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Chapter 1

Introduction

1.1 Introduction to game theory

Game theory is a mathematical tool to analyse situations of conflict and co-

operation. The two major directions within game theory are non-cooperative

game theory and cooperative game theory. Non-cooperative game theory

deals with situations of conflict, and cooperative game theory with situa-

tions of cooperation. This monograph is mainly concerned with cooperative

game theory. The word “game” in the clause “cooperative game” is rather

unluckily chosen since the agents involved are generally assumed to have no

possibilities to undertake any strategic actions. In fact, in cooperative game

theory it is often assumed that binding agreements between the agents are

made in order to establish full cooperation. The central question in cooper-

ative game theory is therefore not who will cooperate with whom, but how

will the profit generated by this cooperation be divided in a “fair” way?

Of course, there does not exist a unique interpretation of the word “fair”.

Hence, in cooperative game theory there exist many solution concepts, each

with its own advantages and disadvantages. The fairness of these solution

concepts is mostly measured in terms of properties like monotonicity, con-

sistency and additivity.

The best-known model in cooperative game theory is that of transferable

utility games, or TU games for short. A TU game consists of a group of

agents, and a value for each subgroup of agents. The value of a subgroup of
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agents is interpreted as the profit this subgroup can obtain by cooperation.

Transferable utility refers to the assumption that utility, for example money,

can be transferred from one agent to another. In this monograph we treat

several aspects of TU games. We study properties of general TU games and

we introduce TU games to model the allocation of cost savings and costs in

well-known problems from graph theory and operations research. Before we

formally introduce TU games, we first illustrate these games and the most

prominent solution concepts and properties that feature in this monograph

by means of three examples.

Example 1.1.1 Consider a situation with three agents, referred to as agents

1, 2 and 3, each owning one job that needs to be processed on a machine. It

takes 1 time unit for the machine to handle the job of the first agent, 3 time

units to handle the job of the second agent, and 2 time units to handle the

job of the third agent. Each agent incurs a certain cost as long as his job is

not processed on the machine. We assume that the costs of the agents are

linear in the completion time of their jobs, and that the completion time

cost coefficients are given by 1, 4 and 4 for agents 1, 2 and 3, respectively.

So if the job of agent 2 is completed after 5 time units, then he incurs a cost

of 5 · 4 = 20. We summarise the information in Table 1.1.

agent 1 2 3

processing time 1 3 2
cost coefficient 1 4 4

Table 1.1: The processing times and cost coefficients.

We assume that the job of agent 1 is initially scheduled to be processed first,

followed by the job of agent 2, and finally the job of agent 3. This processing

order yields completion times of 1, 1 + 3 = 4 and 1 + 3 + 2 = 6 for the jobs

of agents 1, 2 and 3, respectively. So the total costs of this processing order

equal 1·1+4·4+4·6 = 41. However, the agents can generate cost savings by

agreeing on a different processing order. For instance, the processing order

(2, 1, 3) entails cost of only 4 ·3+1 ·4+4 ·6 = 40. The processing order with



1.1 Introduction to game theory 3

lowest total costs is (3, 2, 1), which yields total costs of 4 ·2+4 ·5+1 ·6 = 34.

The main question now is how the agents will distribute these cost savings

of 41 − 34 = 7. In Chapter 6 we formally describe how this situation can

be modelled as a cooperative game. At this cooperative game the value

of a coalition will be equal to the cost savings this coalition can obtain by

reordering its jobs. The game of our example is depicted in Table 1.2.

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

v(S) 0 0 0 0 1 0 4 7

Table 1.2: The corresponding sequencing game.

The interpretation behind v({1, 2}) = 1 is that agents 1 and 2 together can

generate total cost savings of 1, without any help of agent 3. Similarly,

v({1, 3}) = 0 means that agents 1 and 3 together are not able to generate

any cost savings. Now that we have modelled the situation as a cooperative

game, we can start looking for “fair” allocations. For instance, the allocation

(4, 2, 1) is not considered particularly fair since agents 2 and 3 together

receive a payoff of 3, while they can achieve cost savings of v({2, 3}) = 4 on

their own. Hence, (4, 2, 1) is not “stable” in the sense that it gives agents 2

and 3 an incentive not to cooperate with agent 1. This notion of stability

is the main idea behind a solution concept known as the core. Intuitively,

the core consists of all allocation vectors that distribute the value of the

total group of agents such that each subgroup of agents receives an amount

that exceeds the value it can achieve on its own. We remark that (0, 7, 0)

is a core element of this game, since each subgroup of agents receives at

least as much as its stand-alone value. We remark, although the core of

this particular game is non-empty, that cores of games can be empty. Since

the core is the most prominent solution concept in cooperative game theory,

many research is executed to establish sufficient conditions for non-emptiness

of the core.

One such sufficient condition is convexity. If a game is convex, then each

extreme point of the core coincides with a marginal vector, and the Shapley

value is a core element. Convexity is related to marginal contributions of
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agents to coalitions. For instance, if agent 1 joins the coalition consisting

solely of agent 2, then his marginal contribution to this coalition is v({1, 2})−

v({2}) = 1. If he joins coalition {2, 3}, then his marginal contribution is

v({1, 2, 3})−v({2, 3}) = 3. Here it is the case that the marginal contribution

of agent 1 to coalition {2, 3} exceeds his marginal contribution to the smaller

coalition {2}. A game is called convex if the marginal contribution of any

agent to any coalition is larger than his marginal contribution to any smaller

coalition. Also related to marginal contributions are marginal vectors. A

marginal vector is an allocation vector associated with an order on the player

set. An order on the player set is interpreted as the order in which the

agents agree to cooperate. The marginal vector associated to this order now

allocates to each player precisely his marginal contribution to the coalition

he joins. Consider for instance the order (2, 3, 1). Then agent 2 is the

first who agrees to cooperate, followed by agent 3 and finally agent 1. The

marginal contributions of the players at this order are v({2}) − v(∅) = 0,

v({2, 3}) − v({2}) = 4 and v({1, 2, 3}) − v({2, 3}) = 3, for agents 2, 3 and

1, respectively. So the corresponding marginal vector is given by (3, 0, 4).

Note that this marginal vector is a core element.

The Shapley value, probably the best-known one-point solution concept

in cooperative game theory, is the average over all marginal vectors. In this

example the Shapley value is equal to (1 1
6 , 31

6 , 22
3). Of course there exist

many other solution concepts in cooperative game theory. To give some

idea, we just mention the nucleolus and the τ -value. The nucleolus tries to

balance the happiness of coalitions, and the τ -value is an average between

two vectors expressing minimum and maximum rights of agents. For this

example the nucleolus equals (1 1
2 , 23

4 , 23
4) and the τ -value (1 5

16 , 3 1
16 , 25

8). 3

The following example treats two properties, namely core stability and large-

ness of the core. Furthermore we discuss tree-component additive games.

Tree-component additive games are TU games with a restricted cooperation

structure determined by an underlying tree. In fact, only coalitions that are

connected with respect to the underlying tree are assumed to be able to fully

communicate. Therefore only these connected coalitions are assumed to be

able to generate added value. Tree-component additive games are formally
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defined in Chapter 3, but already illustrated in the following example.

21 3

Figure 1.1: A tree (V, E).

Example 1.1.2 Consider the following tree depicted in Figure 1.1. The

only disconnected coalition in this tree is {1, 3}. This means that agents 1

and 3 are not able to communicate and thus not able to generate added

value. So if a game is tree-component additive with respect to (V, E),

then v({1, 3}) = v({1}) + v({3}). The game depicted in Table 1.3 is tree-

component additive with respect to (V, E).

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

v(S) 0 0 0 0 1 0 1 1

Table 1.3: A tree-component additive game.

The vector (0, 1, 0) is the only core element of this game. Indeed, if agent

1 or 3 receives a positive payoff, then coalition {2, 3} or coalition {1, 2} will

be dissatisfied with the payoff it receives. However, the outcome (0, 1, 0)

is certainly not the only reasonable outcome of this game. Consider for

instance the allocation vector ( 1
6 , 4

6 , 1
6). Then both coalitions {1, 2} and

{2, 3} receive a payoff less than their stand-alone values. However, it seems

unlikely that one of these coalitions will object to ( 1
6 , 4

6 , 1
6) and propose the

only core element as the allocation vector, since both player 1 and 3 will not

be in favour of this proposal. Such a situation cannot occur in games that

satisfy a property named core stability. If a game has a stable core, then

for each allocation outside the core, there exists a coalition that will object

to this allocation and propose a core element. In general it is difficult to

establish whether a game has a stable core. Luckily, there exist sufficient

conditions for core stability. One such sufficient condition is largeness of the

core. The core of a game is called large if each vector satisfying all coalitions
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is larger than a core element. The core of the game in our example is not

large, because, for instance, the vector (1, 0, 1) is not larger than the only

core element, while obviously (1, 0, 1) satisfies all coalitions. 3

To conclude this section we mention that the values of coalitions do not

necessarily have to reflect cost savings, but that these can reflect costs as

well. If this is the case, then the cooperative game is called a cost game.

Some solution concepts are defined slightly different for cost games, due to

the interpretation behind these concepts. We illustrate this in the following

example.

root

3

1,2

1,4

5

3

2

4

Figure 1.2: A tree depicting a cost sharing problem.

Example 1.1.3 Consider the tree in Figure 1.2, which depicts a cost shar-

ing problem. The numbers in the vertices represent the positions of the

agents in the network. Each agent requires at least one connection with

the root, and therefore this network needs to be maintained. The numbers

next to the edges represent the maintenance cost of these edges. The ques-

tion is how to divide the total maintenance costs of this network among the

agents. In Chapter 5 we formally introduce a cost game modelling this cost

allocation problem. The value of a coalition in this game will express the
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minimum total maintenance costs of this coalition. So for instance the cost

of coalition {1} is 5+4 = 9 and the cost of coalition {1, 2, 3} is 5+3+2 = 10.

The entire cost game is given by

c(S) =































0, if S = ∅;
8, if S = {3};
9, if S = {1}, {4}, {1, 4};
10, if S = {2}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3};
12, if S = {3, 4}, {1, 3, 4};
14, if S = {2, 4}, {2, 3, 4}, {1, 2, 4}, {1, 2, 3, 4}.

The core of a cost game consists of all allocation vectors that distribute

the value of the total group of agents such that each subgroup of agents is

charged an amount less than its stand-alone value. For instance, (0, 8, 2, 4) is

a core element of the cost game associated with our example. For cost games,

the notion of convexity is replaced by concavity. A cost game is concave if

the marginal contribution of any agent to any coalition is smaller than his

contribution to a smaller coalition. Concave cost games have non-empty

cores. In fact, if a cost game is concave, then each extreme point of the core

coincides with a marginal vector and the Shapley value is a core element.

Our game is not concave since, for instance, c({1, 3, 4})−c({1, 3}) = 2 < 4 =

c({1, 2, 3, 4})− c({1, 2, 3}). That is, the marginal contribution of agent 4 to

coalition {1, 3} is less than his marginal contribution to coalition {1, 2, 3}.

3

1.2 Games and graphs

In this section we first introduce notation we use throughout this monograph.

Then we formally introduce TU games, and several solution concepts and

properties. We also recall some basic terminology from graph theory and

two duality theorems.

1.2.1 Notation

The set of natural numbers is denoted by N, the set of real numbers by R,

the set of non-negative reals by R+, and the set of positive reals by R++.
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For a finite set X, the set RX is the space of |X|-dimensional vectors with

real entries indexed by the elements of X, where |X| denotes the cardinality

of X. Throughout this thesis we assume that finite sets are of the form

{1, . . . , x}, where x is the cardinality of the finite set. Let X be a finite set

and let S ⊆ X. The vector e(S) ∈ RX is such that ei(S) = 1 if i ∈ S, and

0 otherwise. For any y ∈ R, y+ is equal to the maximum of y and 0, i.e.

y+ = max{y, 0}, and dye is the smallest integer exceeding y.

Let N be a finite set. An order on N is a bijection from {1, . . . , |N |}

to N . If σ is an order on N , then, for each i ∈ {1, . . . , |N |}, σ(i) is at

the i-th position of σ. An order σ on N will alternatively be denoted by

(σ(1), . . . , σ(|N |)). The set of all orders on N is denoted by Π(N). For

each σ ∈ Π(N), the inverse of σ is denoted by σ−1. So σ−1(i) = j if and

only if σ(j) = i. Let σ ∈ Π(N), and let i ∈ {1, . . . , |N | − 1}. The i-th

neighbour of σ is the order σi ∈ Π(N) obtained from σ by interchanging

the players at the i-th and (i + 1)-st position of σ. Formally, σi(j) = σ(j)

for each j ∈ {1, . . . , |N |} with j 6= i and j 6= i + 1, σi(i) = σ(i + 1), and

σi(i + 1) = σ(i).

The identity order σid ∈ Π(N) is such that σid(i) = i for each i ∈

{1, . . . , |N |}. An order is called even if it can be transformed into the identity

order by pairwise interchanging the position of players an even number of

times. If an order is not even, then it is called odd .

1.2.2 Games

A transferable utility game (N, v), or TU game for short, consists of a finite

player set N and a map v : 2N → R. The map v : 2N → R is called

the characteristic function and describes for each coalition S ⊆ N its worth

v(S). By convention, v(∅) = 0. For convenience, a game (N, v) is sometimes

only denoted by v. The set of all TU games with player set N is denoted

by TUN . Let T ⊆ N . The subgame associated with coalition T is the game

vT ∈ TUT , where vT (S) = v(S) for each S ⊆ T .

Let v ∈ TUN . Coalition S ⊆ N is called essential if for each partition

P of S it holds that
∑

T∈P v(T ) < v(S). A coalition which is not essential

is inessential.
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A game v ∈ TUN is called monotone if for all S, T ⊆ N with S ⊆ T ,

v(S) ≤ v(T ),

and it is called superadditive if for each S, T ⊆ N with S ∩ T = ∅,

v(S) + v(T ) ≤ v(S ∪ T ).

A game v ∈ TUN is called convex if for all S, T ⊆ N ,

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). (1.1)

Convexity of a game is equivalent to

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ), (1.2)

for all i ∈ N and S, T ⊆ N\{i} with S ⊆ T . Hence, if a game is convex, then

the marginal contribution of a player to a coalition is at most his marginal

contribution to a larger coalition. Further, convexity is equivalent to

v(S ∪ {i}) − v(S) ≤ v(S ∪ {i, j}) − v(S ∪ {j}), (1.3)

for all i, j ∈ N , i 6= j, and S ⊆ N\{i, j}, as well.

Let v ∈ TUN . The imputation set I(v) is the set of all efficient and

individual rational allocation vectors, i.e.

I(v) = {x ∈ RN :
∑

i∈N

xi = v(N), xi ≥ v({i}) for each i ∈ N},

and the core C(v) is defined by

C(v) = {x ∈ RN :
∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S) for each S ⊆ N}.

Intuitively, the core is the set of payoff vectors for which no coalition has an

incentive to split off from the grand coalition. We remark that the core of

a game can be empty. However, it is shown in Shapley (1971) that convex

games have non-empty cores. An important result on non-emptiness of the

core is shown in Bondareva (1963) and Shapley (1967). This result uses the

definition of so-called balanced collections. A collection B ⊆ 2N\{∅} is called

balanced if there exists a map λ : B → (0, 1] such that
∑

S∈B λ(S)e(S) =

e(N).
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Theorem 1.2.1 (Bondareva (1963), Shapley (1967)) Let v ∈ TUN .

Then C(v) 6= ∅ if and only if for each balanced collection B ⊆ 2N\{∅} and

each map λ : B → (0, 1] such that
∑

S∈B λ(S)e(S) = e(N), it is satisfied

that
∑

S∈B λ(S)v(S) ≤ v(N).

The upper-core U(v) is the set of not necessarily efficient payoff vectors that

are stable against possible split offs, i.e.

U(v) = {x ∈ RN :
∑

i∈S

xi ≥ v(S) for each S ⊆ N}.

Let v ∈ TUN and σ ∈ Π(N). Then the marginal vector mσ(v) associated

with σ is defined by

mσ
σ(i)(v) = v([σ(i), σ]) − v([σ(i − 1), σ]),

for each i ∈ {1, . . . , |N |}, where [σ(i), σ] is the set of predecessors of σ(i) with

respect to σ. That is, [σ(i), σ] = {σ(1), . . . , σ(i)}. We will slightly abuse

notation by defining [σ(0), σ] = ∅ for every σ ∈ Π(N). So at a marginal

vector each player receives his marginal contribution to the coalition he

joins. The Shapley value Φ(v) (Shapley (1953)) can be interpreted as the

average of the marginal vectors, i.e.

Φ(v) =
1

|N |!

∑

σ∈Π(N)

mσ(v).

1.2.3 Cost games

In some circumstances the value of a coalition at a TU game is not inter-

preted as its worth, but as its cost. In those cases we speak of cooperative

cost games and we denote the game by (N, c). For a cost game c ∈ TUN ,

the core is given by

C(c) = {x ∈ RN :
∑

i∈N

xi = c(N),
∑

i∈S

xi ≤ c(S) for each S ⊆ N}.

Observe that if c ∈ TUN is monotone and has a non-empty core, then for

each x ∈ C(c), xi = c(N) −
∑

j∈N\{i} xj ≥ c(N) − c(N\{i}) ≥ 0 for every
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i ∈ N . That is, each core element of a monotone game is non-negative. A

cost game c ∈ TUN is called concave if for all S, T ⊆ N ,

c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ).

Equivalently, a cost game is concave if and only if for all i, j ∈ N , i 6= j, and

S ⊆ N\{i, j},

c(S ∪ {i}) − c(S) ≥ c(S ∪ {i, j}) − c(S ∪ {j}).

Hence, for concave cost games the marginal contribution of a player to any

coalition is at most his marginal contribution to a smaller coalition. We

remark that cores of concave cost games are non-empty.

1.2.4 Graphs

A graph G is a pair (V, E) where V is a finite set of vertices, and E is the

set of edges, i.e. a set of unordered pairs of V . If {v, w} ∈ E for all distinct

v, w ∈ V , then G is called complete. The subgraph induced by V ′ ⊆ V is the

graph GV ′ = (V ′, EV ′), where EV ′ is the set of edges having both endpoints

in V ′.

Two distinct vertices v, w ∈ V are called adjacent if {v, w} ∈ E. For

v, w ∈ V , a (v, w)-path of length m is a sequence (v, v1, . . . , vm−1, w) of

pairwise distinct vertices, where each subsequent pair of vertices is adjacent,

i.e. {v, v1} ∈ E, {vi, vi+1} ∈ E for all i ∈ {1, . . . , m−2} and {vm−1, w} ∈ E.

A cycle is a sequence (v, v1, . . . , vm, v) vertices with m ≥ 2, such that the

vertices of v, v1, . . . , vm are pairwise distinct. A graph is said to be connected

if for any two vertices v, w ∈ V the graph contains a (v, w)-path. The

maximal connected parts of a graph are called components.

A tree is a connected graph without any cycles. A leaf of a tree is a

vertex adjacent to only one other vertex. A chain is a tree with only two

leaves.

1.2.5 Duality theorems

In this section we recall two well-known duality theorems from linear pro-

gramming. In both theorems we implicitly assume that the feasible regions
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are non-empty.

Theorem 1.2.2 Let A be an n × m-matrix, w ∈ Rm and b ∈ Rn. Then

max{wx : Ax ≤ b, x ≥ 0} = min{by : yA ≥ w, y ≥ 0}.

Theorem 1.2.3 Let A be an n × m-matrix, w ∈ Rm and b ∈ Rn. Then

max{wx : Ax = b, x ≥ 0} = min{by : yA ≥ w}.

1.3 Overview

In this section we give an overview of the contents of this monograph.

In Chapter 2 we study convexity, permutational convexity and marginal

vectors. First we focus on the relation between convex games and marginal

vectors. Our results strengthen well-known results of Shapley (1971) and

Ichiishi (1981), and Rafels and Ybern (1995). Subsequently we study per-

mutational convexity (Granot and Huberman (1982)). We show that per-

mutational convexity is equivalent to a restricted set of inequalities and we

introduce a refinement of permutational convexity that is still sufficient for

a corresponding marginal vector to be a core element.

Chapter 3 discusses core stability of tree-component additive games and

several related concepts such as exactness, largeness and extendibility. A

tree-component additive game is a superadditive game with a restricted

cooperation structure. Other models in game theory with restricted coop-

eration possibilities include games with coalition structure (Aumann and

Maschler (1964)), partitioning games (Kaneko and Wooders (1982)) and

graph-restricted games (Myerson (1977)). Tree-component additive games

have also been studied in LeBreton, Owen, and Weber (1991) where non-

emptiness of the core is shown, and in Potters and Reijnierse (1995) where

it is proved that the core coincides with the bargaining set, and that the

kernel consists of the nucleolus only. Solymosi, Aarts, and Driessen (1998)

and Kuipers, Solymosi, and Aarts (2000) present algorithms to compute the

nucleolus of tree-component additive games.

In Chapter 4 we introduce cooperative games arising from dominating

set problems. The dominating set problem is a graph theoretical model that
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is essentially a location problem. Suppose there is a number of regions that

require the service of some facility. Placing a facility in each region is too

expensive, and therefore the regions decide to select a subset of the regions,

and only place facilities in the selected regions. However, the regions which

are not selected need to be served by a facility in a selected region, and so

these regions demand that at least one region in their neighbourhood is se-

lected. The first problem the regions face is to select a subset of regions such

that the total placement costs are minimised, and all proximity constraints

of the regions are met. A second problem is how to divide the total cost

among all participating regions. We introduce three cost games to model

this cost allocation problem. We focus on the structure and non-emptiness

of the core, and we consider concavity as well. Other game theoretical ap-

proaches to location problems include facility location games (Kolen and

Tamir (1990), Tamir (1992)) and minimum spanning forest games (Granot

and Granot (1992)).

In Chapter 5 we discuss a variant of fixed tree games. In a fixed tree

problem there is a rooted tree and a group of agents, each agent being located

at precisely one vertex of the tree and each vertex containing precisely one

agent. The maintenance of each edge in the tree entails a certain cost. The

main question is how to assign the total maintenance cost of the tree to the

agents. The fixed tree problem was first modelled as a cooperative cost game

by Megiddo (1978). Fixed tree games have also been studied in Galil (1980),

Granot, Maschler, Owen, and Zhu (1996), Koster, Molina, Sprumont, and

Tijs (2001) and Maschler, Potters, and Reijnierse (1995). Variants of fixed

tree games where it is allowed that one vertex is occupied by more agents or

by no agent are considered in, for example, Koster (1999) and Van Gellekom

(2000). However, these variants still require that every agent is located in

precisely one vertex. In Chapter 5 we introduce fixed tree problems where

agents can occupy more than one vertex. We show that the associated games

have non-empty cores, and we study several one-point solution concepts.

Chapter 6 is dedicated to sequencing games. In operations research, a

sequencing situation consists of a finite number of jobs and one or more

machines. A single decision maker wants to determine a processing schedule
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of the jobs on the machines that minimises a certain cost criterion, possi-

bly taking into account restrictions like due dates and release times. This

single decision maker problem can be turned into a multi decision maker

problem by associating an agent to each job. This approach was first taken

in Curiel, Pederzoli, and Tijs (1989). They consider sequencing situations

with one machine, a linear cost criterion, and no extra restrictions on the

jobs. With these sequencing situations they associate the class of sequenc-

ing games. Nowadays there exists a wide variety of sequencing games. For

instance, Van den Nouweland, Krabbenborg, and Potters (1992), Hamers,

Klijn, and Suijs (1999) and Calleja, Borm, Hamers, Klijn, and Slikker (2002)

investigate sequencing games arising from multiple-machine sequencing situ-

ations. Hamers, Borm, and Tijs (1995) and Borm, Fiestras-Janeiro, Hamers,

Sánchez, and Voorneveld (2002) impose release times and due dates on the

jobs, respectively. Slikker (2003) considers sequencing games where coali-

tions are allowed more possibilities to generate cost savings. In Chapter 6

we discuss several sequencing games. First we introduce sequencing games

with controllable processing times. These games arise from situations where

the processing times are not fixed, but can be reduced at extra cost. We

prove non-emptiness of the core in two ways, and we study convexity for

some special instances. Subsequently we introduce the class of precedence

sequencing games. These games arise from sequencing situations with prece-

dence constraints on the jobs. We show convexity in case the precedence

constraints consist of chains and the initial order is a concatenation of these

chains. Then we focus on weak-relaxed sequencing games. These games

allow some coalitions extra possibilities to generate cost savings. We show

non-emptiness of the core by means of permutational convexity. Finally,

we consider cooperation in queue allocation of indivisible objects, and show

that there exist side-payments that guarantee stability.



Chapter 2

Marginal vectors

2.1 Introduction

Marginal vectors are allocation vectors that divide the worth of the grand

coalition using an order on the player set. In particular, each player receives

his marginal contribution to the coalition he joins. In literature, several

papers explore the relation between marginal vectors and convexity. It is

shown in Shapley (1971) that if a game is convex, then all marginal vectors

are core elements. The reverse of this statement is shown in Ichiishi (1981).

A similar result is proved in Rafels and Ybern (1995). That paper showed

that if all even, or all odd marginal vectors are core elements, then the

corresponding game is convex.

Granot and Huberman (1982) also studies the relation between convexity

and marginal vectors. That paper introduces permutational convexity as a

refinement of convexity and show that if an order is permutationally convex

for a game, then the marginal vector associated with this order is a core

element. By applying this result to minimum cost spanning tree games, it

is shown that specific marginal vectors are core elements.

The approach of Granot and Huberman (1982) is adopted by, e.g., Al-

idaee (1994) and Meca, Timmer, Garcia-Jurado, and Borm (2004). In Al-

idaee (1994) the permutational convexity of minimum cost spanning forest

games is shown, and in Meca, Timmer, Garcia-Jurado, and Borm (2004) the

non-emptiness of the core of holding cost games is shown with the use of
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permutational concavity. In Sections 6.3 and 6.5 of this thesis we will apply

permutational convexity to two types of sequencing games.

In this chapter, which is based on Van Velzen, Hamers, and Norde (2002,

2004, 2005), we study marginal vectors, and in particular their relation to

convexity. First we show that if two consecutive neighbours of a marginal

vector are core elements, then this marginal vector is a core element as well.

This result is then used to provide sets of orders that characterise convexity,

i.e. a set of orders with the property that the corresponding marginal vectors

are only core elements if the corresponding game is convex. In particular,

we provide an alternative proof for the result of Rafels and Ybern (1995).

Furthermore we investigate the number of orders in minimal convexity char-

acterising sets. Subsequently, we characterise the convexity characterising

sets of orders, and we provide a formula for the minimum cardinality of

these sets. Finally, we investigate permutational convexity. We introduce

a refinement of permutational convexity and show that this refinement is

still sufficient for the corresponding marginal vector to be a core element.

Furthermore we show that permutational convexity can alternatively be de-

scribed by a restricted set of inequalities. We conclude the chapter by con-

sidering neighbours of permutationally convex orders and we show that if an

order is permutationally convex, then its last neighbour is permutationally

convex as well.

The remainder of this chapter is organised as follows. In Section 2.2

we recall some early results. In Section 2.3 we take a first approach to

finding sets of orders that characterise convexity. In Section 2.4 we provide

the formula for the minimum cardinality of convexity characterising sets.

Finally, Section 2.5 considers permutational convexity.

2.2 Marginal vectors and convexity

In this section we recall well-known theorems from literature and we intro-

duce permutational convexity.

In Shapley (1971) an important relation between convexity of TU games

and marginal vectors is discovered. It is shown that if a game is convex,
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then all marginal vectors are core elements. In Ichiishi (1981) the reverse is

shown. That is, if all marginal vectors belong to the core, then the game is

convex. These two results are summarised in the following theorem.

Theorem 2.2.1 (Shapley (1971), Ichiishi (1981)) A game v ∈ TUN is

convex, if and only if mσ(v) ∈ C(v) for each σ ∈ Π(N).

Theorem 2.2.1 was strengthened in Rafels and Ybern (1995). It is proved

in that paper that if all even marginal vectors are core elements, then all

odd marginal vectors are core elements as well, and vice versa. Hence, a

characterisation of convexity of games is provided by means of |N |!
2 specific

marginal vectors.

Theorem 2.2.2 (Rafels and Ybern (1995)) Let v ∈ TUN . Then the

following statements are equivalent:

1. (N, v) is convex;

2. mσ(v) ∈ C(v) for each even σ ∈ Π(N);

3. mσ(v) ∈ C(v) for each odd σ ∈ Π(N).

The relation between convexity and marginal vectors is further explored in

Granot and Huberman (1982). In that paper permutational convexity is

introduced as a refinement of convexity and it is shown that if a game is

permutationally convex with respect to an order, then the corresponding

marginal vector is a core element of that game.

Let v ∈ TUN and σ ∈ Π(N). Then (N, v) is permutationally convex with

respect to σ if

v([σ(i), σ] ∪ S) + v([σ(k), σ]) ≤ v([σ(k), σ] ∪ S) + v([σ(i), σ]) (2.1)

for all i, k ∈ {0, . . . , |N | − 1} with i < k, and S ⊆ N\[σ(k), σ] with S 6= ∅.

If v ∈ TUN is permutationally convex with respect to σ ∈ Π(N), then σ is

called permutationally convex for (N, v).

Theorem 2.2.3 (Granot and Huberman (1982)) Let v ∈ TUN . If

σ ∈ Π(N) is permutationally convex for (N, v), then mσ(v) ∈ C(v).
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We remark that the reverse of Theorem 2.2.3 is not true in general. Let

v ∈ TUN . Then checking if σ ∈ Π(N) is permutationally convex for

(N, v) requires the checking of many inequalities. In fact, for each i, k ∈

{0, . . . , |N | − 1} with i < k, there are precisely 2|N |−k − 1 choices of S ⊆

N\[σ(k), σ] with S 6= ∅. Hence, for each i, k ∈ {0, . . . , |N | − 1} with i < k,

there are precisely 2|N |−k − 1 permutational convexity inequalities. In total

there are

|N |−2
∑

i=0

|N |−1
∑

k=i+1

[2|N |−k − 1] =

|N |−2
∑

i=0

[2|N |−i − 2 − (|N | − i − 1)]

= 2|N |+1 − 4 − 2(|N | − 1) −
1

2
(|N | − 1)|N |

= 2|N |+1 − 2 −
1

2
|N |2 − 1

1

2
|N |

inequalities.

2.3 Neighbour-complete sets

In this section we first show that if two consecutive neighbours of a marginal

vector are core elements, then that marginal vector is a core element as well.

We will exploit this result to formulate an alternative proof of Theorem 2.2.2.

Furthermore we find other sets of orders that provide a characterisation of

convexity and we find upper bounds on the number of orders needed to

characterise convexity.

We first show that if two consecutive neighbours of a marginal vector

are core elements, then that marginal vector is a core element as well.

Lemma 2.3.1 Let v ∈ TUN with |N | ≥ 3 and let σ ∈ Π(N). If there is an

h ∈ {1, . . . , |N | − 2} with mσh(v), mσh+1(v) ∈ C(v), then mσ(v) ∈ C(v).

Proof: Without loss of generality we assume that σ(i) = i for each i ∈

{1, . . . , |N |}. We need to show that
∑

i∈S mσ
i (v) ≥ v(S) for each S ⊆ N .

Let S ⊆ N . If h, h + 1 ∈ S, or if h, h + 1 6∈ S, then
∑

i∈S mσ
i (v) =

∑

i∈S m
σh

i (v) ≥ v(S). Here the inequality is satisfied because mσh(v) ∈

C(v). We now distinguish between two possibilities.
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Case 1: h 6∈ S, h + 1 ∈ S.

Consider coalition [h, σ]. Then,

∑

i∈[h,σ]

m
σh

i (v) = m
σh

h (v) +
∑

i∈[h−1,σ]

m
σh

i (v)

= v([h + 1, σ]) − v([h + 1, σ]\{h}) + v([h − 1, σ])

≥ v([h, σ]).

The inequality is satisfied because mσh(v) ∈ C(v). We conclude that

v([h + 1, σ]) − v([h + 1, σ]\{h}) + v([h − 1, σ]) − v([h, σ]) ≥ 0. (2.2)

Now observe that

∑

i∈S

mσ
i (v) =

∑

i∈S

m
σh

i (v) − m
σh

h+1(v) + mσ
h+1(v)

=
∑

i∈S

m
σh

i (v) −

[

v([h + 1, σ]\{h}) − v([h − 1, σ])

]

+

[

v([h + 1, σ]) − v([h, σ])

]

≥ v(S).

The inequality is satisfied because mσh(v) ∈ C(v) implies
∑

i∈S m
σh

i (v) ≥

v(S), and because of (2.2).

Case 2: h ∈ S, h + 1 6∈ S.

If h + 2 6∈ S, then it follows straightforwardly that
∑

i∈S mσ
i (v) =

∑

i∈S m
σh+1

i (v) ≥ v(S). So assume that h + 2 ∈ S. Since now h + 1 6∈ S

and h + 2 ∈ S, it can be shown in a similar fashion as in Case 1, that
∑

i∈S mσ
i (v) ≥ v(S). 2

Example 2.3.1 Let v ∈ TUN with N = {1, 2, 3}. The first and second

neighbour of (1, 2, 3) are (2, 1, 3) and (1, 3, 2), respectively. From Lemma

2.3.1 it follows that if m(2,1,3)(v) ∈ C(v) and m(1,3,2)(v) ∈ C(v), then

m(1,2,3)(v) ∈ C(v). 3
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In Rafels and Ybern (1995) Theorem 2.2.2 is proved by showing that if all

even or all odd marginal vectors are core elements, then (1.3) is satisfied

for all i, j ∈ N , i 6= j, and all S ⊆ N\{i, j}. We remark that Lemma 2.3.1

provides an alternative proof of Theorem 2.2.2, in case |N | ≥ 3. Just observe

that each neighbour of an even marginal vector is odd, and vice versa. So if

all even marginal vectors are core elements, then we can deduce from Lemma

2.3.1 that each odd marginal vector is a core element as well. In fact, Lemma

2.3.1 allows us to obtain different sets of orders that characterise convexity

as well. Before we develop such sets, we first introduce some notation.

Let {T1, . . . , Tk} be a partition of N . Let σi ∈ Π(Ti) for each i ∈

{1, . . . , k}. Then the combined order σ1 · · ·σk ∈ Π(N) is that order that

begins with the players in T1 ordered according to σ1, followed by the play-

ers in T2 ordered according to σ2, etcetera. The set Π(T1, . . . , Tk) contains

those orders which begin with the players in T1, followed by the players

in T2, etcetera, i.e. Π(T1, . . . , Tk) = {σ1 · · ·σk : σi ∈ Π(Ti) for every i ∈

{1, . . . , k}}. These definitions are illustrated in the following example.

Example 2.3.2 Let N = {1, 2, 3, 4, 5}, T1 = {1, 5}, T2 = {3} and T3 =

{2, 4}. If σ1 = (5, 1), σ2 = (3) and σ3 = (2, 4), then σ1σ2σ3 = (5, 1, 3, 2, 4),

and Π({1, 5}, {3}, {2, 4}) = {(1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (5, 1, 3, 2, 4),

(5, 1, 3, 4, 2)}. 3

Now we introduce an operator bT : 2Π(T ) → 2Π(T ) for every T ⊆ N . For

|T | = 1, 2, we define bT (A) = A for all A ⊆ Π(T ). For |T | ≥ 3, we define

bT (A) = A ∪ { σ ∈ Π(T ) : there is an h ∈ {1, . . . , |T | − 2}

with σh, σh+1 ∈ A}.

We introduced the operator bT for the following reason. Let v ∈ TUN and

A ⊆ Π(N). If mσ(v) ∈ C(v) for each σ ∈ A, then it follows from Lemma

2.3.1 that mσ(v) ∈ C(v) for each σ ∈ bN (A). So if all marginal vectors

corresponding to orders in A are core elements, then all marginal vectors

corresponding to orders in bN (A) are core elements as well. The application

of bN is illustrated in the following example.
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Example 2.3.3 Let N = {1, 2, 3, 4} and A = {(2, 1, 3, 4), (1, 3, 2, 4),

(1, 4, 2, 3)}. Let σ = (1, 2, 3, 4) and τ = (1, 2, 4, 3). Because σ1 = (2, 1, 3, 4) ∈

A and σ2 = (1, 3, 2, 4) ∈ A, it follows that σ ∈ bN (A). Furthermore, note

that τ 6∈ A, τ1 = (2, 1, 4, 3) 6∈ A and τ3 = (1, 2, 3, 4) 6∈ A. This implies that

τ 6∈ bN (A). However τ2 = (1, 4, 2, 3) ∈ bN (A) and τ3 = (1, 2, 3, 4) ∈ bN (A).

Therefore, τ ∈ bN (bN (A)) = b2
N (A). 3

In Example 2.3.3 we observed that a repeated application of bT makes sense.

So let T ⊆ N . We define the closure of A ⊆ Π(T ), denoted by b∗T (A), to

be the largest set of orders that can be obtained by repetitive application of

bT , i.e. b∗T (A) = bk
T (A) for k ∈ N with bk

T (A) = bk+1
T (A).

Let C ⊆ Π(T ). If A ⊆ C is such that C ⊆ b∗T (A), then A is called

neighbour-complete, or n-complete, in C. If A ⊆ Π(T ) is n-complete in

Π(T ), then A is called n-complete. From Lemma 2.3.1 it follows that if

A ⊆ Π(N) is n-complete, then mσ(v) ∈ C(v) for each σ ∈ A implies that

(N, v) is convex. Before we obtain n-complete sets, we first find n-complete

sets for Π(T1, . . . , Tk), where {T1, . . . , Tk} is a partition of N .

Lemma 2.3.2 Let {T1, . . . , Tk} be a partition of N and let Ai ⊆ Π(Ti). If

Ai is n-complete in Π(Ti) for each i ∈ {1, . . . , k}, then A = {τ 1 · · · τk : τ i ∈

Ai for each i ∈ {1, . . . , k}} is n-complete in Π(T1, . . . , Tk).

Proof: Let σ1 · · ·σk ∈ Π(T1, . . . , Tk). We use induction on j to show for

each j ∈ {1, . . . , k+1}, that σ1 · · ·σj−1τ j · · · τk ∈ b∗N (A) for all (τ j , . . . , τk) ∈

Aj × . . . × Ak. This shows, with j = k + 1, that σ1 · · ·σk ∈ b∗N (A).

First note, for the induction basis, that τ 1 · · · τk ∈ b∗N (A) for all

(τ1, . . . , τk) ∈ A1 × . . . × Ak.

As the induction hypothesis, assume that j∗ ∈ {1, . . . , k+1} is such that

for all j ∈ {1, . . . , j∗} it is satisfied that σ1 · · ·σj−1τ j · · · τk ∈ b∗N (A) for all

(τ j , . . . , τk) ∈ Aj × . . . × Ak.

If j∗ = k + 1, then we are done, so assume that j∗ < k + 1. Let

(τ j∗+1, . . . , τk) ∈ Aj∗+1 × . . . × Ak and let C(τ j∗+1, . . . , τk) =

{σ1 · · ·σj∗−1ττ j∗+1 · · · τk : τ ∈ Aj∗}. According to our induction hypoth-

esis, C(τ j∗+1, . . . , τk) ⊆ b∗N (A). Because σj∗ ∈ b∗Tj∗
(Aj∗) it follows that
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σ1 · · ·σj∗−1σj∗τ j∗+1 · · · τk ∈ b∗N (C) ⊆ b∗N (A). Therefore σ1 · · ·σj∗τ j∗+1 · · · τk

∈ b∗N (A) for all (τ j∗+1, . . . , τk) ∈ Aj∗+1 × . . . × Ak. 2

Example 2.3.4 Let N = {1, . . . , 6}, T1 = {1, 2, 4} and T2 = {3, 5, 6}.

Let A1 = {(1, 2, 4), (2, 4, 1), (4, 1, 2)} and A2 = {(3, 5, 6), (5, 6, 3), (6, 3, 5)}.

Note that A1 and A2 are n-complete in Π(T1) and Π(T2), respectively. It

follows from Lemma 2.3.2 that A = {στ : σ ∈ A1, τ ∈ A2} is n-complete in

Π({1, 2, 4}, {3, 5, 6}). 3

In the remainder of this section we focus on the cardinality of n-complete

sets. We will call A ⊆ Π(T ) minimum n-complete in Π(T ) if it is an n-

complete set in Π(T ) of minimum cardinality. Because of symmetry, the

cardinality of minimum n-complete sets in Π(T ) does not depend on T ,

but only on the cardinality of T . Let the neighbour number Qt denote

the cardinality of a minimum n-complete set in Π(T ), where t = |T |.1 So

Qt = min{|A| : A ⊆ Π(T ) is n-complete in Π(T )}. By definition, Q1 = 1

and Q2 = 2. From Theorem 2.2.2, and our alternative proof of this theorem,

it follows that Qn ≤ n!
2 for each n ≥ 3. Finally, define the relative neighbour

number Fn = Qn

n! . The following proposition, which is a direct consequence

of Lemma 2.3.2, gives a strengthening of the bound obtained from Theorem

2.2.2.

Proposition 2.3.1 Let n1, . . . , nk, n ∈ N be such that
∑k

i=1 ni = n. Then

Qn ≤ n!
n1!···nk!

∏k
i=1 Qni

.

Proof: Let N be a finite set of cardinality n. Observe that Π(N) can be

partitioned into n!
n1!···nk! sets of the form Π(T1, . . . , Tk), with |Ti| = ni for

each i ∈ {1, . . . , k}, and {T1, . . . , Tk} a partition of N . Now let {T1, . . . , Tk}

be a partition of N with |Ti| = ni for each i ∈ {1, . . . , k}. The n-complete

set in Π(T1, . . . , Tk) from Lemma 2.3.2 contains
∏k

i=1 Qni
elements. Hence,

Qn ≤ n!
n1!···nk!

