, but that
would require allowings = ∞ as well. Such a result, however, is trivial, since[∞,∞, t] is
the class of all graphs ift�2, as we saw in Proposition 5.
Let us say that the orthodoxy conditionsextend faithfullyfor a parameter list(h, s, t) pro-

vided, for each orthodoxy condition X∈ {VO,LG,EO,LGEO}, every graph in X[h, s, t]
has a faithful(h, s, t)-representation satisfying condition X.

Proposition 13. For h�s�2 with h�3, the orthodoxy conditions extend faithfully for
(h, s,3).

Proof. Consider an(h, s,3)-representation ofG in a host treeT. We will show that, ifG
has no isolated vertices, then we can extend this to a faithful(h, s,3)-representation with
the same orthodox vertices, orthodox edges, and leaf-generated representing subtrees as
existed forG. This will establish the faithful extension result whenG has no isolates, and
the case of isolated vertices can then be handled by 0-sums using Theorem 10(ii).
So assume thatG has no isolated vertices. Consider a leafp of the hostT with q as its

unique neighbor. Letx1, x2, . . . , xd be the other neighbors ofq, sod�h− 1. Attachd new
leavesy1, y2, . . . , yd to p and enlarge each representing subtreeS throughp by addingyi
to S if and only if Scontainsxi . SinceG has no isolated vertices, each suchShas at least
three nodes and hence must contain at least onexi . The extension ofS thus contains a leaf
yi , and hence remains leaf-generated ifSwas. Moreover, the represented vertex remains
orthodox. Notice that any two representing subtreesSv andSw throughpmust containp
andq. Hence they are 3-intersecting if and only if they also share another neighborxi of q.
This happens if and only if their extensions share a leafyi . This establishes faithfulness atp
and preserves the orthodoxy of any edges atp. Notice that the degree ofp in the extension
of a representing subtree is the same as the degree ofq in the subtree. Hence the maximum
degrees is maintained. �
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This construction may destroy the orthodoxy of some cliques with more than two ver-
tices. Indeed,{p, q, x1, x2}, {p, q, x2, x3}, and{p, q, x1, x3} would represent an orthodox
triangle, of which the orthodoxy would be destroyed by the construction. Notice that this
cannot happen whenh= 3. Notice also that it is precisely the isolated vertices which form
an obstacle to the above construction being applied in the caseh= s = 2.

Corollary 14. For h�s�2,with h�3, the classLG[h, s,3] is closed under1-sums. For
h�s�3, the classesVO[h, s,3] andEO[h, s,3] are closed under1-sums.

Proof. By the above proposition, these classes coincide with FLG[h, s,3], FVO[h, s,3],
and FEO[h, s,3], respectively. So the closure under 1-sums follows fromCorollary 11.�

Proposition 15. For h�3andt�2, the orthodoxy conditions extend faithfully for(h,2, t).

Proof. Consider an(h,2, t)-representation ofG in a host treeT. We will show that, ifG
has no isolated vertices, then we can extend this to a faithful(h,2, t)-representation with
the same orthodox vertices, orthodox edges, and leaf-generated representing subtrees as
existed forG. This will establish the faithful extension result whenG has no isolates, and
the case of isolated vertices can then be handled by 0-sums using Theorem 10(ii).
So assume thatG has no isolated vertices. Consider a leafp of the hostT with q as its

unique neighbor. Letd = h− 1. We rootT atp. Note that the first level consists ofq only.
For each nodez in the levels 1 up tot − 2, we number the children ofzby 1,2, . . . , d+(z).
Note that we haved+(z)�d. Let P be any representing path containingp. SinceG does
not contain isolated vertices,Pmust contain at leastt nodes, whenceP grows fromp up to
the(t − 1)th level (and maybe even further). We can describe the way thatP grows to the
(t − 1)th level by a list� of t − 2 entries, each between 1 andd, where the entry in theith
position (from the left) gives the number of the child of the vertexP in the ith level.
Now we enlarge the host treeT as follows. LetT1 be a fulld-ary tree of heightt − 2

with root r. The new host tree is obtained fromT by identifying the rootr of T1 with p.
For each nodey in the levels 0 up tot − 3, we number the children ofy by 1,2, . . . , d.
To recover the required properties of the representation, each pathP containingp in the
original representation must grow up to some leaf ofT1. Use�, read in reverse order, to
describe the extension ofP throughT1.
Now letPandRbe two representing paths throughp, with lists� and�, respectively. The