∏k
i=1 Qni

. 2

From Proposition 2.3.1 it follows that Qn+1 ≤ (n+1)!
n!1! QnQ1 = (n + 1)Qn.

This implies that Fn+1 ≤ Fn for each n ∈ N. So Fn is non-increasing. In

1In the remainder of this section we denote the cardinality of a finite set T by t.
Similarly, the cardinality of a finite set N is denoted by n.



2.3 Neighbour-complete sets 23

fact, the next theorem exploits Proposition 2.3.1 to conclude that Fn → 0 if

n → ∞. So the relative number of orders needed to characterise convexity

converges to zero.

Theorem 2.3.1 If n → ∞, then Fn → 0.

Proof: Let k ∈ N, and ni = 3 for every i ∈ {1, . . . , k}. From Proposition

2.3.1 we deduce, using n = 3k, that

Q3k ≤
(3k)!

(3!)k
3k.

Here we have used that Q3 ≤ 3. We conclude that F3k ≤ (1
2)k for every

k ∈ N and therefore that F3k → 0 if k → ∞. Because Fn+1 ≤ Fn for each

n ∈ N, it follows that Fn → 0 if n → ∞. 2

The final result of this section gives lower bounds for Qn.

Proposition 2.3.2 If n ∈ N is even, then Qn ≥ n! 1

2
n−2

2
. If n ∈ N is odd,

then Qn ≥ n! 1

2
n−1

2
.

Proof: Let n ∈ N be even, let N = {1, . . . , n}, and let k = n+2
2 . Let

{T1, . . . , Tk} be a partition of N , with |T1| = |Tk| = 1, and |Ti| = 2 for each

i ∈ {2, . . . , k − 1}. Let C = Π(T1, . . . , Tk). Note that if σ ∈ C, then σi ∈ C

for each even i ∈ {1, . . . , n − 1}.

Now let A ⊆ Π(N) be such that A ∩ C = ∅. Let σ ∈ C. Because for

each i ∈ {1, . . . , n − 2} either i or i + 1 is even, we conclude that for all

i ∈ {1, . . . , n − 2} it is satisfied that σi ∈ C, or σi+1 ∈ C. This implies for

every i ∈ {1, . . . , n − 2} that σi 6∈ A or σi+1 6∈ A. Hence, σ 6∈ bN (A). We

conclude that bN (A) ∩ C = ∅. By repetition, we find b∗N (A) ∩ C = ∅.

So if A ⊆ Π(N) is n-complete in Π(N), then it is true that |A ∩ C| ≥ 1.

Since we can partition Π(N) into n!
2k−2 sets of the form Π(T1, . . . , Tk), with

{T1, . . . , Tk} a partition of N , |T1| = |Tk| = 1, and |Ti| = 2 for every

i ∈ {2, . . . , k − 1}, we conclude that Qn ≥ n!
2k−2 = n! 1

2
n−2

2
.

Now let n ∈ N be odd, let N = {1, . . . , n}, and let k = n+1
2 . Let

{T1, . . . , Tk} be a partition of N with |T1| = 1, and |Ti| = 2 for every
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i ∈ {2, . . . , k}. We can conclude, similarly to the case where n is even,

that if A is complete, then A ∩ Π(T1, . . . , Tk) 6= ∅. Because Π(N) can be

partitioned into n!
2k−1 sets of the form Π(T1, . . . , Tk), with {T1, . . . , Tk} a

partition of N , |T1| = 1, and |Ti| = 2 for every i ∈ {2, . . . , k}, we conclude

that Qn ≥ n!
2k−1 = n! 1

2
n−1

2
. 2

Now combining Theorem 2.2.2 with Proposition 2.3.2 gives Q3 = 3 and

Q4 = 12. Furthermore, we obtain from Theorem 2.2.2 that Q5 ≤ 60 and

from Proposition 2.3.2 that Q5 ≥ 30. Therefore Q5 ∈ [30, 60]. However, in

Van Velzen, Hamers, and Norde (2002) it is shown, using ad hoc methods,

that Q5 = 30. Some other bounds are given in Table 2.1. These other

bounds all follow from Propositions 2.3.1 and 2.3.2.

n 3 4 5 6 7 8 9

n! 6 24 120 720 5040 40320 362880
n!
2 3 12 60 360 2520 20160 181440

Qn 3 12 30 180 [630,1260] 5040 [22680,45360]
Fn

1
2

1
2

1
4

1
4 [18 , 1

4 ] 1
8 [ 1

16 , 1
8 ]

Table 2.1: New bounds

2.4 A characterisation of minimum cardinality

In this section we continue our exploration of convexity characterising sets.

However, in this section we trail a more efficient method than that of Section

2.3. First we introduce complete sets, and then characterise these sets.

A set A ⊆ Π(N) is said to be complete if for every v ∈ TUN the following

assertions are equivalent:

1. (N, v) is convex;

2. mσ(v) ∈ C(v) for each σ ∈ A.

First note, according to Theorem 2.2.1, that Π(N) is a complete set. From

Theorem 2.2.2 we deduce that the sets of even and odd orders are also

complete sets. Furthermore we remark that each n-complete set is complete
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as well. We are interested in the minimum cardinality of complete sets.

Therefore we introduce

Mn = min{|A| : A ⊆ Π(N) is complete},

where n = |N |.2 Note that Mn ≤ Qn for each n ∈ N. Before we characterise

complete sets, we first introduce some notation. Let i, j ∈ N , i 6= j, and

S ⊆ N\{i, j}. Then P (S, {i, j}) is the set of orders that begin with the

players in S, followed by the players in {i, j}, and end with the players in

N\(S∪{i, j}). Note that we allow for S = ∅ and S = N\{i, j}. We are now

ready for our characterisation of complete sets.

Lemma 2.4.1 The set A ⊆ Π(N) is complete if and only if

A ∩ P (S, {i, j}) 6= ∅ (2.3)

for all i, j ∈ N , i 6= j, and S ⊆ N\{i, j}.

Proof: First we show the ”if” part. Let v ∈ TUN and let A ⊆ Π(N) satisfy

(2.3). We need to show that mσ(v) ∈ C(v) for each σ ∈ A implies that

(N, v) is convex. So assume that mσ(v) ∈ C(v) for each σ ∈ A. For showing

that (N, v) is convex, we need to show that (1.3) is satisfied for all i, j ∈ N ,

i 6= j and all S ⊆ N\{i, j}. So let i, j ∈ N , i 6= j, and S ⊆ N\{i, j}. By

assumption there is a σ ∈ A with σ ∈ P (S, {i, j}). Assume without loss of

generality that σ(|S| + 1) = i and σ(|S| + 2) = j. Then,

v(S ∪ {j}) ≤
∑

k∈S∪{j}

mσ
k(v) = v(S ∪ {i, j}) − v(S ∪ {i}) + v(S).

The inequality is satisfied because mσ(v) ∈ C(v). We conclude that (N, v)

is convex.

It remains to show the ”only if” part. Assume that A ⊆ Π(N) does

not satisfy (2.3). We will show that A is not complete by constructing a

non-convex game for which all marginal vectors corresponding to orders in

A are core elements.

2In the remainder of this section we denote the cardinality of a finite set N by n.



26 Marginal vectors

Because A does not satisfy (2.3), there are i, j ∈ N , i 6= j, and S ⊆

N\{i, j} with A ∩ P (S, {i, j}) = ∅. Define v ∈ TUN by

v(T ) =

{

1 if T = S ∪ {i}, S ∪ {j}
max(0, |T | − |S| − 1) otherwise.

We will show that mσ(v) ∈ C(v) if and only if σ 6∈ P (S, {i, j}). This implies

that (N, v) is not convex, and that mσ(v) ∈ C(v) for each σ ∈ A.

First we show that mσ(v) 6∈ C(v) for each σ ∈ P (S, {i, j}). Let σ ∈

P (S, {i, j}). Without loss of generality assume that σ(|S| + 1) = i and

σ(|S| + 2) = j. Then

∑

k∈S∪{j}

mσ
k(v) = v(S ∪ {i, j}) − v(S ∪ {i}) + v(S)

= 1 − 1 + 0

< 1

= v(S ∪ {j}).

Hence, mσ(v) 6∈ C(v). It remains to show that mσ(v) ∈ C(v) for each

σ 6∈ P (S, {i, j}).

Let σ 6∈ P (S, {i, j}). First observe that by definition of (N, v), it is

satisfied that v(T ∪{k})−v(T ) ∈ {0, 1} for all k ∈ N and T ⊆ N\{k}. This

implies that

mσ
k(v) ∈ {0, 1} (2.4)

for each k ∈ N . Now let T ⊆ N . For showing that
∑

k∈T mσ
k(v) ≥ v(T ) we

distinguish between two cases.

Case 1: T 6= S ∪ {i}, S ∪ {j}.

If |T | ≤ |S| + 1, then it follows by definition of (N, v) that v(T ) = 0.

This implies, using (2.4), that
∑

k∈T mσ
k(v) ≥ 0 = v(T ).

If |T | > |S| + 1, then we conclude using (2.4) that
∑

k∈N\T mσ
k(v) ≤
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|N\T |. This implies

∑

k∈T

mσ
k(v) = v(N) −

∑

k∈N\T

mσ
k(v)

≥ |N | − |S| − 1 − |N\T |

= |T | − |S| − 1

= v(T ).

Case 2: T = S ∪ {i} or T = S ∪ {j}.

Without loss of generality assume that T = S ∪ {i}. Observe that

v(S∪{i}) = 1. Because of (2.4), it is sufficient to prove there is a k ∈ S∪{i}

with mσ
k(v) = 1.

Let h ∈ S∪{i} be that player ordered last with respect to σ, i.e. σ−1(k) ≤

σ−1(h) for all k ∈ S ∪ {i}. Note that by definition, σ−1(h) ≥ |S| + 1. We

distinguish between three subcases.

Subcase 2a: σ−1(h) = |S| + 1.

So σ is an order that starts with the members of S∪{i}. Hence, mσ
h(v) =

v(S ∪ {i}) − v((S ∪ {i})\{h}) = 1 − 0 = 1.

Subcase 2b: σ−1(h) = |S| + 2.

First assume that h 6= i. Then h ∈ S and this implies that [h, σ]\{h} 6=

S ∪ {i}, S ∪ {j}. So v([h, σ]) = 1 and v([h, σ]\{h}) = 0. We conclude that

mσ
h(v) = v([h, σ]) − v([h, σ]\{h}) = 1 − 0 = 1.

Secondly, assume that h = i. If σ−1(j) > σ−1(h), then [h, σ]\{h} 6=

S ∪ {j}, and because h = i it is satisfied that [h, σ]\{h} 6= S ∪ {i}. This

implies that v([h, σ]\{h}) = 0. From v([h, σ]) = 1 we conclude that mσ
h(v) =

v([h, σ]) − v([h, σ]\{h}) = 1 − 0 = 1.

If σ−1(j) < σ−1(h), then it follows from σ 6∈ P (S, {i, j}) that σ(|S|+1) 6=

j. Now let k ∈ S be such that σ(|S| + 1) = k. Then, [k, σ] = S ∪ {j}. This

implies that mσ
k(v) = v([k, σ]) − v([k, σ]\{k}) = 1 − 0 = 1.

Subcase 2c: σ−1(h) ≥ |S| + 3.

Then |[h, σ]| ≥ |S| + 3, and |[h, σ]\{h}| = |[h, σ]| − 1. Hence, mσ
h(v) =

v([h, σ])− v([h, σ]\{h}) = (|[h, σ]| − |S| − 1)− (|[h, σ]\{h}|− |S| − 1) = 1. 2
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Before we give the formula for the minimum cardinality of complete sets,

it is convenient to introduce some terminology. Let N be a finite set and

define, for each k ∈ {0, . . . , n − 2},

Gn(k) = {P (S, {i, j}) : i, j ∈ N, i 6= j, S ⊆ N\{i, j} and |S| = k}

as the collection of sets P (S, {i, j}) where S contains precisely k members.

Now let k ∈ {0, . . . , n − 2}. Obviously, for each σ ∈ Π(N) there is precisely

one P (S, {i, j}) ∈ Gn(k) with σ ∈ P (S, {i, j}). In other words, Gn(k) is

a partition of Π(N) for each k ∈ {0, . . . , n − 2}. Observe that |Gn(k)| =
(

n
k

)(

n−k
2

)

.

From Lemma 2.4.1 it follows that complete sets are those sets that cover

all elements of Gn(k), for each k ∈ {0, . . . , n − 2}. That is, A ⊆ Π(N) is

complete if and only if A ∩ B 6= ∅ for all B ∈
⋃n−2

k=0 Gn(k). So we can easily

find complete sets by choosing, for each k ∈ {0, . . . , n − 2}, an order from

every B ∈ Gn(k). In this way we obtain a complete set containing at most
∑n−2

k=0 |Gn(k)| orders. Of course, there are complete sets containing less than
∑n−2

k=0 |Gn(k)| orders. The main result of this section is the formula for the

minimum cardinality of a complete set. In particular, we give a method to

construct minimum cardinality complete sets. It turns out to be convenient

to distinguish between odd n ∈ N and even n ∈ N. Therefore we distinguish

between those two possibilities.

First we focus on odd n ∈ N. Let n ∈ N, n ≥ 3, be odd and let

N = {1, . . . , n}. First we introduce the concepts of right-hand side and left-

hand side neighbours, and that of perfect coverings. Let k = n−1
2 . Assume

that the players are seated at a round table such that for all j ∈ N the

person on the right-hand side of player j is player (j − 1) mod n and the

person on his left-hand side is player (j + 1) mod n. For each j ∈ N , the

set of right-hand side neighbours of j, denoted by Rj , consists of the first k

players on the right-hand side of player j, i.e.

Rj = {(j − 1) mod n, . . . , (j − k) mod n}.

Similarly, for each j ∈ N , the set of left-hand side neighbours of j, denoted
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by Lj , consists be the first k players on the left-hand side of player j, i.e.

Lj = {(j + 1) mod n, . . . , (j + k) mod n}.

The notion of left-hand side neighbours and right-hand side neighbours is

illustrated in Example 2.4.1.

Example 2.4.1 Let N = {1, . . . , 9}, k = 4 and j = 3. Then R3 =

{1, 2, 8, 9} and L3 = {4, 5, 6, 7}. These sets are illustrated in Figure 2.1.
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Figure 2.1: The left-hand side and right-hand side neighbours of 3.

It is straightforward to verify the following properties of Rj and Lj , for all

i, j ∈ N .

(P1) Lj ∩ Rj = ∅;

(P2) Lj ∪ Rj ∪ {j} = N ;

(P3) i ∈ Lj if and only if j ∈ Ri;

(P4) i ∈ Rj if and only if j 6∈ Ri.
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Now we introduce the concept of perfect coverings, which is closely related to

the concepts of right-hand side and left-hand side neighbours. Let i, j ∈ N ,

i 6= j, and S ⊆ N\{i, j}. Then σ ∈ P (S, {i, j}) is said to perfectly cover

P (S, {i, j}) if σ(|S|+1) ∈ Rσ(|S|+2). It is easily verified, using (P4), that half

the number of orders in P (S, {i, j}) perfectly covers this set. We illustrate

perfect coverings in the following example.

Example 2.4.2 Let N = {1, . . . , 9}, S = {1, 4, 5}, i = 8 and j = 3.

Then, 8 ∈ R3, but 3 6∈ R8. Hence, σ ∈ P ({1, 4, 5}, {3, 8}) is a perfect

covering of this set if and only if σ(4) = 8 and σ(5) = 3. So, for in-

stance, (5, 1, 4, 8, 3, 2, 9, 6, 7) is a perfect covering of P ({1, 4, 5}, {3, 8}), but

(5, 1, 4, 3, 8, 2, 9, 6, 7) is not. 3

The last concept we introduce before we state the formula of minimum

cardinality of complete sets is that of perfect completeness. A set A ⊆ Π(N)

is called perfect complete if for each i, j ∈ N , i 6= j, and S ⊆ N\{i, j} there

is a σ ∈ A that perfectly covers P (S, {i, j}). Observe that if a set is perfect

complete, then it follows by Lemma 2.4.1 that it is complete as well.

The following theorem provides the minimum cardinality of a complete

set for odd n ∈ N. The proof of this theorem is constructive in the sense

that it contains a procedure to obtain a perfect complete set of minimum

cardinality.

Theorem 2.4.1 Let n ∈ N with n ≥ 3 be odd. Then

Mn =
n!

2(n−3
2 )!(n−1

2 )!
.

Proof: Let k = n−1
2 . First we show that Mn ≥ n!

2( n−3
2

)!( n−1
2

)!
. Since

Gn(k) forms a partition of Π(N), it follows that to cover all elements of

Gn(k) at least |Gn(k)| orders are needed. Note that |Gn(k)| =
(

n
k

)(

n−k
2

)

=
n!

k!(n−k−2)!2! = n!
2( n−3

2
)!( n−1

2
)!
. Therefore, using Lemma 2.4.1, it follows that

Mn ≥ n!
2( n−3

2
)!( n−1

2
)!
.

Now we show that Mn ≤ n!
2( n−3

2
)!( n−1

2
)!
. We do this by inductively con-

structing a perfect complete set of size |Gn(k)| = n!
2( n−3

2
)!( n−1

2
)!
. First we
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construct a set A ⊆ Π(N) containing |Gn(k)| orders that perfectly covers

each element of Gn(k).

Since for each i, j ∈ N , i 6= j, and S ⊆ N\{i, j} with |S| = k the set

P (S, {i, j}) contains perfect coverings, it is trivial to obtain a set A ⊆ Π(N)

containing |Gn(k)| orders that perfectly covers each element of Gn(k). In

particular, A can be obtained by choosing precisely one perfect covering

from each element of Gn(k).

Now assume that A perfectly covers each element in
⋃k

p=m Gn(p) for

some m ∈ {0, . . . , k}. Obviously m = k satisfies this property. Suppose that

P (S, {i, j}) ∈ Gn(m− 1) is not perfectly covered by A. We will replace one

order σ ∈ A by an order σ̄ ∈ Π(N)\A to obtain the set Ā = (A\{σ})∪ {σ̄}.

Our selection of σ and σ̄ will be such that Ā perfectly covers one more

element of
⋃k

p=m−1 Gn(p) than A does. In particular, Ā perfectly covers the

same elements of
⋃k

p=m−1 Gn(p) as A, except for P (S, {i, j}) ∈ Gn(m − 1)

which is only perfectly covered by Ā, but not by A.

Without loss of generality assume that i ∈ Rj . This yields that if τ ∈

Π(N) perfectly covers P (S, {i, j}), then τ(|S| + 1) = i and τ(|S| + 2) = j.

Let B be the set of orders in A that begin with S ∪ {i} followed by j, i.e.

B = Π(S ∪ {i}, {j}, N\(S ∪ {i, j})) ∩ A. We will replace an order σ ∈ B

with an order σ̄ ∈ Π(N)\A.

Now first suppose that there is an order in B that is not a perfect covering

of an element in Gn(m−1), i.e. suppose there is a σ ∈ B with σ(|S|+1) 6∈ Rj .

Now interchange σ(|S| + 1) and i to obtain the order σ̄. Note that σ̄ and σ

only differ in two positions, namely in position σ−1(i) ≤ m and in position

|S| + 1 = m. This yields that σ̄ perfectly covers the same elements of
⋃k

p=m Gn(p) as σ. Furthermore, σ̄ perfectly covers P (S, {i, j}). Because

σ was not a perfect covering of an element of Gn(m − 1) it follows that

Ā = (A\{σ}) ∪ {σ̄} perfectly covers one more element of
⋃k

p=m−1 Gn(p)

than A.

Now suppose that all orders in B are perfect coverings of elements in

Gn(m − 1), i.e. suppose that τ(|S| + 1) ∈ Rj for all τ ∈ B. We will

show that there are π, ρ ∈ B with π(|S| + 1) = ρ(|S| + 1) = h for some

h ∈ S. That is, we show that P ((S ∪ {i})\{h}, {h, j}) ∈ Gn(m − 1) is



32 Marginal vectors

perfectly covered twice by orders in B. If we then take σ = π and obtain

σ̄ from σ by interchanging h and i, it follows that Ā = (A\{σ}) ∪ {σ̄} still

contains a perfect covering of P ((S ∪{i})\{h}, {h, j}), namely ρ. Moreover,

Ā perfectly covers P (S, {i, j}). Hence, Ā perfectly covers one more element

of
⋃k

p=m−1 Gn(p) than A.

We will now show that there are orders π, ρ ∈ B with π(|S| + 1) =

ρ(|S|+1). Note that, by supposition, τ(|S|+1) ∈ Rj for all τ ∈ B. Because

we have assumed that P (S, {i, j}) was not perfectly covered by an order in

A, it follows that τ(|S| + 1) 6= i for all τ ∈ B. Therefore, τ(|S| + 1) ∈ S

for all τ ∈ B. This implies that τ(|S| + 1) ∈ S ∩ Rj for all τ ∈ B. Hence,

showing that there are orders π, ρ ∈ B with π(|S| + 1) = ρ(|S| + 1) boils

down to showing that |B| > |S ∩ Rj |.

First note that our assumption states that each element of
⋃k

p=m Gn(p)

is perfectly covered by A. This implies that P (S ∪ {i}, {j, l}) is perfectly

covered for all l ∈ N\(S ∪ {i, j}). Therefore P (S ∪ {i}, {j, l}) is perfectly

covered for all l ∈ (N\(S ∪ {i})) ∩ Lj . Let τ ∈ A be a perfect covering of

P (S ∪{i}, {j, l}) for some l ∈ (N\(S ∪{i}))∩Lj . Because of (P3) it follows

that j ∈ Rl. Therefore τ(p) ∈ S ∪ {i} for all p ≤ |S|+ 1, τ(|S| + 2) = j and

τ(|S| + 3) = l. We conclude that τ ∈ B. This implies that

|B| ≥ |(N\(S ∪ {i})) ∩ Lj |. (2.5)

It holds that |(N\(S ∪ {i})) ∩ Lj | + |(S ∪ {i}) ∩ Lj | = |Lj | = k. Using (P2)

it follows that |(S ∪ {i})∩Lj |+ |(S ∪ {i})∩Rj | = |S ∪ {i}|. From these two

expressions we derive that

|(N\(S ∪ {i})) ∩ Lj | = k − |(S ∪ {i}) ∩ Lj |

= k − |S ∪ {i}| + |(S ∪ {i}) ∩ Rj |

≥ |(S ∪ {i}) ∩ Rj |, (2.6)

where the inequality is satisfied because k ≥ m = |S| + 1. Combining (2.5)

and (2.6) yields

|B| ≥ |(S ∪ {i}) ∩ Rj |

> |S ∩ Rj |,
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where the strict inequality holds because i ∈ S ∪ {i} and i ∈ Rj .

So if we start with a set A containing |Gn(k)| elements that perfectly

covers each element of
⋃k

p=m Gn(p), then we can find a set Ā that perfectly

covers one more element of
⋃k

p=m−1 Gn(p) than A. This means that we can

construct a set of orders that perfectly covers all elements of
⋃k

p=0 Gn(p).

Now let m ∈ {k, . . . , n − 2} be such that A perfectly covers all elements

of
⋃m

p=0 Gn(p). Obviously, m = k satisfies this property. Suppose that

some P (S, {i, j}) ∈ Gn(m + 1) is not perfectly covered by A. It is now

straightforward to show that there exists a set Ā that perfectly covers one

more element of
⋃m+1

p=0 Gn(p) than A. It follows that there exists a set

containing |Gn(k)| orders that perfectly covers all elements of
⋃n−2

p=0 Gn(p).

Because of Lemma 2.4.1 this set is complete. This concludes the proof. 2

The following example illustrates the possibility in the proof of Theorem

2.4.1 that there is a σ ∈ B with σ(|S| + 1) 6∈ Rj .

Example 2.4.3 Let N = {1, . . . , 5}. Then k = 2. According to the proof

of Theorem 2.4.1, we first need to find a set A ⊆ Π(N) that perfectly covers

each element of G5(2). This can be done by taking one perfect cover from

each P (S, {i, j}) ∈ G5(2). For example, let A =

{ (1, 2, 3, 4, 5), (1, 4, 2, 3, 5), (2, 3, 4, 1, 5), (5, 2, 1, 3, 4), (3, 5, 1, 2, 4),
(1, 2, 3, 5, 4), (1, 4, 5, 2, 3), (2, 3, 5, 1, 4), (2, 5, 4, 1, 3), (3, 5, 4, 1, 2),
(1, 2, 4, 5, 3), (1, 4, 3, 5, 2), (2, 3, 4, 5, 1), (2, 5, 3, 4, 1), (3, 5, 2, 4, 1),
(1, 3, 2, 4, 5), (1, 5, 2, 3, 4), (2, 4, 1, 3, 5), (3, 4, 1, 2, 5), (4, 5, 1, 2, 3),
(1, 3, 5, 2, 4), (1, 5, 2, 4, 3), (2, 4, 5, 1, 3), (3, 4, 5, 1, 2), (4, 5, 1, 3, 2),
(1, 3, 4, 5, 2), (1, 5, 3, 4, 2), (2, 4, 3, 5, 1), (3, 4, 5, 2, 1), (4, 5, 2, 3, 1) }.

It is straightforward to check that A indeed perfectly covers all elements

of G5(2). However, not all elements of G5(1) are perfectly covered. For in-

stance, A does not cover P ({5}, {3, 4}), and hence it does not perfectly cover

this set. We will now obtain a set Ā that perfectly covers P ({5}, {3, 4}).

Let S = {5}, i = 3 and j = 4. Note that i ∈ Rj . Now define B =

Π({3, 5}, {4}, {1, 2}) ∩ A = {(3, 5, 4, 1, 2)}. For σ = (3, 5, 4, 1, 2) ∈ B it

is satisfied that σ(|S| + 1) = 5 6∈ R4. According to the proof we need to

interchange σ(|S|+1) = 5 and i = 3. This yields σ̄ = (5, 3, 4, 1, 2). Note that
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(5, 3, 4, 1, 2) perfectly covers P ({5}, {3, 4}). Now let Ā = (A\{(3, 5, 4, 1, 2)})

∪ {(5, 3, 4, 1, 2)}. Then Ā perfectly covers P ({5}, {3, 4}). 3

The following example illustrates the possibility that for all σ ∈ B,

σ(|S| + 1) ∈ Rj .

Example 2.4.4 Let N , k, and A be the same as in Example 2.4.3. Al-

though (5, 2, 1, 3, 4) ∈ A covers P ({5}, {1, 2}) ∈ G5(1), it does not per-

fectly cover this set. Moreover, P ({5}, {1, 2}) is not perfectly covered by

any order in A. Now let S = {5}, i = 1 and j = 2. Note that i ∈ Rj .

Define B = Π({1, 5}, {2}, {3, 4}) ∩ A = {(1, 5, 2, 4, 3), (1, 5, 2, 3, 4)}. For

all σ ∈ B it is satisfied that σ(|S| + 1) = 5 ∈ R2. So, P ({1}, {2, 5})

is perfectly covered twice by orders in B. Take σ = (1, 5, 2, 4, 3) ∈ B.

Now interchange σ(|S| + 1) = 5 and i = 1 to obtain σ̄ = (5, 1, 2, 4, 3) and

let Ā = (A\{(1, 5, 2, 4, 3)}) ∪ {(5, 1, 2, 4, 3)}. Then Ā still perfectly covers

P ({1}, {2, 5}), and, moreover, Ā perfectly covers P ({5}, {1, 2}). 3

In the final part of this paper we deal with even n ∈ N. Although the proof

of the formula for even n ∈ N is similar to the proof for odd n ∈ N, there

are some differences between the two proofs. The main difference is that

for even n ∈ N we have to redefine the concepts of right-hand side and left-

hand side neighbours. The concept of perfect coverings remains the same,

although it uses the adapted definitions of right-hand side and left-hand side

neighbours.

Let n ∈ N, n ≥ 4, be even, N = {1, . . . , n} and k = n−2
2 . For each

j ∈ N , define the set of right-hand side neighbours Rj by

Rj = {(j − 1) mod n, . . . , (j − k) mod n, (j − k − 1) mod n}

and the set of left-hand side neighbours Lj by

Lj = {(j + 1) mod n, . . . , (j + k) mod n, (j + k + 1) mod n}.

The intuition of Lj and Rj is similar as for odd n. For convenience, we

define oj = (j + k + 1) mod n for all j ∈ N . Intuitively, oj is the player

seated at the round table exactly opposite to player j. It is straightforward
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to show that o(j+k+1) mod n = j and that oj = (j − k − 1) mod n. The

following properties can easily be verified.

(Q1) Lj ∩ Rj = {oj};

(Q2) Lj ∪ Rj ∪ {j} = N ;

(Q3) i ∈ Lj if and only if j ∈ Ri;

(Q4) i ∈ Rj or j ∈ Ri.

For each j ∈ N , player oj is a member of Lj and Rj . This observation

implies that (P1) does not hold anymore and that (P4) is only satisfied

in a weakened version. Let i, j ∈ N with i 6= j and S ⊆ N\{i, j}. Then

σ ∈ P (S, {i, j}) is said to perfectly cover P (S, {i, j}) if σ(|S|+1) ∈ Rσ(|S|+2).

Note that if i 6= oj , then half the number of orders in P (S, {i, j}) perfectly

covers this set, while if i = oj , then each order in P (S, {i, j}) perfectly covers

this set. A set A ⊆ Π(N) is called perfect complete if for each i, j ∈ N ,

i 6= j, and S ⊆ N\{i, j} there is a σ ∈ A that perfectly covers P (S, {i, j}).

Again, note that from Lemma 2.4.1 it follows that each perfect complete

set is complete as well. The following theorem provides the formula for the

minimum cardinality of a complete set for even n. Again we remark that the

proof of this theorem is constructive in the sense that it provides a method

to construct a perfect complete set of minimum cardinality.

Theorem 2.4.2 Let n ∈ N with n ≥ 4 be even. Then

Mn =
n!

2(n−2
2 )!(n−2

2 )!
.

Proof: Let k = n−2
2 . First we show that Mn ≥ n!

2(( n−2
2

)!)2
. First observe that

Gn(k) forms a partition of Π(N). This implies that to cover all elements of

Gn(k) at least |Gn(k)| =
(

n
k

)(

n−k
2

)

= n!
k!k!2! = n!

2!(( n−2
2

)!)2
orders are needed.

So, using Lemma 2.4.1, Mn ≥ n!
2(( n−2

2
)!)2

.

It remains to show that Mn ≤ n!
2(( n−2

2
)!)2

. The proof will be similar

as for odd n. First construct a set A ⊆ Π(N) containing |Gn(k)| orders

that perfectly covers each element of Gn(k). Now assume that A perfectly
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covers each element of
⋃k

p=m Gn(p) for some m ≤ k, and suppose that

P (S, {i, j}) ∈ Gn(m−1) is not perfectly covered by A. Assume without loss

of generality that i ∈ Rj and let B = Π(S ∪ {i}, {j}, N\(S ∪ {i, j})) ∩ A.

If there is an order σ ∈ B with σ(|S| + 1) 6∈ Rj , i.e. if B contains an

order that is not a perfect covering of some element in Gn(m−1), then using

the same technique as for odd n, it is straightforward to obtain a set Ā that

perfectly covers one more element of
⋃k

p=m−1 Gn(p) than A.

So suppose that for all τ ∈ B, τ(|S| + 1) ∈ Rj . That is, all orders in B

are perfect coverings of some element of Gn(m − 1). Again, we will show

that there are π, ρ ∈ B with π(|S| + 1) = ρ(|S| + 1) = h for some h ∈ S,

i.e. that P ((S ∪ {i})\{h}, {h, j}) ∈ Gn(m − 1) is perfectly covered twice by

orders in B. This boils down to showing that |B| > |S∩Rj |. We distinguish

between two cases to show this inequality.

Case 1: oj ∈ N\(S ∪ {i}).

We assumed that each element of
⋃k

p=m Gn(p) is perfectly covered by A.

So P (S ∪ {i}, {j, l}) is perfectly covered for all l ∈ N\(S ∪ {i, j}). Hence,

P (S∪{i}, {j, l}) is perfectly covered for all l ∈ (N\(S∪{i, oj}))∩Lj . Let l ∈

(N\(S∪{i, oj}))∩Lj and let τ ∈ A be a perfect covering of P (S∪{i}, {j, l}).

Because l 6= oj , we conclude because of (Q1) that l 6∈ Rj . Because τ is a

perfect covering it follows that τ(p) ∈ S∪{i} for all p ≤ |S|+1, τ(|S|+2) = j

and τ(|S| + 3) = l. This implies that τ ∈ B.

It follows that

|B| ≥ |(N\(S ∪ {i, oj})) ∩ Lj |

= |(N\(S ∪ {i})) ∩ Lj | − 1.

The equality is satisfied since oj ∈ (N\(S ∪ {i})) ∩ Lj . Trivially, |(N\(S ∪

{i}))∩Lj |+ |(S ∪{i})∩Lj | = k +1. Because of oj ∈ N\(S ∪{i}), (Q1) and

(Q2) it is satisfied that |(S ∪{i})∩Lj |+ |(S ∪{i})∩Rj | = |S ∪{i}|. Hence,

|B| ≥ |(N\(S ∪ {i})) ∩ Lj | − 1

= k + 1 − |(S ∪ {i}) ∩ Lj | − 1

= k + |(S ∪ {i}) ∩ Rj | − |S ∪ {i}|
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≥ |(S ∪ {i}) ∩ Rj |

> |S ∩ Rj |.

The first inequality follows from k ≥ m = |(S ∪ {i})|. The strict inequality

follows from i ∈ S ∪ {i} and i ∈ Rj .

Case 2: oj ∈ S ∪ {i}.

We assumed that each element of
⋃k

p=m Gn(p) is perfectly covered by A.

So P (S ∪ {i}, {j, l}) is perfectly covered for all l ∈ N\(S ∪ {i, j}). Hence,

P (S ∪ {i}, {j, l}) is perfectly covered for all l ∈ (N\(S ∪ {i})) ∩ Lj . Let

l ∈ (N\(S∪{i}))∩Lj and let τ ∈ A be a perfect covering of P (S∪{i}, {j, l}).

Because oj ∈ S∪{i} it follows that l 6= oj . This implies, using (Q1), that

l 6∈ Rj . Hence, τ(p) ∈ S∪{i} for all p ≤ |S|+1, τ(|S|+2) = j and τ(|S|+3) =

l. It follows that τ ∈ B. We conclude that |B| ≥ |(N\(S ∪ {i})) ∩ Lj |. It

also holds that |(N\(S ∪ {i})) ∩ Lj | + |(S ∪ {i}) ∩ Lj | = k + 1. Because of

oj ∈ S∪{i}, (Q1) and (Q2), |(S∪{i})∩Lj |+ |(S∪{i})∩Rj | = |S∪{i}|+1.

Hence,

|B| ≥ |(N\(S ∪ {i})) ∩ Lj |

= k + 1 − |(S ∪ {i}) ∩ Lj |

= k + 1 + |(S ∪ {i}) ∩ Rj | − (|S ∪ {i}| + 1)

≥ |(S ∪ {i}) ∩ Rj |

> |S ∩ Rj |.

The first inequality follows from k ≥ m = |S ∪ {i}|. The strict inequality

follows from i ∈ S ∪ {i} and i ∈ Rj .

Using the same argument as in the proof of Theorem 2.4.1 we can now

obtain a perfect complete set, and hence a complete set, of size Gn(k). 2

Theorems 2.4.1 and 2.4.2 provide formulas for the minimum number of

marginal vectors needed to characterize convexity. For n ∈ {3, . . . , 9} these

numbers are presented in Table 2.2. Note that Mn is relatively small for

large n. Furthermore observe that the convergence of Mn

n! is much faster

than the convergence of Fn in Section 2.3.
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n 3 4 5 6 7 8 9

n! 6 24 120 720 5040 40320 362880
n!
2 3 12 60 360 2520 20160 181440

Mn 3 12 30 90 210 560 1260
Mn

n!
1
2

1
2

1
4

1
8

1
24

1
72

1
288

Table 2.2: The minimum cardinality of complete sets.

2.5 Permutational convexity

In this section we introduce a refinement of permutational convexity. We

show that the conditions of this refinement are still sufficient for the corre-

sponding marginal vector to be a core element. Furthermore we show that

permutational convexity can be redefined using a restricted set of inequali-

ties. In particular we reduce the number of inequalities by a factor two. To

conclude the section we will consider neighbours of permutationally convex

orders, and we show that if an order is permutationally convex, then its last

neighbour is permutationally convex as well.

Let σ ∈ Π(N). Let S ⊆ N , S 6= ∅ and define h(S) = max{j ∈

{1, . . . , |N |} : σ(j) 6∈ S, S 6⊆ [σ(j), σ]} as the position of the highest or-

dered player outside S that precedes at least one player in S. We remark

that h(S) only exists if S is not a head3 of σ.

We will call v ∈ TUN weak permutationally convex with respect to σ if

for each i, k ∈ {0, . . . , |N |−1} with i < k and for each S ⊆ N\[σ(k), σ] with

σ(k + 1) ∈ S at least one of the following two inequalities is satisfied:

v(T ) + v([σ(k), σ]) ≤ v([σ(k), σ] ∪ S) + v([σ(i), σ]) (2.7)

v(T ) + v([σ(h(S)), σ]) ≤ v([σ(h(S)), σ]∪ T ) + v(T ∩ [σ(h(S)), σ]), (2.8)

where T = [σ(i), σ]∪S. We remark that (2.7) coincides with (2.1), but that

the domain of (2.7) is more restricted because of the condition σ(k+1) ∈ S.

Secondly we remark that if S is connected, then (2.7) and (2.8) coincide

3A head of σ is a coalition S ⊆ N such that S = {σ(1), . . . , σ(i)} for some i ∈
{1, . . . , |N |}.
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since in this case h(S) = k. In the following example we illustrate weak

permutational convexity.

Example 2.5.1 Let N = {1, 2, 3, 4, 5}, v ∈ TUN and σ ∈ Π(N) be given

by σ(i) = i for each i ∈ {1, 2, 3, 4, 5}. Let i = 1, k = 2 and S = {3, 5}.

Then h(S) = 4. Hence, the corresponding condition for weak permutational

convexity is v({1, 3, 5})+ v({1, 2}) ≤ v({1, 2, 3, 5})+ v({1}) or v({1, 3, 5})+

v({1, 2, 3, 4}) ≤ v(N) + v({1, 3}). Note that if i = 1, k = 3 and S = {4, 5},

then h(S) = 3 = k. So both (2.7) and (2.8) boil down to v({1, 4, 5}) +

v({1, 2, 3}) ≤ v(N) + v({1}). 3

The following theorem shows that weak permutational convexity is sufficient

for the corresponding marginal vector to be a core element.

Theorem 2.5.1 Let σ ∈ Π(N). If v ∈ TUN is weak permutationally con-

vex with respect to σ, then mσ(v) ∈ C(v).

Proof: Since marginal vectors are efficient by definition, we only need

to show
∑

i∈W mσ
i (v) ≥ v(W ) for each W ⊆ N . We will first show that

∑

i∈W mσ
i (v) ≥ v(W ) for each W ⊆ N consisting of only one component.

Then we show the inequality for coalitions consisting of multiple compo-

nents.

Let W ⊆ N consist of only one component. If σ(1) ∈ W , then W is a

head of σ, and trivially
∑

i∈W mσ
i (v) = v(W ). So assume that σ(1) 6∈ W .

Let s ∈ N\W be the highest ordered player in N\W preceding all players

in W , and let t ∈ W be the highest ordered player in W . Then

∑

i∈W

mσ
i (v) = v([t, σ]) − v([s, σ]) ≥ v(W ).

The inequality is satisfied because both (2.7) and (2.8), with i = 0, k =

σ−1(s) and S = W , coincide with v(W ) + v([s, σ]) ≤ v([t, σ]).

Now suppose that W consists of a ≥ 2 components. Let W1, . . . , Wa be

these components. We assume that these components are ordered, i.e. if

i, k ∈ {1, . . . , a} with i < k, then Wi ⊆ [j, σ] for each j ∈ Wk. For each

i ∈ {1, . . . , a}, let ti be the highest ordered player in Wi, and let si be the
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highest ordered player in N\W preceding all players in Wi. Define s1 = 0

in case σ(1) ∈ W1. We will now show by induction on q − p that

q
∑

l=p

∑

i∈Wl

mσ
i (v) ≥ v([sp, σ] ∪

q
⋃

l=p

Wl) − v([sp, σ]) (2.9)

for all p, q ∈ {1, . . . , a} with p < q. First we show the induction basis. So

let p, q ∈ {1, . . . , a} with p < q be such that q − p = 1. Then,

q
∑

l=p

∑

i∈Wl

mσ
i (v) = v([tp, σ]) − v([sp, σ]) + v([tq, σ]) − v([sq, σ])

≥ v([tp, σ] ∪ Wq) − v([sp, σ])

= v([sp, σ] ∪ Wp ∪ Wq) − v([sp, σ]).

The inequality is satisfied because both (2.7) and (2.8), with i = σ−1(tp), k =

σ−1(sq) and S = Wq, coincide with v([tp, σ] ∪ Wq) + v([sq, σ]) ≤ v([tq, σ]) +

v([tp, σ]).

Now assume, as the induction hypothesis, that j ∈ {1, . . . , a− 1} is such

that (2.9) is satisfied for all p, q ∈ {1, . . . , a} with p < q and q − p ≤ j. If

j = a − 1, then we are done, so assume that j < a − 1. For the induction

step, let p∗, q∗ ∈ {1, . . . , a} be such that p∗ < q∗ and q∗ − p∗ = j + 1. From

(2.7) and (2.8) with i = σ−1(tp∗), k = σ−1(sp∗+1) and S =
⋃q∗

l=p∗+1 Wl, we

conclude that at least one of the following two inequalities is satisfied:

v([tp∗ , σ] ∪

q∗
⋃

l=p∗+1

Wl) + v([sp∗+1, σ])

≤v([sp∗+1, σ] ∪

q∗
⋃

l=p∗+1

Wl) + v([tp∗ , σ]),

(2.10)

v([tp∗ , σ] ∪

q∗
⋃

l=p∗+1

Wl) + v([sq∗ , σ])

≤v([tq∗ , σ]) + v([tp∗ , σ] ∪

q∗−1
⋃

l=p∗+1

Wl).

(2.11)
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First suppose that (2.10) is satisfied. Then,

q∗
∑

l=p∗

∑

i∈Wl

mσ
i (v) = v([tp∗ , σ]) − v([sp∗ , σ]) +

q∗
∑

l=p∗+1

∑

i∈Wl

mσ
i (v)

≥ v([tp∗ , σ]) − v([sp∗ , σ])

+v([sp∗+1, σ] ∪

q∗
⋃

l=p∗+1

Wl) − v([sp∗+1, σ])

≥ v([tp∗ , σ] ∪

q∗
⋃

l=p∗+1

Wl) − v([sp∗ , σ])

= v([sp∗ , σ] ∪

q∗
⋃

l=p∗

Wl) − v([sp∗ , σ]).

The first inequality is satisfied since, according to the induction hypothesis,

(2.9) is satisfied for each p, q ∈ {1, . . . , a} with p < q and q − p ≤ j. In

particular, (2.9) is satisfied for the pair p∗ + 1, q∗. The second inequality is

due to (2.10).

Now suppose that (2.11) is satisfied. Then,

q∗
∑

l=p∗

∑

i∈Wl

mσ
i (v) =

q∗−1
∑

l=p∗

∑

i∈Wl

mσ
i (v) + v([tq∗ , σ]) − v([sq∗ , σ])

≥ v([sp∗ , σ] ∪

q∗−1
⋃

l=p∗

Wl) − v([sp∗ , σ])

+v([tq∗ , σ]) − v([sq∗ , σ])

= v([tp∗ , σ] ∪

q∗−1
⋃

l=p∗+1

Wl) − v([sp∗ , σ])

+v([tq∗ , σ]) − v([sq∗ , σ])

≥ v([tp∗ , σ] ∪

q∗
⋃

l=p∗+1

Wl) − v([sp∗ , σ])

= v([sp∗ , σ] ∪

q∗
⋃

l=p∗

Wl) − v([sp∗ , σ]).

The first inequality is satisfied since, according to the induction hypothesis,

(2.9) is satisfied for each p, q ∈ {1, . . . , a} with p < q and q − p ≤ j. In
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particular, (2.9) is satisfied for the pair p∗, q∗ − 1. The second inequality is

due to (2.11).

We conclude that (2.9) is satisfied for each p, q ∈ {1, . . . , a} with p < q.

It follows from (2.9), with p = 1 and q = a, that

∑

i∈W

mσ
i (v) ≥ v([s1, σ]∪

a
⋃

l=1

Wl)−v([s1, σ]) = v([s1, σ]∪W )−v([s1, σ]). (2.12)

If s1 = 0, then we are done. So assume that s1 6= 0. In order to show that
∑

i∈W mσ
i (v) ≥ v(W ), we need to prove one more assertion with induction.

To be more precise, we show for each r ∈ {1, . . . , a} that

r
∑

l=1

∑

i∈Wl

mσ
i (v) ≥ v(

r
⋃

l=1

Wl). (2.13)

This implies, using r = a, that

∑

i∈W

mσ
i (v) =

a
∑

l=1

∑

i∈Wl

mσ
i (v) ≥ v(

a
⋃

l=1

Wl) = v(W ).

It remains to show that (2.13) is indeed satisfied for all r ∈ {1, . . . , a}. For

the induction basis, let r = 1. Then (2.13) is satisfied since we already

showed this inequality for coalitions consisting of one component only.

Now assume, as the induction hypothesis, that j ∈ {1, . . . , a} is such

that (2.13) is satisfied for all r ∈ {1, . . . , j}. If j = a, then we are done, so

assume that j < a. For the induction step, let r∗ = j + 1. From (2.7) and

(2.8), with i = 0, k = σ−1(s1) and S =
⋃r∗

l=1 Wl, we conclude that at least

one of the following two inequalities is satisfied:

v(
r∗
⋃

l=1

Wl) + v([s1, σ]) ≤ v([s1, σ] ∪
r∗
⋃

l=1

Wl) (2.14)

v(
r∗
⋃

l=1

Wl) + v([sr∗ , σ]) ≤ v([tr∗ , σ]) + v(
r∗−1
⋃

l=1

Wl). (2.15)

First suppose that (2.14) is satisfied. Then,

r∗
∑

l=1

∑

i∈Wl

mσ
i (v) ≥ v([s1, σ] ∪

r∗
⋃

l=1

Wl) − v([s1, σ]) ≥ v(

r∗
⋃

l=1

Wl).
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The first inequality follows from (2.9) with p = 1 and q = r∗ and the second

from (2.14).

Now suppose that (2.15) is satisfied. Then

r∗
∑

l=1

∑

i∈Wl

mσ
i (v) =

r∗−1
∑

l=1

∑

i∈Wl

mσ
i (v) + v([tr∗ , σ]) − v([sr∗ , σ])

≥ v(
r∗−1
⋃

l=1

Wl) + v([tr∗ , σ]) − v([sr∗ , σ])

≥ v(
r∗
⋃

l=1

Wl).

The first inequality is due to our induction hypothesis that (2.13) is satisfied

for all r ∈ {1, . . . , j}. In particular, (2.13) is satisfied for r = r∗ − 1. The

second inequality holds because of (2.15). 2

We remark that weak permutational convexity is a weaker condition than

permutational convexity. For weak permutational convexity one needs to

check a pair of inequalities for each i, k ∈ {0, . . . , |N |−1} with i < k and each

S ⊆ N\[σ(k), σ] with σ(k + 1) ∈ S. In fact, for each i, k ∈ {0, . . . , |N | − 1}

with i < k, there are precisely 2|N |−k−1 choices of S ⊆ N\[σ(k), σ] such

that σ(k + 1) ∈ S. Therefore, weak permutational convexity requires the

checking of

|N |−2
∑

i=0

|N |−1
∑

k=i+1

2|N |−k−1 =

|N |−2
∑

i=0

[2|N |−i−1 − 1]

= 2|N | − 2 − (|N | − 1)

= 2|N | − |N | − 1

pairs of inequalities. The following example is meant to illustrate that weak

permutational convexity is not a necessary condition for the corresponding

marginal vector to be a core element.

Example 2.5.2 Consider v ∈ TUN with N = {1, 2, 3, 4}, v(S) = 0 if S ∈

2N\{{1, 2}, {2, 4}, {1, 2, 3}, N} and v({1, 2}) = v({2, 4}) = v({1, 2, 3}) =

v(N) = 1. Let σ ∈ Π(N) be given by σ(i) = i for each i ∈ {1, 2, 3, 4}.
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Observe that (N, v) is not weak permutationally convex with respect to

σ, since the corresponding condition is not satisfied for i = 0, k = 1 and

S = {2, 4}. However, mσ(v) = (0, 1, 0, 0) ∈ C(v). 3

In the upcoming proposition we consider a set of inequalities and show that

these inequalities are equivalent to permutational convexity.

Proposition 2.5.1 Let v ∈ TUN . Then (N, v) is permutationally convex

with respect to σ ∈ Π(N) if and only if

v([σ(i), σ] ∪ S) + v([σ(k), σ]) ≤ v([σ(k), σ] ∪ S) + v([σ(i), σ]) (2.16)

for all i, k ∈ {0, . . . , |N |−1} with i+1 = k and S ⊆ N\[σ(k), σ] with S 6= ∅.

Proof: Observe that (2.16) coincides with (2.1), but that the domain of

(2.16) is restricted by the extra condition i+1 = k. Hence, the ”only if” part

follows directly from the definition of permutational convexity. Therefore

we only show the ”if” part. Assume that (2.16) is satisfied for all i, k ∈

{0, . . . , |N | − 1} with i + 1 = k and S ⊆ N\[σ(k), σ] with S 6= ∅. We need

to show that (2.16) is satisfied for all i, k ∈ {0, . . . , |N | − 1} with i < k and

S ⊆ N\[σ(k), σ] with S 6= ∅. We use backwards induction on i.

For the induction basis let i = |N | − 2, k = |N | − 1 and S ⊆ N\[σ(|N | −

1), σ] with S 6= ∅. In this case, (2.16) is satisfied by assumption since

i + 1 = k.

For the induction hypothesis we assume that for some i∗ ∈ {1, . . . , |N |−

2} we have shown that (2.16) is satisfied for all i, k ∈ {0, . . . , |N | − 1} with

i∗ ≤ i, i < k, and S ⊆ N\[σ(k), σ] with S 6= ∅.

For the induction step, let i, k ∈ {0, . . . , |N | − 1} be such that i = i∗− 1,

i < k and S ⊆ N\[σ(k), σ] with S 6= ∅. If i + 1 = k, then our inequality

is satisfied by assumption so assume that i + 1 < k. From our induction

hypothesis it follows that (2.16) is satisfied for ī = i∗, k̄ = k and S. Hence,

v([σ(i∗), σ] ∪ S) + v([σ(k), σ]) ≤ v([σ(k), σ] ∪ S) + v([σ(i∗), σ]). (2.17)

We also know from our initial assumption that (2.16) is satisfied for ī = i,

k̄ = i∗ and S, since ī + 1 = k̄. This yields

v([σ(i), σ] ∪ S) + v([σ(i∗), σ]) ≤ v([σ(i∗), σ] ∪ S) + v([σ(i), σ]). (2.18)
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Now adding (2.17) and (2.18) gives

v([σ(i), σ] ∪ S) + v([σ(k), σ]) ≤ v([σ(k), σ] ∪ S) + v([σ(i), σ]),

which is precisely the inequality we needed to show. 2

Let v ∈ TUN and σ ∈ Π(N). According to Proposition 2.5.1, permutational

convexity of σ requires the checking of precisely 2|N |−k − 1 inequalities for

each pair i, k ∈ {0, . . . , |N | − 1} with i + 1 = k. So permutational convexity

can be checked by considering

|N |−1
∑

k=1

[2|N |−k − 1] = 2|N | − 2 − (|N | − 1)

= 2|N | − |N | − 1

inequalities. In particular, Proposition 2.5.1 reduces the number of permu-

tational convexity inequalities by a factor two, approximately.

We conclude this section by considering neighbours of permutationally

convex orders. In particular, we present a condition such that a neighbour

of a permutationally convex order is permutationally convex as well.

Proposition 2.5.2 Let v ∈ TUN . Let σ ∈ Π(N) be a permutationally

convex order for (N, v) and let l ∈ {1, . . . , |N | − 1}. If

v([σl(i), σl]∪S)+ v([σl(k), σl]) ≤ v([σl(k), σl]∪S)+ v([σl(i), σl]), (2.19)

for i = l − 1, k = l and all S ⊆ N\[σl(l + 1), σl] with S 6= ∅, and for i = l,

k = l+1 and all S ⊆ N\[σl(l+1), σl] with S 6= ∅, then σl is permutationally

convex for (N, v).

Proof: According to Proposition 2.5.1 showing that σl is permutationally

convex boils down to showing (2.19) for all i, k ∈ {0, . . . , |N | − 1} with

i + 1 = k and S ⊆ N\[σl(k), σl] with S 6= ∅. We distinguish between three

cases.

Case 1: i ≤ l − 2 or i ≥ l + 1.
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In this case [σl(i), σl] = [σ(i), σ] and [σl(k), σl] = [σ(k), σ]. Let S ⊆

N\[σl(k), σl] = N\[σ(k), σ] with S 6= ∅. Since σ is permutationally convex

for (N, v) we conclude that (2.1) is satisfied for i, k = i + 1 and S. Observe

that (2.1) coincides with (2.19).

Case 2: i = l − 1.

In this case k = i + 1 = l. We need to show that (2.19) holds for

all S ⊆ N\[σl(k), σl] with S 6= ∅. First note that if σl(k + 1) 6∈ S, then

S ⊆ N\[σl(k + 1), σl] = N\[σl(l + 1), σl]. In this case (2.19) is satisfied by

assumption. So now suppose that σl(k + 1) ∈ S. Let T = S\{σl(k + 1)}.

Since σ is permutationally convex for (N, v) it follows that (2.1) holds with

ī = i, k̄ = k and S̄ = {σ(k + 1)}, i.e.

v([σ(i), σ]∪{σ(k+1)})+v([σ(k), σ]) ≤ v([σ(k), σ]∪{σ(k+1)})+v([σ(i), σ]),

which is equivalent to

v([σ(i), σ]∪{σ(k+1)})+v([σ(k), σ]) ≤ v([σ(k+1), σ])+v([σ(i), σ]). (2.20)

Now if T 6= ∅, then (2.1) is satisfied for î = i + 1 = k, k̂ = k + 1 and Ŝ = T ,

since σ is permutationally convex by assumption. This implies

v([σ(k), σ]∪T )+v([σ(k+1), σ]) ≤ v([σ(k+1), σ]∪T )+v([σ(k), σ]). (2.21)

Note that (2.21) is trivially satisfied in case T = ∅ as well. Now adding

(2.20) and (2.21) yields

v([σ(k), σ] ∪ T ) + v([σ(i), σ] ∪ {σ(k + 1)})

≤ v([σ(k + 1), σ] ∪ T ) + v([σ(i), σ]).
(2.22)

Observe that [σ(k), σ]∪T = [σl(i), σl]∪S, [σ(i), σ]∪{σ(k+1)} = [σl(k), σl],

[σ(k + 1), σ] ∪ T = [σl(k), σl] ∪ S and [σ(i), σ] = [σl(i), σl]. This shows that

(2.22) coincides with (2.19).

Case 3: i = l.

In this case k = i+1 = l +1. Let S ⊆ N\[σl(l +1), σl] with S 6= ∅. Now

(2.19) is satisfied by assumption. 2
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Proposition 2.5.2 easily constitutes the following corollary. This corollary

shows that if one order is permutationally convex, then its last neighbour

is permutationally convex as well. Hence, for each game an even number of

orders is permutationally convex.

Corollary 2.5.1 Let v ∈ TUN . If σ ∈ Π(N) is permutationally convex for

(N, v), then σ|N |−1 is permutationally convex for (N, v) as well.

Proof: According to Proposition 2.5.2 it is sufficient to show that

v([σ|N |−1(i), σ|N |−1] ∪ S) + v([σ|N |−1(k), σ|N |−1])

≤ v([σ|N |−1(k), σ|N |−1] ∪ S) + v([σ|N |−1(i), σ|N |−1])

is satisfied for i = |N | − 2, k = |N | − 1 and all S ⊆ N\[σ|N |−1(|N |), σ|N |−1]

with S 6= ∅, and for i = |N |−1, k = |N | and all S ⊆ N\[σ|N |−1(|N |), σ|N |−1]

with S 6= ∅. However, if S ⊆ N\[σ|N |−1(|N |), σ|N |−1], then S = ∅, so the

condition is an empty one. 2





Chapter 3

Tree-component additive

games

3.1 Introduction

In cooperative game theory, the cooperative possibilities between players are

often severely restricted. For instance, in assignment games (cf. Shapley and

Shubik (1972)), bridge games (cf. Shubik (1971)) and neighbour games (cf.

Klijn, Vermeulen, Hamers, Solymosi, Tijs, and Villar (2003)) only small

coalitions play an essential role. In sequencing games (see Chapter 6) it

is often assumed that only the so-called connected coalitions have full co-

operative possibilities, and in Myerson (1977) the cooperative possibilities

between players are restricted by an exogenously given graph.

We will also assume that the cooperative possibilities between players

are restricted by an exogenously given graph. In particular, we consider

the case where this graph is a tree, and we assume that associated games

are superadditive. The resulting class of cooperative games is the class

of tree-component additive games. It can be shown that tree-component

additive games satisfy several nice game theoretical properties. For instance,

it is proved in LeBreton, Owen, and Weber (1991) that tree-component

additive games have non-empty cores. Furthermore, it is shown in Potters

and Reijnierse (1995) that the core coincides with the bargaining set and

that the kernel only consists of the nucleolus. In Solymosi, Aarts, and
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Driessen (1998) a primal and in Kuipers, Solymosi, and Aarts (2000) a dual

type algorithm is presented for the efficient computation of the nucleolus.

This chapter, which is based on Van Velzen, Hamers, and Solymosi

(2004), mainly focuses on core stability. Several related properties like large-

ness of the core and exactness are also considered. The main tool for this

study will be covering families. A covering family is, bluntly speaking, a

minimal set of connected coalitions that covers the entire player set. By

associating an inequality with each covering family we derive a characteri-

sation of largeness of the core in tree-component additive games. We will

also characterise exactness by applying a result of Schmeidler (1972) to tree-

component additive games.

To obtain a sufficient condition for core stability we restrict the set of

covering families. In particular, we introduce the set of basic covering fam-

ilies, consisting of those covering families for which at most one coalition

does not contain a leaf. The corresponding restricted set of inequalities is

proved to be sufficient for core stability. In fact, we will show that this set

of inequalities is sufficient for a refinement of extendibility, called essential

extendibility. Essential extendibility is the property that each core element

of each subgame corresponding to an essential coalition can be extended

to a core element. By showing that essential extendibility is a sufficient

condition for core stability of any TU game, we are able to prove that the

basic covering family inequalities give rise to a sufficient condition for core

stability.

Finally, we apply the results we derived for tree-component additive

games to the special situation where the tree is a chain. Furthermore we

show that for the corresponding class of chain-component additive games

largeness of the core is equivalent to exactness. Moreover, we prove that

essential extendibility is equivalent to core stability, and both concepts are

characterised in terms of linear equalities and inequalities. The necessity

of these linear equalities and inequalities is shown using a dual approach.

First we appoint a certain subset of the imputation set and we show, using

a variant of Farkas’ Lemma, that this subset contains an undominated im-

putation outside the core if and only if all vectors from a related polyhedron
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satisfy a well-chosen linear inequality. We then decompose each member of

this polyhedron into a sum of three types of basis vectors. Finally we use

these basis vectors to show that the well-chosen linear inequality is indeed

satisfied for each member of the polyhedron.

The remainder of this chapter is organised as follows. Section 3.2 for-

mally introduces the class of tree-component additive games. In Section

3.3 largeness of the core as well as exactness are characterised for tree-

component additive games. Section 3.4 introduces essential extendibility

and shows its relation to core stability. Furthermore a sufficient condition

for essential extendibility is provided. The special case of chain-component

additive games is treated in Section 3.5. Finally, in Section 3.6 some lemmas

are proved that are needed for the characterisation of essential extendibility

and core stability.

3.2 Tree-component additive games

In this section we formally introduce tree-component additive games, and

we develop some notation. We begin the section with the definition of core

stability, exactness, largeness and extendibility.

Let v ∈ TUN and x, y ∈ I(v). Then x is said to dominate y via coalition

S ⊆ N if
∑

i∈S xi ≤ v(S) and xi > yi for all i ∈ S. The core is called stable

if for each imputation y outside the core there is a core element x and a

coalition S ⊆ N such that x dominates y via S. A game v ∈ TUN is said

to be exact if for each S ⊆ N there is an x ∈ C(v) with
∑

i∈S xi = v(S).

The core is large if for each x ∈ U(v) there is a y ∈ C(v) with yi ≤ xi

for each i ∈ N . Finally, a game is extendible if each core element of each

subgame can be extended to a core element of (N, v). In other words, a

game v ∈ TUN is extendible if for each T ⊆ N and each x ∈ C(vT ) there

exists a y ∈ C(v) with yi = xi for each i ∈ T .

In Sharkey (1982) it is shown that largeness of the core is a sufficient

condition for core stability. It is proved in Kikuta and Shapley (1986) that

extendibility is necessary for largeness of the core and sufficient for core sta-

bility. If a game has a non-empty core, and if all subgames have non-empty
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cores as well, then largeness is sufficient for exactness (Sharkey (1982)), as

well as extendibility is sufficient for exactness (Biswas, Parthasarathy, Pot-

ters, and Voorneveld (1999)). In general, exactness and core stability do

not imply one another (cf. Biswas, Parthasarathy, Potters, and Voorneveld

(1999) and Van Gellekom, Potters, and Reijnierse (1999)).

Let G = (N, E) be a tree. The subgraph of G with respect to coalition

S ⊆ N is given by (S, ES), where {i, j} ∈ ES if {i, j} ∈ E and i, j ∈ S. For

each S ⊆ N , the subgraph (S, ES) consists of several maximally connected

subtrees. Denote the set of vertex sets of these maximally connected subtrees

by C(S). A game v ∈ TUN is called tree-component additive with respect

to G if it is superadditive, and if v(S) =
∑

T∈C(S) v(T ) for each S ⊆ N .

That is, the worth of each coalition is equal to the sum of the worths of

its maximally connected components. If G = (N, E) is a chain, then (N, v)

is called chain-component additive. In the remainder of this chapter we

assume, without loss of generality, that tree-component additive games are

zero-normalised, i.e. if v ∈ TUN is a tree-component additive game, then

v({i}) = 0 for each i ∈ N .

The following example illustrates the concept of tree-component additive

games.
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1

2

Figure 3.1: A tree G = (N, E).

Example 3.2.1 Let G = (N, E) be the tree depicted in Figure 3.1. Then

{1, 2, 4, 5} consists of three maximally connected components. In particular,

C({1, 2, 4, 5}) = {{1}, {2}, {4, 5}}. If v ∈ TUN is tree-component additive

with respect to G, then v({1, 2, 4, 5}) = v({1}) + v({2}) + v({4, 5}). 3

In tree-component additive games only the connected coalitions play a vital

role in determining the shape of the core and the upper-core. To be more
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precise, let G = (N, E) be a tree and v ∈ TUN a tree-component additive

game with respect to G. Denote the set of connected coalitions with respect

to G by S. Hence, S ∈ S if and only if |C(S)| = 1. Then C(v) = {x ∈ RN :
∑

i∈N xi = v(N),
∑

i∈S xi ≥ v(S) for each S ∈ S}, and U(v) = {x ∈ RN :
∑

i∈S xi ≥ v(S) for each S ∈ S}.

The following two results are shown in LeBreton, Owen, and Weber

(1991). The first result states that each balanced collection being a subset

of S necessarily contains a partition. The second result shows that tree-

component additive games have non-empty cores. Note this result can be

straightforwardly proved by combining Lemma 3.2.1 with Theorem 1.2.1

while using superadditivity of tree-component additive games.

Lemma 3.2.1 (LeBreton, Owen, and Weber (1991)) Let G =

(N, E) be a tree. Let B ⊆ S be a balanced collection. Then B contains a

partition of N as a subset.

Theorem 3.2.1 (LeBreton, Owen, and Weber (1991)) Let G =

(N, E) be a tree and let v ∈ TUN be tree-component additive with respect

to G. Then C(v) 6= ∅.

Because tree-component additive games have non-empty cores, it easily fol-

lows that forest-component additive games have non-empty cores as well.

This implies that subgames of tree-component additive games have non-

empty cores, since each subgame of a tree-component additive game is forest-

component additive.

3.3 Largeness and exactness

In this section we introduce covering families and we associate with each

covering family an inequality. We show that these inequalities provide a

characterisation of largeness of the core. Furthermore we use a result of

Schmeidler (1972) to characterise exactness.

First we introduce covering families. Let G = (N, E) be a tree. Then

T ⊆ S is called a covering family if T 6= {N}, and if
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(A1)
⋃

T∈T

T = N ;

(A2)
⋃

S∈T \{T}

S 6= N for all T ∈ T ;

(A3) if S, T ∈ T with S ∩ T = ∅, then S ∪ T 6∈ S.

Requirement (A1) states that every player is covered by T , and (A2) states

that every element of T is necessary to cover the complete player set. Finally,

requirement (A3) implies that two members of a covering family are either

intersecting, or non-adjacent. The following example illustrates covering

families.
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Figure 3.2: A tree G = (N, E).

Example 3.3.1 Let G = (N, E) be the tree depicted in Figure 3.2. Note

that T = {{1, 3, 4}, {2, 3, 4}, {4, 5, 6}, {4, 5, 7}} forms a covering family. In-

deed, N is covered by T and each element of T is needed to cover N . Further-

more, S∩T 6= ∅ for each S, T ∈ T , which shows that (A3) is satisfied as well.

The sets {{1, 2, 3}, {1, 2, 3, 4, 5}, {5, 6, 7}} and {{1, 3, 4}, {2}, {4, 5, 6, 7}} do

not form covering families, since conditions (A2) and (A3) are violated, re-

spectively. 3

With each covering family we will associate a so-called covering family in-

equality. These covering family inequalities will provide a characterisation of

largeness of the core in tree-component additive games. Before we introduce

covering family inequalities, we first need to introduce T -balancing vectors.

Let T ⊆ S be a covering family. Define λi(T ) = |{T ∈ T : i ∈ T}|−1 for

all i ∈ N and W (T ) = {i ∈ N : λi(T ) > 0}. That is, λi(T ) is the number

of times that i is covered more than once, and W (T ) consists of the players

covered more than once. The vector y : S → R+ is called T -balancing if
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∑

S∈S ySe(S) = λ(T ). Note that if y is T -balancing, then
∑

T∈T e(T ) =

e(N) +
∑

S∈S ySe(S). The set of T -balancing vectors is denoted by B(T ).

We remark that B(T ) is non-empty and compact. The covering family

inequality associated to T is

∑

T∈T

v(T ) ≤ v(N) + max{
∑

S∈S

ySv(S) : y ∈ B(T )}. (3.1)

We illustrate the concept of covering family inequalities in the following

example.

Example 3.3.2 Consider Figure 3.2. In Example 3.3.1 it is shown that

T = {{1, 3, 4}, {2, 3, 4}, {4, 5, 6}, {4, 5, 7}} forms a covering family. Observe

that λi(T ) = 0 for i ∈ {1, 2, 6, 7}, λ3(T ) = λ5(T ) = 1 and λ4(T ) = 3.

Furthermore, W (T ) = {3, 4, 5}. Finally, observe that, for instance, y : S →

R+ with y{4} = y{3,4} = y{4,5} = 1 and yS = 0 if S ∈ S\{{4}, {3, 4}, {4, 5}}

is T -balancing. The covering family inequality associated to T is:

v({1, 3, 4}) + v({2, 3, 4}) + v({4, 5, 6}) + v({4, 5, 7})

≤ v(N) + max{
∑

S∈S

ySv(S) : y ∈ B(T )}. 3

Before we present our characterisation of largeness of the core, we first find

an alternative expression for max{
∑

S∈S ySv(S) : y ∈ B(T )}. Let G =

(N, E) be a tree and T a covering family. For notational convenience, define

S(W (T )) = {S ∈ S : S ⊆ W (T )}. Let y ∈ B(T ). Then y ≥ 0 and
∑

S∈S ySe(S) = λ(T ). This implies that yS = 0 for all S 6∈ S(W (T )).

Therefore,

B(T ) = {y ∈ RS : y ≥ 0, yS = 0 if S 6∈ S(W (T )),
∑

S∈S(W (T )),i∈S

yS = λi(T ) for all i ∈ W (T )}.

We conclude that

max{
∑

S∈S

ySv(S) : y ∈ B(T )} (3.2)
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= max{
∑

S∈S(W (T ))

ySv(S) :
∑

S∈S(W (T )):
i∈S

yS = λi(T ) for all i ∈ W (T ), y ≥ 0}.

= min{
∑

i∈W (T )

λi(T )xi :
∑

i∈S

xi ≥ v(S) for all S ∈ S(W (T ))}. (3.3)

The second equality follows from Theorem 1.2.3.

The following theorem provides a characterisation of largeness of the

core in terms of covering family inequalities. For the proof of this theorem

it is convenient to show two lemmas first. The first lemma uses the following

definition. Let x ∈ RN . Define S(x) = {S ∈ S :
∑

i∈S xi = v(S)}, i.e. S(x)

are the connected coalitions that are tight at x. Lemma 3.3.1 shows that if

at an allocation in the upper-core two disjoint coalitions with a connected

union are tight, then this union is tight as well. Lemma 3.3.2 shows that if

a subset of S is closed under union of disjoint elements, and if it covers all

players, then it contains a covering family as as subset.

Lemma 3.3.1 Let G = (N, E) be a tree. Let v ∈ TUN be tree-component

additive with respect to G and let x ∈ U(v). If A, B ∈ S(x) with A∩B = ∅

and A ∪ B ∈ S, then A ∪ B ∈ S(x).

Proof: Since x ∈ U(v),
∑

j∈A∪B xj ≥ v(A ∪ B). Observe

∑

j∈A∪B

xj =
∑

j∈A

xj +
∑

j∈B

xj = v(A) + v(B) ≤ v(A ∪ B),

where the inequality holds because of superadditivity. Since
∑

j∈A∪B xj =

v(A ∪ B) and A ∪ B ∈ S we conclude that A ∪ B ∈ S(x). 2

Lemma 3.3.2 Let G = (N, E) be a tree. Let V ⊆ S. If for all A, B ∈ V

with A∩B = ∅ and A∪B ∈ S it holds that A∪B ∈ V, and if
⋃

T∈V T = N ,

then V contains a covering family as a subset.

Proof: Let X = {T ∈ V : T 6⊆ S for all S ∈ V\{T}} be the set of maximal

elements in V. We will show that X contains a subset Xp that satisfies (A1)

and (A2). Subsequently we show that Xp also satisfies (A3). Hence, Xp is

a covering family.
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We recursively construct a subset Xp ⊆ X that satisfies (A1) and (A2).

First note that X satisfies (A1), since the assumption
⋃

T∈V T = N implies
⋃

T∈X T = N . If X satisfies (A2) as well, then we are done, so assume that

(A2) is violated. Clearly there is a T 1 ∈ X with
⋃

T∈X\{T 1} T = N . This

means that X1 = X\{T 1} still satisfies (A1). If X1 now violates (A2), then

we can apply the same reasoning to obtain an X2 ( X1 that satisfies (A1).

We recursively obtain an Xp ⊆ X, p ≥ 1, that satisfies (A1) and (A2). Note

that this recursion finishes in a finite number of steps since the cardinality

of X is finite. It remains to show that (A3) is satisfied by Xp.

If A, B ∈ Xp are such that A ∩ B = ∅ and A ∪ B ∈ S, then A ∪ B ∈ V

by assumption, contradicting the fact that A and B are maximal elements

in V. So (A3) is satisfied as well. 2

We are now ready to characterise largeness in terms of covering family in-

equalities.

Theorem 3.3.1 Let G = (N, E) be a tree and let v ∈ TUN be tree-

component additive with respect to G. Then C(v) is large if and only if

all covering family inequalities are satisfied.

Proof: First we show the ”if” part. Assume that all covering family in-

equalities are satisfied. Let x ∈ U(v). If
∑

i∈N xi = v(N), then x ∈ C(v)

and we are done, so assume that
∑

i∈N xi > v(N). We need to show the

existence of a y ∈ C(v) with y ≤ x. Instead, we show the existence of an

x1 ∈ U(v) with x1
j < xj for some j ∈ N and x1

i = xi for all i ∈ N\{j}.

Observe that
∑

i∈N x1
i <

∑

i∈N xi. We then argue that, by proceeding in

the same way, we can construct an xp ∈ C(v) with xp ≤ x in p ≤ |N | steps.

First we show, by contradiction, the existence of a j ∈ N with j 6∈
⋃

T∈S(x) T . Suppose that j ∈
⋃

T∈S(x) T for each j ∈ N . From Lemma 3.3.1

it follows that if A, B ∈ S(x) are such that A ∩ B = ∅ and A ∪ B ∈ S, then

A∪B ∈ S(x). Hence, we can apply Lemma 3.3.2 with V = S(x) to conclude

that S(x) contains a covering family. Let T ⊆ S(x) be a covering family.

Since T ∈ S(x) for each T ∈ T , we have
∑

i∈T xi = v(T ) for all T ∈ T . This
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yields

∑

T∈T

∑

i∈T

xi =
∑

T∈T

v(T )

≤ v(N) + max{
∑

S∈S

ySv(S) : y ∈ B(T )}

≤ v(N) + max{
∑

S∈S

yS

∑

i∈S

xi : y ∈ B(T )}

<
∑

i∈N

xi + max{
∑

S∈S

yS

∑

i∈S

xi : y ∈ B(T )}

=
∑

i∈N

xi +
∑

i∈N

λi(T )xi.

The first inequality holds since we assumed that all covering family inequal-

ities are satisfied, and the second because x ∈ U(v) gives
∑

i∈S xi ≥ v(S) for

each S ∈ S. The strict inequality is due to our assumption that
∑

i∈N xi >

v(N). The last equality is due to the definition of T -balancing vectors and

the definition of λ(T ).

We obtained that
∑

T∈T

∑

i∈T xi <
∑

i∈N xi +
∑

i∈N λi(T )xi. However,

since T is a covering family,
∑

T∈T

∑

i∈T xi =
∑

i∈N xi+
∑

i∈N λi(T )xi. Be-

cause of this contradiction we conclude that it cannot occur that
⋃

T∈S(x) T

= N .

Now let j ∈ N be such that j 6∈
⋃

T∈S(x) T . Define ε = min{
∑

i∈S xi −

v(S) : j ∈ S, S ∈ S}. Observe that ε > 0, since
∑

i∈S xi > v(S) for all

S ∈ S with j ∈ S. Define x1 by x1
i = xi for each i ∈ N\{j} and x1

j = xj − ε.

Note that x1 ∈ U(v). Indeed, for all T ∈ S with j 6∈ T we have
∑

i∈T x1
i =

∑

i∈T xi ≥ v(T ). Furthermore,
∑

i∈T x1
i =

∑

i∈T xi − ε ≥ v(T ) for all T ∈ S

with j ∈ T , since ε = min{
∑

i∈S xi−v(S) : j ∈ S, S ∈ S} ≤
∑

i∈T xi−v(T ).

We conclude that x1 ∈ U(v), x1 ≤ x, and
∑

i∈N x1
i <

∑

i∈N xi. Also note

that S(x) ( S(x1), since all coalitions that are tight at x are also tight at

x1, while at x1 at least one more coalition is tight. In fact,
⋃

T∈S(x) T (
⋃

T∈S(x1) T , because at x1 a coalition containing player j is tight.

If
∑

i∈N x1
i = v(N), then we are done. If

∑

i∈N x1
i > v(N), then we

can apply the same procedure to obtain an x2 ∈ U(v) with x2 ≤ x1 ≤ x,

and
∑

i∈N x2
i <

∑

i∈N x1
i <

∑

i∈N xi. Recursively we obtain a sequence
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x1, . . . , xp with xm ∈ U(v) for all m ∈ {1, . . . , p}, xp ≤ xp−1 ≤ . . . ≤ x, and
∑

i∈N x
p
i <

∑

i∈N x
p−1
i < . . . <

∑

i∈N xi. Observe that by definition of ε it

is satisfied that S(x) ( S(x1) ( . . . ( S(xp). Since the set of players not

covered by the families S(x),S(x1), . . . ,S(xp) is strictly shrinking, it follows

that we construct an xp ∈ C(v) in p ≤ |N | steps. Hence, C(v) is large.

We now prove the ”only if”-part. Let T be a covering family for which the

corresponding inequality is violated. We will construct an x ∈ U(v) with

z 6∈ C(v) for each z ≤ x with
∑

i∈N zi = v(N). This shows that C(v) is

not large and therefore the covering family inequality associated with T is

necessary.

Let x∗ ∈ RW (T ) be a solution of (3.3). Define x ∈ RN by xi = x∗
i

if i ∈ W (T ) and xi = v(N) if i ∈ N\W (T ). We claim that x ∈ U(v).

Indeed, if S ∈ S is such that S ⊆ W (T ), then
∑

i∈S xi ≥ v(S) is satisfied by

definition of (3.3). If S ∈ S is such that S 6⊆ W (T ), then
∑

i∈S xi ≥ v(N)+
∑

i∈S∩W (T ) x∗
i ≥ v(N) ≥ v(S). The first inequality is satisfied because

(N, v) is zero-normalised and superadditive, which implies that v(N) ≥ 0.

The second inequality follows from x∗
i ≥ v({i}) = 0, for each i ∈ W (T ).

The last inequality follows from superadditivity and the fact that (N, v) is

zero-normalised.

Let z ≤ x be such that
∑

i∈N zi = v(N). We show that z 6∈ C(v).

Observe that
∑

T∈T

∑

i∈T

zi =
∑

i∈N

zi +
∑

i∈W (T )

λi(T )zi

= v(N) +
∑

i∈W (T )

λi(T )zi

≤ v(N) +
∑

i∈W (T )

λi(T )xi

= v(N) +
∑

i∈W (T )

λi(T )x∗
i

= v(N) + max{
∑

S∈S

ySv(S) : y ∈ B(T )}

<
∑

T∈T

v(T ).



60 Tree-component additive games

The first equality is satisfied by definition of λ(T ) and W (T ) and the second

because
∑

i∈N zi = v(N). The first inequality is due to z ≤ x. The fourth

equality holds because the optimal value of (3.2) coincides with the optimal

value of (3.3), and because we assumed that x∗ is an optimal solution of

(3.3). Finally, the strict inequality is satisfied because we assumed that the

covering family inequality associated with T is violated.

From
∑

T∈T

∑

i∈T zi <
∑

T∈T v(T ), we conclude there is a T ∈ T with
∑

i∈T zi < v(T ). Therefore, z 6∈ C(v). 2

The next example illustrates the ”only if” part of the proof of Theorem

3.3.1.

Example 3.3.3 Let G = (N, E) be the tree depicted in Figure 3.1 on page

52. Let v ∈ TUN be the tree-component additive game with respect to G

given by v({i}) = 0 for all i ∈ N , and

v(S) =























0, if S = {1, 3}, {4, 5};
1, if S = {3, 4} ;
2, if S = {1, 2, 3}, {1, 2, 3, 4}, {1, 3, 4}, {1, 3, 4, 5}, {2, 3}

{2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5};
4, if S = N .

The worths of the disconnected coalitions can be obtained from the tree-

component additivity of (N, v).

Obviously, T = {{1, 3, 4}, {2, 3}, {3, 4, 5}} is a covering family with

λ(T ) = (0, 0, 2, 1, 0) and W (T ) = {3, 4}. Observe that

max{
∑

S∈S

ySv(S) : y ∈ B(T )} = v({3}) + v({3, 4}) = 1.

Since, v({1, 3, 4}) + v({2, 3}) + v({3, 4, 5}) = 6 > 5 = v(N) + v({3}) +

v({3, 4}), we conclude that the covering family inequality associated with T

is violated.

For showing that C(v) is not large, we construct an x ∈ U(v) with

z 6∈ C(v) for every z ≤ x with
∑

i∈N zi = v(N). First consider

min{
∑

i∈W (T )

λi(T )xi :
∑

i∈S

xi ≥ v(S) for all S ∈ S(W (T ))}

= min{2x3 + x4 : x3 + x4 ≥ 1, x3 ≥ 0, x4 ≥ 0}.
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The optimal solution for this linear programming problem is given by (x∗
3, x

∗
4)

= (0, 1). Now let x = (v(N), v(N), x∗
3, x

∗
4, v(N)) = (4, 4, 0, 1, 4) ∈ U(v). Let

z ≤ x be such that
∑

i∈N zi = v(N) = 4. Then

∑

T∈T

∑

i∈T

zi =
∑

i∈N

zi + 2z3 + z4

≤ v(N) + 2x3 + x4

= 5

< v({1, 3, 4}) + v({2, 3}) + v({3, 4, 5}).

We conclude that z1 + z3 + z4 < 2 = v({1, 3, 4}), z2 + z3 < 2 = v({2, 3}), or

z3 + z4 + z5 < 2 = v({3, 4, 5}). This shows z 6∈ C(v). 3

The remainder of this section is dedicated to exactness. First we recall

a result proved in Schmeidler (1972). Then we apply this result on tree-

component additive games. We conclude with an example that shows that

largeness is not a necessary condition for exactness in tree-component addi-

tive games.

Theorem 3.3.2 (Schmeidler (1972)) A game v ∈ TUN is exact if and

only if for each T ⊆ N , and each y : 2N → R+ with
∑

S⊆N,S 6=N ySe(S) =

yNe(N) + e(T ),

∑

S⊆N,S 6=N

ySv(S) ≤ yNv(N) + v(T ).

In tree-component additive games all essential coalitions are connected. This

implies that if we apply Theorem 3.3.2 to tree-component additive games,

we only need to consider connected coalitions on the left-hand side of the

equality and inequality.

Theorem 3.3.3 Let G = (N, E) be a tree and let v ∈ TUN be tree-

component additive with respect to G. Then (N, v) is exact if and only if for

each T ⊆ N , and each y : S → R+ with
∑

S∈S\{N} ySe(S) = yNe(N)+e(T ),

∑

S∈S\{N}

ySv(S) ≤ yNv(N) + v(T ).
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We conclude this section with an example of a tree-component additive

game that is exact, but without a large core. This shows that largeness is

not equivalent to exactness for tree-component additive games. However,

we will show in Section 3.5 that these concepts are equivalent on the class

of chain-component additive games.

Example 3.3.4 Let v ∈ TUN be the tree-component additive game with-

out a large core from Example 3.3.3. Observe that x1 = (0, 2, 0, 2, 0),

x2 = (0, 0, 4, 0, 0), x3 = (1, 1, 1, 0, 1), x4 = (2, 0, 2, 0, 0) and x5 = (0, 0, 2, 0, 2)

are core elements. It is straightforward to check that for each S ⊆ N there

is an i ∈ {1, . . . , 5} with
∑

j∈S xi
j = v(S). Thus, (N, v) is exact. 3

3.4 Core stability

In this section we focus on core stability in tree-component additive games.