intersection ofPandR is a path containingp. The pathsPandR represent adjacent vertices
if and only if in the original representation this common path has at leastt nodes. And that
happens if and only if the two lists� and� are the same. This means that in the extended
representation,P andR end up in the same leaf ofT1. Thus, any clique of vertices ofG
represented by paths containing leafp in the original representation still contain the same
leaf inT1. Thismeans that all the orthodox cliqueswill be preserved, aswill leaf-generation.
It remains to check that this representation is now faithful. IfP andR represent non-

adjacent vertices in the original representation, then their respective lists� and� differ
somewhere. Say they differ for the first time from the left at thekth position and for the
first time from the right at thenth position. Then of course,k�n. Thus, the extended paths
have 1+ (k − 1) nodes in common reaching up into the original hostT. And they have
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t − 2− (n− 1)� t − 1− k nodes in common reaching up into the extensionT1. Adding up
we see that they have at mostt − 1 nodes in common altogether. Hence no new unwanted
adjacencies are created. Also since� and� differ in the nth position from the right, in
extendingP andRusing the reversals of� and�, we find that their extensions must differ
at the(t − n)th step fromp. Thus,P andRend up at different new leaves when extended
in the new host. Hence the representation is faithful.�

Corollary 16. For all h and t big enough, LG[h,2, t] is closed under1-sums.
Proof. The above Proposition says that LG[h,2, t]=FLG[h,2, t], so Corollary 11(i) gives
us the closure result.�

Corollary 17. LetG= (V ,E) be a tree. Then G is in[3,3, t], for anyt�1.

Proof. By Theorem 1,G is an orthodox (3, 3, 1)-graph. This also follows easily by in-
duction on the number of vertices from Corollary 11(ii). Then, by Proposition 6, the result
follows. �

For trees we can prove an even “stronger” result.

Proposition 18. LetG= (V ,E) be a tree. Then G has a(3,2, t)-representation such that
every node of the host tree is contained in at most two representing paths, for anyt�1.

Proof. By induction onn = |V |. Forn = 1, we take as host tree and representing subtree
a path ont vertices. So letn�2. Let x be any vertex of degree 1 inG, and assume that
(T , {Sv}v∈V−x) is a representation of the treeG− x, where host treeT is a cubic tree and
all Sv are paths of length at leastt such that every node of the host treeT is contained in at
most two pathsSv. Letybe the neighbor ofx inG.Wemay assume thatSy contains an edge
pq that is not on any other representing path. For, otherwise, suppose that each edge of the
pathSy is on some other representing path. Since each node ofSy is on at most one other
representing path, the only way that this is possible is that there is another representing path
Sz with Sy ⊆ Sz. But now there can be no other vertices inG − x thany andz, whence
T = Sy = Sz. Letw be a leaf ofT. Add two new nodesry andrz toT, addry to Sy , andrz to
Sz. ThenSy contains the edgewry that is not onSz, and we take this edge to bepq. Now
we subdividepq in the host treeT as well as in the subtreeSy by insertingt new nodes. Let
Sx be the subpath on thet new nodes. Then we have the required(3,2, t)-representation of
the treeG. �

6. Non-representability

Above we noted that if no restrictions are placed onh ands, then already fort�2, all
graphs are(h, s, t)-representable. In the previous section we showed that for any fixedh
ands (both at least 3), every graph is(h, s, t)-representable ift is allowed to be arbitrarily
large. In this section we will show in Theorem 21 that, when both the maximum degrees
of the representing subtrees and the tolerancet are fixed, then[∞, s, t] is a nontrivial class
in the sense that there are infinitely many minimal forbidden subgraphs. The main tool is
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Theorem 19, which shows that(h, s, t)-graphs must have vertices which are analogous to
the simplicial vertices of chordal graphs.
A vertexv in a graphG isk-simplicialif the closed neighborhoodN [v] inGcan be vertex-