We will introduce a refinement of extendibility, called essential extendibility,

and show that this refinement is a sufficient condition for core stability of any

TU game. Finally, we derive a sufficient condition for essential extendibility

of tree-component additive games.

We begin this section with the introduction of connected marginal vec-

tors. Subsequently we show that connected marginal vectors provide core

elements in tree-component additive games. Let G = (N, E) be a tree. An

order σ ∈ Π(N) is said to be connected with respect to G if N\[σ(j), σ] is

a single component in G for each j ∈ {1, . . . , |N |}. A marginal vector is

called connected if the corresponding order is connected. The next example

illustrates connected orders.

Example 3.4.1 Consider Figure 3.1 on page 52. Then σ = (1, 2, 3, 4, 5) is a

connected order. However, the order τ = (1, 3, 2, 4, 5) is not connected, since

for j = 2, N\[τ(2), τ ] = {2, 4, 5} consists of two components with respect to

G, namely {2} and {4, 5}. 3

Connected marginal vectors allow for a nice expression for the payoff of

connected coalitions. Before we show this expression, we first develop some

notation. Let G = (N, E) be a tree, σ ∈ Π(N) a connected order and S ∈ S a
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connected coalition. Define M(S) = {j ∈ N\S : {i, j} ∈ E for some i ∈ S}

to be the set of players of N\S that are adjacent to a player in S. Let

Mσ(S) = {j ∈ M(S) : S 6⊆ [j, σ]} consist of those players of M(S) that

precede a player in S with respect to σ. Note that the connectedness of σ

implies that |M(S)\Mσ(S)| ≤ 1 for each S ∈ S. Finally, let Cj ∈ C(N\S)

be the maximally connected component of N\S containing player j ∈ M(S).

We illustrate the notation we just introduced.

Example 3.4.2 Consider Figure 3.2, which is depicted on page 54. Clearly,

σ = (1, 2, 3, 4, 5, 6, 7) is connected. If S = {4, 5}, then M(S) = {3, 6, 7} and

Mσ(S) = {3}. Furthermore C3 = {1, 2, 3}. 3

The following lemma describes the payoff of connected coalitions at con-

nected marginal vectors.

Lemma 3.4.1 Let G = (N, E) be a tree and v ∈ TUN be tree-component

additive with respect to G. Let σ ∈ Π(N) be connected with respect to G.

If S ∈ S, then

∑

i∈S

mσ
i (v) = v(S ∪

⋃

j∈Mσ(S)

Cj) −
∑

j∈Mσ(S)

v(Cj).

Proof: Let k ∈ S be such that S ⊆ [k, σ]. Now first observe that
∑

i∈S

mσ
i (v) =

∑

i∈[k,σ]

mσ
i (v) (3.4)

−
∑

j∈Mσ(S)

∑

i∈[k,σ]∩Cj

mσ
i (v) (3.5)

−
∑

j∈M(S)\Mσ(S)

∑

i∈[k,σ]∩Cj

mσ
i (v). (3.6)

Let j ∈ Mσ(S). Note that j ∈ [k, σ] by definition of Mσ(S). Let h ∈ S be

such that {h, j} ∈ E. We claim that j ∈ [h, σ]. Indeed, if h = k, then clearly

j ∈ [k, σ] = [h, σ]. If h 6= k and j 6∈ [h, σ], then N\[h, σ] contains at least

two components, namely a component containing player j and a component

containing k. This contradicts the connectedness of σ.

Now let i ∈ Cj . We claim i ∈ [j, σ]. Indeed, if i 6∈ [j, σ], then N\[j, σ] con-

tains at least two components, namely a component containing player i and a
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component containing player k. Again, this contradicts the connectedness of

σ. We conclude that i ∈ [h, σ] for each i ∈ Cj . This implies that Cj ⊆ [k, σ]

for each j ∈ Mσ(S). Furthermore, using the tree-component additivity of

(N, v), we conclude that
∑

i∈Cj
mσ

i (v) = v(Cj) for each j ∈ Mσ(S). Hence,

expression (3.5) can be rewritten as

−
∑

j∈Mσ(S)

∑

i∈[k,σ]∩Cj

mσ
i (v) = −

∑

j∈Mσ(S)

v(Cj). (3.7)

Furthermore, for expression (3.4) it is satisfied that

∑

i∈[k,σ]

mσ
i (v) = v(S ∪

⋃

j∈Mσ(S)

Cj ∪
⋃

j∈M(S)\Mσ(S)

(Cj ∩ [k, σ]))

= v(S ∪
⋃

j∈Mσ(S)

Cj) + v(
⋃

j∈M(S)\Mσ(S)

(Cj ∩ [k, σ])). (3.8)

The first equality holds by definition of marginal vectors. The second

equality follows from tree-component additivity of (N, v) and the fact that

S ∪
⋃

j∈Mσ(S) Cj and
⋃

j∈M(S)\Mσ(S)(Cj ∩ [k, σ]) are not connected.

Now finally note that the tree-component additivity of (N, v) implies

that

−
∑

j∈M(S)\Mσ(S)

∑

i∈[k,σ]∩Cj

mσ
i (v) = −v(

⋃

j∈M(S)\Mσ(S)

(Cj ∩ [k, σ])). (3.9)

The lemma now follows by substituting (3.7), (3.8) and (3.9) into (3.4), (3.5)

and (3.6). 2

Example 3.4.3 Consider Example 3.4.2. Let v ∈ TUN be tree-component

additive with respect to G. Let S = {4, 5}. Then,
∑

i∈S mσ
i (v) =

v(S ∪
⋃

j∈Mσ(S) Cj) −
∑

j∈Mσ(S) v(Cj) = v({1, 2, 3, 4, 5}) − v({1, 2, 3}). 3

The following theorem shows that for tree-component additive games con-

nected marginal vectors are core elements.

Theorem 3.4.1 Let G = (N, E) be a tree and let v ∈ TUN be tree-

component additive with respect to G. If σ ∈ Π(N) is connected with

respect to G, then mσ(v) ∈ C(v).
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Proof: Let σ ∈ Π(N) be a connected with respect to G. Since mσ(v)

is efficient by definition, we only need to show that
∑

i∈S mσ
i (v) ≥ v(S)

for each S ⊆ N . In fact, since (N, v) is tree-component additive, it is

sufficient to show coalition rationality for connected coalitions. Let S ∈ S.

Straightforwardly,

∑

i∈S

mσ
i (v) = v(S ∪

⋃

j∈Mσ(S)

Cj) −
∑

j∈Mσ(S)

v(Cj) ≥ v(S),

where the equality is satisfied due to Lemma 3.4.1 and the inequality because

tree-component additive games are superadditive. 2

The remainder of this section is dedicated to core stability and essential

extendibility. First we introduce essential extendibility and we prove that

for any TU game essential extendibility is a sufficient condition for core

stability.

A game v ∈ TUN is called essential extendible if for all essential coali-

tions S ⊆ N and all x ∈ C(vS) there is a y ∈ C(v) with yi = xi for all

i ∈ S. Obviously, largeness of the core and extendibility are sufficient condi-

tions for essential extendibility. The following theorem shows that essential

extendibility is sufficient for core stability.

Theorem 3.4.2 Let v ∈ TUN be essential extendible. Then C(v) is stable.

Proof: Let x ∈ I(v)\C(v). Let S ⊆ N be such that
∑

i∈S xi < v(S)

and
∑

i∈T xi ≥ v(T ) for each T ( S. We claim that S is essential. Indeed,

suppose S is inessential. Then there is a partition P of S with
∑

U∈P v(U) ≥

v(S) >
∑

i∈S xi =
∑

U∈P

∑

i∈U xi. This implies that at least one coalition

in P is dissatisfied with the payoff at x, which contradicts our choice of S.

Now let y ∈ RS be given by yi = xi +
v(S)−

∑

j∈S xj

|S| for each i ∈ S. This

yields, y ∈ C(vS). Because (N, v) is essential extendible, and because S is

essential, there is a z ∈ C(v) with zi = yi for each i ∈ S. Observe that z

dominates x via S. 2

We will now develop a sufficient condition for essential extendibility in tree-

component additive games. In order to do so, we introduce basic covering
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families. Let G = (N, E) be a tree and let T be a covering family. Then

T is called basic if at most one coalition in T does not contain a leaf of G.

If T is basic and contains a coalition without a leaf, then this coalition is

called the central coalition.

543

1

2

6 7

8

9

Figure 3.3: A tree G = (N, E).

Example 3.4.4 Observe that the covering family from Example 3.3.1 is

basic, since each covering family element contains a leaf. Now consider the

tree depicted in Figure 3.3. The covering family {{1, 2, 3}, {3, 4, 5, 6},

{6, 7, 8, 9}} is a basic covering family with central coalition {3, 4, 5, 6}. The

covering family {{1, 2, 3}, {3, 4, 5}, {5, 6, 7}, {7, 8, 9}} is not a basic covering

family since both {3, 4, 5} and {5, 6, 7} do not contain leaves. 3

The following theorem describes a sufficient condition for essential extendibi-

lity in terms of basic covering family inequalities.

Theorem 3.4.3 Let G = (N, E) be a tree and v ∈ TUN be tree-component

additive with respect to G. If for each basic covering family without a central

coalition and for each basic covering family with an essential central coalition

the associated inequality is satisfied, then (N, v) is essential extendible.

Proof: Let T ⊆ N be essential and let x ∈ C(vT ). We will extend x to

y ∈ C(v). First we introduce some notation and definitions. Since (N, v) is

tree-component additive it follows that T ∈ S. For notational convenience,

we will write M = {j1, . . . , j|M |} instead of M(T ). For each j ∈ M , let σj ∈

Π(Cj) be such that N\[σj(l), σj ] is connected for all l ∈ {1, . . . , |Cj |}. Hence,

σj is a connected order for the subtree (Cj , ECj
) and σj(|Cj |) = j. With each

σj we associate a partial marginal vector in the following straightforward

way. Let mσj

i (v) = v([i, σj ]) − v([i, σj ]\{i}) for each j ∈ M and i ∈ Cj .
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Observe, using Theorem 3.4.1 and our definition of σj , that
∑

i∈S mσj

i (v) ≥

v(S) for each j ∈ M and S ⊆ Cj . Therefore,
∑

i∈S mσj

i (v) ≥ v(S) for each

j ∈ M and S ⊆ Cj\{j}.

Now define yi = xi if i ∈ T , yi = mσj

i (v) if i ∈ Cj\{j} for some j ∈ M ,

and recursively define

yi = max{v(U) −
∑

k∈U\{i}

yk : U ⊆ T ∪

p
⋃

l=1

Cjl
, i ∈ U, U ∈ S}

if i = jp for some p ∈ {1, . . . , |M |}. First we show that y ∈ U(v). Subse-

quently we show that
∑

i∈N yi = v(N), which proves y ∈ C(v). Since by

definition, yi = xi for each i ∈ T , this proves the theorem.

Let S ∈ S. Observe that if S ⊆ Cj\{j} for some j ∈ M , then
∑

i∈S yi =
∑

i∈S mσj

i (v) ≥ v(S). If S ⊆ T , then
∑

i∈S yi =
∑

i∈S xi ≥ v(S). Finally,

if jp ∈ S, and jq 6∈ S for each q ∈ {p, . . . , |M |}, then yjp = max{v(U) −
∑

k∈U\{jp}
yk : U ⊆ T∪

⋃p
l=1 Cjl

, jp ∈ U, U ∈ S} implies
∑

i∈S yi ≥ v(S). We

conclude that
∑

i∈S yi ≥ v(S) for each S ∈ S and therefore that y ∈ U(v).

It remains to show that
∑

i∈N yi ≤ v(N).

For each p ∈ {1, . . . , |M |}, let S∗
jp

∈ argmax{v(U) −
∑

k∈U\{jp}
yk : U ⊆

T ∪
⋃p

l=1 Cjl
, jp ∈ U, U ∈ S} be maximal with respect to inclusion. To be

more precise, if R ∈ argmax{v(U) −
∑

k∈U\{jp}
yk : U ⊆ T ∪

⋃p
l=1 Cjl

, jp ∈

U, U ∈ S}, and R 6= S∗
jp

, then S∗
jp

6⊆ R. Note that the following three

properties, (P1), (P2) and (P3), are satisfied.

(P1) S∗
jp
∩ S∗

jq
6= ∅ or S∗

jp
∪ S∗

jq
6∈ S for each p, q ∈ {1, . . . , |M |} with p < q.

Indeed, suppose that S∗
jp

and S∗
jq

are such that S∗
jp
∩S∗

jq
= ∅ and S∗

jp
∪S∗

jq
∈ S.

By definition of S∗
jp

,
∑

k∈S∗
jp

yk = v(S∗
jp

). Now observe that

v(S∗
jq

) −
∑

k∈S∗
jq
\{jq}

yk = v(S∗
jq

) −
∑

k∈S∗
jq
\{jq}

yk + v(S∗
jp

) −
∑

k∈S∗
jp

yk

≤ v(S∗
jp
∪ S∗

jq
) −

∑

k∈(S∗
jp
∪S∗

jq
)\{jq}

yk.

The inequality follows from superadditivity. We conclude that S∗
jp

∪ S∗
jq

∈

argmax{v(U) −
∑

k∈U\{jq}
yk : U ⊆ T ∪

⋃q
l=1 Cjl

, jq ∈ U, U ∈ S}. This

contradicts the maximality of S∗
jq

.
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(P2) Cjp ⊆ S∗
jp

for each p ∈ {1, . . . , |M |}.

Indeed, if Cjp 6⊆ S∗
jp

, then Cjp\S
∗
jp

6= ∅. Let W ⊆ Cjp\S
∗
jp

be maximally

connected. By definition of y and σjp ,
∑

i∈W yi =
∑

i∈W m
σjp

i (v) = v(W ).

Hence, from superadditivity we obtain that W ∪ S∗
jp

∈ argmax{v(U) −
∑

k∈U\{jp}
yk : U ⊆ T ∪

⋃p
l=1 Cjl

, jp ∈ U, U ∈ S}. This contradicts the

maximality of S∗
jp

.

(P3) T ∩ S∗
jp

6= ∅ for each p ∈ {1, . . . , |M |}.

Indeed, suppose T ∩ S∗
jp

= ∅. Since jp ∈ S∗
jp

, it follows that T ∪ S∗
jp

∈

S. Hence, using
∑

i∈T yi = v(T ) and superadditivity, we have T ∪ S∗
jp

∈

argmax{v(U) −
∑

k∈U\{jp}
yk : U ⊆ T ∪

⋃p
l=1 Cjl

, jp ∈ U, U ∈ S}. This

contradicts the maximality of S∗
jp

.

Now observe that
⋃

S∈({T}∪{S∗
j :j∈M}) S = N . From (P1) and (P3) it follows

that if A, B ∈ {T} ∪ {S∗
j : j ∈ M} with A ∩ B = ∅, then A ∪ B 6∈ S.

By applying Lemma 3.3.2, with V = {T} ∪ {S∗
j : j ∈ M}, we conclude

that {T} ∪ {S∗
j : j ∈ M} contains a covering family as a subset. Let

T ⊆ {T} ∪ {S∗
j : j ∈ M} be a covering family. From (P2) we deduce that

each S∗
j , j ∈ M , contains at least one leaf. This implies that if T contains a

leaf, or if T 6∈ T , then T is a basic covering family without a central coalition.

If T ∈ T , and T does not contain a leaf, then T is a basic covering family

with an essential central coalition. In any case, the associated covering

family inequality is satisfied by assumption. We conclude

∑

i∈N

yi =
∑

S∈T

∑

i∈S

yi −
∑

i∈N

λi(T )yi

=
∑

S∈T

v(S) −
∑

i∈N

λi(T )yi

≤ v(N) + max{
∑

S∈S

uSv(S) : u ∈ B(T )} −
∑

i∈N

λi(T )yi

= v(N) + max{
∑

S∈S

uSv(S) : u ∈ B(T )} −
∑

i∈W (T )

λi(T )yi

≤ v(N).
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The first equality is satisfied by definition of λ(T ). The second equality

holds because
∑

i∈S yi = v(S) for each S ∈ {T} ∪ {S∗
j : j ∈ M}. The

first inequality is satisfied because of our assumption that the basic covering

family inequality associated with T is satisfied. The third equality holds

because λi(T ) = 0 for each i 6∈ W (T ). Finally, the last inequality holds

because

∑

i∈W (T )

λi(T )yi ≥ min{
∑

i∈W (T )

λi(T )zi :
∑

i∈S

zi ≥ v(S) for all S ∈ S}

≥ min{
∑

i∈W (T )

λi(T )zi :
∑

i∈S

zi ≥ v(S)

for all S ∈ S(W (T ))}

= max{
∑

S∈S

uSv(S) : u ∈ B(T )}.

We conclude that
∑

i∈N yi ≤ v(N), and therefore y ∈ C(v). 2

In the following example we illustrate the proof of Theorem 3.4.3.

Example 3.4.5 Let G = (N, E) be the tree depicted in Figure 3.2 on page

54. Let the worths of the essential coalitions of the tree-component additive

game v ∈ TUN be given by v({i}) = 0 for each i ∈ N and

v(S) =







1, if S = {3, 4}, {4, 5};
2, if S = {1, 3, 4}, {2, 3, 4}, {4, 5, 6}, {4, 5, 7};
6, if S = N .

The worths of the inessential coalitions are determined by superadditivity.

In particular, if S is inessential, then there is a partition P of S such that
∑

T∈P v(T ) ≥ v(S). By superadditivity it also follows that
∑

T∈P v(T ) ≤

v(S) for each partition P of S. So if S is inessential, then v(S) = max

{
∑

T∈P v(T ) : P is a partition of S}.

It is straightforward to verify that (N, v) satisfies the condition of The-

orem 3.4.3. Indeed, since the value of v(N) is relatively high, the only

basic covering family whose corresponding inequality might be violated is

{{1, 3, 4}, {2, 3, 4}, {4, 5, 6}, {4, 5, 7}}. However, the corresponding inequal-

ity is satisfied with equality in this case.
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Let T = {1, 3, 4} and (x1, x3, x4) = (1
2 , 1, 1

2) ∈ C(vT ). Note that T is

essential. We will extend x to a core element using the proof of Theorem

3.4.3.

Observe that M = {2, 5}, C2 = {2} and C5 = {5, 6, 7}. Let σ2 = (2)

and σ5 = (6, 7, 5). Clearly, N\[σj(l), σj ] is connected for each j = 2, 5

and l ∈ {1, . . . , |Cj |}. Let y1 = x1 = 1
2 , y3 = x3 = 1 and y4 = x4 = 1

2 .

Furthermore,

y2 = max{v(U) −
∑

j∈U\{2}

yj : U ⊆ {1, 2, 3, 4}, 2 ∈ U, U ∈ S}

= v({2, 3, 4}) − y3 − y4

=
1

2
.

Finally, y6 = mσ5

6 (v) = v({6}) = 0, y7 = mσ5

7 (v) = v({6, 7}) − v({6}) = 0

and

y5 = max{v(U) −
∑

j∈U\{5}

yj : U ⊆ N, 5 ∈ U, U ∈ S}

= v(N) − y1 − y2 − y3 − y4 − y6 − y7

= 3
1

2
.

Observe that y = ( 1
2 , 1

2 , 1, 1
2 , 31

2 , 0, 0) ∈ C(v) is an extension of x. 3

Note that by virtue of Theorem 3.4.2 the condition of Theorem 3.4.3 is also

sufficient for core stability. We conclude this section with several examples.

The first example shows that the condition of Theorem 3.4.3 is not neces-

sary for essential extendibility. Secondly, an example of a tree-component

additive game is provided that has a stable core, although this game is

not essential extendible. Hence, the basic covering family inequalities are

not necessary for essential extendibility, and essential extendibility is, on its

turn, not necessary for core stability. In the upcoming section we show that

in chain-component additive games essential extendibility is equivalent to

core stability, and we characterise these concepts in terms of basic covering

family inequalities.
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Example 3.4.6 Let G = (N, E) be the tree depicted in Figure 3.2 on page

54. Let v ∈ TUN be the tree-component additive game with respect to G,

where the worths of the essential coalitions are given by v({i}) = 0 for each

i ∈ N , v({3, 4}) = v({4, 5}) = 1, v({1, 3, 4}) = v({2, 3, 4}) = v({4, 5, 6}) =

v({4, 5, 7}) = 2 and v(N) = 5. The worths of the inessential coalitions are

determined by superadditivity (as explained in Example 3.4.5).

First note that the inequality associated to the basic covering family

{{1, 3, 4}, {2, 3, 4}, {4, 5, 6}, {4, 5, 7}} is violated. Indeed, it is straightfor-

ward to show that max{
∑

S∈S ySv(S) : y ∈ B(T )} = v({4}) + v({3, 4}) +

v({4, 5}) = 2. This yields, v({1, 3, 4})+v({2, 3, 4})+v({4, 5, 6})+v({4, 5, 7})

= 8 > 7 = v(N) + max{
∑

S∈S ySv(S) : y ∈ B(T )}. However, we will show

that (N, v) is essential extendible. Let S ⊆ N be essential.

If S is a singleton, i.e. S = {i} for some i ∈ N , then each x ∈ C(vS)

can easily be extended to a core element. Just observe that x = 0 for each

x ∈ C(vS), and note that (0, 0, 0, 5, 0, 0, 0) and (0, 0, 2 1
2 , 0, 21

2 , 0, 0) are core

elements.

Now suppose S = {3, 4} and let (x3, x4) ∈ C(vS). So x3 + x4 = 1 and

x3, x4 ≥ 0. This implies that x can be extended to y = (1, 1, x3, x4, 2, 0, 0) ∈

C(v). Note that by using similar arguments it is straightforward to extend

each core element of C(vS), if S = {4, 5}.

Finally, let S = {1, 3, 4} and let (x1, x3, x4) ∈ C(vS). So x1+x3+x4 = 2,

x3 + x4 ≥ 1 and x1, x3, x4 ≥ 0. We conclude that y = (x1, 1, x3, x4, 2, 0, 0)

is a core element that extends x. Again, using similar arguments, it is

straightforward to extend each core element of C(vS) if S = {2, 3, 4}, {4, 5, 6}

or {4, 5, 7}. 3

Example 3.4.7 Let G = (N, E) be the tree depicted in Figure 3.4. Let

v ∈ TUN be the tree-component additive game with respect to G, where

the worths of the essential coalitions are given by v({i}) = 0 for each

i ∈ N , v({1, 2}) = v({3, 4}) = v({4, 6}) = v({7, 8}) = v({2, 4, 5, 7}) = 1

and v(N) = 4. The worths of the inessential coalitions now follow from

superadditivity (as explained in Example 3.4.5).

First we show that (N, v) is not essential extendible. Observe that
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5

421 7 8

3 6

Figure 3.4: A tree G = (N, E).

{2, 4, 5, 7} is essential. However, (x2, x4, x5, x7) = (0, 0, 1, 0) ∈ C(v{2,4,5,7})

cannot be extended to a core element. Indeed, let y be such that yi = xi = 0

for each i ∈ {2, 4, 7}, y5 = x5 = 1, y1 + y2 ≥ v({1, 2}), y3 + y4 ≥ v({3, 4}),

y4 + y6 ≥ v({4, 6}) and y7 + y8 ≥ v({7, 8}). This implies y1 ≥ 1, y3 ≥ 1,

y6 ≥ 1 and y8 ≥ 1. Therefore,
∑

i∈N yi ≥ 5 > 4 = v(N). We conclude that

y 6∈ C(v).

Now we show that C(v) is stable. Let x ∈ I(v)\C(v) and let S ⊆ N be

an essential coalition with
∑

i∈S xi < v(S).

First suppose that S = {1, 2}. Then x is dominated, via coalition {1, 2},

by the core element

y = (x1 +
v({1, 2}) − x1 − x2

2
, x2 +

v({1, 2}) − x1 − x2

2
, 0, 2, 0, 0, 1, 0).

Secondly, suppose that S = {3, 4}. Then x is dominated via {3, 4} by the

core element

y = (0, 1, x3 +
v({3, 4}) − x3 − x4

2
, x4 +

v({3, 4}) − x3 − x4

2
, 0, 1, 1, 0).

By using similar arguments it is straightforward to obtain core elements that

dominate x if S = {4, 6}, {7, 8}.

Finally, suppose that S = {2, 4, 5, 7}. We may assume that x1 + x2 ≥ 1,

x3+x4 ≥ 1, x4+x6 ≥ 1 and x7+x8 ≥ 1, since if one of these inequalities is not

satisfied, then x can easily be dominated, as we have seen above. Adding the

four inequalities yields
∑

i∈N xi + x4 − x5 ≥ 4. Together with
∑

i∈N xi = 4

we obtain x4 ≥ x5. Now define ε = v({2, 4, 5, 7}) − x2 − x4 − x5 − x7 and



3.4 Core stability 73

let y be such that yi = xi + ε
4 for i ∈ {2, 4, 5, 7}, y1 = 1 − y2, y3 = 1 − y4,

y8 = 1 − y7 and y6 = v(N) −
∑

j∈N\{6} yj = 4 −
∑

j∈N\{6} yj . Clearly, y

dominates x via {2, 4, 5, 7}. It remains to show that y ∈ C(v).

First observe that by definition of y6,
∑

j∈N yj = 4 = v(N). Secondly,

observe that x2 + x4 + x5 + x7 < 1 and x4, x5, x7 ≥ 0 imply that x2 < 1.

Therefore also y2 < 1. As a result, y1 > 0. Similarly, it follows that y3 > 0,

y8 > 0 and y6 = 4 −
∑

i∈N\{6} yi = 1 − y5 > 0. Because y1 + y2 ≥ 1,

y3 + y4 ≥ 1, y7 + y8 ≥ 1 and y2 + y4 + y5 + y7 ≥ 1, it remains to show that

y4 + y6 ≥ 1. Note that

y4 + y6 = 4 − y1 − y2 − y3 − y5 − y7 − y8

= 2 − y3 − y5

≥ 2 − y3 − y4

= 1.

The inequality is satisfied since x4 ≥ x5 and therefore y4 ≥ y5. We conclude

that y ∈ C(v) dominates x via {2, 4, 5, 7}. 3

The last example of this section proves that exactness is not a sufficient

condition for core stability in tree-component additive games, although in

the next section it is proved that exactness is sufficient for core stability on

the class of chain-component additive games.

Example 3.4.8 Let G = (N, E) be the tree depicted in Figure 3.1 on page

52 and v ∈ TUN be the tree-component additive game of Example 3.3.3.

In Example 3.3.4 we have shown that (N, v) is exact. We claim that x =

(1
2 , 2, 0, 1, 1

2) ∈ I(v)\C(v) cannot be dominated by a core element. Indeed,

suppose that y ∈ C(v) dominates x. Then this domination must occur via

coalition {1, 3, 4} or coalition {3, 4, 5}, since these are the only dissatisfied

coalitions at x.

First suppose that the domination occurs via {1, 3, 4}. Then y1+y3+y4 =

2, y1 > x1 = 1
2 , y3 > x3 = 0 and y4 > x4 = 1. Hence, y3 = 2 − y1 − y4 < 1

2

and y3 + y4 = 2− y1 < 11
2 . Since y ∈ C(v), y2 ≥ v({2, 3})− y3 > 2− 1

2 = 11
2

and y5 ≥ v({3, 4, 5})−y3−y4 > 2−11
2 = 1

2 . We conclude that
∑

i∈N yi > 4,

which contradicts y ∈ C(v).
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Finally, suppose that the domination occurs via {3, 4, 5}. Then y3 +

y4 + y5 = 2, y3 > x3 = 0, y4 > x4 = 1 and y5 > x5 = 1
2 . Therefore,

y3 = 2 − y4 − y5 < 1
2 and y3 + y4 = 2 − y5 < 11

2 . From y ∈ C(v) we deduce

that y2 ≥ v({2, 3}) − y3 > 11
2 and y1 ≥ v({1, 3, 4}) − y3 − y4 > 1

2 . So,
∑

i∈N yi > 4, and therefore y 6∈ C(v). 3

3.5 Chain-component additive games

In this section we study largeness, exactness, essential extendibility and

core stability on the class of chain-component additive games. We show the

equivalence between largeness and exactness. Furthermore we prove that

essential extendibility is equivalent to core stability and we characterise both

concepts in terms of polynomially many linear equalities and inequalities.

We begin this section with a description of covering families on chains.

Let G = (N, E) be a chain. We will, without loss of generality, assume

throughout this section that {i, i + 1} ∈ E for each i ∈ N\{|N |}. For

convenience, we now redefine the concept of covering families in a slightly

different way. An ordered set {T1, . . . , Tm} ⊆ S is an m-covering family if

(B1)
m
⋃

i=1
Ti = N ;

(B2)
m
⋃

i=1,i6=j

Ti 6= N for each j ∈ {1, . . . , m};

(B3) Ti ∩ Ti+1 6= ∅ for all i ∈ {1, . . . , m − 1}.

Requirements (B1) and (B2) are similar to requirements (A1) and (A2)

for covering families on trees. The third requirement, (B3), states that

two subsequent elements of an m-covering family should not be disjoint.

Observe that if an ordered set T ⊆ S satisfies (B1), (B2) and (B3), then

it necessarily also satisfies (A1), (A2) and (A3). Similarly, if an unordered

set T ⊆ S satisfies (A1), (A2) and (A3), then it satisfies (B1) and (B2).

Furthermore, the elements of T can be ordered such that (B3) is satisfied

as well.
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1 2 3 4 5 6

Figure 3.5: A chain G = (N, E).

Example 3.5.1 Let G = (N, E) be the chain depicted in Figure 3.5. Then

{{1, 2, 3}, {2, 3, 4, 5}, {5, 6}} forms a 3-covering family. But for instance,

{{1, 2, 3}, {2, 3, 4}, {4, 5, 6}} is not a 3-covering family, since (B2) is violated.

3

Observe that an m-covering family could equivalently be described by the

alternating sequence of 2m−1 non-empty blocks of consecutive players who

are covered by exactly one or exactly two family-member coalitions. It

follows that in an n-player chain-component additive game the number of

different m-covering families is
(

n−1
2m−2

)

, provided, of course, that 2m−1 ≤ n.

Let G = (N, E) be a chain, and let v ∈ TUN be chain-component

additive with respect to G. For each m-covering family T = {T1, . . . , Tm}

the associated covering family inequality (3.1) boils down to

m
∑

i=1

v(Ti) ≤ v(N) +

m−1
∑

i=1

v(Ti ∩ Ti+1).

Observe that max{
∑

S∈S ySv(S) : y ∈ B(T )} =
∑m−1

i=1 v(Ti ∩ Ti+1) because

λi(T ) ∈ {0, 1} for each i ∈ N and because of superadditivity. The follow-

ing theorem characterises largeness, extendibility and exactness in terms of

covering family inequalities.

Theorem 3.5.1 Let G = (N, E) be a chain, and let v ∈ TUN be a chain-

component additive game with respect to G. The following statements are

equivalent:

1. Each covering family inequality is satisfied;

2. C(v) is large;

3. (N, v) is extendible;
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4. (N, v) is exact.

Proof: The equivalence between 1 and 2 is proved in Theorem 3.3.1. It

is shown in Kikuta and Shapley (1986) that 2 ⇒ 3, and 3 ⇒ 4 follows

from Biswas, Parthasarathy, Potters, and Voorneveld (1999) since chain-

component additive games have non-empty cores, as well as all subgames of

chain-component additive games. It remains to show that 4 ⇒ 1.

Assume that (N, v) is exact. Let T = {T1, . . . , Tm} be an m-covering

family. Since (N, v) is exact it follows from Theorem 3.3.3 that for each

T ⊆ N , and each y : S → R+ with
∑

S∈S\{N} ySe(S) = yNe(N) + e(T ),

∑

S∈S\{N}

ySv(S) ≤ yNv(N) + v(T ). (3.10)

Now let T =
⋃m−1

i=1 (Ti ∩ Ti+1) and let y : S → R+ be given by yS = 1 if S ∈

T ∪{N} and yS = 0 otherwise. Clearly,
∑

S∈S\{N} ySe(S) = yNe(N)+e(T ).

It follows that

m
∑

i=1

v(Ti) =
∑

S∈S\{N}

ySv(S)

≤ yNv(N) + v(T )

= v(N) +
m−1
∑

i=1

v(Ti ∩ Ti+1).

The inequality follows from (3.10). The last equality is satisfied by definition

of T , and the chain-component additivity of (N, v). 2

Observe that for an n-player chain-component additive game there are ex-

actly 2n−2 − 1 covering families. Indeed, for each S ⊆ N\{1, n} with S 6= ∅

there is a covering family T = {T1, . . . , Tm} with
⋃m−1

i=1 (Ti ∩ Ti+1) = S.

Hence, our characterisation requires the checking of 2n−2 − 1 linear inequal-

ities. Also note that, since largeness of the core is a sufficient condition

for essential extendibility and core stability, exactness is sufficient for essen-

tial extendibility and core stability on the class of chain-component additive

games as well.
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In the final part of this section we characterise essential extendibility and

core stability in chain-component additive games. Of course, Theorem 3.4.3

provides a sufficient condition for essential extendibility and core stability

on the class of tree-component additive games. We show that for chain-

component additive games these conditions are necessary as well. First

observe that if G = (N, E) is a chain, then a basic covering family without

a central coalition is a 2-covering family, and a basic covering family with a

central coalition is just a 3-covering family.

Before we show the characterisation of essential extendibility and core

stability, we first apply Theorem 3.4.1 to chain-component additive games.

Then we recall a variant of Farkas’ Lemma, which was first proved in Haar

(1918). This lemma is also recorded in e.g. Schrijver (1986).

Theorem 3.5.2 Let G = (N, E) be a chain and let v ∈ TUN be a chain-

component additive game with respect to G. If σ ∈ Π(N) is connected with

respect to G, then mσ(v) ∈ C(v).

Note that from Theorem 3.5.2 it follows that mσ(v), mτ (v) ∈ C(v) with

σ, τ ∈ Π(N) such that σ(i) = i, τ(i) = |N | + 1 − i for all i ∈ {1, . . . , |N |}.

This is also indirectly proved in Curiel, Potters, Rajendra Prasad, Tijs, and

Veltman (1994).

Lemma 3.5.1 (Haar (1918)) Let A ∈ Rm×n and b ∈ Rm such that P =

{x ∈ Rn : Ax ≤ b} 6= ∅. Let c ∈ Rn and δ ∈ R. Then cx ≤ δ for all x ∈ P if

and only if there exists a y ∈ Rm
+ with yA = c and yb ≤ δ.

Theorem 3.5.3 Let G = (N, E) be a chain, and let v ∈ TUN be tree-

component additive with respect to G. The following statements are equi-

valent:

1. Each 2-covering family inequality is satisfied. For each 3-covering fam-

ily {T1, T2, T3} with essential T2, the corresponding inequality is sat-

isfied;

2. (N, v) is essential extendible;
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3. C(v) is stable.

Proof: We only show 3 ⇒ 1 since 1 ⇒ 2 follows from Theorem 3.4.3, and

2 ⇒ 3 from Theorem 3.4.2. We first show that the inequalities corresponding

to 2-covering families are necessary. We then proceed with the necessity of

the condition involving 3-covering families.

Suppose that the inequality corresponding to the 2-covering family

{T1, T2} is violated. In other words, suppose that v(T1) + v(T2) > v(N) +

v(T1 ∩ T2). We will show that the core is not stable by constructing a

non-core imputation that is not be dominated by any core element.

Let t∗ be such that T1 = {1, . . . , t∗}, and consider the order σ ∈ Π(N)

with σ(i) = t∗+1−i for each i ∈ {1, . . . , t∗} and σ(i) = |N |+t∗+1−i for each

i ∈ {t∗ + 1, . . . , |N |}. Observe
∑

i∈T2
mσ

i (v) = v(N) − v(T1) + v(T1 ∩ T2) <

v(T2), where the inequality follows by assumption. Thus, mσ(v) 6∈ C(v).

Furthermore, from superadditivity we conclude that mσ(v) ∈ I(v).

Now we will show that
∑

i∈S mσ
i (v) ≥ v(S) for all S ∈ S with t∗ +1 6∈ S.

This implies that
∑

i∈S mσ
i (v) ≥ v(S) for all S ⊆ N\{t∗ + 1}, and therefore

that mσ(v) can only be dominated by coalitions containing player t∗ + 1.

Let S ∈ S be such that t∗ + 1 6∈ S, and let T ∈ C(N\{t∗ + 1}) be

such that S ⊆ T . Consider the subgame (T, vT ), and let σT ∈ Π(T ) be

σ restricted to T , i.e. σT is such that for all i, j ∈ T , σ−1
T (i) < σ−1

T (j) if

and only if σ−1(i) < σ−1(j). From the chain-component additivity of (N, v)

it follows that mσ
i (v) = m

σT

i (vT ) for all i ∈ T . Therefore
∑

i∈S mσ
i (v) =

∑

i∈S m
σT

i (vT ) ≥ vT (S) = v(S), where the inequality is satisfied because of

Theorem 3.5.2 and the fact that σT is connected with respect to (T, ET ).

We concluded that mσ(v) can only be dominated via coalitions that

contain player t∗ + 1. However, at mσ(v) player t∗ + 1 receives a payoff of

mσ
t∗+1(v) = v(N)−v({1, . . . , t∗})−v({t∗+2, . . . , n}) = v(N)−v(N\{t∗+1}).

But for any x ∈ C(v), xt∗+1 ≤ v(N)−v(N\{t∗+1}). We therefore conclude

that mσ(v) cannot be dominated by a core element via a coalition containing

player t∗ + 1. This implies that mσ(v) cannot be dominated by any core

element. So the core is not stable. Consequently, the inequalities arising

from 2-covering families are necessary for core stability.
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We now show that the condition for 3-covering families is necessary. As-

sume that the inequalities corresponding to 2-covering families are satisfied.

Furthermore suppose that for the 3-covering family {T1, T2, T3} the corre-

sponding condition is violated, i.e. suppose that v(T1) + v(T2) + v(T3) >

v(N)+v(T1∩T2)+v(T2∩T3) while T2 is essential. Again, we show that the

core is not stable by showing the existence of a non-core imputation that

can not be dominated by any core element. Before we actually start the

proof, we first introduce some notation.

Define T ∗ = N\(T1 ∪ T3) and T = {T ∈ S : T ∗ 6⊆ T}. So T is the set of

connected coalitions not containing T ∗. Define P by

P = {x ∈ RN :
∑

i∈T

xi ≥ v(T ) for all T ∈ T ,
∑

i∈N

xi ≤ v(N),

∑

i∈T ∗

xi ≥ v(N) − v(T1) − v(T3)}.

Firstly we show that P 6= ∅ and that P ⊆ I(v). Secondly we show,

by applying Lemma 3.5.1, the existence of an x ∈ P\C(v) that cannot be

dominated by any core element. This implies the necessity of the condition

involving 3-covering families.

Let T1 = {1, . . . , t1} and consider σ ∈ Π(N) with σ(i) = i for all

i ∈ {1, . . . , t1} and σ(i) = |N | + t1 + 1 − i for all i ∈ {t1 + 1, . . . , |N |}.

From Theorem 3.5.2 it follows that mσ(v) ∈ C(v). Consequently, we have
∑

i∈T mσ
i (v) ≥ v(T ) for all T ∈ T , and that

∑

i∈N mσ
i (v) = v(N). Further-

more, observe that
∑

i∈T ∗

mσ
i (v) = v(N) − v(T1) − v(T3). We conclude that

mσ(v) ∈ P , and thus that P 6= ∅.

Next we show that P ⊆ I(v). Let x ∈ P . We need to show that
∑

i∈N xi = v(N) and xi ≥ v({i}) for all i ∈ N . Since T1, T3 ∈ T ,
∑

i∈T1
xi ≥

v(T1) and
∑

i∈T3
xi ≥ v(T3). Because

∑

i∈T ∗ xi ≥ v(N) − v(T1) − v(T3) it

follows that
∑

i∈N xi ≥ v(N). By definition of P ,
∑

i∈N xi ≤ v(N). So

we conclude that
∑

i∈N xi = v(N). Because {i} ∈ T for each i 6∈ T ∗,

xi ≥ v({i}) for all i 6∈ T ∗. If |T ∗| > 1, then {i} ∈ T for all i ∈ T ∗. So in

this case we have that xi ≥ v({i}) for all i ∈ N . If |T ∗| = 1, then T ∗ = {i}

for some i ∈ N , and consequently we have that {i} 6∈ T . However, observe

that xi =
∑

j∈T ∗ xj ≥ v(N) − v(T1) − v(T3) ≥ v(T ∗) = v({i}), where the
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first inequality follows since x ∈ P and the second by superadditivity. So if

|T ∗| = 1, then xi ≥ v({i}) for all i ∈ N . We conclude that P ⊆ I(v).

It remains to show the existence of an x ∈ P\C(v) that cannot be

dominated by any core element. In order to do so, we define a matrix A and a

vector b such that x ∈ P if and only if Ax ≤ b. So for each T ∈ T ∪{T ∗} there

is a corresponding row −e(T ) in A and for coalition N there is a row e(N) in

A. Similarly, bi = −v(T ) if the i-th row in A is −e(T ), T ∈ T . Furthermore,

bi = −v(N) + v(T1) + v(T3) if the i-th row in A is −e(T ∗), and bi = v(N) if

the i-th row in A is e(N). Since P is non-empty, Ax ≤ b has a solution. So

we can apply Lemma 3.5.1, with c = −e(T2) and δ = −v(T2), to conclude

that for all x ∈ P , −e(T2)x = −
∑

i∈T2
xi ≤ −v(T2) if and only if there is a

y ≥ 0 with yA = −e(T2) and yb ≤ −v(T2). However, we will show that for

all y ≥ 0 with yA = −e(T2), yb > −v(T2). This means there is an x ∈ P with

−
∑

i∈T2
xi > −v(T2). Hence,

∑

i∈T2
xi < v(T2) and therefore x 6∈ C(v). By

definition of P , x can only be dominated by coalitions containing T ∗. But

for every y ∈ C(v) we have that
∑

j∈T1
yj ≥ v(T1),

∑

j∈T3
yj ≥ v(T3) and

∑

j∈N yj = v(N). Consequently,
∑

j∈T ∗ yj ≤ v(N)− v(T1)− v(T3) for every

y ∈ C(v). That is, at x coalition T ∗ receives a payoff that is at least as much

as its highest payoff at any core allocation. So x can not be dominated by a

core element via a coalition that contains T ∗. Consequently, the core is not

stable. This implies that for core stability the conditions corresponding to

3-covering families are necessary.