covered by at mostk-cliques. Thesimpliciality of a vertexv is the smallestk such thatv
is k-simplicial. Note that the simpliciality of a vertex is just the chromatic number of the
complement of its neighborhood. Thus, the fact that the local independence number (sensu
[17]) is anobvious lower boundon the simpliciality of a vertex is just the complementary fact
that the clique number is a lower bound for the chromatic number. Evidently, 1-simplicial is
just simplicial in the classical sense. As is well-known[3], cf. [9], every nontrivial chordal
graph has at leasttwo 1-simplicial vertices. We show below that, for eachs and t, there
is a constantk depending ons and t but not onh and not on the graph, such that every
(∞, s, t)-graph has at leasttwo k-simplicial vertices. For this we consider a special tree
whose structure includes all possibilities for givensandt. LetR(s, t) denote the rooted tree
whose root hasschildren, all other internal nodes haves − 1 children, and all leaves are at
distancet − 1 from the root. Since each node has degree eithers or 1, this is ans-regular
tree of radiust −1. Let�(s, t) denote the number of subtrees ofR(s, t) which have exactly
t nodes and which contain the root. These numbers have appeared in previous studies of
the lattice of subtrees of a tree[15,16]. Note thatR(s, t) has exactlys(s− 1)t−2 leaves and
less thanst nodes in all. Thus,�(s, t) is at most the binomial coefficientC(st , t).

Theorem 19. If G is a (∞, s, t)-graph of order at least2, then G has at least two vertices
that are�(s, t)-simplicial.

Proof. Consider an(h, s, t)-representation in a host treeT. RootT at any noder. For each
representing subtreeS, let inf(S) denote the meet ofSin this meet-semilattice. Now choose
a representing subtreeSso that inf(S) is maximal. Choosing inf(S) at maximum distance
to r will accomplish this, but other choices may also be possible. We now show that such a
subtreeShas the desired simpliciality.
Indeed, letm = inf (S), and letS∗ denote the subtree ofSconsisting of all nodes ofS

at distance at mostt − 1 fromm. SinceS has maximum degrees, it is clear thatS∗ is
(abstractly) a subtree of the fulls-regular treeR(s, t). Thus, the number oft-node subtrees
of S∗ which containm is at most�(s, t). Any representing subtreeR that is adjacent toS
must intersectS in at leastt nodes. Since inf(R) is not above inf(S), it follows thatRmust
containm. Thus, each suchRmust contain somet-node subtreeQ of S throughm. Since
Q hast nodes, the family of all representing subtrees containingQ is a clique. Hence the
neighborhood ofS is covered by at most�(s, t) cliques, soSrepresents a�(s, t)-simplicial
vertex ofG.
To obtain two�(s, t)-simplicial vertices ofG, it suffices to show that there are two rootings

ofTwhich necessarily lead to different choices ofS. For this we need some non-degeneracy
assumptions. If all but atmost one vertex ofG is universal (i.e., adjacent to all other vertices),
thenG is in fact complete, and the final result is trivial. Thus we may supposeGhas at least
two vertices that are not universal. Since universal vertices cannot increase the simpliciality
of any other vertex, we may remove the universal vertices without loss of generality and
still have a nontrivial graph (i.e. a graph of order at least 2). Similarly, we may assume that
G has no isolated vertices.
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SinceG has no isolates, every representing subtree must have at leastt nodes. SinceG
has no universal vertices, it follows that for any representing subtreeA, there must be a
representing subtreeBwith |A∩B|< t� |A|. HenceBdoes not containA. We will use this
non-degeneracy condition to get the second�(s, t)-simplicial vertex ofG.
LetA represent a�(s, t)-simplicial vertex ofG. By the above argument, there is a repre-

senting subtreeB that does not containA. Root the hostT at any noder of A that is not in
B. Thenr = inf (A) and inf(B) is strictly abover. Now select a representing subtreeSsuch
that inf(S) is maximal and above inf(B) or equal to inf(B). Then inf(S) �= r, soSis different
fromA. But by the above argument,Salso represents a�(s, t)-simplicial vertex ofG. �

Let�(h, s, t)denote the smallestksuch that every(h, s, t)-graphhasak-simplicial vertex.
The bound on�(h, s, t) implied by the above result is very crude. For example, it was shown
in [17] by exhaustive case analysis that�(3,3,3)= 3. It would be of interest to know more
accurate bounds for�(h, s, t), but at this stage they seem to be difficult to obtain except
through rather tedious case analyses.
Note that ifG is triangle-free, then the simpliciality of any vertex is just its degree. Thus,

we have the following corollary.

Corollary 20. If G is a triangle-free(h, s, t)-graph, then the minimum degree	(G) of G
is at most�(s, t).