It remains to show that for all y ≥ 0 with yA = −e(T2), yb > −v(T2).

For each |T ∪ {T ∗, N}| -dimensional vector u ≥ 0 we write, with abuse of

notation, uS instead of ui if the i-th row of A is the row corresponding

to coalition S. Define Y(u) = {S ∈ T ∪ {T ∗, N} : uS > 0} as the set

of coalitions that u assigns a positive weight to. Let y ≥ 0 be such that

yA = −e(T2). Instead of calculating yb directly, we first decompose y by

using Lemmas 3.6.1, 3.6.4 and 3.6.5. These lemmas are stated and proved

in Section 3.6. Then we derive the product of these decomposition vectors

with b. This enables us to obtain a bound for yb.

According to Lemma 3.6.1 we can decompose y into
∑a1

k=1 λku
k + r1,

with r1 ≥ 0, r1A = −e(T2), Y(r1)\{N} contains no partition of N and for
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all k ∈ {1, . . . , a1}, λk > 0 and uk satisfies (A1). Observe that r1 satisfies

the conditions of Lemma 3.6.4. It follows that r1 =
∑a2

k=1 µkw
k + r2 with

r2 ≥ 0, r2
N = 0,

∑a2
k=1 µk ≤ 1 and for all k ∈ {1, . . . , a2}, µk > 0 and wk

satisfies (A2). This implies, because r1A = −e(T2) and wkA = −e(T2) for

all k ∈ {1, . . . , a2}, that r2A = (1 −
∑a2

k=1 µk)(−e(T2)). Note that, since

0 ≤ 1 −
∑a2

k=1 µk ≤ 1, it follows that r2 satisfies the condition of Lemma

3.6.5. Therefore we can write r2 =
∑a3

k=1 νkz
k with

∑a3
k=1 νk = 1−

∑a2
k=1 µk

and for all k ∈ {1, . . . , a3}, νk > 0 and zk satisfies (A3). Concluding, we have

y =
∑a1

k=1 λku
k +

∑a2
k=1 µkw

k +
∑a3

k=1 νkz
k with

∑a2
k=1 µk +

∑a3
k=1 νk = 1.

Before we show that yb > −v(T2) we first find bounds for ukb, wkb and

zkb. Let k ∈ {1, . . . , a1}. First suppose that T ∗ 6∈ Y(uk). Then

ukb =
∑

S∈Y(uk)\{N}

[−v(S)] + v(N) ≥ 0.

Here the inequality is satisfied because of superadditivity and because

Y(uk)\{N} is a partition of N . Now suppose that T ∗ ∈ Y(uk). Since

Y(uk)\{N} is a partition of N it follows that Y(uk)\{T ∗, N} consists of a

partition A of T1 and a partition B of T3. It follows that

ukb =
∑

S∈Y(uk)\{T ∗,N}

[−v(S)] + [v(T1) + v(T3) − v(N)] + v(N)

=
∑

S∈A

[−v(S)] +
∑

S∈B

[−v(S)] + v(T1) + v(T3) ≥ 0.

The inequality holds because of superadditivity and because A is a partition

of T1 and B a partition of T3. Concluding, for all k ∈ {1, . . . , a1},

ukb ≥ 0. (3.11)

Now let k ∈ {1, . . . , a2}. First suppose that T ∗ 6∈ Y(wk). Then Y(wk) =

Uk ∪ Vk ∪ {N}, where Uk is a partition of T1 ∪ T2 and Vk a partition of

T2 ∪ T3 with Uk ∩ Vk = ∅. Let V̄k consist of those elements of Vk that are
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not a subset of T2, i.e. V̄k = {T ∈ Vk : T 6⊆ T2}. Therefore

wkb =
∑

S∈Y(wk)\{N}

[−v(S)] + v(N)

=
∑

S∈Uk

[−v(S)] +
∑

S∈Vk

[−v(S)] + v(N)

≥
∑

S∈Uk

[−v(S)] +
∑

S∈Vk

[−v(S)] + v(T1 ∪ T2) + v(
⋃

T∈V̄k

T )

−v(T2 ∩ (
⋃

T∈V̄k

T ))

≥
∑

S∈Vk

[−v(S)] + v(
⋃

T∈V̄k

T ) − v(T2 ∩ (
⋃

T∈V̄k

T ))

≥
∑

S∈Vk

[−v(S)] +
∑

T∈V̄k

v(T ) − v(T2 ∩ (
⋃

T∈V̄k

T ))

=
∑

S∈Vk\V̄k

[−v(S)] − v(T2 ∩ (
⋃

T∈V̄k

T ))

≥ −v(
⋃

S∈Vk\V̄k

S) − v(T2 ∩ (
⋃

T∈V̄k

T ))

> −v(T2).

We first explain the first inequality. According to Lemma 3.6.6 there is

a T ∈ V̄k with T ∩ T2 6= ∅. This implies that {T1 ∪ T2,
⋃

T∈V̄k
T} forms

a 2-covering family. Observe that because of Lemma 3.6.6, (T1 ∪ T2) ∩

(
⋃

T∈V̄k
T ) = T2 ∩ (

⋃

T∈V̄k
T ). Since we have assumed that the inequalities

corresponding to 2-covering families hold, the first inequality is satisfied.

The second inequality holds because of superadditivity and because Uk is

a partition of T1 ∪ T2. The third and fourth inequalities are satisfied due

to superadditivity. Finally we explain the last inequality. According to

Lemma 3.6.6, V̄k and Vk\V̄k are both non-empty, and there is a T ∈ V̄k with

T ∩T2 6= ∅. This means that {
⋃

S∈Vk\V̄k
S, T2∩ (

⋃

T∈V̄k
T )} forms a partition

of T2. Because of our assumption that T2 is essential the last inequality is

satisfied.

Now suppose that T ∗ ∈ Y(wk). Since Uk ∩ Vk = ∅, either T ∗ ∈ Uk or

T ∗ ∈ Vk. Without loss of generality assume that T ∗ ∈ Uk. Now observe,

since Uk is a partition of T1 ∪ T2, that Uk\{T
∗} consists of a partition C of
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T1 and a partition D of T2 ∩ T3. Therefore

wkb =
∑

S∈Y(wk)\{T ∗,N}

[−v(S)] + [v(T1) + v(T3) − v(N)] + v(N)

>
∑

S∈Y(wk)\{T ∗,N}

[−v(S)] + [v(T1 ∩ T2) + v(T2 ∩ T3) − v(T2)] + v(N)

=
∑

S∈C

[−v(S)] +
∑

S∈D

[−v(S)] +
∑

S∈Vk

[−v(S)] + v(T1 ∩ T2)

+v(T2 ∩ T3) − v(T2) + v(N)

≥ −v(T1) − v(T2 ∩ T3) − v(T2 ∪ T3) + v(T1 ∩ T2) + v(T2 ∩ T3)

−v(T2) + v(N)

≥ −v(T2).

The first inequality holds since we have assumed that the 3-covering family

inequality corresponding to {T1, T2, T3} is violated. The second inequality

because of superadditivity and because C is a partition of T1, D is a partition

of T2 ∩ T3 and Vk is a partition of T2 ∪ T3. The last inequality is satisfied

because {T1, T2∪T3} forms a 2-covering family with T1∩(T2∪T3) = T1∩T2,

and because of our assumption that all 2-covering family inequalities are

satisfied. Concluding, we have for all k ∈ {1, . . . , a2} that

wkb > −v(T2). (3.12)

Finally let k ∈ {1, . . . , a3}. According to Lemma 3.6.5, Y(zk) is a partition

of T2. Now first suppose that T ∗ 6∈ Y(zk). Then

zkb =
∑

S∈Y(zk)

−v(S) > −v(T2).

Here the inequality is satisfied because Y(zk) is a partition of T2, and because

T2 is essential.

Now suppose that T ∗ ∈ Y(zk). Since Y(zk) is a partition of T2, it follows

that Y(zk)\{T ∗} can be split into a partition A of T1 ∩ T2 and a partition
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B of T2 ∩ T3. Therefore

zkb =
∑

S∈Y(zk)\{T ∗}

[−v(S)] − v(N) + v(T1) + v(T3)

=
∑

S∈A

[−v(S)] +
∑

S∈B

[−v(S)] − v(N) + v(T1) + v(T3)

≥ −v(T1 ∩ T2) − v(T2 ∩ T3) − v(N) + v(T1) + v(T3)

> −v(T2).

The first inequality follows by superadditivity and the second by our as-

sumption that v(T1) + v(T2) + v(T3) > v(N) + v(T1 ∩ T2) + v(T2 ∩ T3).

Concluding, we have for all k ∈ {1, . . . , a3} that

zkb > −v(T2). (3.13)

Summarising we find for yb that

yb =

a1
∑

k=1

λku
kb +

a2
∑

k=1

µkw
kb +

a3
∑

k=1

νkz
kb

≥
a2
∑

k=1

µkw
kb +

a3
∑

k=1

νkz
kb

>

a2
∑

k=1

µk(−v(T2)) +

a3
∑

k=1

νk(−v(T2))

= −v(T2).

The first inequality holds because of (3.11). The second inequality is satisfied

because of (3.12) and (3.13). The last equality is satisfied since
∑a2

k=1 µk +
∑a3

k=1 νk = 1. 2

The next example illustrates the decomposition lemmas that are used in the

proof of Theorem 3.5.3. In particular we decompose a specific y ≥ 0 with

yA = −e(T2) and show that yb > −v(T2).

Example 3.5.2 Let N = {1, . . . , 7} and consider the 3-covering family

{T1, T2, T3} with T1 = {1, 2}, T2 = {2, 3, 4, 5, 6} and T3 = {6, 7}. Let

v ∈ TUN be a chain-component additive game for which all 2-covering
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family inequalities are satisfied, and for which v(T1) + v(T2) + v(T3) >

v(N) + v(T1 ∩ T2) + v(T2 ∩ T3) while T2 is essential.

Now T ∗ = N\(T1 ∪ T3) = {3, 4, 5} and T = {S ∈ S : {3, 4, 5} 6⊆ S}.

Define the matrix A and the vector b as described in the proof of Theorem

3.5.3. Now let y be given by

yS =















1
2 , if S = {1, 2, 3}, {2}, {2, 3, 4}, {3, 4}, {4, 5, 6}, {5, 6};
1, if S = {1, 2, 3, 4};
11

2 , if S = {5, 6, 7}, N ;
0, otherwise.

Observe that yA =
∑

S∈T ∪{T ∗} yS(−e(S)) + yNe(N) = −e(T2). So we need

to show that yb > −v(T2). We will do this by decomposing y. Note that

Y(y)\{N} contains a partition of N , for instance U = {{1, 2, 3, 4}, {5, 6, 7}}.

Therefore we write y = u1 + r1, with

u1
S =

{

1, if S = {1, 2, 3, 4}, {5, 6, 7}, N ;
0, otherwise.

and

r1
S =







1
2 , if S = {1, 2, 3}, {2}, {2, 3, 4}, {3, 4}, {4, 5, 6},

{5, 6}, {5, 6, 7}, N ;
0, otherwise.

Now Y(r1)\{N} does not contain a partition of N . However, it contains a

subset that covers each player of N\T2 exactly once, and each player of T2

exactly twice. For instance {{1, 2, 3}, {4, 5, 6}, {2}, {3, 4}, {5, 6, 7}} is such a

subset. Therefore we decompose r1 into 1
2w1 + r2, with

w1
S =

{

1, if S = {1, 2, 3}, {4, 5, 6}, {2}, {3, 4}, {5, 6, 7}, N ;
0, otherwise.

and

r2
S =

{

1
2 , if S = {2, 3, 4}, {5, 6};
0, otherwise.

Finally we note that Y(r2) = {{2, 3, 4}, {5, 6}} is a partition of T2. Hence,

we write r2 = 1
2z1 with

z1
S =

{

1, if S = {2, 3, 4}, {5, 6};
0, otherwise.
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So we have decomposed y into u1 + 1
2w1 + 1

2z1. We will now show that

yb = (u1 + 1
2w1 + 1

2z1)b > −v(T2). First note that superadditivity of (N, v)

implies

u1b = −v({1, 2, 3, 4}) − v({5, 6, 7}) + v(N) ≥ 0.

Furthermore,

w1b = −v({1, 2, 3}) − v({4, 5, 6}) − v({2}) − v({3, 4})

−v({5, 6, 7}) + v(N)

≥ −v({1, 2, 3, 4, 5, 6}) − v({2, 3, 4}) − v({5, 6, 7}) + v(N)

≥ −v({2, 3, 4}) − v({5, 6})

> −v(T2).

Here the first inequality is satisfied due to superadditivity. The second holds

because the 2-covering family inequality corresponding to {{1, 2, 3, 4, 5, 6},

{5, 6, 7}} is satisfied by assumption. The strict inequality is satisfied by our

assumption that T2 is essential. Finally observe that this assumption also

proves that

z1b = −v({2, 3, 4}) − v({5, 6}) > −v(T2).

We conclude that yb = (u1 + 1
2w1 + 1

2z1)b > 0− 1
2v(T2)−

1
2v(T2) = −v(T2).

3

Let G = (N, E) be a chain. If T ∈ S is inessential, then there exists

a partition {A, B} of T , A, B ∈ S, with v(A) + v(B) = v(T ). Hence,

checking whether T ∈ S is essential requires the checking of |T | − 1 linear

equations. So our characterisation of core stability requires the checking

of polynomially many linear inequalities and equations. Indeed, in an n-

player chain-component additive game there are
(

n−1
2

)

2-covering and
(

n−1
4

)

3-covering inequalities, and for each 3-covering inequality that is violated

there are at most n − 3 linear equations to consider.

The last theorem of this chapter also characterises essential extendibility

and core stability. In fact, this theorem reduces the number of linear equa-

tions one needs to check in case a 3-covering family inequality is violated.
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Theorem 3.5.4 Let G = (N, E) be a chain, and let v ∈ TUN be a chain-

component additive game with respect to G. The following statements are

equivalent:

1. Each 2-covering family inequality is satisfied. For each 3-covering fam-

ily {T1, T2, T3}, if v(A) + v(B) < v(T2) for each partition {A, B} of T2

with T1 ∩ T2 ( A, T2 ∩ T3 ( B, and A, B ∈ S, then the corresponding

inequality is satisfied;

2. (N, v) is essential extendible;

3. C(v) is stable.

Proof: Because of Theorem 3.5.3, we only show 3 ⇒ 1. Assume that

the core is stable. From Theorem 3.5.3 it follows that each 2-covering

family inequality is satisfied. Assume that there is some 3-covering fam-

ily {T1, T2, T3} with v(T1) + v(T2) + v(T3) > v(N) + v(T1 ∩ T2) + v(T2 ∩ T3)

and v(A) + v(B) < v(T2) for every partition {A, B} of T2 with T1 ∩ T2 ( A,

T2 ∩ T3 ( B and A, B ∈ S. We show that this leads to a contradiction.

Assume that {T1, T2, T3} is a smallest 3-covering family with v(T1) +

v(T2) + v(T3) > v(N) + v(T1 ∩T2) + v(T2 ∩T3) and v(A) + v(B) < v(T2) for

every partition {A, B} of T2 with T1 ∩ T2 ( A, T2 ∩ T3 ( B and A, B ∈ S

in the following sense: for each 3-covering family {S1, S2, S3} with S2 ⊆ T2

either v(S1)+v(S2)+v(S3) ≤ v(N)+v(S1∩S2)+v(S2∩S3) or v(A)+v(B) =

v(S2) for some partition {A, B} of S2 with S1 ∩ S2 ( A, S2 ∩ S3 ( B and

A, B ∈ S.

Since the core is stable, it follows from Theorem 3.5.3 that T2 is inessen-

tial. Hence, there is a partition {A, B} of T2, A, B ∈ S with v(A) + v(B) =

v(T2). By assumption, either A ⊆ T1 ∩ T2 or B ⊆ T2 ∩ T3. Without loss of

generality assume that A ⊆ T1 ∩ T2.

First suppose that A = T1 ∩ T2. Then obviously B = T2\T1. Conse-

quently

v(T1) + v(T2) + v(T3) = v(T1) + v(T1 ∩ T2) + v(T2\T1) + v(T3)

≤ v(T1 ∪ T2) + v(T1 ∩ T2) + v(T3)

≤ v(N) + v(T1 ∩ T2) + v(T2 ∩ T3).
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The first inequality holds because of superadditivity and the second because

{T1 ∪ T2, T3} is a 2-covering family with (T1 ∪ T2) ∩ T3 = T2 ∩ T3. Since

v(T1) + v(T2) + v(T3) ≤ v(N) + v(T1 ∩ T2) + v(T2 ∩ T3) is a contradiction to

our assumption, we conclude that A 6= T1 ∩ T2.

Now suppose that A ( T1 ∩ T2. Observe that

v(T1) + v(B) + v(T3) = v(T1) + v(A) + v(B) + v(T3) − v(A)

= v(T1) + v(T2) + v(T3) − v(A)

> v(N) + v(T1 ∩ T2) + v(T2 ∩ T3) − v(A)

≥ v(N) + v((T1 ∩ T2)\A) + v(T2 ∩ T3)

= v(N) + v(T1 ∩ B) + v(B ∩ T3).

The first inequality holds by assumption and the second one because of

superadditivity. The last equality comes from (T1 ∩ T2)\A = T1 ∩ B and

T2 ∩ T3 = B ∩ T3. Obviously, {T1, B, T3} is a 3-covering family with B ⊆ T2

and v(T1) + v(B) + v(T3) > v(N) + v(T1 ∩B) + v(B ∩ T3). By assumption,

there is some partition {C, D} of B with T1 ∩B ( C, B ∩T3 ( D, C, D ∈ S

and v(C) + v(D) = v(B). From v(A) + v(B) = v(T2) and v(C) + v(D) =

v(B) it follows that v(A) + v(C) + v(D) = v(T2). From superadditivity we

conclude that v(A∪C)+v(D) = v(T2). Note that B∩T3 ( D and therefore

T2 ∩T3 ( D. Furthermore, since T1 ∩B ( C, we have that T1 ∩T2 ( A∪C.

This contradicts our initial assumption. 2

3.6 Proofs of lemmas

In this section we prove the decomposition lemmas needed for the proof of

Theorem 3.5.3. Furthermore, we prove some auxiliary lemmas. Throughout

this section we use the notation introduced in the proof of Theorem 3.5.3.

Lemma 3.6.1 Let y ≥ 0 be such that yA = −e(T2). Then y =
∑a1

k=1 λku
k

+ r1, with r1 ≥ 0, r1A = −e(T2), Y(r1)\{N} does not contain a partition

of N , and for all k ∈ {1, . . . , a1}, λk > 0 and uk satisfying

(A1) uk
S ∈ {0, 1} for all S ∈ T ∪ {T ∗, N}, ukA = 0 and Y(uk) = Uk ∪ {N}

for some partition Uk of N .
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Proof: Let y ≥ 0 be such that yA = −e(T2). We show the decomposition by

recursion. Suppose that for some a∗ ≥ 0 we have written y =
∑a∗

k=1 λku
k +

r1, with r1 ≥ 0, r1A = −e(T2) and for all k ∈ {1, . . . , a∗}, λk > 0 and uk

satisfies (A1). Note that this certainly holds for a∗ = 0 and r1 = y.

Now if Y(r1)\{N} does not contain a partition of N , then we are done,

so suppose that Y(r1)\{N} contains a partition, say U , of N . Define

• ua∗+1
S = 1 if S ∈ U ∪ {N};

• ua∗+1
S = 0 if S 6∈ U ∪ {N};

• λa∗+1 = min{r1
S : S ∈ U ∪ {N}}.

Note that λa∗+1 > 0 and that Y(ua∗+1) = U ∪ {N}. Observe, since U is a

partition of N , that ua∗+1A = 0. Thus, ua∗+1 satisfies (A1). Furthermore,

by definition of λa∗+1 and ua∗+1, r̄1 = r1 − λa∗+1u
a∗+1 ≥ 0. Finally, note,

because ukA = 0 for all k ∈ {1, . . . , a∗ + 1} and because yA = −e(T2), that

r̄1A = yA −
∑a∗+1

k=1 λku
kA = −e(T2).

So y =
∑a∗+1

k=1 λku
k + r̄1, with r̄1 ≥ 0, r̄1A = −e(T2), and for all k ∈

{1, . . . , a∗ + 1}, λk > 0 and uk satisfies (A1).

Observe that because of our choice of λa∗+1, Y(r̄1) ( Y(r1). This implies

that in a finite number of steps we can decompose y into
∑a1

k=1 λku
k + r1,

with r1 ≥ 0, r1A = −e(T2), Y(r1)\{N} does not contain a partition of N ,

and for all k ∈ {1, . . . , a1}, λk > 0 and uk satisfies (A1). 2

Lemma 3.6.2 Let r2 ≥ 0 be such that r2A = f(−e(T2)) for some f ∈

R with 0 < f ≤ 1. Then,
∑

S∈Y(r2)\{N}:a∈S r2
S ≥

∑

S∈Y(r2)\{N}:a−1∈S r2
S

for all a ∈ T1 ∪ T2 with a > 1. Furthermore,
∑

S∈Y(r2)\{N}:a+1∈S r2
S =

∑

S∈Y(r2)\{N}:a∈S r2
S for all a ∈ T3\T2 with a < n.

Proof: Let r2 ≥ 0 be such that r2A = f(−e(T2)) for some f ∈ R with

0 < f ≤ 1. Let a ∈ T1 ∪ T2 with a > 1.

If a ∈ T1\T2, then it follows that a − 1 ∈ T1\T2. It follows from r2A =

f(−e(T2)) that

∑

S∈Y(r2)\{N}:a∈S

r2
S = r2

N =
∑

S∈Y(r2)\{N}:a−1∈S

r2
S .
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If a ∈ T2 and a − 1 ∈ T1\T2, then it follows from r2A = f(−e(T2)) that

∑

S∈Y(r2)\{N}:a∈S

r2
S = f + r2

N > r2
N =

∑

S∈Y(r2)\{N}:a−1∈S

r2
S .

Finally, if a − 1 ∈ T2, then it follows from r2A = f(−e(T2)) that

∑

S∈Y(r2)\{N}:a∈S

r2
S = f + r2

N =
∑

S∈Y(r2)\{N}:a−1∈S

r2
S .

So we conclude that

∑

S∈Y(r2)\{N}:a∈S

r2
S ≥

∑

S∈Y(r2)\{N}:a−1∈S

r2
S .

Similarly it can be shown for all a ∈ T3\T2 with a < n that

∑

S∈Y(r2)\{N}:a+1∈S

r2
S =

∑

S∈Y(r2)\{N}:a∈S

r2
S . 2

Lemma 3.6.3 Let r2 ≥ 0 be such that r2A = f(−e(T2)) for some f ∈ R

with 0 < f ≤ 1, rN
2 > 0 and Y(r2)\{N} does not contain a partition of N .

Then Y(r2) contains a partition U of T1 ∪ T2 and a partition V of T2 ∪ T3

with U ∩ V = ∅.

Proof: We will show how to obtain a partition of T1 ∪T2. Analogously one

can find a partition of T2 ∪ T3. First we will show that we can find disjoint

elements Sk ∈ Y(r2), k ∈ {1, . . . , q}, such that T1 ∪ T2 ⊆
⋃q

k=1 Sk. We will

do this by giving a recursive argument.

Because r2A = f(−e(T2)) for some f ∈ R with 0 < f ≤ 1 and 1 6∈ T2,

we have
∑

S∈T ∪{T ∗}:1∈S r2
S = r2

N . By assumption r2
N > 0 and we conclude

that
∑

S∈T ∪{T ∗}:1∈S r2
S > 0. Hence, there exists an S1 ∈ Y(r2), with 1 ∈ S1.

Now suppose that we have selected disjoint Sk ∈ Y(r2), k ∈ {1, . . . , t},

such that N\(
⋃t

k=1 Sk) = {b, . . . , n} for some b ∈ N . Note that t = 1 and

S1 satisfy this property.

If b 6∈ T1 ∪ T2, then we are done, so suppose that b ∈ T1 ∪ T2. According

to Lemma 3.6.2, with a = b,
∑

S∈Y(r2)\{N}:b∈S r2
S ≥

∑

S∈Y(r2)\{N}:b−1∈S r2
S .

Since b − 1 ∈ St, b 6∈ St and St ∈ Y(r2), there is an St+1 ∈ Y(r2) with
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b − 1 6∈ St+1 and b ∈ St+1. We conclude that N \
⋃t+1

k=1 Sk = {c, . . . , n}

with c > b. By recursion we obtain disjoint Sk ∈ Y(r2), k ∈ {1, . . . , q}, with

T1 ∪ T2 ⊆
⋃q

k=1 Sk.

We will now show that T1 ∪ T2 =
⋃q

k=1 Sk by contradiction. Suppose

that T1∪T2 (
⋃q

k=1 Sk. Then N\(
⋃q

k=1 Sk) = {b, . . . , n} for some b ∈ T3\T2

with b−1 ∈ T3\T2. According to Lemma 3.6.2, with a = b−1 it follows that
∑

S∈Y(r2)\{N}:b∈S r2
S =

∑

S∈Y(r2)\{N}:b−1∈S r2
S . Since b − 1 ∈ Sq, b 6∈ Sq and

Sq ∈ Y(r2), it follows that there is an Sq+1 ∈ Y(r2)\{N} with b − 1 6∈ Sq+1

and b ∈ Sq+1. Note that N\(
⋃q+1

k=1 Sk) = {c, . . . , n} with c > b. By recursion

we therefore obtain a partition of N . However, initially we assumed that

Y(r2)\{N} does not contain a partition of N . From this contradiction we

conclude that T1 ∪ T2 =
⋃q

k=1 Sk.

Now let U = {S1, . . . , Sq} ⊆ Y(r2) be a partition of T1 ∪ T2 such that

for all a ∈ Si and b ∈ Sj it is satisfied that a < b if i < j. Similarly, let

V = {R1, . . . , Rm} ⊆ Y(r2) be a partition of T2 ∪T3 such that for all a ∈ Ri

and b ∈ Rj it is satisfied that a < b if i < j. If U ∩ V 6= ∅, then Si = Rj for

some i ∈ {1, . . . , q}, j ∈ {1, . . . , m}. Hence, {S1, . . . , Si, Rj+1, . . . , Rm} is a

partition of N . This contradicts the assumption that Y(r2) \ {N} does not

contain a partition of N . We conclude that U ∩ V = ∅. 2

Lemma 3.6.4 Let y ≥ 0 be such that yA = −e(T2) and Y(y)\{N} does

not contain a partition of N . Then y =
∑a2

k=1 µkw
k + r2, with r2 ≥ 0,

r2
N = 0,

∑a2
k=1 µk ≤ 1 and for all k ∈ {1, . . . , a2}, µk > 0 and wk satisfies

(A2) wk
S ∈ {0, 1} for all S ∈ T ∪ {T ∗, N}, wkA = −e(T2) and Y(wk) =

Uk ∪ Vk ∪ {N} for some partition Uk of T1 ∪ T2 and some partition Vk

of T2 ∪ T3 with Uk ∩ Vk = ∅.

Proof: Let y ≥ 0 be such that yA = −e(T2), and such that Y(y)\{N}

does not contain a partition of N . We show the decomposition recursively.

Suppose that for some a∗ ≥ 0 we have written y =
∑a∗

k=1 µkw
k + r2, with

r2 ≥ 0,
∑a∗

k=1 µk ≤ 1 and for all k ∈ {1, . . . , a∗}, µk > 0 and wk satisfies

(A2). Note that this certainly holds for a∗ = 0 and r2 = y. If r2
N = 0 then

we are done, so suppose that r2
N > 0. Observe that since Y(y)\{N} does not
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contain a partition of N , and since Y(r2) ⊆ Y(y), it follows that Y(r2)\{N}

does not contain a partition of N .

We will first show that
∑a∗

k=1 µk < 1 by contradiction. Suppose that
∑a∗

k=1 µk = 1. Then it follows, using yA = −e(T2) and wkA = −e(T2) for all

k ∈ {1, . . . , a∗}, that r2A = yA−
∑a∗

k=1 µkw
kA = (1−

∑a∗

k=1 µk)(−e(T2)) = 0.

Since r2
N > 0, it follows that Y(r2)\{N} is a balanced collection of N . From

Lemma 3.2.1 we conclude that Y(r2)\{N} contains a partition of N , which

contradicts the fact that Y(r2)\{N} does not contain a partition of N . We

conclude that
∑a∗

k=1 µk < 1.

Since r2A = (1 −
∑a∗

k=1 µk)(−e(T2)) with
∑a∗

k=1 µk < 1, r2
N > 0 and

Y(r2)\{N} does not contain a partition of N , it follows that r2 satisfies

the conditions of Lemma 3.6.3. According to Lemma 3.6.3, Y(r2) contains a

partition Ua∗+1 of T1∪T2 and a partition Va∗+1 of T2∪T3 with Ua∗+1∩Va∗+1 =

∅.

Define

• wa∗+1
S = 1 if S ∈ Ua∗+1 ∪ Va∗+1 ∪ {N};

• wa∗+1
S = 0 if S 6∈ Ua∗+1 ∪ Va∗+1 ∪ {N};

• µa∗+1 = min{r2
S : S ∈ Ua∗+1 ∪ Va∗+1 ∪ {N}}.

Note that µa∗+1 > 0. We will now show that wa∗+1A = −e(T2). For each

i ∈ T2 there are unique S ∈ Ua∗+1 and T ∈ Va∗+1 with i ∈ S and i ∈ T .

Note that since Ua∗+1 ∩ Va∗+1 = ∅, S 6= T . Furthermore, for each i ∈ T1\T2

there is a unique S ∈ Ua∗+1 with i ∈ S and for each i ∈ T3\T2 there is a

unique T ∈ Va∗+1 with i ∈ T . We conclude that wa∗+1A = −e(T2).

Since wa∗+1A = −e(T2) we now observe that wa∗+1 satisfies (A2). Also

note that r̄2 = r2 − µa∗+1w
a∗+1 ≥ 0. We will now show by contradiction

that
∑a∗+1

k=1 µk ≤ 1. Suppose that
∑a∗+1

k=1 µk > 1. Because
∑a∗

k=1 µk ≤ 1, it

follows that there is a d ∈ R with 0 ≤ d < µa∗+1 with
∑a∗

k=1 µk + d = 1.

Trivially, y =
∑a∗

k=1 µkw
k + dwa∗+1 + (r2 − dwa∗+1). By definition of d,

(r2 − dwa∗+1) 
 (r2 − µa∗+1w
a∗+1) ≥ 0. Since yA = −e(T2), wkA =

−e(T2) for all k ∈ {1, . . . , a∗ + 1} and
∑a∗

k=1 µk + d = 1, it follows that

(r2 − dwa∗+1)A = 0. Because d < µa∗+1, r2
N − dwa∗+1

N > 0. Therefore
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it follows that Y(r2 − dwa∗+1) 6= ∅ is a balanced collection. By Lemma

3.2.1 it now follows that Y(r2 − dwa∗+1)\{N} contains a partition of N .

Since Y(r2 − dwa∗+1) ⊆ Y(r2), Y(r2)\{N} contains a partition of N . This

is clearly a contradiction to our initial assumption, so we conclude that
∑a∗+1

k=1 µk ≤ 1.

It follows that y =
∑a∗+1

k=1 µkw
k + r̄2, with r̄2 ≥ 0,

∑a∗+1
k=1 µk ≤ 1 and for

all k ∈ {1, . . . , a∗ + 1}, µk > 0 and wk satisfies (A2).

Observe that because of our choice of µa∗+1, Y(r̄2) ( Y(r2). This implies

that in a finite number of steps we can decompose y into
∑a2

k=1 µkw
k + r2,

with r2 ≥ 0, r2
N = 0,

∑a2
k=1 µk ≤ 1 and for all k ∈ {1, . . . , a2}, µk > 0 and

wk satisfies (A2). 2

Lemma 3.6.5 Let y ≥ 0 be such that yN = 0 and yA = d(−e(T2)), for

some d ∈ R with 0 ≤ d ≤ 1. Then y =
∑a3

k=1 νkz
k with

∑a3
k=1 νk = d, and

for all k ∈ {1, . . . , a3}, νk > 0 and zk satisfies

(A3) zk
S ∈ {0, 1} for all S ∈ T ∪{T ∗, N}, zkA = −e(T2) and Y(zk) = Uk for

some partition Uk of T2.

Proof: Let y ≥ 0 be such that yN = 0, and yA = d(−e(T2)) for some d ∈ R

with 0 ≤ d ≤ 1. We recursively show the decomposition. Suppose that for

some a∗ ≥ 0 we have written y =
∑a∗

k=1 νkz
k + r3, with

∑a∗

k=1 νk ≤ d, r3 ≥ 0

and for all k ∈ {1, . . . , a∗}, νk > 0 and that zk satisfies (A3). Note that this

certainly holds for a∗ = 0 and r3 = y.

Now if
∑a∗

k=1 νk = d, then it follows, because yA = d(−e(T2)) and zkA =

−e(T2) for all k ∈ {1, . . . , a∗}, that r3A = yA −
∑a∗

k=1 νkz
kA = 0. Because

r3
N = 0, r3 ≥ 0 and because A has only non-positive entries in each row

that does not correspond to N with at least one negative entry, we conclude

that r3 = 0. So y =
∑a∗

k=1 νkz
k and we are done. Therefore suppose that

∑a∗

k=1 νk < d.

Now r3A = yA −
∑a∗

k=1 νkz
kA = (d −

∑a∗

k=1 νk)(−e(T2)), with d −
∑a∗

k=1 νk > 0. Since r3
N = 0, and because in A the only row with posi-

tive entries is the row corresponding to N , this means that r3
S = 0 for all

S ∈ T ∪ {T ∗, N} with S 6⊆ T2. This implies that Y(r3) is a balanced collec-
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tion on T2. From Lemma 3.2.1 it follows that Y(r3) contains a partition of

T2. Now let U be such a partition. Define

• za∗+1
S = 1 if S ∈ U ;

• za∗+1
S = 0 if S 6∈ U ;

• νa∗+1 = min{r3
S : S ∈ U}.

Note that νa∗+1 > 0. Since za∗+1A = −e(T2), it follows that za∗+1 satis-

fies (A3). Also observe that by definition of νa∗+1 and za∗+1, r̄3 = r3 −

νa∗+1z
a∗+1 ≥ 0. It remains to show that

∑a∗+1
k=1 νk ≤ d.

Suppose that
∑a∗+1

k=1 νk > d. Then it follows that r̄3A =

(d −
∑a∗+1

k=1 νk)(−e(T2)), where d −
∑a∗+1

k=1 νk < 0. Hence, r̄3A = fe(T2) for

some f > 0. However, this is impossible, since r̄3 ≥ 0, r̄3
N = 0 and because

A contains only non-positive entries in the rows not corresponding to N .

Therefore we obtain that
∑a∗+1

k=1 νk ≤ d.

Hence, we have that y =
∑a∗+1

k=1 νkz
k + r̄3, with

∑a∗+1
k=1 νk ≤ d, r̄3 ≥ 0

and for all k ∈ {1, . . . , a∗ + 1}, νk > 0 and zk satisfies (A3).

Observe that by definition of νa∗+1 and za∗+1, Y(r̄3) ( Y(r3). Hence,

in a finite number of steps we obtain that y =
∑a3

k=1 νkz
k, where νk > 0

and zk satisfies (A3) for all k ∈ {1, . . . , a3}. Since yA = d(−e(T2)) and

zkA = −e(T2) for all k ∈ {1, . . . , a3} it follows that
∑a3

k=1 νk = d. 2

Lemma 3.6.6 Let k ∈ {1, . . . , a2} and let Y(wk) = Uk∪Vk∪{N} with Uk a

partition of T1∪T2 and Vk a partition of T2∪T3. Let V̄k = {T ∈ Vk : T 6⊆ T2}.

Then V̄k 6= ∅ and Vk\V̄k 6= ∅. Furthermore, T ∩ T1 = ∅ for all T ∈ V̄k and

there is a T ∈ V̄k with T ∩ T2 6= ∅.

Proof: Note that V̄k 6= ∅, since Vk is a partition of T2 ∪ T3 and T3\T2 6= ∅.

We will now show that for all T ∈ V̄k, T1 ∩ T = ∅ by contradiction.

Suppose that there is a T ∈ V̄k with T1∩T 6= ∅. Since T ∈ V̄k it follows that

T 6⊆ T2. That is, there is a j ∈ T with j ∈ T3\T2. Since T is connected it

follows that T ∗ ( T . This is a contradiction since the coalitions containing

T ∗ are not in T and therefore also not in Y(r2)\{N}. Hence, for all T ∈ V̄k,

T ∩ T1 = ∅. Because T1 ∩ T2 6= ∅, there is an S ∈ Vk with S ∩ T1 6= ∅. This



3.6 Proofs of lemmas 95

implies that S 6∈ V̄k and hence that Vk 6= V̄k. Finally, we prove that there is a

T ∈ V̄k with T ∩T2 6= ∅. Suppose that for all T ∈ V̄k, T ∩T2 = ∅. According

to Lemma 3.6.3, Y(r2) contains a partition U of T1 ∪ T2. This implies that

U ∪ V̄k forms a partition of N , contradicting our initial assumption. 2





Chapter 4

Dominating set games

4.1 Introduction

A domination problem consists of a given graph G = (V, E), a positive

integer k ∈ N, and a non-negative function w : V → R+ that assigns a

fixed cost to each vertex. A k-dominating set is a set D ⊆ V such that the

distance between any vertex in V and at least one vertex in D is at most k.

The k-domination problem is the problem of finding a so-called minimum

weighted k-dominating set of G, i.e. a k-dominating set that minimises the

total cost of its vertices.

Domination problems are widely studied in graph theory. Meir and

Moon (1975) investigate domination problems on trees. Some results of

Meir and Moon (1975) are extended to larger classes of graphs in Farber

(1981). In Haynes, Hedetniemi, and Slater (1998) an overview of literature

on domination problems is given.

An illustration of domination problems is the following example. A num-

ber of regions is discussing the placement of several facilities within their

regions. The placement of a facility in a region entails a certain fixed cost.

Therefore, the regions decide to restrict the number of facilities that will

be placed. However, each region demands that a facility is placed within

a reasonable distance. The problem of placing the facilities at minimum

cost can now be regarded as a domination problem. Let G = (V, E) be

the graph where regions correspond to vertices, and where edges represent
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pairs of neighbouring regions. The proximity condition of the regions can

be described by an integer k and the cost of placing the facilities by a map

w : V → R+. Placing the facilities at minimum cost is now equivalent to

finding a minimum weighted k-dominating set on G.

A natural question that now arises is how to allocate the total costs of

placing the facilities among the participating regions. This chapter, which

is based on Van Velzen (2004a), uses game theory to study this problem.

We introduce three cost games that model this cost allocation problem.

Our three dominating set games have in common that the cost of the

grand coalition N coincides with the minimum weighted k-domination num-

ber. However, coalitions are allowed different possibilities of placing the fa-

cilities in each of the three games. In the relaxed dominating set game the

vertices in the graph are considered to be public vertices. Specifically, we

allow coalitions to place facilities in regions corresponding to non-members.

Furthermore, coalitions are allowed to use every edge present in the graph

in order to meet the proximity condition of its members.

For the intermediate dominating set game we assume that the vertices in

the graph are private. It might, for instance, be the case that regions outside

the coalition can block the placement of a facility within their region. So

coalitions are forced to place the facilities in their own regions. However, we

still assume that coalitions are allowed to use all the edges present in the

graph in order to meet the proximity condition of its members.

The last situation we consider also contains private vertices. However,

in this situation, coalitions are only allowed to use those edges with both

endpoints being member of the coalition. The resulting game is called the

rigid dominating set game.

In spite of the differences between these three games, we will obtain a

common necessary and sufficient condition for non-emptiness of their cores.

In particular, if one of the dominating set games possesses core elements,

then the other two dominating set games possess core elements as well. We

also derive relations between the cores of the dominating set games and we

present a class of graphs for which the corresponding dominating set games

have a non-empty core for all cost functions w : V → R+ and all k ∈ N.
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Finally we study concavity.

Other game theoretical approaches to location problems include facil-

ity location games (Kolen and Tamir (1990), Tamir (1992)) and minimum

spanning forest games (Granot and Granot (1992)). In Kolen and Tamir

(1990) and Tamir (1992) a general class of facility location problems is stud-

ied. They mainly focus on trees, and for these graphs non-emptiness of the

core is established. In Granot and Granot (1992) no restrictions are made

on the proximity of the facilities. In case the underlying graph is a tree,

non-emptiness of the core is shown.

The remainder of this chapter is organised as follows. In Section 4.2 we

recall some basic concepts and notation from graph theory. In Section 4.3

we introduce three dominating set games. In Section 4.4 we study the cores

of the dominating set games. Finally, in Section 4.5 we study concavity.

4.2 Stars, substars and dominating sets

In this section we introduce some basic concepts and notation from graph

theory. We conclude the section with the definition of combinatorial opti-

misation games.

Let G = (V, E) be a graph. The distance dG(v, w) between v, w ∈ V

is the length of a shortest (v, w)-path. If v, w ∈ V are not connected via

any path, then dG(v, w) = ∞. The eccentricity of v ∈ V is the maximum

distance to v in G, i.e. eG(v) = max{dG(v, x) : x ∈ V }. The diameter ∆(G)

is the maximum over all eccentricities, i.e. ∆(G) = max{eG(v) : v ∈ V }.

Observe that ∆(G) is equal to the maximum distance within G. The radius

r(G) is the minimum over all eccentricities, i.e. r(G) = min{eG(v) : v ∈ V }.

For each vertex v ∈ V , the k-neighbourhood of v, denoted by Nk(v), consists

of the vertices at distance at most k of v, i.e. Nk(v) = {w ∈ V : dG(v, w) ≤

k}. The k-neighbourhood of v is also called the k-star at v. For technical

purposes, we introduce two other star-like concepts. If T ⊆ Nk(v) contains v,

then T is called a k-substar at v. The set of k-substars at j ∈ V is denoted

by Sk(j), i.e. Sk(j) = {S ⊆ V : S is a k−substar at j}. If T ⊆ Nk(v),

T 6= ∅, is such that dGT
(v, x) ≤ k for all x ∈ T , then T is called a proper k-
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substar at v. Note that if T is a proper k-substar at v, then GT is necessarily

connected and contains v. The set of proper k-substars at j ∈ V is denoted

by Pk(j), i.e. Pk(j) = {S ⊆ V : S is a proper k−substar at j}.

Example 4.2.1 Let G = (V, E) be the graph depicted in Figure 4.1 and let

k = 2. Then {1, 2, 3} is a 2-star at 1 and {1, 3} is a 2-substar at 1. However,

{1, 3} is not a proper 2-substar at 1, since G{1,3} is a disconnected subgraph

and therefore dG{1,3}
(1, 3) = ∞. Also note that {1, 3} is not a 1-substar at

2 because it does not contain 2 itself. 3

21 3

Figure 4.1: The set {1, 3} is a 2-substar at 1.

Let G = (V, E) be a graph and let T ⊆ V . Let K ⊆ T be such that
⋃

v∈K N
GT

k (v) = T , where N
GT

k (v) is the k-neighbourhood of v in GT . For

future purposes we now show that we can partition T into disjoint proper

k-substars at v, v ∈ K. We do this by assigning each vertex in T\K to

exactly one vertex in K. In particular, we assign v ∈ T\K to the closest

vertex in K. In case of a tie, we pick the vertex in K with lowest index

number. So write K = {v1, . . . , vm}. Define for each v ∈ V , A(v) = {l ∈

{1, . . . , m} : dGT
(v, vl) ≤ dGT

(v, vi) for each i ∈ {1, . . . , m}} to be the index

set of vertices of K that are closest to v. Then, for each l ∈ {1, . . . , m}, let

Ul = {v ∈ V : l = min A(v)}.

Lemma 4.2.1 The sets Ul, l ∈ {1, . . . , m}, are proper k-substars at vl that

partition T .

Proof: By definition of Ul, l ∈ {1, . . . , m}, it is satisfied that the sets Ul,

l ∈ {1, . . . , m}, form a partition of T . Therefore we only show that each

Ul, l ∈ {1, . . . , m}, forms a proper k-substar at vl. Let l ∈ {1, . . . , m} and

let q ∈ Ul. Let P be the vertex set of a shortest (q, vl)-path in GT . We

show that Ul is a proper k-substar at vl by showing that z ∈ Ul for each

z ∈ P\{q, vl}.
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Let z ∈ P\{q, vl} and let i ∈ {1, . . . , m}. Then

dGT
(z, vl) = dGT

(q, vl) − dGT
(q, z)

≤ dGT
(q, vi) − dGT

(q, z)

≤ dGT
(z, vi).

The equality is satisfied because a shortest path from q to vl passes through

z. The first inequality holds because q ∈ Ul. Note that this inequality can

only be an equality in case l ≤ i. The second inequality is satisfied due to

the triangle inequality.

We now note that the distance between z and vl in GT is at most the

distance between z and vi, and that equality can only occur in case l ≤ i.

We conclude that z ∈ Ul. 2

Let G = (V, E) be a graph and let k ∈ N. A set D ⊆ V is called a k-

dominating set if each v ∈ V is at distance at most k from a vertex in D.

Formally, D is a k-dominating set if for all v ∈ V \D, there is a z ∈ D with

dG(v, z) ≤ k. The k-domination number γk(G) is the minimum number

of vertices in a k-dominating set. A fractional k-domination is a vector

of non-negative weights on the vertices such that for each k-neighbourhood

the weights sum up to at least one. The fractional k-domination number

γ∗
k(G) is the minimum sum of the weights in a fractional k-domination. Let

w : V → R+ be a cost function on the vertices. The weighted k-domination

number γk(G, w) is the minimum sum of the costs in a k-dominating set

and the fractional weighted k-domination number γ∗
k(G, w) is the minimum

sum of the costs in a fractional k-domination.

Example 4.2.2 Let G = (V, E) be the graph depicted in Figure 4.2, let

w1 = (1, 1, 1, 1) and let k = 1. The minimum number of vertices in a

1-dominating set is 2. Hence, γ1(G) = γ1(G, w1) = 2. Note that y =

(1
3 , 1

3 , 1
3 , 1

3) is an optimal fractional 1-domination. Therefore, γ∗
1(G) =

γ∗
1(G, w1) = 4

3 .

Now let w2 = (10, 1, 10, 1). Clearly, D = {2, 4} is an optimal 1-domina-

ting set, and (0, 1, 0, 1) is an optimal fractional 1-domination. Hence,

γ1(G, w2) = γ∗
1(G, w2) = 2. 3
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1

4

2

3

Figure 4.2: A graph G = (V, E).

The k-neighbourhood matrix of G = (V, E) is the |V | × |V |-matrix Ak(G),

defined by (Ak(G))vw = 1 if w ∈ Nk(v) and (Ak(G))vw = 0 if w 6∈ Nk(v).

The k-th power of G = (V, E) is the graph Gk = (V, Ek), where (v, w) ∈ Ek

if and only if dG(v, w) ≤ k. Note that Ak(G) = A1(G
k). Observe that

γk(G, w) = min{yw : yAk(G) ≥ e(V ), y ∈ {0, 1}V }

and that

γ∗
k(G, w) = min{yw : yAk(G) ≥ e(V ), y ≥ 0},

Let A be a {0, 1}-matrix of size m × n. Let M = {1, . . . , m} and N =

{1, . . . , n}. Then A is called ideal if each extreme point of the polyhedron

P = {x ∈ RM : xA ≥ e(N), x ≥ 0} is integer. According to Lehman

(1990), A is ideal if and only if min{xw : xA ≥ e(N), x ≥ 0} = min{xw :

xA ≥ e(N), x ∈ {0, 1}M} for all w ∈ RM
+ . Note that if Ak(G) is ideal, then

γk(G, w) = γ∗
k(G, w) for every w : V → R+. The matrix A is called balanced

(cf. Berge (1972)) if it does not contain an odd sized square submatrix with

exactly two non-zero entries in each row and each column. If A is balanced,

then all extreme points of {y ∈ RN : Ay ≤ e(M), y ≥ 0} are integer.

Furthermore, if A is balanced, then it is ideal (cf. Fulkerson, Hoffman, and

Oppenheim (1974)).

We conclude this section with the definition of combinatorial optimisa-

tion games. Let N and M be finite sets, A a {0, 1}-matrix with its column

set indexed by N , its row set indexed by M , each column containing at

least one non-zero entry, and w ∈ RM
+ . The combinatorial optimisation

game (N, c) associated with A and w, as introduced in Deng, Ibaraki, and



4.3 Dominating set games 103

Nagamochi (1999), is defined by

c(S) = min{yw : yA ≥ e(S), y ∈ {0, 1}M},

for each S ⊆ N . We remark that throughout this thesis we slightly abuse

notation by omitting all transpose signs. The following two theorems are

due to Deng, Ibaraki, and Nagamochi (1999).

Theorem 4.2.1 (Deng, Ibaraki, and Nagamochi (1999)) Let N and

M be finite sets, A a {0, 1}-matrix with its column set indexed by N , its

row set indexed by M , each column containing at least one non-zero entry,

w ∈ RM
+ , and (N, c) its associated combinatorial optimisation game. Then

z ∈ C(c) if and only if z ≥ 0, Az ≤ w, and
∑

i∈N zi = c(N).

Theorem 4.2.2 (Deng, Ibaraki, and Nagamochi (1999)) Let N and

M be finite sets, A a {0, 1}-matrix with its column set indexed by N , its

row set indexed by M , each column containing at least one non-zero entry,

w ∈ RM
+ , and (N, c) its associated combinatorial optimisation game. Then

C(c) 6= ∅ if and only if

min{yw : yA ≥ e(N), y ∈ {0, 1}M} = min{yw : yA ≥ e(N), y ≥ 0}.

In such a case, z ∈ RN
+ is in the core if and only if it is an optimal solution

of the dual of min{yw : yA ≥ e(N), y ≥ 0}.

4.3 Dominating set games

In this section we introduce three cooperative dominating set games that

model the cost allocation problem arising from domination problems on

graphs. Throughout the remainder of this chapter we assume that graphs

are connected. For disconnected graphs the cost allocation problem can be

analysed for each of its components.

Let G = (V, E) be a graph, k ∈ N and w : V → R+. The relaxed

dominating set game (N, cvw
k ) allows coalitions to place facilities in every

vertex present in the graph. Furthermore, coalitions are allowed to use

every edge present in the graph. Formally, (N, cvw
k ) is defined by N =
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V and cvw
k (S) = min{yw : yAk(G) ≥ e(S), y ∈ {0, 1}N}. Observe that

cvw
k (S) ≤ cvw

k (T ) for all S ⊆ T . Hence, (N, cvw
k ) is a monotone game.

We remark that relaxed dominating set games are included in the class of

combinatorial optimisation games.

In the intermediate dominating set game (N, cew
k ) coalitions are not al-

lowed to place facilities in vertices corresponding to non-members. How-

ever, coalitions are allowed to use any edge present in the graph. Formally,

(N, cew
k ) is defined by N = V and cew

k (S) = min{yw : yAk(G) ≥ e(S), yi =

0 if i 6∈ S, y ∈ {0, 1}N}.

The corresponding rigid dominating set game (N, cw
k ) is defined by N =

V and cw
k (S) = γk(GS , wS) = min{ywS : yAk(GS) ≥ e(S), y ∈ {0, 1}S},

where wS is w restricted to S. So the cost of a coalition is equal to the

minimum weighted k-domination number of the subgraph induced by this

coalition. Obviously, the rigid dominating set game does not allow coalitions

to place facilities in vertices corresponding to non-members. Furthermore,

coalitions are only allowed to use those edges with both endpoints being

member of the coalition in order to meet the proximity condition.

Example 4.3.1 Let G = (V, E) be the graph depicted in Figure 4.1, k = 2

and w = (3, 1, 2). Then cw
2 ({1, 3}) = 5, because coalition {1, 3} cannot use

any edge present in graph G. In (N, cew
2 ), coalition {1, 3} can use all edges

of G. Therefore, cew
2 ({1, 3}) = 2. Finally, cvw

2 ({1, 3}) = 1, because coalition

{1, 3} can place a facility at the location of player 2. 3

Let G = (V, E) be a graph, k ∈ N and w : V → R+. Let (N, cw
k ), (N, cew

k )

and (N, cvw
k ) be the corresponding dominating set games. Obviously, the

rigid dominating set game is more restrictive for coalitions than the in-

termediate dominating set game. Similarly, the intermediate dominating

set game is more restrictive than the relaxed dominating set game. This

yields for all S ⊆ N that cvw
k (S) ≤ cew

k (S) ≤ cw
k (S). Also note that

cw
k (N) = cew

k (N) = cvw
k (N) = γk(G, w). Finally observe, because making

use of edges with endpoints outside the coalition makes no sense if k = 1,

that cw
1 (S) = cew

1 (S) for all S ⊆ N .
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4.4 Cores of dominating set games

In this section we study the cores of dominating set games. We derive

a relation between the cores, and we provide descriptions of these sets in

terms of stars, substars and proper substars. Furthermore we derive one

necessary and sufficient condition for the non-emptiness of the cores of all

three dominating set games. So if the core of one dominating set game is

non-empty, then the cores of the other two dominating set games are non-

empty as well. Finally, we provide graphs with the property that the induced

dominating set games has core elements for all cost functions w : V → R+.

Let G = (V, E) be a graph, k ∈ N and w : V → R+. In the previous section

we concluded that cvw
k (S) ≤ cew

k (S) ≤ cw
k (S) for every S ⊆ N , and that

cvw
k (N) = cew

k (N) = cw
k (N). This implies that C(cvw

k ) ⊆ C(cew
k ) ⊆ C(cw

k ).

Moreover, the upcoming theorem shows that the core of (N, cvw
k ) coincides

with the non-negative part of the core of (N, cw
k ), as well as with the non-

negative part of C(cew
k ).

Theorem 4.4.1 Let G = (V, E) be a graph, k ∈ N and w : V → R+. Let

(N, cw
k ), (N, cew

k ) and (N, cvw
k ) be the corresponding dominating set games.

Then C(cvw
k ) = C(cw

k ) ∩ RN
+ , and C(cvw

k ) = C(cew
k ) ∩ RN

+ .

Proof: We only show C(cvw
k ) = C(cw

k ) ∩ RN
+ . The proof of C(cvw

k ) =

C(cew
k ) ∩ RN

+ runs similar.

First we show that C(cvw
k ) ⊆ C(cw

k ) ∩ RN
+ . As noted before, C(cvw

k ) ⊆

C(cw
k ). Because (N, cvw

k ) is a monotone game, x ≥ 0 for all x ∈ C(cvw
k ).

Hence, C(cvw
k ) ⊆ C(cw

k ) ∩ RN
+ .

Now we show that C(cw
k ) ∩ RN

+ ⊆ C(cvw
k ). Let x ∈ C(cw

k ) ∩ RN
+ . Obvi-

ously,
∑

i∈N xi = cw
k (N) = cvw

k (N). It remains to show that
∑

i∈T xi ≥ v(T )

for each T ⊆ N . Let T ⊆ N . If cw
k (T ) = cvw

k (T ), then
∑

i∈T xi ≤

cw
k (T ) = cvw

k (T ). So assume that cw
k (T ) > cvw

k (T ). Let K ⊆ N be such

that T ⊆
⋃

j∈K Nk(j) and
∑

j∈K wj = cvw
k (T ). That is, for coalition T

it is optimal in the relaxed dominating set game to place the facilities in

the locations corresponding to K. Let T̄ =
⋃

j∈K Nk(j). It follows that
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cw
k (T̄ ) ≤

∑

j∈K wj = cvw
k (T ). Therefore,

∑

i∈T

xi ≤
∑

i∈T̄

xi ≤ cw
k (T̄ ) ≤ cvw

k (T ).

The first inequality is satisfied because x ≥ 0 and T ⊆ T̄ . The second

inequality is due to x ∈ C(cw
k ). We conclude that

∑

i∈T xi ≤ cvw
k (T ) for

every T ⊆ N . 2

Now we provide descriptions of the cores of the dominating set games in

terms of stars, substars and proper substars. The first proposition provides

a description of the core of (N, cvw
k ) in terms of k-stars. This proposition

can be proved using Theorem 4.2.1. However, for the sake of completeness

we provide a proof as well, which is based on the proof of Theorem 4.2.1 in

Deng, Ibaraki, and Nagamochi (1999).

Proposition 4.4.1 Let G = (V, E) be a graph, k ∈ N and w : V →

R+. Let (N, cvw
k ) be the corresponding relaxed dominating set game. Then

x ∈ C(cvw
k ) if and only if x ≥ 0,

∑

i∈Nk(j) xi ≤ wj for each j ∈ V , and
∑

i∈N xi = cvw
k (N).

Proof: First we show the ”only if”-part. Let x ∈ C(cvw
k ). Obviously,

∑

i∈N xi = cvw
k (N). Furthermore, cvw

k (Nk(j)) ≤ wj for each j ∈ V implies

that
∑

i∈Nk(j) xi ≤ cvw
k (Nk(j)) ≤ wj for each j ∈ V . Finally, monotony of

(N, cvw
k ) implies that x ≥ 0.

It remains to show the ”if”-part. Let x ≥ 0 be such that
∑

i∈Nk(j) xi ≤ wj

for each j ∈ V , and
∑

i∈N xi = cvw
k (N). It is sufficient to show for each

T ⊆ N that
∑

i∈T xi ≤ cvw
k (T ). Let T ⊆ N and let K ⊆ N be a set

of vertices that minimises the cost of placing the facilities for coalition T ,

i.e. K ⊆ N is such that T ⊆
⋃

j∈K Nk(j) and
∑

j∈K wj = cvw
k (T ). Then

∑

i∈T xi ≤
∑

j∈K

∑

i∈Nk(j) xi ≤
∑

j∈K wj = cvw
k (T ). The first inequality

is satisfied because T ⊆
⋃

j∈K Nk(j) and x ≥ 0. The second inequality is

satisfied because we assumed that
∑

i∈Nk(j) xi ≤ wj for each j ∈ V . 2

Proposition 4.4.1 provides a description of the core of relaxed dominating

set games in terms of k-stars. Similarly, the next proposition provides a core
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description for intermediate dominating set games in terms of k-substars.

In particular, an efficient cost allocation vector is a core element of an in-

termediate dominating set game if and only if no coalition corresponding to

a k-substar has an incentive to leave the grand coalition.

Proposition 4.4.2 Let G = (V, E) be a graph, k ∈ N and w : V → R+.

Let (N, cew
k ) be the corresponding intermediate dominating set game. Then

x ∈ C(cew
k ) if and only if

∑

i∈S xi ≤ wj for all j ∈ V and S ∈ Sk(j), and
∑

i∈N xi = cew
k (N).

Proof: First we show the ”only if” part. Let x ∈ C(cew
k ), j ∈ V , and

S ∈ Sk(j). From the definition of k-substars it follows that j ∈ S. Hence,

cew
k (S) ≤ wj and we conclude that

∑

i∈S xi ≤ cew
k (S) ≤ wj . Trivially,

∑

i∈N xi = cew
k (N).

Now we show the ”if” part. Let x ∈ RN be such that
∑

i∈S xi ≤ wj for

all j ∈ V and S ∈ Sk(j), and
∑

i∈N xi = cew
k (N). Let T ⊆ N and let K ⊆ T

be an optimal weighted k-dominating set of T , i.e. T ⊆
⋃

j∈K Nk(j) and
∑

j∈K wj = cew
k (T ). There exist disjoint k-substars Sj ∈ Sk(j), j ∈ K, such

that
⋃

j∈K Sj = T . It follows that
∑

i∈T xi =
∑

j∈K

∑

i∈Sj
xi ≤

∑

j∈K wj =

cew
k (T ). Therefore, x ∈ C(cew

k ). 2

Finally we consider the cores of rigid dominating set games. In Proposition

4.4.3 we provide a description of the core of these games in terms of proper

k-substars. In particular, an efficient cost allocation vector is in the core if

and only if no coalition corresponding to a proper k-substar has an incentive

to leave the grand coalition.

Proposition 4.4.3 Let G = (V, E) be a graph, k ∈ N and w : V → R+. Let

(N, cw
k ) be the corresponding rigid dominating set game. Then x ∈ C(cw

k )

if and only if
∑

i∈S xi ≤ wj , for all j ∈ V and S ∈ Pk(j), and
∑

i∈N xi =

cw
k (N).

Proof: First we show the ”only if” part. Let x ∈ C(cw
k ), j ∈ V , and

S ∈ Pk(j). Obviously, cw
k (S) ≤ wj . Therefore

∑

i∈S xi ≤ cw
k (S) ≤ wj .

Trivially,
∑

i∈N xi = cw
k (N).
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Now we show the ”if” part. Let x ∈ RN be such that
∑

i∈S xi ≤ wj for

each j ∈ V and S ∈ Pk(j), and
∑

i∈N xi = cw
k (N). Let T ⊆ N and let K ⊆ T

be an optimal k-dominating set of GT . Hence,
⋃

j∈K N
GT

k (j) = T and

cw
k (T ) =

∑

j∈K wj . Write K = {v1, . . . , vm}. According to Lemma 4.2.1, T

can be partitioned into disjoint proper k-substars Ul at vl, l ∈ {1, . . . , m}.

This implies that

∑

i∈T

xi =
m

∑

l=1

∑

i∈Ul

xi ≤
m

∑

l=1

wvl
= cw

k (T ),

where the inequality holds by assumption. 2

In the remainder of this section we focus on non-emptiness of the cores of

dominating set games. We will provide one necessary and sufficient con-

dition for non-emptiness of the core of all three dominating set games. In

particular, dominating set games have non-empty cores if and only if the

fractional weighted k-domination number equals the weighted k-domination

number. Before we show our main theorem, we first state and prove two

technical lemmas.

Lemma 4.4.1 Let G = (V, E) be a graph and k ∈ N. Let v, w ∈ V and

S ∈ Pk(w) such that v 6= w and v ∈ S. Let W = {l ∈ S : dGS
(l, w) =

dGS
(l, v) + dGS

(v, w)}. Then, S\W ∈ Pk(w).

Proof: We show the lemma by contradiction. Suppose that S\W 6∈ Pk(w).

Then there is a q ∈ S\W with dGS\W
(q, w) > k ≥ dGS

(q, w), where the

second inequality is satisfied because S ∈ Pk(w). Because the length of

every shortest (q, w)-path in GS\W is strictly larger than the length of every

shortest (q, w)-path in GS , it must hold that every shortest (q, w)-path in

GS uses an element l ∈ W . Let l ∈ W be such that dGS
(q, w) = dGS

(q, l) +

dGS
(l, w). Because l ∈ W it follows by definition of W that dGS

(l, w) =

dGS
(l, v) + dGS

(v, w). We conclude that dGS
(q, w) = dGS

(q, l) + dGS
(l, v) +

dGS
(v, w), which implies that there is a shortest (q, w)-path in GS which

uses v. Therefore q ∈ W , contradicting q ∈ S\W . 2
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Lemma 4.4.2 Let G = (V, E) be a graph and k ∈ N. Let v, w, z ∈ V

be distinct and S ∈ Pk(w) be such that v ∈ S and z 6∈ S. Let P be the

vertex set of a shortest (v, z)-path. Finally, let W = {l ∈ S : dGS
(l, w) =

dGS
(l, v) + dGS

(v, w)}. If S ∪ P 6∈ Pk(w), then dG(q, v) < dG(z, v) for all

q ∈ W .

Proof: Assume that S ∪ P 6∈ Pk(w). First we show that dGS∪P
(z, v) +

dGS∪P
(v, w) > k by contradiction. Suppose that dGS∪P

(z, v)+dGS∪P
(v, w) ≤

k. Then, for each q ∈ P ,

dGS∪P
(q, w) ≤ dGS∪P

(q, v)+dGS∪P
(v, w) ≤ dGS∪P

(z, v)+dGS∪P
(v, w) ≤ k.

The first inequality is due to the triangle inequality. The second inequality

is satisfied because q ∈ P , and the last inequality holds by assumption.

Since S ∈ Pk(w) it is true that for each q ∈ S, dGS∪P
(q, w) ≤ dGS

(q, w) ≤

k. We conclude that S ∪ P ∈ Pk(w) which contradicts our assumption.

Hence, dGS∪P
(z, v) + dGS∪P

(v, w) > k.

Because S ∈ Pk(w), we have for all q ∈ W that dGS
(q, w) ≤ k. This

implies that

dGS∪P
(z, v) + dGS∪P

(v, w) > k ≥ dGS
(q, w)

= dGS
(q, v) + dGS

(v, w) ≥ dGS
(q, v) + dGS∪P

(v, w).

The equality is satisfied because q ∈ W . So we have obtained that

dGS∪P
(z, v) > dGS

(q, v). This implies that

dG(q, v) ≤ dGS
(q, v) < dGS∪P

(z, v) = dG(z, v).

The last equality is satisfied because P is the vertex set of a shortest (z, v)-

path. 2

Theorem 4.4.2 Let G = (V, E) be a graph, k ∈ N and w : V → R+. Let

(N, cvw
k ), (N, cew

k ) and (N, cw
k ) be the corresponding dominating set games.

The following statements are equivalent:

1. γk(G, w) = γ∗
k(G, w);
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2. C(cvw
k ) 6= ∅;

3. C(cew
k ) 6= ∅;

4. C(cw
k ) 6= ∅.

Proof: First we show that 1 and 2 are equivalent. We remark that this

equivalence follows directly from Theorem 4.2.2, but for the sake of com-

pleteness we provide a proof as well.

According to Proposition 4.4.1, C(cvw
k ) 6= ∅ if and only if there is an

x ≥ 0 with
∑

i∈Nk(j) xi ≤ wj for each j ∈ V , and
∑

i∈N xi = cvw
k (N).

Now first observe that
∑

i∈Nk(j) xi ≤ wj for each j ∈ V if and only if

Ak(G)x ≤ w. So the conditions x ≥ 0,
∑

i∈Nk(j) xi ≤ wj for each j ∈ V ,

and
∑

i∈N xi = cvw
k (N) are feasible if and only if

cvw
k (N) ≤ max{

∑

i∈N

zi : Ak(G)z ≤ w, z ≥ 0}. (4.1)

We conclude that C(cvw
k ) 6= ∅ if and only if (4.1) is satisfied. Now observe

that the right-hand side of (4.1) coincides, according to Theorem 1.2.2, with

min{yw : yAk(G) ≥ e(N), y ≥ 0}.

We recognise this last expression as γ∗
k(G, w). Since cvw

k (N) = γk(G, w),

we conclude that C(cvw
k ) 6= ∅ if and only if γk(G, w) ≤ γ∗

k(G, w). Since

γ∗
k(G, w) ≤ γk(G, w) by definition, it follows that C(cvw

k ) 6= ∅ if and only if

γk(G, w) = γ∗
k(G, w).

Implications ”2 ⇒ 3” and ”3 ⇒ 4” follow from the observation that

C(cvw
k ) ⊆ C(cew

k ) ⊆ C(cw
k ). So it remains to show ”4 ⇒ 2”. We will show

that if C(cw
k ) 6= ∅, then there is a y ∈ C(cw

k ) with y ≥ 0. This implies,

according to Theorem 4.4.1, that y ∈ C(cvw
k ).

We produce a non-negative element of C(cw
k ) by means of an algorithm.

This algorithm uses as input a core element of (N, cw
k ). Then, in each step,

the core element is altered by raising the amount given to one player, and

lowering the amount given to another player. We will argue that the result-

ing allocation is still a core element. Furthermore we show that, in a finite

number of steps, the algorithm converges to a non-negative core element.
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Algorithm: Construction of a non-negative core element of C(cw
k ).

Step 1: Let y ∈ C(cw
k ), p = 1 and xp = y.

Step 2: If xp ≥ 0, then stop. Else go to step 3.

Step 3: Let (ip, jp) ∈ argmin{dG(i, j) : x
p
i < 0, xp

j > 0}. Let εp =

min{xp
jp ,−x

p
ip} > 0. Let x

p+1
ip = x

p
ip + εp, x

p+1
jp = x

p
jp − εp and x

p+1
j = x

p
j for

all j ∈ N\{ip, jp}. Let p = p + 1, and return to step 2.

First we show that xp ∈ C(cw
k ) for all p by induction on p. Subsequently

we prove that the algorithm stops after a finite number of steps, and hence

converges to a non-negative core element.

Note that x1 ∈ C(cw
k ). As the induction hypothesis, assume that xp ∈

C(cw
k ). Suppose that xp 6≥ 0. Let (ip, jp) ∈ argmin{dG(i, j) : x

p
i < 0, xp

j >

0}. Let P be the vertex set of a shortest (ip, jp)-path. By definition of ip

and jp, xl = 0 for each l ∈ P\{ip, jp}.

According to Proposition 4.4.3 it is sufficient to show for all j ∈ N and

all S ∈ Pk(j), that
∑

l∈S x
p+1
l ≤ wj . In fact, since xp ∈ C(cw

k ), it suffices to

consider those proper k-substars that are allocated a larger amount at xp+1

than at xp. Hence, we only need to consider those coalitions that contain

ip, but do not contain jp. So let j ∈ N and S ∈ Pk(j) be such that ip ∈ S

and jp 6∈ S. We distinguish between two cases.

Case 1: S ∪ P ∈ Pk(j).

From xp ∈ C(cw
k ) and the assumption that S ∪ P ∈ Pk(j), we obtain

that
∑

l∈S∪P x
p
l ≤ wj . Because x

p
l = 0 for all l ∈ P\{ip, jp},

∑

l∈S

x
p
l ≤ wj − x

p
jp . (4.2)
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It follows that

∑

l∈S

x
p+1
l =

∑

l∈S

x
p
l − x

p
ip + x

p+1
ip

≤ wj − x
p
jp − x

p
ip + x

p+1
ip

= wj − x
p
jp + εp

≤ wj .

The first equality is satisfied because x
p+1
l = x

p
l for each l ∈ S\{ip}. The

first inequality follows from (4.2). The last inequality is satisfied because

εp ≤ x
p
jp .

Case 2: S ∪ P 6∈ Pk(j).

First suppose that j = ip. Because S ∪ P 6∈ Pk(i
p), it follows that

dGS∪P
(ip, jp) > k. Since S ∈ Pk(j), we have dGS

(ip, l) ≤ k for each l ∈ S.

This yields for all l ∈ S,

dG(ip, l) ≤ dGS
(ip, l) ≤ k < dGS∪P

(ip, jp) = dG(ip, jp).

The equality is satisfied because P is the vertex set of a shortest (ip, jp)-path.

We conclude that each player in S is located closer to ip than jp is located

to ip. It follows by definition of ip and jp that x
p
l ≤ 0 for all l ∈ S\{ip}.

Since x
p+1
ip ≤ 0 it follows that

∑

l∈S x
p+1
l ≤ 0 ≤ wip .

Secondly, suppose that j 6= ip. Let W = {l ∈ S : dGS
(l, j) = dGS

(l, ip) +

dGS
(ip, j)} be the set of vertices in S for which a shortest path to j uses ip.

From Lemma 4.4.1, with v = ip and w = j, it follows that S\W ∈ Pk(j).

According to Lemma 4.4.2, with v = ip, w = j and z = jp, it is satisfied

that dG(l, ip) < dG(jp, ip) for all l ∈ W . Using the definition of ip and jp it

follows that x
p+1
l ≤ 0 for all l ∈ W . Therefore

∑

l∈S

x
p+1
l =

∑

l∈S\W

x
p
l +

∑

l∈W,l 6=ip

x
p
l + x

p+1
ip

≤ wj +
∑

l∈W,l 6=ip

x
p
l + x

p+1
ip

≤ wj .
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The first inequality is satisfied since S\W ∈ Pk(j) and therefore,
∑

l∈S\W x
p
l

≤ wj . The last inequality follows from x
p
l ≤ 0 for all l ∈ W and x

p+1
ip ≤ 0.

We conclude that xp ∈ C(cw
k ) for all p. It remains to show that the algo-

rithm converges. First observe that the algorithm continues as long as there

are players that are allocated a negative amount. However, note that by

definition of εp, either x
p+1
jp = 0 and x

p+1
ip ≤ 0, or x

p+1
jp ≥ 0 and x

p+1
ip = 0.

Hence, xp+1 contains at least one zero entry more than xp. Because xp is an

|N |-dimensional vector, the algorithm produces a non-negative core element

in at most |N | steps. 2

The cores of the dominating set games are non-empty if and only if γk(G, w)

= γ∗
k(G, w). Unfortunately, the problem of determining γk(G, w) is NP-

complete in general. Hence, it is difficult to determine whether γk(G, w) =

γ∗
k(G, w). For some classes of graphs however, the k-domination problem is

relatively easy to solve. For example, a special subclass of chordal graphs

satisfies this property.

A circuit is a connected graph on at least three vertices such that each

vertex is adjacent to precisely two other vertices. A circuit on n vertices is

denoted by Cn. A graph is called chordal if it does not contain a circuit of

length at least four as an induced subgraph. A sun is a chordal graph on 2n

vertices for some n ≥ 3, whose vertex set can be partitioned into two sets,

W = {w1, . . . , wn} and U = {u1, . . . , un} such that any two vertices of W

are non-adjacent, and for each i, j ∈ {1, . . . , n}, wi is adjacent to uj if and

only if i = j or i = j +1 (mod n). A graph is called an odd (even) sun if it is

a sun on 2n vertices, with n odd (even). An (odd-)sun-free chordal graph is a

chordal graph which does not contain an (odd-)sun as an induced subgraph.

Sun-free chordal graphs are called strongly chordal graphs in Farber (1981).

The concept of an even sun is illustrated in the following example.

Example 4.4.1 Let G = (V, E) be the graph depicted in Figure 4.3. Ob-

serve that G is chordal. Moreover, the sets W = {w1, . . . , w6} and U =

{u1, . . . , u6} form a partition of V . Any two vertices of W are non-adjacent,

and, wi is connected to uj if and only if i = j or i = j + 1 (mod 6). Hence,

G is a sun. Because |U | = |W | = 6 we conclude that G is an even sun. 3
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w6

w1

u6

u5

u1

w5

w2

u4

u2

u3

w4

w3

Figure 4.3: An even sun.

If a graph is sun-free chordal, then it is necessarily odd-sun-free chordal.

Trees, line graphs of trees, interval graphs and block graphs are examples

of sun-free chordal graphs (cf. Farber (1981)). It can be determined in

polynomial time whether a graph is sun-free chordal (cf. Farber (1981)).

Theorem 4.4.3 states that odd-sun-free chordal graphs are characterised by

balancedness of their 1-neighbourhood matrices.

Theorem 4.4.3 (Brouwer, Duchet, and Schrijver (1983)) Let G be

a graph. Then A1(G) is balanced if and only if G is odd-sun-free chordal.

Lubiw (1982) showed that powers of sun-free chordal graphs are sun-free

chordal as well. Hence, if G = (V, E) is a sun-free chordal graph, then

Ak(G) = A1(G
k) is balanced for all k ∈ N. This implies that γk(G, w) =

γ∗
k(G, w) for all w : V → R+ and all k ∈ N. Straightforwardly we have the

following proposition.

Proposition 4.4.4 Let G = (V, E) be sun-free chordal. Then the corre-

sponding dominating set games have core elements for all k ∈ N and for all

w : V → R+.

Powers of odd-sun-free chordal graphs are not necessarily odd-sun-free chor-

dal. For example, let G = (V, E) be the 6-sun depicted in Figure 4.3. Then
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the subgraph of G2 induced by {w1, . . . , w6} is a circuit on 6 vertices. This

implies that G2 is not chordal and therefore also not odd-sun-free chordal.

Obviously, circuits are not chordal, and therefore not sun-free chordal.

However, Cornuéjols and Novick (1994) showed that A1(C6) and A1(C9) are

ideal matrices. Moreover, they showed that A1(C6) and A1(C9) are the only

ideal matrices of the form Ak(Cn) with k, n ∈ N such that k ≤ n−2
2 . Note

that if k > n−2
2 , then Ak(Cn) is the matrix with every entry a one.

Theorem 4.4.4 (Cornuéjols and Novick (1994)) The matrices

A1(C6) and A1(C9) are ideal.

From Theorem 4.4.4 it follows that γ1(C6, w) = γ∗
1(C6, w) and γ1(C9, w) =

γ∗
1(C9, w) for every w : V → R+. Hence, we have the following proposition.

Proposition 4.4.5 Let G = C6 or G = C9. Then the corresponding domi-

nating set games have core elements for k = 1 and for all w : V → R+.

We conclude this section with the observation that a special subclass of

relaxed dominating set games satisfies the CoMa-property. A game v ∈ TUN

with C(v) 6= ∅ is said to satisfy the CoMa-property if all extreme points of

the core are marginal vectors. Obviously, all concave games satisfy the

CoMa-property, but the contrary does not necessarily hold (cf. Kuipers

(1993) and Hamers, Klijn, Solymosi, Tijs, and Villar (2002)).

The next theorem shows that a special subclass of combinatorial opti-

misation games satisfies the CoMa-property. We then apply this theorem

to the class of relaxed dominating set games, since relaxed dominating set

games form a subclass of combinatorial optimisation games.

Proposition 4.4.6 Let A be a {0, 1}-matrix of size m × n. Let wi = 1 for

each i ∈ {1, . . . , m}. If A is balanced, then the combinatorial optimisation

game (N, c) associated with A and w satisfies the CoMa-property.

Proof: Since A is balanced it follows that A is ideal. This implies that

each extreme point of the polyhedron {x ∈ RM : xA ≥ e(N), x ≥ 0} is

integer and therefore that min{xw : xA ≥ e(N), x ≥ 0} = min{xw : xA ≥
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e(N), x ∈ {0, 1}M}. According to Theorem 4.2.2 it follows that C(c) 6= ∅. It

remains to show that each extreme point of C(c) corresponds to a marginal

vector. First we show that each extreme point of C(c) is a {0, 1}-vector,

and then we argue that this vector is indeed a marginal vector.

Let M = {1, . . . , m} and N = {1, . . . , n}. Since each extreme point of

the polyhedron {x ∈ RM : xA ≥ e(N), x ≥ 0} is integer, it follows that

c(N) = min{
∑

i∈M

xi : xA ≥ e(N), x ∈ {0, 1}M}

= min{
∑

i∈M

xi : xA ≥ e(N), x ≥ 0}

= max{
∑

i∈N

yi : Ay ≤ e(M), y ≥ 0}. (4.3)

The third equality is satisfied due to Theorem 1.2.2. According to Theorem

4.2.2, it holds that y ∈ C(c) if and only if y is an optimal solution of

(4.3). From the balancedness of A we conclude that each extreme point of

{y ∈ RN : Ay ≤ e(M), y ≥ 0} is integer (cf. Berge (1972)). Because the set

of optimal solutions of (4.3) is a facet of {y ∈ RN : Ay ≤ e(N), y ≥ 0}, we

conclude that each extreme point this facet, and hence each extreme point of

C(c), is integer. In particular, each extreme point of C(c) is a {0, 1}-vector.

Now let x ∈ C(c) be an extreme point and let S = {i ∈ N : xi = 1}. Let

σ ∈ Π(N) be such that σ(i) ∈ S for each i ∈ {1, . . . , |S|}. That is, σ begins

with the members of S, and ends with the members of N\S. We show that

mσ(c) = x.

Let i ∈ {1, . . . , |S|}. Because x ∈ C(c), it follows that |[σ(i), σ]| =
∑i

j=1 xσ(j)

≤ c([σ(i), σ]). By definition of (N, c), c(T ) ≤ |T | for each T ⊆ N . We

conclude that c([σ(i), σ]) = |[σ(i), σ]| for each i ∈ {1, . . . , |S|}. This implies

that

xσ(i) = 1 = c([σ(i), σ]) − c([σ(i − 1), σ]) = mσ
σ(i)(c).

Since c(S) =
∑

i∈S xi =
∑

i∈N xi = c(N), it follows from monotony of (N, c)

that c(S) = c(T ) = c(N) for each S ⊆ T ⊆ N . This implies that

xσ(i) = 0 = c([σ(i), σ]) − c([σ(i − 1), σ]) = mσ
σ(i)(c),
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for each i ∈ {|S| + 1, . . . , |N |}. We conclude that x = mσ(c). 2

We immediately have the following corollary.

Corollary 4.4.1 Let G = (V, E) be a graph, k ∈ N and wi = 1 for each

i ∈ V . If Gk is odd-sun-free chordal, then (N, cvw
k ) satisfies the CoMa-

property.

Unfortunately, Corollary 4.4.1 does not extend to arbitrary cost functions.

This is illustrated in the following example.

Example 4.4.2 Let G = (V, E) be the graph depicted in Figure 4.4 and let

k = 1. Clearly, G is a tree, and therefore odd-sun-free chordal graph. Let

w = (6, 4, 4, 4). Then,

cvw
1 (S) =

{

4, if |S ∩ {2, 3, 4}| ≤ 1, S 6= ∅;

6, if |S ∩ {2, 3, 4}| ≥ 2.

It is straightforward to check that (3, 1, 1, 1) is an extreme point of C(cvw
1 ).

However, x does not correspond to a marginal vector. 3

3 4

1

2

Figure 4.4: An odd-sun-free chordal graph.

4.5 Concavity

In this section we consider concavity of dominating set games. We charac-

terise concavity of dominating set games in terms of the underlying graph

if wi = 1 for all i ∈ V . First we show that a relaxed dominating set game

with parameter k is concave if and only if the corresponding graph contains

a vertex with distance at most k to all other vertices.
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Proposition 4.5.1 Let G = (V, E) be a graph, k ∈ N and wi = 1 for all

i ∈ V . Let (N, cvw
k ) be the corresponding relaxed dominating set game.

Then (N, cvw
k ) is concave if and only if k ≥ r(G).

Proof: Note that k ≥ r(G) if and only if there is a v ∈ V with Nk(v) = V .

First we show the sufficiency part. Assume there is a v ∈ V with Nk(v) = V .

Then cvw
k (S) = 1 for all S ⊆ N , S 6= ∅. Hence, (N, cvw

k ) is concave.

Now we prove necessity. Assume that Nk(v) 6= V for all v ∈ V . We show

that (N, cvw
k ) is not concave. Hence, the condition that there is a v ∈ V

with Nk(v) = V is necessary for concavity.

Let v ∈ V be such that Nk(v) is a maximal k-neighbourhood in the

sense that it is not a proper subset of any other k-neighbourhood. By

assumption, Nk(v) 6= V . Now let u ∈ V \Nk(v) be such that dG(v, u) =

k + 1. Obviously, Nk(v) ∩ Nk(u) 6= ∅, cvw
k (Nk(v)) = 1, cvw

k (Nk(u)) = 1

and cvw
k (Nk(v)∩Nk(u)) = 1. Because Nk(v) is a maximal k-neighbourhood

and u 6∈ Nk(v), we conclude that (Nk(v) ∪ Nk(u)) 6⊆ Nk(y) for each y ∈ V .