Extending the ideas of Corollary 20, we see that the class[h, s, t] is a non-trivial class
of graphs. Recall that thegirth of a graphG is the length of a shortest cycle inG.

Theorem 21. Leth, s, and t be integers withh�s�2.Then the class[h, s, t] has infinitely
many minimal forbidden induced subgraphs.

Proof. Forh= 2, the class[h, s, t] is just the class of the interval graphs. In this case, the
assertion follows from[18]. So we may assume thath�3.
For everyp andq, there exists a graphG of minimum degree	(G)�p and of girth

g(G)�q (see[1]). We choose a sequence of graphsG1,G2, . . . as follows. LetG1 be
a graph with	(G1)> �(s, t) and g(G1)�4. Then, fori�1, let Gi+1 be a graph with
	(Gi+1)> �(s, t) andg(Gi+1)> |Gi |. The girth condition tells us that, fori < j , any con-
nected induced proper subgraph ofGi , which is also an induced proper subgraph ofGj ,
must be a tree. The degree condition tells us that none of our graphsGi is in [h, s, t].
Hence everyGi contains a non-representable induced subgraphBi of minimal order. Since
a tree is always representable forh�3 by Corollary 17, it follows thatBi is not a subgraph
of anyBj , for j �= i. Hence the graphsB1, B2, . . . form an infinite class of minimally
non-representable graphs.�

Theorem 21 raises the problem of characterizing the class[h, s, t] by forbidden sub-
graphs. But this seems to be a very tough problem in general. So far, only the classical
characterizations of the interval graphs and the chordal graphs are available. In[17], we
have only first attempts at producing candidates for the list of forbidden subgraphs for the
class [3, 3, 3]. We pursue some of those ideas in the next section.
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7. The case of complete bipartite graphs

The complete bipartite graphsKm,n are triangle-free graphs with relatively few vertices,
which still have relatively large minimum degree. Therefore, we may expect that these
graphs are critical with respect to representability and non-representability. The aim of this
section is to explore this idea. First we consider the case ofK2,n.

Theorem 22. Let t = �log2 n� + 2.ThenK2,n has an orthodox(3,3, t)-representation.

Proof. Let a andb be the two vertices on the 2-side ofK2,n and 1,2, . . . , n then vertices
on then-side. LetAandBbe two full binary trees of heightL= t −2=�log2 n�, and letra
be the root ofAandrb the root ofB. Sincen�2L, we can assign each vertexi on then-side
a distinct 0,1-string�i of lengthL. We use these strings�i to construct paths inA andB,
where we interpret a 0 as‘going to the left child’and 1 as ‘going to the right child’. For each
i, we construct a pathPi on t nodes inA and a pathQi on t nodes inB. In Awe start in the
rootra , and reading�i from left to right we move upwards following the instructions given
by �i until we reach a leaf in levelL. In Bwe start at rootrb, and reading�i from right to
left we move upwards following the instructions given by�i until we reach a leaf in levelL.
Now we joinra andrb by an edge, thus obtaining a cubic treeT. We represent vertexa by
subtreeA, vertexb by subtreeB, and vertexi by the pathRi consisting ofPi ∪Qi together
with edgerarb, for i = 1,2, . . . , n.
Clearly pathRi hast nodes in common withA as well as withB, for i = 1,2, . . . , n. So

these adjacencies are represented correctly. SubtreesAandBare disjoint, reflecting the fact
that verticesa andb are nonadjacent inK2,n. Take any two distinct pathsRi andRj . Their
0,1-strings�i and�j differ in at least one place, say in placek from the left. Then, inA,
the pathsPi andPj differ from levelk upwards. So they contain at mostk common nodes
(including rootra). InB, the pathsQi andQj differ from levelL− k+1 upwards. So they
contain at mostL− k + 1 common nodes (including rootrb). Hence the pathsRi andRj
contain at mostL + 1= t − 1 common nodes. By construction, all representing subtrees
are leaf-generated and the representation is orthodox.�

Although the two vertices on the 2-side inK2,n have large degree, the vertices on the
n-side have only degree 2. So Theorem 19 is not relevant forK2,n.

Theorem 23. Leth, s,and tbe integerswithh�s,and let nbean integerwithn> �(s, t)(t+
1). ThenK2,n is not in[h, s, t].