Thus, cvw
k (Nk(v)∪Nk(u)) = 2. Therefore cvw

k (Nk(v)∩Nk(u))+cvw
k (Nk(v)∪

Nk(u)) = 3 > 2 = cvw
k (Nk(v)) + cvw

k (Nk(u)) and we conclude that (N, cvw
k )

is not concave. 2

Next we consider concavity of rigid dominating set games. Before we char-

acterise concavity for these games in case wi = 1 for all i ∈ V , we introduce

the concept of block graphs.

A vertex is called a cutvertex if the subgraph (V \{v}, EV \{v}) consists

of more components than G. A bridge is an edge e ∈ E with the same

property, i.e. if (V, E\{e}) has more components than G. A graph with at

least three vertices is called 2-connected if it does not contain a cutvertex.

A subgraph B is called a block if it is a bridge or a maximal 2-connected

subgraph. A connected graph is a block graph if every block is complete.

Note for example that a tree is a block graph. The concept of block graphs

is illustrated in the following example.

Example 4.5.1 Let G = (V, E) be the graph depicted in Figure 4.5. The

vertices 5, 6 and 9 are cutvertices, and the edge {5, 6} is a bridge. The blocks
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are {1, 2, 3, 4, 5}, {5, 6}, {6, 7, 8, 9} and {9, 10, 11}. Because each block is

complete, G is a block graph. 3

1

2

3

4

5 6

7 9

8

10

11

Figure 4.5: A block graph.

The following lemma that is used in the proof of our characterisation of

concave rigid dominating set games, provides a relation between the radius

and the diameter of a block graph.

Lemma 4.5.1 Let G = (V, E) be a block graph and k ∈ N. If ∆(G) ≤ 2k,

then r(G) ≤ k.

Proof: Block graphs are 3-sun-free chordal graphs. For 3-sun-free chordal

graphs, r(G) = d∆(G)
2 e (cf. Theorem 3.6 in Chang and Nemhauser (1984)).

Hence, if G is a block graph satisfying ∆(G) ≤ 2k, then r(G) ≤ k. 2

Proposition 4.5.2 Let G = (V, E) be a graph, k ∈ N and wi = 1 for all

i ∈ V . Let (N, cw
k ) be the corresponding rigid dominating set game. Then

(N, cw
k ) is concave if and only if G is a block graph satisfying ∆(G) ≤ 2k.

Proof: First we show the ”only if” part. Suppose that G does not satisfy

∆(G) ≤ 2k. Let v, u ∈ V be such that dG(v, u) = 2k+1. Let P be the vertex

set of a shortest (v, u)-path. Observe that cw
k (P\{v, u}) = cw

k (P\{u}) =

cw
k (P\{v}) = 1 and cw

k (P ) = 2. Therefore, cw
k (P\{v, u}) + cw

k (P ) = 3 > 2 =

cw
k (P\{u}) + cw

k (P\{v}). We conclude that (N, cw
k ) is not concave.

Now suppose that G is not a block graph. Then there is an incomplete

block. Hence, G contains Cm with m ≥ 4 or the graph depicted in Figure

4.6 as an induced subgraph. We distinguish between three cases.

Case 1: G contains Cm as an induced subgraph with m ∈ {4, . . . , 2k + 2}.
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1

4

2

3

Figure 4.6: A possible subgraph of an incomplete block.

Let u and v be non-adjacent vertices in Cm. Obviously, Cm contains

two disjoint paths connecting u and v. Let P1 and P2 denote the vertex

sets of these paths. Because {u, v} 6∈ E it follows that P1\{u, v} 6= ∅ and

P2\{u, v} 6= ∅. Because u and v are non-adjacent, cw
k ({u, v}) = 2. Further-

more, cw
k (P1) = 1, cw

k (P2) = 1 and cw
k (P1 ∪ P2) ≥ 1. Thus, cw

k ({u, v}) +

cw
k (P1 ∪ P2) ≥ 3 > 2 = cw

k (P1) + cw
k (P2). Hence, (N, cw

k ) is not concave.

Case 2: G contains Cm as an induced subgraph with m > 2k + 2.

Let u, v, z be vertices in Cm with u and v adjacent, as well as v and z.

Let H = Cm\{v} be the induced subgraph of Cm obtained by deleting v.

Obviously, H is an induced subgraph of G satisfying dH(u, z) ≥ 2k +1. It is

now straightforward to show, similar to the first part of this proof, that the

subgame of (N, cw
k ) associated with coalition H is not concave. This implies

that (N, cw
k ) is not concave as well.

Case 3: G contains the graph depicted in Figure 4.6 as an induced sub-

graph.

It is clear that cw
k ({2, 4}) = 2, cw

k ({1, 2, 4}) = 1, cw
k ({2, 3, 4}) = 1

and cw
k ({1, 2, 3, 4}) = 1. Hence, cw

k ({2, 4}) + cw
k ({1, 2, 3, 4}) = 3 > 2 =

cw
k ({1, 2, 4}) + cw

k ({2, 3, 4}). Therefore, (N, cw
k ) is not concave.

It remains to show the ”if” part. Assume that G = (V, E) is a block graph

satisfying ∆(G) ≤ 2k. We will show that the corresponding rigid dominating

set game is concave. First we show that the cost of each connected coalition

is equal to 1.

Let T ⊆ N be such that GT is connected. Then GT is again a block

graph satisfying ∆(GT ) ≤ 2k. It follows from Lemma 4.5.1 that r(GT ) ≤ k.
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So there is a v ∈ T with dGT
(v, u) ≤ k for every u ∈ T . As a result,

cw
k (T ) = 1.

Now let i, j ∈ N , i 6= j, and S ⊆ N\{i, j}. We will show that

cw
k (S ∪ {i, j}) + cw

k (S) ≤ cw
k (S ∪ {i}) + cw

k (S ∪ {j}). Denote the maximally

connected components of S by S1, . . . , Sp. Since the cost of each component

is equal to 1, cw
k (S) = p. Let I ⊆ {1, . . . , p} be the index set of the compo-

nents that are connected with i. That is, for all l ∈ I there is a v ∈ Sl with

{v, i} ∈ E. Note that cw
k (S ∪ {i}) = p + 1− |I|. Similarly, let J ⊆ {1, . . . , p}

be the index set of the components that are connected with j and note that

cw
k (S ∪ {j}) = p + 1 − |J |.

First we show that |I∩J | ≤ 1 by contradiction. Suppose that |I∩J | ≥ 2.

Then at least two components, say S1 and S2, are connected with both i

and j. Let m1, m2 ∈ S1 be such that {m1, i}, {m2, j} ∈ E. Similarly,

let m3, m4 ∈ S2 be such that {m3, i}, {m4, j} ∈ E. Let P1 ⊆ S1 be the

set of vertices corresponding to a shortest (m1, m2)-path in GS1 , and let

P2 ⊆ S2 be the set of vertices corresponding to a shortest (m3, m4)-path in

GS2 . The subgraph induced by P1 ∪ P2 ∪ {i, j} forms a circuit, and hence

a 2-connected subgraph. Because G is a block graph, it follows that this

subgraph is complete. This implies that {m1, m3} ∈ E, contradicting that

S1 and S2 are disconnected components. We conclude that |I ∩ J | ≤ 1.

If |I ∩ J | = 0 and {i, j} 6∈ E or if |I ∩ J | = 1 and {i, j} ∈ E, then

cw
k (S∪{i, j}) = p+2−|I|− |J |. If |I ∩J | = 0 and {i, j} ∈ E or if |I ∩J | = 1

and {i, j} 6∈ E, then cw
k (S ∪ {i, j}) = p + 1 − |I| − |J |. In either case,

cw
k (S ∪ {i, j}) ≤ p + 2 − |I| − |J |. Therefore, cw

k (S ∪ {i}) + cw
k (S ∪ {j}) =

2p + 2 − |I| − |J | ≥ cw
k (S) + cw

k (S ∪ {i, j}). 2

The final part of this section is dedicated to concavity of intermediate dom-

inating set games. Let G = (V, E) be a graph, and let wi = 1 for all i ∈ V .

First note that for k = 1 the corresponding intermediate dominating set

game coincides with the rigid dominating set game. From Proposition 4.5.2

we obtain that (N, cew
1 ) is concave if and only if G is a block graph satisfying

∆(G) ≤ 2. For k ≥ 2 the intermediate dominating set game does not nec-

essarily coincide with the rigid dominating set game. The characterisations

of concavity do also not coincide. In fact, the following proposition shows
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that intermediate dominating set games with parameter k are concave if and

only if the diameter of G is at most k.

Proposition 4.5.3 Let G = (V, E) be a graph, k ∈ N with k ≥ 2, and wi =

1 for all i ∈ V . Let (N, cew
k ) be the corresponding intermediate dominating

set game. Then (N, cew
k ) is concave if and only if ∆(G) ≤ k.

Proof: First note that ∆(G) ≤ k if and only if Nk(v) = V for all v ∈ V .

First we show the ”if” part. Assume that Nk(v) = V for all v ∈ V . Then,

cew
k (S) = 1 for all S ⊆ N . Trivially, (N, cew

k ) is concave.

It remains to show the ”only if” part. Assume that there is a v ∈ V

with Nk(v) 6= V . Then there is a u ∈ V with dG(v, u) = k + 1. Let

P be the vertex set of a shortest (v, u)-path. Let a, b ∈ P be such that

{a, v} ∈ E and {b, u} ∈ E. Since k ≥ 2, the shortest path between v and u

contains at least 4 vertices. Therefore a 6= b. Now note that cew
k ({v, u}) = 2,

cew
k ({v, a, u}) = 1, cew

k ({v, b, u}) = 1 and cew
k ({v, a, b, u}) = 1. It follows

that cew
k ({v, a, b, u}) + cew

k ({v, u}) = 3 > 2 = cew
k ({v, a, u}) + cew

k ({v, b, u}).

2



Chapter 5

Fixed tree games with

multi-located players

5.1 Introduction

In this chapter we consider a generalisation of the fixed tree problem, intro-

duced by Megiddo (1978). In a fixed tree problem a rooted tree Γ and a set

of agents N is given, each agent being located at precisely one vertex of Γ

and each vertex containing precisely one agent. Megiddo (1978) associates

to such a problem a cooperative cost game (N, c), a fixed tree game, where

c(S) denotes the minimal cost needed to connect all members of S to the

root via a subtree of Γ, for every coalition S ⊆ N .

Fixed tree games and variants of fixed tree games have also been studied

in Galil (1980), Granot, Maschler, Owen, and Zhu (1996), Koster, Molina,

Sprumont, and Tijs (2001) and Maschler, Potters, and Reijnierse (1995).

The special case where the tree is a chain corresponds to airport games,

which have been considered in Littlechild (1974), Littlechild and Owen

(1977) and Littlechild and Thompson (1977). Variants of fixed tree games,

where it is allowed that one vertex is occupied by more players or by no

player, are considered in e.g. Koster (1999) and Van Gellekom (2000). How-

ever, these variants still require that every player is located in precisely one

vertex.

In this chapter, which is based on Miquel, Van Velzen, Hamers, and
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Norde (2003), we generalise the model of Megiddo (1978) in the sense that

players may be located in more than one vertex of the given tree. As a

motivation for this generalised model one can consider the following irriga-

tion problem. Consider a set of parcels in a desert environment which need

to be irrigated from a well. For that reason, a network has been designed

which allows the transportation of water from the well to at least one of the

corners of each parcel. Consider, for example, the situation with five parcels

in Figure 5.1.

•

•

• •

•

•

•

1 2

3

4 5

well

Figure 5.1: An irrigation network.

Bold lines indicate the network that has already been constructed. The

players are facing the problem of dividing the maintenance costs of this

network, so they are facing a fixed tree problem where the tree is as depicted

in Figure 5.2.

With this fixed tree we can associate in a natural way a cooperative cost

game (N, c). For every coalition S ⊆ N , c(S) denotes the minimal cost

needed to connect all members of S at least once to the root via a subtree.

This leads to the class of fixed tree games with multi-located players.

Standard fixed tree games and the variants of these games are known to

be concave. We will show that this needs not be true for fixed tree games

with multi-located players. However, we will show that these games have

non-empty cores by showing that the core of a fixed tree game with multi-
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1
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2,4,5
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Figure 5.2: Fixed tree of the problem in Figure 5.1.

located players coincides with the core of a related standard fixed tree game.

Furthermore we analyse which marginal vectors provide core elements and

conclude that only standard fixed tree games are concave. We show that

the Shapley value need not be a core element and we study the average of

the extreme points of the core.

The remainder of this chapter is organised as follows. In Section 5.2

we formally introduce fixed tree games with multi-located players and in

Section 5.3 we focus on the structure of the core of these games. The last

section, Section 5.4, is dedicated to three one-point solution concepts.

5.2 Fixed tree problems with multi-located play-

ers and games

In this section we introduce fixed tree problems with multi-located players

and its associated cooperative games. First we introduce some notation.
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A tree (V, E) is called rooted in case V contains a special element referred

to as the root. For each v ∈ V there is a unique path from the root to v.

We denote the vertex set of this path by P (v). A trunk of (V, E) is a set of

vertices T ⊆ V such that P (v) ⊆ T for each v ∈ T . The set of followers of a

vertex v is the set F (v) = {v′ ∈ V |v ∈ P (v′)}. A vertex v is called a leaf 4 if

F (v) = {v}. Analogously we define the set of edges F (e) following an edge

e. Note that e ∈ F (e).

Now we introduce fixed tree problems with multi-located players. A fixed

tree problem with multi-located players, FMP problem for short, is a 5-tuple

Γ = (N, (V, E), 0, S, a), where

1. N is a finite set of players;

2. (V, E) is a tree with vertex set V and edge set E;

3. 0 is a special element of V , called the root of the tree;

4. S : V → 2N is a map assigning to each vertex a (possibly empty)

subset of players;

5. a : E → R++ is a map expressing the maintenance cost of each edge;

and which satisfies the following assumptions:

(A1) for every i ∈ N there is a v ∈ V with i ∈ S(v);

(A2) for each leaf t ∈ V , there is an i ∈ N such that i ∈ S(t) and i 6∈ S(v)

for every v ∈ V \{t}.

Assumption (A1) states that every player should occupy at least one vertex

in the tree. Assumption (A2) states that the tree (V, E) is “optimal” for the

grand coalition N , in the sense that no proper subtree of (V, E) provides at

least one connection to the root for every i ∈ N .

Players who occupy at least two vertices are called multi-located players,

and players who occupy precisely one vertex are called single-located . If

4We remark that this definition of leaf is not consistent with its definition in Section
1.2.4. The difference is that the definition in Section 1.2.4 allows the root to be a leaf,
while the definition in this section forbids this possibility.
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an FMP problem does not contain multi-located players, then it is called a

standard FMP problem.

well

1

1,4

1,2,4

1,2

2,3

Figure 5.3: A tree depicting a cost sharing problem.

Example 5.2.1 In Figures 5.2 and 5.3 two cost sharing problems are de-

picted. We can easily see that the tree of Figure 5.3 does not correspond to

an FMP problem because after removing the edge between the vertex occu-

pied by players 1 and 4, and the vertex occupied by players 1, 2 and 4, all

players remain connected to the root. Hence, Assumption (A2) is violated.

The tree of Figure 5.2, on the contrary, corresponds to an FMP problem.

It has two leaves and each of them is occupied by one single-located player.

Nevertheless, it is not a standard tree problem as defined in Megiddo (1978)

since players 1, 2 and 4 are located in more than one vertex. 3

For an FMP problem we define the associated cost game as follows. Let

Γ = (N, (V, E), 0, S, a) be an FMP problem. The associated fixed tree game

with multi-located players, FMP game for short, is the cost game (N, c)

defined by

c(S) = min
TS∈AS

(

∑

e∈TS

a(e)

)

,
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for each S ⊆ N , where AS is the collection of admissible subtrees for coalition

S. A subtree is admissible for coalition S ⊆ N if it provides at least one

connection to the root for every member of S. In the following example we

illustrate the concepts of FMP games and admissible trees.

root

1,2 1,3

A

B C

3 5

Figure 5.4: An FMP problem.

Example 5.2.2 In Figure 5.4 an FMP problem is depicted. The set of ad-

missible trees for player 1 is A{1} = {{{A, B}}, {{A, C}}, {{A, B}, {A, C}}}.

So c({1}) = min{3, 5, 3 + 5} = 3. Also note that c({2, 3}) = 3 + 5 = 8. 3

From the definition of FMP games it easily follows that FMP games are

monotone games since for every S ⊆ T ⊆ N , we have AS ⊇ AT .

Note that in the tree of Figure 5.2, the position of player 1 in the vertex

also containing player 2 seems irrelevant since the path from the root to this

vertex contains another vertex occupied by player 1. We formalise this idea

below. Given an FMP problem Γ = (N, (V, E), 0, S, a) we define the reduced

problem Γred = (N, (V, E), 0, Sred, a), where for every v ∈ V

Sred(v) = {i ∈ S(v) : there is no v′ ∈ P (v), v′ 6= v with i ∈ S(v′)}.

That is, from the set of players occupying vertex v, those which also occupy

a preceding vertex are dropped. Observe that the single-located players

remain in their initial vertex. The cost game associated with the reduced

problem will be denoted by (N, cred). This reduction is illustrated in Exam-

ple 5.2.3.

Example 5.2.3 In Figure 5.5 the reduced FMP problem arising from the

problem in Figure 5.2 is depicted. In the tree of Figure 5.2 player 2 can
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Figure 5.5: The reduced problem arising from the problem in Figure 5.2.

choose among four different paths to be connected to the root. However,

the path that ends in the vertex occupied by players 1 and 2 is part of the

path that ends in the vertex occupied by players 2 and 3. Therefore player

2 will never choose this second path to connect himself to the root, since

this path yields a higher cost. So we can delete player 2 from the vertex

occupied by players 2 and 3 without changing the game. Proceeding in this

way we obtain the reduced problem which is depicted in Figure 5.5. Note

that this problem is not a standard FMP problem since it still contains a

player located in two vertices. 3

The proof of the following proposition is straightforward and therefore omit-

ted.

Proposition 5.2.1 Let (N, (V, E), 0, S, a) be an FMP problem, and

(N, (V, E), 0, Sred, a) be its corresponding reduced problem. Let (N, c) and

(N, cred) be the associated cost games. Then (N, c) and (N, cred) coincide.
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Henceforth we assume in the remainder of this chapter, without loss of

generality, that FMP problems are reduced.

5.3 Core and concavity

In this section we show that the core of an FMP game coincides with the

core of a related standard FMP game. Since the core of each standard FMP

game is non-empty we then conclude that FMP games have non-empty cores.

Furthermore we investigate which marginal vectors are core elements and

conclude that only standard FMP games are concave.

First we show that FMP games have non-empty cores. Consider the

FMP problem Γ = (N, (V, E), 0, S, a). We obtain the related standard FMP

problem Γst by relocating the multi-located players. In particular, each

multi-located player gets relocated to precisely one vertex. This new situ-

ation is defined by the 5-tuple Γst = (N, (V, E), 0, Sst, a), where Sst(v) is

obtained from S(v) as follows:

1. If player i ∈ N is a multi-located player in Γ, then there is more

than one path connecting him to the root. Since (V, E) is a tree, the

common part of all these paths is again a path. Let v∗ ∈ V be the

furthest vertex from the root on this common path. Then, in Γst,

player i is located only in vertex v∗;

2. If player i ∈ N is single-located in Γ, then in Γst this player remains

in the same vertex.

In the following example the construction of Γst is illustrated.

Example 5.3.1 Consider the FMP problem Γ depicted in Figure 5.5. We

obtain the related standard FMP problem Γst, which is depicted in Figure

5.6, by changing the position of player 2. Player 2 can choose between two

paths in order to be connected to the root. The intersection of these two

paths is the path which contains the root and the vertex occupied by player

1. In Γst player 2 is located in the furthest vertex from the root on this

intersection path, i.e, the vertex occupied by player 1. 3
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well
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3

Figure 5.6: The standard FMP problem arising from the FMP problem of
Figure 5.5.

In Granot, Maschler, Owen, and Zhu (1996) it is shown that fixed tree

games are concave. The following proposition weakly generalises this result

and can be proved in a similar way. Therefore the proof is omitted.

Proposition 5.3.1 Let Γ = (N, (V, E), 0, S, a) be a standard FMP problem

and (N, c) its corresponding game. Then (N, c) is concave.

In the following theorem we show that the cores of the cost games associ-

ated with an FMP problem and its corresponding standard FMP problem

coincide.

Theorem 5.3.1 Let Γ = (N, (V, E), 0, S, a) be an FMP problem and let

Γst = (N, (V, E), 0, Sst, a) be the corresponding standard FMP problem.

Let (N, c) and (N, cst) be the associated cost games. Then, C(c) = C(cst).
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Proof: First note that cst(S) ≤ c(S) for every S ⊆ N and cst(N) = c(N).

Consequently, C(cst) ⊆ C(c).

Now we show that C(c) ⊆ C(cst). Let x ∈ C(c). From the monotony

of (N, c) it follows that x ≥ 0. We need to show that for every S ⊆ N ,
∑

i∈S xi ≤ cst(S), or equivalently that
∑

i∈N\S xi ≥ c(N) − cst(S).

Let S ⊆ N , and let VS be the set of vertices in which the members of S

are located in Γst, i.e. VS = {v ∈ V |Sst(v)∩ S 6= ∅}. Let TS be the smallest

trunk containing VS , and let ES be the subset of edges corresponding to

this trunk. By definition of TS , cst(S) =
∑

e∈ES
a(e). Now let OS denote

the set of outgoing edges of TS , i.e. OS = {{i, j} ∈ E|i ∈ TS and j 6∈ TS}.

Furthermore let, for all e ∈ OS , Ve be the set of vertices corresponding to

edges of F (e)\{e}. Finally, let Ic
e =

⋃

v/∈Ve
S(v) and let Ie = N\Ic

e . In other

words, Ie are those players which appear only in vertices of Ve, and Ic
e is its

complement. Because of Assumption (A2) it follows that Ie 6= ∅ for each

e ∈ OS .

Let e ∈ OS . Since each member of Ic
e appears at least once in a vertex

of V \Ve, the edges in F (e) are not needed to connect the members of I c
e

to the root. Hence, c(Ic
e) ≤

∑

f∈E,f 6∈F (e) a(f) and therefore
∑

i∈Ic
e
xi ≤

∑

f∈E,f 6∈F (e) a(f). From the efficiency of x we deduce that
∑

i∈Ie

xi ≥ c(N) −
∑

f∈E,f 6∈F (e)

a(f) =
∑

f∈F (e)

a(f). (5.1)

Hence, the players which appear only in one branch of the tree pay the entire

cost of that branch. If j ∈ S, then it follows that j 6∈ Ie for every e ∈ OS .

Therefore,
⋃

e∈OS
Ie ⊆ N\S. By definition of Ie it follows that Ie ∩ Iē = ∅

for all e, ē ∈ OS , e 6= ē. That is, the Ie’s are pairwise disjoint. Hence,
∑

e∈OS

∑

f∈F (e)

a(f) ≤
∑

e∈OS

∑

i∈Ie

xi =
∑

i∈
⋃

e∈OS
Ie

xi ≤
∑

i∈N\S

xi,

where the first inequality follows from (5.1), and the second from x ≥ 0.

From
∑

e∈OS

∑

f∈F (e) a(f) =
∑

f∈E a(f)−
∑

f∈ES
a(f) = c(N)− cst(S), we

now conclude that
∑

i∈N\S xi ≥ c(N) − cst(S). 2

The following corollary is an immediate consequence of Theorem 5.3.1 and

the fact that concave games have non-empty cores.
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Corollary 5.3.1 Let Γ = (N, (V, E), 0, S, a) be an FMP problem and (N, c)

its corresponding game. Then C(c) 6= ∅.

The next part of this section is dedicated to marginal vectors. We will

characterise those orders whose corresponding marginal vectors are core el-

ements. First we need some definitions. Let Γ = (N, (V, E), 0, S, a) be an

FMP problem and Γst = (N, (V, E), 0, Sst, a) be the corresponding standard

FMP problem. For every i ∈ N we define

Ni = {j ∈ N | there exist v, v′ ∈ V with v′ ∈ F (v), i ∈ S(v), j ∈ Sst(v′)}.

Note that for every single-located player i ∈ N we have i ∈ Ni and thus

Ni 6= ∅. A coalition S ⊆ N is called proper if for every i ∈ S there exists a

player j ∈ S ∩ Ni. These definitions are illustrated in Example 5.3.2.

Example 5.3.2 Consider the FMP problem depicted in Figure 5.5. Player

2 is a multi-located player who appears in two different vertices, say v1 and

v2. Consider these two vertices v1 and v2 in the standard problem and the

corresponding sets of vertices F (v1) and F (v2). The set of players located

in these sets of vertices in the standard problem is N2. More precisely,

N2 = {3} ∪ {5} = {3, 5}.

Consider coalition S = {2}. We can easily see that S∩N2 = ∅. Therefore

coalition S is not proper. On the contrary, coalition T = {2, 3} is proper.

Since, 3 is single-located, 3 ∈ T ∩ N3. It is also obvious that 3 ∈ T ∩ N2. 3

The following lemma states that proper coalitions have the same cost in

the FMP game and in its associated standard FMP game, while non-proper

coalitions have a strictly larger cost in the FMP game than in its associated

standard FMP game.

Lemma 5.3.1 Let Γ = (N, (V, E), 0, S, a) be an FMP problem and let Γst =

(N, (V, E), 0, Sst, a) be the corresponding standard FMP problem. Let (N, c)

and (N, cst) be the associated cost games. Then, c(S) = cst(S) for all proper

S ⊆ N and c(S) > cst(S) for all non-proper S ⊆ N .
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Proof: Let S ⊆ N . Let T ∗ be the optimal tree for S in Γst and let V (T ∗) be

the vertex set corresponding to this tree. Since T ∗ ⊆ T for every T ∈ AS(Γ),

it is satisfied that c(S) ≥ cst(S). Moreover, c(S) = cst(S) if and only

if T ∗ ∈ AS(Γ). Hence, we need to prove that S is proper if and only if

T ∗ ∈ AS(Γ).

First assume that S is proper. Let i ∈ S and let j ∈ Ni ∩ S. There are

v, v′ ∈ V with v′ ∈ F (v), i ∈ S(v) and j ∈ Sst(v′). Since T ∗ is optimal for

S in Γst and j ∈ Sst(v′), it is satisfied that v′ ∈ V (T ∗). Since v′ ∈ F (v) this

implies that v ∈ V (T ∗). We conclude that T ∗ connects all i ∈ S to the root

in Γ. Therefore we have that T ∗ ∈ AS(Γ).

To show the reverse, assume that T ∗ ∈ AS(Γ). Let i ∈ S. Since T ∗ is

admissible for S in Γ there is a v ∈ V (T ∗) with i ∈ S(v). Because T ∗ is

optimal for S in Γst, there is a j ∈ S and a v′ ∈ V (T ∗) with v′ ∈ F (v) and

j ∈ Sst(v′). Thus j ∈ S ∩ Ni. Hence, S is proper. 2

The next theorem characterises those orders whose corresponding marginal

vectors are core elements.

Theorem 5.3.2 Let (N, (V, E), 0, S, a) be an FMP problem, (N, c) the as-

sociated FMP game and σ ∈ Π(N). Then, mσ(c) ∈ C(c) if and only if for

every i ∈ N there exists a j ∈ Ni with σ−1(j) ≤ σ−1(i).

Proof: Let (N, (V, E), 0, Sst, a) be the associated standard FMP problem,

and (N, cst) its associated game. First we show the “if” part. Assume that

σ ∈ Π(N) is such that for every player i ∈ N there is a player j ∈ Ni with

σ−1(j) ≤ σ−1(i). Now let k ∈ N . Then, for all i ∈ N with σ−1(i) ≤ σ−1(k)

there is a j ∈ Ni with σ−1(j) ≤ σ−1(i). Hence, σ−1(j) ≤ σ−1(k) and we

conclude that [σ(k), σ] is proper. This implies for all S ⊆ N ,

∑

k∈S

mσ
k(c) =

∑

k∈S

(

c([σ(k), σ]) − c([σ(k − 1), σ])

)

=
∑

k∈S

(

cst([σ(k), σ]) − cst([σ(k − 1), σ])

)

=
∑

k∈S

mσ
k(cst)
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≤ cst(S)

≤ c(S).

The second equality follows by Lemma 5.3.1 and the fact that [σ(k), σ] and

[σ(k−1), σ] are proper. The first inequality is due to concavity of (N, cst) and

the last inequality again by Lemma 5.3.1. We conclude that mσ(c) ∈ C(c).

Secondly, we show the “only if” part. Let σ ∈ Π(N) be such that

there is an i ∈ N with σ−1(j) > σ−1(i) for all j ∈ Ni. Consider coalition

S = [i, σ]. Note that S is non-proper, because S ∩ Ni = ∅. Then, by

Lemma 5.3.1, c(S) > cst(S). Since
∑

i∈S mσ
i (c) = c(S), it follows that

∑

i∈S mσ
i (c) > cst(S), and therefore mσ(c) 6∈ C(cst). Hence, by Theorem

5.3.1 we have mσ(c) 6∈ C(c). 2

Let Γ = (N, (V, E), 0, S, a) be a non-standard FMP problem and (N, c) its

associated game. Let i ∈ N be a multi-located player. Since i is multi-

located, it follows that i 6∈ Ni. Now let σ ∈ Π(N) be such that σ(1) = i.

According to Theorem 5.3.2 it follows that mσ(c) 6∈ C(c) and we conclude

that (N, c) is not concave. Hence, we obtain the following corollary.

Corollary 5.3.2 An FMP problem is standard if and only if the associated

game is concave.

5.4 One-point solution concepts

In this section we consider three one-point solution concepts. First we re-

mark that the nucleolus of an FMP game coincides with the nucleolus of its

associated standard FMP game. Secondly, we consider the Shapley value

and we show that for each non-standard FMP problem there exists a cost

function on the edges such that the Shapley value is not a core element of the

associated game. Furthermore we study the average of the extreme points

of the core. We obtain a weight vector w such that if we divide the cost of

each edge among its users proportionally to w, then we obtain an allocation

that coincides with the average of extreme points of the core.

The nucleolus is a well known one-point solution concept introduced in

Schmeidler (1969). The nucleolus has the property that it is a core element
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whenever the core is non-empty. In Potters and Tijs (1994) it is proved

that if two games have the same core, with one of the games being concave,

then both games have the same nucleolus as well. Hence, we conclude using

Proposition 5.3.1 and Theorem 5.3.1 that the nucleolus of an FMP game

coincides with the nucleolus of its associated standard FMP game.

Corollary 5.4.1 Let Γ = (N, (V, E), 0, S, a) be an FMP problem and let

Γst be its corresponding standard problem. Let (N, c) and (N, cst) be the

associated games. Then nucleolus(c) = nucleolus(cst).

In the upcoming part of this section we study the Shapley value. We show

that if an FMP problem contains a multi-located player, then there exists a

cost function on the edges such that the Shapley value is not a core element

of the associated game. In the proof we denote the set edges going out of

v ∈ V by Ov, i.e. Ov = {{v, w} ∈ E : w ∈ F (v)}.

Theorem 5.4.1 Let (N, (V, E), 0, S) satisfy all relevant conditions of the

definition of FMP problems. If (N, (V, E), 0, S) contains a multi-located

player, then there is an a : E → R++ such that Φ(c) 6∈ C(c), with (N, c) the

FMP game associated with (N, (V, E), 0, S, a).

Proof: Let i ∈ N be a multi-located player. Then there is more than one

path connecting i to the root. Since (V, E) is a tree, the common part of all

these paths is again a path. Let v∗ ∈ V be the furthest vertex from the root

on this common path. Finally, let p ≥ 0 be the number of edges on the path

from the root to v∗ and let m ≥ 1 be the number of edges on the shortest

path from v∗ to a vertex where player i is located.

First suppose that p = 0. Let a(e) = 1 for all e ∈ E. Let Γ =

(N, (V, E), 0, S, a) be the corresponding FMP problem and (N, c) its as-

sociated FMP game. Furthermore, let Γst = (N, (V, E), 0, Sst, a) be the cor-

responding standard FMP problem, and (N, cst) its associated game. Since

p = 0, i ∈ Sst(0). That is, i is located at the root in Γst. Hence, we have that

cst({i}) = 0. However, since at Γ player i is not located at the root, it fol-

lows that Φi(c) > 0. Indeed, each σ ∈ Π(N) with σ(1) = i yields a marginal

vector mσ(c) with mσ
i (c) > 0. Furthermore, monotony of (N, cst) implies
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that each marginal vector is non-negative. Hence, Φi(c) > 0 = cst({i}), so

Φ(c) 6∈ C(cst) = C(c).

Now suppose that p > 0. Define

a(e) =

{

1, if e ∈ Ov∗ ;
1

|N |p , otherwise.

Now consider the FMP problem Γ = (N, (V, E), 0, S, a) and its associated

game (N, c). Furthermore, let Γst = (N, (V, E), 0, Sst, a) be the correspond-

ing standard FMP problem and (N, cst) its associated game. Now observe

that mσ
i (c) = 1+(m+p−1) 1

|N |p for each σ ∈ Π(N) with σ(1) = i. Note that

there are (|N | − 1)! orders with σ(1) = i. Again we remark that because of

monotony each marginal vector is non-negative. This yields

Φi(c) ≥
(|N | − 1)!

|N |!
(1 + (m + p − 1)

1

|N |p
) >

1

|N |
= p

1

|N |p
= cst({i}).

We conclude that Φ(c) 6∈ C(cst) = C(c). 2

According to Theorem 5.4.1 the only FMP problems for which the Shapley

value is a core element of the associated game, regardless of the cost function

on the edges, are FMP problems without multi-located players. Therefore we

consider an alternative solution concept, namely the average of the extreme

points of the core. This average, denoted by α(c), is obviously a core element

for each FMP game. Note that for each FMP game α(c) can be calculated

straightforwardly, since each extreme point of C(c) coincides with a marginal

vector of a related standard FMP game. However, we provide an alternative

method for obtaining α(c). In fact, we will introduce a weight vector w such

that dividing the cost of each edge among its users proportionally to w yields

the same allocation as α(c). First we develop some notation.

Let Γ = (N, (V, E), 0, S, a) be a standard FMP problem and (N, c) its

associated game. For each e ∈ E, let ve ∈ V be the endpoint of e located

furthest away from the root. Furthermore, denote the set of users of edge

e ∈ E by Ie. For each i ∈ N , let Ei ⊆ E be the set of edges on the

path from i to the root. Define n(e) = |S(ve)| + |Ove | for each e ∈ E, and

wi =
∏

e∈Ei

1
n(e) for each i ∈ N . Finally, for each e ∈ E and i ∈ Ie, let

we
i =

∏

f∈Ei∩F (e)
1

n(f) . The following example illustrates these definitions.
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Example 5.4.1 Let Γ be the standard FMP problem depicted in Figure 5.7.

The edges are denoted by f1, . . . , f6. Observe that, for instance, n(f1) = 4,

n(f2) = 2 and n(f4) = 1. Furthermore, w1 = w2 = 1
4 , w3 = 1

4 , w4 = 1
4 ·

1
2 = 1

8

and w5 = 1
8 . Also observe that w

f2
4 = 1

2 . 3

well

1, 2

4

5

3

f1

f2 f3

f4

f5

f6

Figure 5.7: A standard FMP problem.

The remainder of this section is dedicated to showing that αi(c) =
∑

e∈Ei

wi
∑

j∈Ie
wj

a(e) for each i ∈ N . In order to do so, we need two lemmas.

Lemma 5.4.1 For all e ∈ E,
∑

i∈Ie
we

i = 1.

Proof: For each e ∈ E, let k(e) denote the maximal length of a path from

ve to a leaf of (V, E). We prove the lemma by induction on k(e).

Let e ∈ E be such that k(e) = 0. Then ve is a leaf of (V, E). Therefore,

|Ove | = 0, n(e) = |S(ve)|, Ie = S(ve) and we
i = 1

n(e) for each i ∈ Ie. This

implies

∑

i∈Ie

we
i =

∑

i∈S(ve)

1

n(e)
= |S(ve)|

1

|S(ve)|
= 1.

Now assume, as the induction hypothesis, that κ ≥ 1 is such that
∑

i∈If
w

f
i

= 1 for each f ∈ E with k(f) < κ. Let e ∈ E be such that k(e) = κ. Note
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that for each f ∈ Ove we have that k(f) ≤ κ − 1 < κ. This implies
∑

i∈Ie

we
i =

∑

i∈S(ve)

we
i +

∑

f∈Ove

∑

i∈If

we
i

=
∑

i∈S(ve)

1

n(e)
+

∑

f∈Ove

∑

i∈If

1

n(e)
w

f
i

= |S(ve)|
1

n(e)
+

∑

f∈Ove

1

n(e)

= |S(ve)|
1

n(e)
+ |Ove |

1

n(e)

= 1.

The second equality is satisfied because we
i = 1

n(e) for each i ∈ S(ve), and

because we
i =

∏

g∈Ei∩F (e)
1

n(g) = 1
n(e)

∏

g∈Ei∩F (f)
1

n(g) = 1
n(e)w

f
i for each

f ∈ Ove and i ∈ If . The third equality is due to our induction hypothesis

that
∑

i∈If
w

f
i = 1 for each f ∈ E with k(f) < κ. 2

Lemma 5.4.2 For all e ∈ E and i ∈ Ie, we
i = wi

∑

j∈Ie
wj

.

Proof: Observe that

we
i =

we
i

∑

j∈Ie
we

j

=

∏

f∈Ei∩F (e)
1

n(f)
∑

j∈Ie

∏

f∈Ej∩F (e)
1

n(f)

=

∏

f∈Ei,f 6∈F (e)
1

n(f)
∏

f∈Ei,f 6∈F (e)
1

n(f)

∏

f∈Ei∩F (e)
1

n(f)
∑

j∈Ie

∏

f∈Ej∩F (e)
1

n(f)

=

∏

f∈Ei

1
n(f)

∑

j∈Ie

∏

f∈Ei,f 6∈F (e)
1

n(f)

∏

f∈Ej∩F (e)
1

n(f)

=

∏

f∈Ei

1
n(f)

∑

j∈Ie

∏

f∈Ej

1
n(f)

=
wi

∑

j∈Ie
wj

.

The first equality is satisfied because of Lemma 5.4.1. For the fifth equality

we have used that {f ∈ Ej : f 6∈ F (e)} = {f ∈ Ei : f 6∈ F (e)} for each

j ∈ Ie. The last equality is satisfied by definition of w. 2
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It will be convenient to describe the set of extreme points of C(c) in terms

of so-called consistent edge-assignments. An edge-assignment is a map τ :

E → N that assigns each edge to precisely one player. An edge-assignment

τ is consistent if τ(e) ∈ Ie for each e ∈ E, and if τ(e) = i and f ∈ Ei ∩F (e)

imply τ(f) = i. In other words, e ∈ E is assigned to a user of e, and if e ∈ E

is assigned to i ∈ Ie, then all edges on the path from e to i are assigned

to i as well. Let Y be the set of consistent edge-assignments. With each

τ ∈ Y we associate an allocation vector in the following straightforward

way: xτ
i =

∑

e∈E:τ(e)=i a(e) for each i ∈ N . That is, each player pays for

the edges that are assigned to him. Let XY = {xτ : τ ∈ Y }. Since a(e) > 0

for each e ∈ E, it follows that the correspondence between Y and XY is a

one-to-one correspondence. Hence, |Y | = |XY |.

We will now argue that the set of extreme points of C(c) coincides with

XY . Let X be the set of extreme points of C(c) and let x ∈ X. Since x

corresponds to a marginal vector, the cost of each edge is allocated to a

single user. In fact, if the cost of edge e is allocated to player i, then the

cost of all edges on the path from e to i are allocated to i. Hence, x can be

associated with a consistent edge-assignment. We conclude that X ⊆ XY .

Now let τ ∈ Y . Let σ ∈ Π(N) be such that for all i, j ∈ N , σ−1(i) ≤

σ−1(j) if τ(e) = i for some e ∈ Ej . In other words, if an edge at the path

from j to the root is assigned to i, then i is ordered before j. Observe,

since τ is consistent, that σ exists. Indeed, for all i, j ∈ N , i 6= j, it cannot

happen that we require that σ−1(i) ≤ σ−1(j) and σ−1(j) ≤ σ−1(i). Finally,

note that mσ(c) = xτ . We conclude that Xτ ⊆ X.

The coincidence between X and XY implies that α(c) = 1
|X|

∑

x∈X x =
1
|Y |

∑

τ∈Y xτ . We will now show that αi(c) =
∑

e∈Ei

wi
∑

j∈Ie
wj

a(e).

Theorem 5.4.2 Let Γ = (N, (V, E), 0, S, a) be a standard fixed tree prob-

lem and (N, c) be the associated fixed tree game. Then αi(c) =
∑

e∈Ei

wi
∑

j∈Ie
wj

a(e) for each i ∈ N .

Proof: First observe that

αi(c) =
1

|Y |

∑

τ∈Y

xτ
i =

1

|Y |

∑

τ∈Y

∑

e∈E:τ(e)=i

a(e) =
1

|Y |

∑

e∈Ei

∑

τ∈Y :τ(e)=i

a(e).
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We claim that |Y | =
∏

e∈E n(e). Indeed, at a consistent edge-assignment

edge e ∈ E can be assigned to precisely n(e) players. In particular, it can be

assigned to a player in |S(ve)|, or to player τ(f) ∈ If , f ∈ Ove . By definition

of consistency it is not allowed to assign the cost of e ∈ E to j ∈ If\{τ(f)}.

Similarly it can be seen that |{τ ∈ Y : τ(e) = i}| =
∏

f∈E:f 6∈Ei∩F (e) n(f)

for each e ∈ E and i ∈ Ie. If e ∈ E is assigned to i, then, because of

consistency, all edges in Ei ∩ F (e) are assigned to player i as well. The

remaining edges can be assigned in
∏

f∈E:f 6∈Ei∩F (e) n(f) different ways.