Proof. SinceK2,n is not chordal, we may assume thatt >1. Let us write� = �(s, t).
Assume to the contrary thatK2,n has a(h, s, t)-representation with host treeT.Without loss
of generality,T is a full h-regular tree with rootr. Let a andb be the vertices on the 2-side
of K2,n and 1,2, . . . , n the vertices on then-side. LetA be the subtree representingawith
meetra in T, and letB be the subtree representingbwith meetrb in T. For i = 1,2, . . . , n,
let Si be the subtree representing vertexi with meetri in T. Thenra is comparable with all
ri . If any meetri is belowra , thenSi grows intoAand contains a subtree of ordert rooted at
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Fig. 1. The canonical (3,2,3)-representation ofK3,3.

ra . Hence at most� meets of the meetsr1, r2, . . . , rn are belowra , so that at leastn− � of
these meets are strictly abovera , which are all contained inA. The same holds with respect
to rb. Sincen>2�, there exists a meetri , which is abovera as well asrb. This implies
thatra andrb are comparable, sayra is belowrb. There may not be more than� meets of
r1, r2, . . . , rn at each node ofB. Since there are at leastn− � of r1, r2, . . . , rn strictly above
rb, there are at least(n− �)�−1 different nodes inB that are the meet of some representing
subtreeSi . SubtreeAmust contain all these meets, so thatA contains at least(n − �)�−1

nodes ofB. But this is impossible, since(n − �)�−1> t . This contradiction settles the
proof. �

In [17] it was shown thatK2,4 is in [3, 2, 3], butK2,n is not in [3, 3, 3], forn�5. This
shows that the bounds in Theorems 22 and 23 are not sharp. Obviously, the one in Theorem
23 is not very good. This raises the question of determining the value of�(t) such that
K2,n is in [3, 3, t] if n��(t) andK2,n is not in [3, 3,t] if n>�(t). Note that in the (3,
2, 3)-representation ofK2,4 in [17] the verticesA andB on the 2-side are represented by
subtrees having an edge in common, instead of being disjoint as in the proof of Theorem
22. So one might gain a lot by searching for subtreesA andB sharing as many nodes as
possible.
The complete bipartite graphKn,n is the smallest triangle-free graph of minimum degree

n. So, in view of Theorem 22, it is interesting to determine the smallest value oft such
thatKn,n is in [3, 3, t]. In [17] a (3, 2, 3)-representation ofK3,3 was constructed. This
representation is given inFig. 1. TheK3,3 hasA,B,C as the three independent vertices on
the one side and 1, 2, 3 as the vertices on the other side. Each of the vertices is represented by
a path between the leaves labeled with the name of the vertex. The representation is faithful
but not orthodox. Up to the labeling of the vertices (and extensions beyond the given figure)
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Fig. 2. The canonical (3,3,4)-representation ofK4,4.

it is unique. From this unicity one easily deduces thatK3,4 is not in [3, 3, 3]. The proof of
these facts is still quite straightforward.
By similar arguments we can show thatK4,4 is in [3, 3, 4]. But in this case the arguments

aremuchmore tedious and involve a lot of case checking. Therefore we omit the proof here,
and just present our (3, 3, 4)-representation inFig. 2. The four independent vertices of the
K4,4 on the one side are labeledA,B,C,D, and the vertices on the other side are labeled
1, 2, 3, 4. The representing subtrees are leaf-generated by the leaves bearing the name of
the represented vertex. Of course, we can relabel the vertices of theK4,4. Moreover, we
can interchange the roles of 1 and 4, obtaining a non-isomorphic representation. Finally,
we may identify the two nodesx and y and the edgesxz and yz of the host tree. But
apart from these operations and extensions beyond the given figure, the representation is
unique. The representation is faithful but not orthodox. Again, one easily deduces from this
unicity thatK4,5 is not in [3, 3, 4]. The examples ofK3,3 andK4,4 suggest the following
conjecture.

Conjecture. For n�3, the complete bipartite graphKn,n has a faithful (3,3, n)-
representation, but not an orthodox(3,3, n)-representation or any(3,3, t)-representation
with t < n.

We just state the conjecture for what it is worth. Maybe we should rephrase it into a
question: what is the smallestt such thatKn,n is in [3,3, t]?
Note that, if we insert a newnode in the six edges,which are incidentwith the neighbors of

qbut not withq itself, then we obtain a (3, 3, 5)-representation ofK4,4, see the observations
and our conjecture after Corollary 8.
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