We conclude that

αi(c) =
1

|Y |

∑

e∈Ei

∑

τ∈Y :τ(e)=i

a(e)

=
∑

e∈Ei

a(e)

∏

f∈E:f 6∈Ei∩F (e) n(f)
∏

f∈E n(f)

=
∑

e∈Ei

a(e)
1

∏

f∈Ei∩F (e) n(f)

=
∑

e∈Ei

a(e)we
i

=
∑

e∈Ei

wi
∑

j∈Ie
wj

a(e).

The last equality is satisfied because of Lemma 5.4.2. 2

Example 5.4.2 Let Γ be the FMP problem depicted in Figure 5.7 with a :

E → R++ the cost function on the edges. Let (N, c) be the associated FMP

game. Then, α1(c) = 1
4a(f1), α2(c) = 1

4a(f1), α3(c) = 1
4a(f1)+a(f3)+a(f6),

α4(c) = 1
8a(f1) + 1

2a(f2), and α5(c) = 1
8a(f1) + 1

2a(f2) + a(f4) + a(f5). 3





Chapter 6

Sequencing games

6.1 Introduction

In operations research, sequencing situations are characterised by a finite

number of jobs, lined up in front of one (or more) machine(s), that have to

be processed on the machine(s). A single decision maker wants to determine

a processing order of the jobs that minimises a cost criterion and takes

into account possible restrictions on the jobs (e.g. due dates, precedence

constraints, etc.) This single decision maker problem can be transformed

into a multiple decision maker problem by taking agents into account who

own at least one job. In such a model a group of agents (coalition) can

save costs by cooperation. The question then arises how to divide the total

cost savings among the group of agents. This question was first addressed

in Curiel, Pederzoli, and Tijs (1989). In that paper sequencing games are

introduced, arising from sequencing situations where weighted completion

times are the cost criteria of the agents. It was shown that sequencing

games are convex, and thus have non-empty cores. Moreover, an allocation

rule dividing the total cost savings obtained from complete cooperation was

introduced and characterised.

The paper by Curiel, Pederzoli, and Tijs (1989) turned out to be the

starting point of a vast growing literature on the interaction between schedul-

ing theory and cooperative game theory. Van den Nouweland, Krabbenborg,

and Potters (1992), Hamers, Klijn, and Suijs (1999) and Calleja, Borm,
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Hamers, Klijn, and Slikker (2002) investigate sequencing games that arise

from multiple-machine sequencing situations. These papers mainly focus on

the non-emptiness of the core of the related sequencing games.

Hamers, Borm, and Tijs (1995) introduce sequencing games arising from

situations with ready times (release dates) on the jobs. In this case the cor-

responding sequencing games have non-empty cores, but are not necessarily

convex. For a special subclass, however, convexity could be established.

Similar results are obtained in Borm, Fiestras-Janeiro, Hamers, Sánchez,

and Voorneveld (2002), in which due dates are imposed on the jobs.

The remainder of this chapter is organised as follows. In Section 6.2 we

introduce sequencing situations and games as introduced in Curiel, Peder-

zoli, and Tijs (1989).

In Section 6.3, which is based on Van Velzen (2004b), sequencing games

are introduced arising from situations with controllable processing times. In

particular, it is assumed that jobs can be processed in shorter durations,

but at extra cost. The main focus is non-emptiness of the core. Convexity

is studied for some special instances.

Section 6.4 is based on Hamers, Klijn, and Van Velzen (2005). That sec-

tion introduces sequencing games arising from situations with a precedence

relation on the jobs. Convexity is shown for games arising from situations

where the precedence relation is a network of parallel chains, and the initial

order is a concatenation of these chains.

Weak-relaxed sequencing games are introduced in Section 6.5. These

sequencing games arise from sequencing situations by considering a less re-

stricted set of admissible processing orders. The section, based on Van

Velzen and Hamers (2003), shows non-emptiness of the core of these games.

Finally, in Section 6.6, which is based on Hamers, Klijn, Slikker, and Van

Velzen (2004), we introduce a model where a finite number of indivisible

objects need to be allocated to the same number of agents. We assume that

the agents are allowed to choose the objects according to some prescribed

order. Furthermore we assume that the agents will collaborate in order to

achieve a society-efficient assignment of the objects and we show that this

assignment is supported by side-payments that guarantee stability, i.e. such
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that each group of agents has an incentive to collaborate with the other

agents.

6.2 Sequencing situations and games

In this section we introduce sequencing situations and games as introduced

in Curiel, Pederzoli, and Tijs (1989).

In a sequencing situation there is a queue of agents, each with one job,

in front of a machine. Each agent has to process his job on the machine.

The set of agents is denoted by N . The positive processing time pi of the

job of agent i ∈ N is the time the machine takes to handle this job. Each

agent has a cost function that is linear in the completion time of its job. In

particular, if t is the completion time of the job of agent i, then ci(t) = αit

with αi > 0. We assume that the machine can only handle one job at

once, and that processing schedules are semi-active, i.e. there are no idle

times in between the processing of jobs. Hence, a processing schedule is

merely an order σ : {1, . . . , |N |} → N that specifies the positions of the jobs

in the queue. The set of all processing orders is denoted by Pr(N). We

assume there is an exogenously given initial processing order σ0 ∈ Pr(N).

This initial processing order has the interpretation that the jobs will be

processed according to this order, unless the agents decide to reorder their

jobs. A sequencing situation is formally described by the tuple (N, σ0, α, p).

If σ ∈ Pr(N) is the processing order of the jobs, then
∑

j∈{1,...,|N |}:j≤σ−1(i) pσ(j) is the completion time of job i ∈ N . Therefore,

the cost of agent i ∈ N at processing order σ is given by

Ci(σ) = αi

(

∑

j∈{1,...,|N |}:j≤σ−1(i)

pσ(j)

)

.

A processing order is called optimal if it minimises the sum of the costs of

all agents. Formally, σ ∈ Pr(N) is optimal if
∑

i∈N

Ci(σ) ≤
∑

i∈N

Ci(τ) for each τ ∈ Pr(N).

In Smith (1956) it is shown that a processing order is optimal if and only

if the jobs are lined up in decreasing order of urgency indices, where the
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urgency index of i ∈ N is given by ui = αi

pi
. We refer to this result as the

Smith-rule.

In the remainder of this section we formally introduce sequencing games.

The characteristic function of a sequencing game describes the maximal cost

savings that coalitions can obtain by means of admissible rearrangements

of the initial processing order. Obviously, the worth of a coalition depends

on the interpretation of the clause “admissible rearrangements.” We call a

processing order σ ∈ Pr(N) admissible for coalition S ⊆ N if

{j ∈ N : σ−1(j) ≤ σ−1(i)}

={j ∈ N : σ−1
0 (j) ≤ σ−1

0 (i)} for each i ∈ N\S.
(6.1)

This condition implies that the completion times of the players outside the

coalition remain the same. Furthermore, players in S are not allowed to

jump over players outside S. The set of all admissible processing orders

for coalition S ⊆ N is denoted by A(S). The (standard) sequencing game

(N, v) is now defined by

v(S) =
∑

i∈S

Ci(σ0) − min
σ∈A(S)

∑

i∈S

Ci(σ)

for each S ⊆ N . It can be easily seen that sequencing games are superaddi-

tive. In fact, sequencing games are chain-component additive with respect

to σ0.
5 This result follows directly from admissibility condition (6.1).

We call S ⊆ N connected with respect to σ0 if there are i, j ∈ {1, . . . , |N |}

with S = {σ0(i), . . . , σ0(j)}. If a coalition is not connected, then it consists

of several connected components. We denote the components of S ⊆ N with

respect to σ0 by C(S).

Let σ ∈ Pr(N) and let i, j ∈ N be such that agent i is directly in

front of agent j with respect to σ. The cost savings that can be obtained

by switching i and j equal gij = max{0, αjpi − αipj}. Observe that this

amount is positive if and only if uj > ui. Since optimal processing orders

5This is a small abuse of terminology since we introduced component additivity of
games with respect to trees and not with respect to orders. However, the initial order σ0

constitutes a chain in a straightforward way.
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can be reached by series of switches of neighbours, it follows that

v(S) =
∑

T∈C(S)

∑

i,j∈T :i<j

gij ,

for each S ⊆ N . Using this last expression it is easily verified that sequencing

games are convex, and therefore have non-empty cores (cf. Curiel, Pederzoli,

and Tijs (1989)).

6.3 Sequencing games with controllable process-

ing times

In reality processing jobs does not only require a machine, but also additional

resources such as manpower, funds, etc. This implies that jobs can be

processed in shorter or longer durations by increasing or decreasing these

additional resources. Of course, deploying these additional resources entails

extra costs, but these extra costs might be compensated by the gains from

job completion at an earlier time. Sequencing situations with controllable

processing times, or cps situations for short, are investigated in, among

others, Vickson (1980a), Vickson (1980b) and Alidaee and Ahmadian (1993).

An overview of literature on cps situations is given in Nowicki and Zdrzalka

(1990).

In this section, which is based on Van Velzen (2004b), we consider se-

quencing games arising from cps situations. For these so-called cps games

we obtain two core elements that depend only on an optimal schedule for

the grand coalition. Furthermore we show that many marginal vectors are

core elements, in spite of the fact that these games are not convex in general.

Finally, we consider convexity for some special instances of cps games.

6.3.1 Sequencing situations with controllable processing

times and games

A sequencing situation with controllable processing times, or cps situation

for short, is a tuple (N, σ0, α, β, p, p̄). Here, N , σ0, α and p have the same

interpretation as in Section 6.2. For the sake of notational simplicity we
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assume throughout this section that σ0(i) = i for each i ∈ {1, . . . , |N |}.

However, in this section we assume that the processing times of the jobs are

not fixed. In particular, the processing time pi of i ∈ N can be reduced to

at most p̄i, the crashed processing time of i. The amount of time by which

the processing time of i is reduced is called the crash time of i. We assume

that 0 ≤ p̄i ≤ pi for each i ∈ N . The cost of each agent is linear in the

completion time of its job, and in the crash time of its job. That is, if t is

the completion time and y the crash time of job i, then

Ci(t, y) = αit + βiy.

Of course, αi and βi are both positive constants for each i ∈ N . Since

crashing a job requires additional resources, we assume that αi ≤ βi for all

i ∈ N . That is, reducing the processing time of a job by one time unit costs

more than the processing of that job by one time unit.

Since processing times are not fixed, a processing schedule is a pair

(σ, x) with σ ∈ Pr(N) and x a vector of feasible processing times. At

processing schedule (σ, x), the completion time of job i ∈ N is equal to
∑

j∈{1,...,|N |}:j≤σ−1(i) xσ(j), and its crash time is pi − xi. Hence, the cost of

agent i ∈ N at processing schedule (σ, x) is

Ci(σ, x) = αi(
∑

j∈{1,...,|N |}:j≤σ−1(i)

xσ(j)) + βi(pi − xi).

A processing schedule (σ, x) is called optimal if it minimises the sum of the

costs of all agents, i.e. if

∑

i∈N

Ci(σ, x) ≤
∑

i∈N

Ci(τ, y) for any processing schedule (τ, y).

Finding an optimal processing schedule for a cps situation falls into the class

of NP-hard problems (Hoogeveen and Woeginger (2002)). The difficulty of

this problem lies in finding optimal processing times. Once a vector of opti-

mal processing times is known, it is straightforward to find a corresponding

optimal processing order by applying the Smith-rule. Although finding op-

timal processing schedules is difficult, the following lemma, due to Vickson
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(1980a), is helpful for our purposes. This lemma states that there is an op-

timal processing schedule such that the processing time of each job is either

equal to its initial processing time, or its crashed processing time. We note

that this result easily follows from the linearity of the cost functions of the

agents.

Lemma 6.3.1 (Vickson (1980a)) Let (N, σ0, α, β, p, p̄) be a cps situa-

tion. There exists an optimal processing schedule (σ, x) such that xi ∈

{pi, p̄i} for all i ∈ N .

From Lemma 6.3.1 it follows that an optimal processing schedule can be

found by considering all 2|N | possibilities for the processing times and apply-

ing the Smith-rule for each of these possibilities. Without loss of generality

we assume throughout this section that optimal processing schedules satisfy

the property of Lemma 6.3.1, i.e. if (σ, x) is an optimal processing schedule,

then xi ∈ {pi, p̄i} for all i ∈ N .

In the remainder of this section we introduce sequencing games with

controllable processing times, or cps games for short. Let (N, σ0, α, β, p, p̄)

be a cps situation. The characteristic function of a cps game will express

the maximal cost savings each coalition can obtain by means of an admis-

sible alteration of the initial processing schedule. For this we have to agree

upon which processing schedules are admissible for a coalition. We call

a processing schedule admissible for a coalition if it satisfies the following

three properties. First, the processing times of the players belonging to the

coalition should be feasible, i.e. in between the crashed processing time and

the initial processing time. Secondly, the processing times of players out-

side the coalition should remain unchanged. Finally, the schedule should

be such that the jobs outside the coalition remain in their initial position

and no jumps take place over players outside the coalition. Let AS(S) de-

note the set of admissible schedules for coalition S ⊆ N . Mathematically,

(σ, x) ∈ AS(S) if

p̄i ≤ xi ≤ pi for all i ∈ S (6.2)

xi = pi for all i ∈ N\S (6.3)
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and if σ satisfies (6.1). The cps game (N, v) is now defined by

v(S) =
∑

i∈S

Ci(σ0, p) − min
(σ,x)∈AS(S)

∑

i∈S

Ci(σ, x)

for each S ⊆ N . The following lemma shows that cps games are superaddi-

tive.

Lemma 6.3.2 Let (N, σ0, α, β, p, p̄) be a cps situation and let (N, v) be the

corresponding game. Then (N, v) is superadditive.

Proof: Let S, T ⊆ N be non-empty sets with S ∩ T = ∅. Let (σS , xS) ∈

AS(S) be an optimal processing schedule for coalition S, and (σT , xT ) ∈

AS(T ) be an optimal processing schedule for coalition T . Now let xS∪T be

given by

xS∪T
i =







xS
i , if i ∈ S;

xT
i , if i ∈ T ;

pi, if i ∈ N\(S ∪ T );

Furthermore, let σS∪T ∈ Pr(N) be a “merger” between σS and σT , i.e. let

σS∪T ∈ Pr(N) be such that

(σS∪T )−1(i) =







(σS)−1(i), if i ∈ S;
(σT )−1(i), if i ∈ T ;

σ−1
0 (i), if i ∈ N\(S ∪ T );

Now observe that (σS∪T , xS∪T ) ∈ AS(S ∪ T ). It is easily verified that

Ci(σ
S∪T , xS∪T ) ≤ Ci(σ

S , xS) for each i ∈ S. Indeed, the position of player

i ∈ S is the same at both orders, and the crash time of i is the same as well.

However, the completion time of i at (σS∪T , xS∪T ) might be smaller than at

(σS , xS), since at (σS∪T , xS∪T ) player i might benefit from possible crashes of

jobs corresponding to players in T . Similarly, Ci(σ
S∪T , xS∪T ) ≤ Ci(σ

T , xT )
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for each i ∈ T . It is straightforward to verify that

v(S ∪ T ) =
∑

i∈S∪T

Ci(σ0, p) − min
(σ,x)∈AS(S∪T )

∑

i∈S∪T

Ci(σ, x)

≥
∑

i∈S∪T

Ci(σ0, p) −
∑

i∈S∪T

Ci(σ
S∪T , xS∪T )

=
∑

i∈S

Ci(σ0, p) −
∑

i∈S

Ci(σ
S∪T , xS∪T )

+
∑

i∈T

Ci(σ0, p) −
∑

i∈T

Ci(σ
S∪T , xS∪T )

≥
∑

i∈S

Ci(σ0, p) −
∑

i∈S

Ci(σ
S , xS)

+
∑

i∈T

Ci(σ0, p) −
∑

i∈T

Ci(σ
T , xT )

= v(S) + v(T ).

The first inequality is satisfied because (σS∪T , xS∪T ) need not be optimal

for S ∪ T . 2

Similarly to Lemma 6.3.1 it is straightforward to see that for each coalition

S ⊆ N there is an optimal processing schedule with the processing time of

each job either equal to its initial processing time, or to its crashed processing

time. Therefore we assume throughout this section that optimal processing

schedules satisfy this property. We now give an example of cps games. This

example illustrates that cps games need not be chain-component additive

with respect to σ0 nor convex.

Example 6.3.1 Let (N, σ0, α, β, p, p̄) be given by N = {1, 2, 3, 4}, α =

(1, 1, 1, 1), β = (2, 2, 2, 2), p = (10, 4, 3, 15), p̄ = (4, 3, 2, 5), and let (N, v) be

the corresponding cps game. Now consider for instance coalition {1, 2, 3}.

An optimal schedule for this coalition is given by (σ, x) ∈ AS({1, 2, 3}) with

σ = (3, 2, 1, 4) and x = (10, 4, 2, 15). This yields cost savings v({1, 2, 3}) =

15.

It can be verified that v({1}) = v({1, 3}) = v({3, 4}) = 0, v({1, 3, 4}) = 6

and v(N) = 17. We conclude that v({1}) + v({3, 4}) = 0 < 6 = v({1, 3, 4}).
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Hence, (N, v) is not chain-component additive with respect to σ0. Further-

more, v({1, 2, 3}) + v({1, 3, 4}) = 21 > 17 = v(N) + v({1, 3}). This shows

that (N, v) is not convex. 3

Note that non-emptiness of the core of many extensions of standard sequenc-

ing games is proved by means of chain-component additivity with respect to

σ0 (e.g. Borm, Fiestras-Janeiro, Hamers, Sánchez, and Voorneveld (2002)

and Hamers, Borm, and Tijs (1995)). Since cps games need not be chain-

component additive with respect to σ0 nor convex, another approach is

needed to establish non-emptiness of the core. This will be the main issue

of the upcoming section.

6.3.2 Cores of sequencing games with controllable processing

times

In this section we prove non-emptiness of the core of cps games. In particu-

lar, we provide two core elements that depend only on an optimal processing

schedule for the grand coalition. Furthermore we show that many marginal

vectors are core elements.

In the first part of this section we provide two core elements that only

depend on an optimal processing schedule for the grand coalition. For the

perception of these two core elements it is important to note that the optimal

processing schedule for the grand coalition can be reached from the initial

processing schedule in several ways. For example one could first reduce the

initial processing times of the jobs to the optimal processing times, and

then rearrange the jobs. But one could also first rearrange the jobs and

then reduce the initial processing times to the optimal processing times.

We emphasise these two possibilities since the construction of our two core

elements depends on them.

Let (N, σ0, α, β, p, p̄) be a cps situation. Let (σ, x) ∈ AS(N) be an opti-

mal processing schedule for the grand coalition. For our first core element,

denoted by γ(σ, x), we will reach this optimal processing schedule by first

crashing jobs, and then rearranging them. Let γ(σ, x) be obtained as fol-

lows. First give the cost savings (or costs) obtained by the crashing of a job
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to the job that crashes and secondly, allocate the cost savings obtained by

interchanging two jobs to the back job. Or to put it in a formula:

γi(σ, x) =

(

∑

j∈N :j≥i

αj − βi

)

(pi − xi) +
∑

j∈N :j<i

(αixj − αjxi)+,

for all i ∈ N . Here (
∑

j∈N :j≥i αj −βi)(pi −xi) are the cost savings obtained

by crashing job i by pi − xi units of time. The cost savings obtained by

moving job i up in the queue equal
∑

j∈N :j<i(αixj − αjxi)+.

For our second core element, denoted by δ(σ, x), we reach the optimal

processing schedule (σ, x) by first interchanging jobs to the optimal order,

and then crashing them. Let δ(σ, x) be the following allocation. First give

the cost savings (or costs) of each neighbourswitch to the back job, and

secondly, allocate the cost savings due to the crashing of a job to the job

that crashes. That is,

δi(σ, x) =
∑

j∈N :j<i,σ−1(j)>σ−1(i)

(αipj − αjpi)

+

(

∑

k∈N :σ−1(k)≥σ−1(i)

αk − βi

)

(pi − xi).

for each i ∈ N . Clearly, γ(·) and δ(·) depend on which optimal processing

schedule is used. However, because of notational convenience we will write

γ and δ instead of γ(σ, x) and δ(σ, x) if there can be no confusion about the

optimal processing schedule that is used.

Before we show that γ and δ are core elements, we need two lemmas. In

the first we obtain an expression for δ that we use in the proof of Theorem

6.3.1. The second lemma is a technical but straightforward lemma which we

use throughout this section.

Lemma 6.3.3 Let (N, σ0, α, β, p, p̄) be a cps situation and let (σ, x) ∈

AS(N) be an optimal processing schedule. Then,

δi = γi −
∑

j∈N :j>i,σ−1(j)<σ−1(i)

αj(pi − xi)

+
∑

j∈N :j<i,σ−1(j)>σ−1(i)

αi(pj − xj).
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for all i ∈ N .

Proof: Let i ∈ N . Then

δi =
∑

j∈N :j<i, σ−1(j)>σ−1(i)

(αipj − αjpi) (6.4)

+

(

∑

k∈N :σ−1(k)≥σ−1(i)

αk − βi

)

(pi − xi) (6.5)

First note for expression (6.4) that

∑

j∈N :j<i, σ−1(j)>σ−1(i)

(αipj − αjpi)

=
∑

j∈N :j<i, σ−1(j)>σ−1(i)

(αixj − αjpi) (6.6)

+
∑

j∈N :j<i, σ−1(j)>σ−1(i)

αi(pj − xj). (6.7)

Furthermore, note for expression (6.5) that

(

∑

k∈N :σ−1(k)≥σ−1(i)

αk − βi

)

(pi − xi)

=

(

∑

k∈N :k≥i

αk − βi

)

(pi − xi) (6.8)

−
∑

j∈N :j>i, σ−1(j)<σ−1(i)

αj(pi − xi) (6.9)

+
∑

j∈N :j<i, σ−1(j)>σ−1(i)

αj(pi − xi). (6.10)

Now adding expressions (6.6) and (6.10) yields

∑

j∈N :j<i, σ−1(j)>σ−1(i)

(αixj − αjpi) +
∑

j∈N :j<i, σ−1(j)>σ−1(i)

αj(pi − xi)

=
∑

j∈N :j<i, σ−1(j)>σ−1(i)

(αixj − αjxi)

=
∑

j∈N :j<i

(αixj − αjxi)+. (6.11)
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The last equality is satisfied because according to the Smith-rule, σ−1(j) >

σ−1(i) implies αixj−αjxi ≥ 0, and σ−1(j) < σ−1(i) implies αixj−αjxi ≤ 0.

Observe that the sum of expressions (6.8) and (6.11) coincides with γi. We

conclude that

δi = γi −
∑

j∈N :j>i, σ−1(j)<σ−1(i)

αj(pi − xi)

+
∑

j∈N :j<i, σ−1(j)>σ−1(i)

αi(pj − xj). 2

Lemma 6.3.4 Let a1, a2, q1, q̄1, q2 ≥ 0 with q1 ≥ q̄1. Then,

a2(q1 − q̄1) + (a2q̄1 − a1q2)+ ≥ (a2q1 − a1q2)+.

Proof: If (a2q1 − a1q2)+ = 0, then the inequality is trivially satisfied,

so suppose that (a2q1 − a1q2)+ > 0. This implies that a2q1 − a1q2 > 0.

Straightforwardly it follows that

a2(q1 − q̄1) + (a2q̄1 − a1q2)+ ≥ a2(q1 − q̄1) + (a2q̄1 − a1q2)

= a2q1 − a1q2

= (a2q1 − a1q2)+. 2

Theorem 6.3.1 Let (N, σ0, α, β, p, p̄) be a cps situation and (N, v) its cor-

responding cps game. Let (σ, x) ∈ AS(N) be an optimal processing schedule.

Then, γ, δ ∈ C(v).

Proof: Since γ and δ are efficient by definition, we only show that
∑

i∈T γi ≥

v(T ) and
∑

i∈T δi ≥ v(T ) for each T ⊆ N . Let T ⊆ N . We need to show

that
∑

i∈T γi ≥ v(T ) and
∑

i∈T δi ≥ v(T ). We will equivalently show that
∑

i∈N\T γi + v(T ) ≤ v(N) and
∑

i∈N\T δi + v(T ) ≤ v(N) by constructing a

suboptimal processing schedule (σsubopt, psubopt) ∈ AS(N) that depends on

an optimal processing schedule of T . We show that the total cost savings

obtained at this processing schedule exceed both
∑

i∈N\T γi + v(T ) and
∑

i∈N\T δi + v(T ). Obviously the cost savings at the suboptimal processing

schedule are at most v(N).
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We first find usable expressions for
∑

i∈N\T γi and
∑

i∈N\T δi. Note that

∑

i∈N\T

γi =
∑

i∈N\T

(

∑

j∈N :j≥i

αj − βi

)

(pi − xi) (6.12)

+
∑

i,j∈N\T :j<i

(αixj − αjxi)+ (6.13)

+
∑

j∈T,i∈N\T :j<i

(αixj − αjxi)+ (6.14)

and that

∑

i∈N\T

δi =
∑

i∈N\T

γi

−
∑

i∈N\T

∑

j∈N :j>i,σ−1(j)<σ−1(i)

αj(pi − xi) (6.15)

+
∑

i∈N\T

∑

j∈N :j<i,σ−1(j)>σ−1(i)

αi(pj − xj), (6.16)

=
∑

i∈N\T

γi (6.17)

−
∑

i∈N\T

∑

j∈T :j>i,σ−1(j)<σ−1(i)

αj(pi − xi) (6.18)

+
∑

i∈N\T

∑

j∈T :j<i,σ−1(j)>σ−1(i)

αi(pj − xj), (6.19)

where the first equality holds because of Lemma 6.3.3. The second equality

is satisfied because for each pair i, j ∈ N\T with j > i and σ−1(j) < σ−1(i)

every term in (6.15) also appears in (6.16) but with opposite sign.

Let (σT , pT ) ∈ AS(T ) be an optimal processing schedule for coalition T .

Consider the processing schedule (σsubopt, psubopt) ∈ AS(N), where p
subopt
j =

pT
j if j ∈ T , p

subopt
j = xj if j ∈ N\T , and σsubopt is the order obtained by

applying the Smith-rule using the suboptimal processing times. The total

cost savings for the grand coalition at this processing schedule equal

P =
∑

j∈T

(

∑

i∈T :i≥j

αi − βj

)

(pj − p
subopt
j ) (6.20)
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+
∑

j∈T

(

∑

i∈N\T :i>j

αi

)

(pj − p
subopt
j ) (6.21)

+
∑

j∈N\T

(

∑

i∈N :i≥j

αi − βj

)

(pj − p
subopt
j ) (6.22)

+
∑

j,i∈N\T :j<i

(αip
subopt
j − αjp

subopt
i )+ (6.23)

+
∑

j∈N\T,i∈T :j<i

(αip
subopt
j − αjp

subopt
i )+ (6.24)

+
∑

j∈T,i∈N\T :j<i

(αip
subopt
j − αjp

subopt
i )+ (6.25)

+
∑

j,i∈T :j<i

(αip
subopt
j − αjp

subopt
i )+. (6.26)

Expressions (6.20) and (6.21) are the cost savings obtained by crashing the

jobs of T , and expression (6.22) the cost savings obtained by crashing the

jobs of N\T . The cost savings obtained by rearranging the jobs are equal

to the sum of expressions (6.23), (6.24), (6.25) and (6.26).

Now we will show that the sum of (6.12), (6.13), (6.14), (6.19) and v(T )

is exceeded by P . Since (6.19) is non-negative, this shows that
∑

i∈N\T γi +

v(T ) is exceeded by P . Furthermore, since (6.18) is non-positive, it also

shows that
∑

i∈N\T δi + v(T ) is exceeded by P .

First note that the sum of expressions (6.20) and (6.26) exceeds v(T )

because p
subopt
i = pT

i for all i ∈ T . It also holds that (6.22) coincides with

(6.12) as well as (6.23) coincides with (6.13) because p
subopt
j = xj for all

j ∈ N\T . Finally, note that expression (6.24) is non-negative. Hence, for

showing that the sum of expressions (6.12), (6.13), (6.14), (6.19) and v(T )

is exceeded by P it is sufficient to show that the sum of (6.14) and (6.19) is

exceeded by the sum of (6.21) and (6.25). We will show this by comparing

these sums for each pair i, j ∈ N with j ∈ T , i ∈ N\T and j < i.

Let j ∈ T and i ∈ N\T be such that j < i. Note that p
subopt
i = xi and

that p
subopt
j = pT

j . We distinguish between two cases.

Case 1: σ−1(j) ≤ σ−1(i).

In this case, i and j do not have a corresponding term in (6.19). There-
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fore we only need to compare the term in (6.14) corresponding to i and j

with the terms in (6.21) and (6.25) corresponding to i and j.

If p
subopt
j ≥ xj , then (αip

subopt
j − αjp

subopt
i )+ = (αip

subopt
j − αjxi)+ ≥

(αixj − αjxi)+. Hence, the term in (6.14) corresponding to i and j is ex-

ceeded by the term in (6.25) corresponding to i and j. Since the term in

(6.21) corresponding to i and j is non-negative we conclude that the term

in (6.14) corresponding to i and j is exceeded by the sum of the terms in

(6.21) and (6.25) corresponding to i and j.

So assume that p
subopt
j < xj . Since optimal processing times only take

two values by assumption, p
subopt
j = p̄j and xj = pj . It is easily verified, using

Lemma 6.3.4 with a1 = αj , a2 = αi, q1 = pj , q̄1 = p
subopt
j and q2 = p

subopt
i ,

that αi(pj−p
subopt
j )+(αip

subopt
j −αjp

subopt
i )+ ≥ (αipj−αjp

subopt
i )+ = (αixj−

αjxi)+. Here the equality holds because pj = xj and p
subopt
i = xi.

We conclude that the terms in (6.21) and (6.25) corresponding to i and

j exceed the term in (6.14) corresponding to i and j.

Case 2: σ−1(j) > σ−1(i).

Since σ−1(j) > σ−1(i) we conclude, using the Smith-rule, that the ur-

gency index of i exceeds the urgency index of j. That is, αi

xi
≥

αj

xj
and

therefore, αixj − αjxi ≥ 0. Straightforwardly we obtain

αi(pj − p
subopt
j ) + (αip

subopt
j − αjp

subopt
i )+

≥ αi(pj − p
subopt
j ) + (αip

subopt
j − αjp

subopt
i )

= αipj − αjp
subopt
i

= (αixj − αjp
subopt
i ) + αi(pj − xj)

= (αixj − αjxi)+ + αi(pj − xj),

where the last equality holds since p
subopt
i = xi and αixj − αjxi ≥ 0. We

conclude that the terms in expressions (6.21) and (6.25) corresponding to i

and j exceed the terms in expressions (6.14) and (6.19) corresponding to i

and j. 2

In the upcoming part of this section we study marginal vectors that provide

core elements. In the next theorem we show that many marginal vectors are
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core elements by showing that the corresponding orders are permutationally

convex. In particular we show that any order with players 2, . . . , |N | ordered

backwards is permutationally convex. First we need a lemma. This lemma

states that if a coalition consists of several components, then each optimal

processing schedule of this coalition is also optimal for its last component.

The intuition behind this result is that the jobs from other components do

not benefit from the crashing of jobs in the last component.

Lemma 6.3.5 Let (N, σ0, α, β, p, p̄) be a cps situation. Let S ⊆ N and let

T ∈ C(S) be the last component of S. Then every optimal schedule for S

restricted to T is optimal for T .

The proof is omitted since it is trivial.

Theorem 6.3.2 Let (N, σ0, α, β, p, p̄) be a cps situation and (N, v) its cor-

responding cps game. Let j ∈ {1, . . . , |N |} and let σ ∈ Π(N) be such that

σ(i) = |N | + 1 − i for all i ∈ {1, . . . , j − 1}, σ(i) = |N | + 2 − i for all

i ∈ {j + 1, . . . , |N |} and σ(j) = 1. Then, σ is permutationally convex for

(N, v). In particular, mσ(v) ∈ C(v).

Proof: We need to show that for all i, k ∈ {0, . . . , |N | − 1} with i < k and

all S ⊆ N\[σ(k), σ] with S 6= ∅ that expression (2.1) is satisfied.

So let i, k ∈ {0, . . . , |N | − 1} with i < k and S ⊆ N\[σ(k), σ] with

S 6= ∅. We assume that i ≥ 1, because for i = 0 expression (2.1) is satisfied

due to superadditivity. For notational convenience, let I = [σ(i), σ] and

K = [σ(k), σ]. Observe that (2.1) now boils down to

v(I ∪ S) + v(K) ≤ v(K ∪ S) + v(I). (6.27)

Because of the structure of σ, I and K both consist of at most two connected

components. In particular, they consist of possibly player 1 and a tail6 of σ0.

If 1 ∈ K, then we denote the first component by K1 = {1} and the second

by K2 = K\{1}. If 1 6∈ K, then there is one component which we denote by

6A tail of σ0 is a coalition T ⊆ N such that T = {σ0(j), . . . , σ0(|N |)} for some j ∈
{1, . . . , |N |}.
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K2 and we define K1 = ∅. Similarly, if 1 ∈ I, then I1 = {1} and I2 = I\{1}.

We remark that it can occur that I2 = ∅, in case σ = (1, |N |, |N | − 1, . . . , 2)

and i = 1. If 1 6∈ I, then there is one component which we denote by I2 and

we define I1 = ∅.

Let (τ I∪S , pI∪S) be an optimal processing schedule of coalition I ∪ S,

and (τK , pK) an optimal processing schedule of coalition K. We will create

suboptimal processing schedules for coalitions K ∪ S and I, depending on

(τ I∪S , pI∪S) and (τK , pK). In particular we “allocate” the processing times

of coalitions I ∪S and K to coalitions K ∪S and I. By applying the Smith-

rule we then obtain processing schedules that give lower bounds for v(K∪S)

and v(I). We will show that the sum of these lower bounds exceeds the sum

of v(I ∪ S) and v(K). We distinguish between two cases.

Case 1: I2 ( K2.

Before we obtain our suboptimal processing schedules, we first derive

expressions for v(K) and v(I ∪ S). Observe that

v(K) =
∑

l∈K1

(

∑

m∈K

αm − βl

)

(pl − pK
l ) (6.28)

+ v(K2). (6.29)

The cost savings of coalition K can be divided into two parts. The cost

savings obtained by a possible crash of job 1 equal (6.28). Note that if

1 6∈ K, then K1 = ∅ and expression (6.28) is zero by definition. The other

cost savings are obtained by interchanging and crashing jobs of K2. These

cost savings equal (6.29) according to Lemma 6.3.5.

Since K2 is a tail of σ0, I2 ( K2 and K2 ∩ S = ∅, we conclude that

S is not connected to I2. Now let S1, . . . , St, t ≥ 1, be the components of

(I ∪ S)\I2. We assume that if 1 ∈ I, then 1 ∈ S1. Now

v(I ∪ S) =
∑

l∈I1

(

∑

m∈I∪S

αm − βl

)

(pl − pI∪S
l ) (6.30)

+
∑

l∈S

(

∑

m∈I2∪S:m≥l

αm − βl

)

(pl − pI∪S
l ) (6.31)
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+
∑

l,m∈S1:l<m

(αmpI∪S
l − αlp

I∪S
m )+ (6.32)

+
t

∑

a=2

∑

l,m∈Sa:l<m

(αmpI∪S
l − αlp

I∪S
m )+ (6.33)

+ v(I2). (6.34)

If 1 ∈ I, then expression (6.30) denotes the cost savings obtained by a

possible crash of job 1. The cost savings obtained by crashing the jobs in

S equal (6.31). Expressions (6.32) and (6.33) are the cost savings obtained

by switching the jobs in I1 ∪ S. Because of Lemma 6.3.5 the cost savings

obtained by crashing and rearranging jobs in I2 can be expressed as (6.34).

Now we will create suboptimal processing schedules (πI , pI) and

(πK∪S , pK∪S) for coalitions I and K ∪ S, respectively. Let

pI
l =







pI∪S
l , if l ∈ I2;

max{pI∪S
l , pK

l }, if l = 1;
pl, if l ∈ N\I, l 6= 1.

Note that if 1 6∈ I, then 1 6∈ K or 1 6∈ I ∪ S. So if 1 6∈ I, then pK
1 = p1 or

pI∪S
1 = p1. Therefore, pI

1 = p1. We conclude that pI satisfies admissibility

constraints (6.2) and (6.3).

Furthermore let πI be obtained from σ0 by rearranging the jobs of I

according to the Smith-rule using processing times pI , taking of course into

account admissibility constraint (6.1). This processing schedule restricted

to I2 is an optimal processing schedule for I2 according to Lemma 6.3.5.

This yields

v(I) ≥
∑

l∈I1

(

∑

m∈I

αm − βl

)

(pl − pI
l ) (6.35)

+ v(I2). (6.36)

Similarly, let

pK∪S
l =















pK
l , if l ∈ K2;

pI∪S
l , if l ∈ S, l 6= 1;

min{pI∪S
l , pK

l }, if l = 1;
pl, if l ∈ N\(K ∪ S), l 6= 1.
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Observe that if 1 6∈ K ∪ S, then 1 6∈ I ∪ S and 1 6∈ K. Hence, if 1 6∈ K ∪ S,

then pK
1 = p1, pI∪S

1 = p1 and pK∪S
1 = p1. We conclude that pK∪S satisfies

admissibility constraints (6.2) and (6.3).

Now using these processing times, let πK∪S be the order obtained from σ0

by interchanging the jobs according to the Smith-rule, while of course taking

into account admissibility constraint (6.1). However, only interchange two

jobs if both jobs are in K2, or both jobs are in I1 ∪S. This last condition is

a technical detail in order to keep the number of terms of our lower bound

for the cost savings of coalition K ∪ S more manageable. Observe that this

restriction only lowers our lower bound of v(K ∪S). Again note, by Lemma

6.3.5, that this processing schedule restricted to K2 is optimal for K2. This

yields

v(K ∪ S) ≥
∑

l∈K1

(

∑

m∈K∪S

αm − βl

)

(pl − pK∪S
l ) (6.37)

+
∑

l∈S

(

∑

m∈K2∪S:m≥l

αm − βl

)

(pl − pK∪S
l ) (6.38)

+
∑

l,m∈S1:l<m

(αmpK∪S
l − αlp

K∪S
m )+ (6.39)

+
t

∑

a=2

∑

l,m∈Sa:l<m

(αmpK∪S
l − αlp

K∪S
m )+ (6.40)

+ v(K2). (6.41)

Now first observe that expressions (6.36) and (6.34) coincide, as well as

expressions (6.41) and (6.29). Furthermore expression (6.38) exceeds ex-

pression (6.31) since I2 ⊆ K2 and pK∪S
l = pI∪S

l for all l ∈ S. It also holds

that expression (6.33) coincides with expression (6.40) because pK∪S
l = pI∪S

l

for all l ∈ S. So showing (6.27) is satisfied boils down to showing that the

sum of expressions (6.35), (6.37) and (6.39) exceeds the sum of expressions

(6.28), (6.30) and (6.32). We now distinguish between three subcases.

Subcase 1a: 1 6∈ K.

This implies that K1 = ∅, and thus that I1 = ∅. Therefore, expressions

(6.28), (6.30), (6.35) and (6.37) all are equal to zero. Hence, it is sufficient
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to show that (6.39) exceeds (6.32). Because 1 6∈ K, it follows that pk
1 = p1.

By definition of pK∪S
1 it is now satisfied that pK∪S

1 = pI∪S
1 . Therefore,

pI∪S
j = pK∪S

j for all j ∈ S1. We conclude that (6.39) and (6.32) coincide.

Subcase 1b: 1 ∈ K and pK∪S
1 = pI∪S

1 .

Because pK∪S
1 = pI∪S

1 , it follows from the definition of pK∪S
1 that pI∪S

1 ≤

pK
1 . We conclude that pI

1 = pK
1 . Note that (6.39) and (6.32) coincide, since

pI∪S
j = pK∪S

j for all j ∈ S1. So showing that (6.27) is satisfied, boils down

to showing that the sum of expressions (6.35) and (6.37) exceeds the sum of

expressions (6.28) and (6.30).

Now first suppose that pK
1 = p1. Then, expression (6.28) is equal to

zero. Since pI
1 = pK

1 it follows that expression (6.35) is equal to zero as well.

Now if I1 6= ∅, then (6.37) exceeds expression (6.30), since pK∪S
1 = pI∪S

1 and

I ⊆ K. So assume that I1 = ∅. In this case expression (6.30) is equal to

zero, so it remains to show that expression (6.37) is non-negative. Because

1 ∈ K, it follows that 1 6∈ S, and therefore 1 6∈ I ∪ S. So pI∪S
1 = p1, and

therefore pK∪S
1 = p1 as well. Hence, expression (6.37) is equal to zero. We

conclude that (6.27) is satisfied.

Secondly, suppose that pK
1 < p1. Since optimal processing times can

only take two values we conclude that pK
1 = p̄1. Since by assumption of

subcase 1b, pK∪S
1 = min{pK

1 , pI∪S
1 } = pI∪S

1 , it follows that pI∪S
1 = p̄1. We

conclude that pI
1 = max{pK

1 , pI∪S
1 } = max{p̄1, p̄1} = p̄1.

Observe that because 1 ∈ K, that 1 6∈ S. Since pI∪S
1 < p1, this im-

plies that 1 ∈ I. Thus, K1 = I1 = {1}. Hence, it follows for the sum of

expressions (6.28) and (6.30) that

∑

l∈K1

(

∑

m∈K

αm − βl

)

(pl − pK
l ) +

∑

l∈I1

(

∑

m∈I∪S

αm − βl

)

(pl − pI∪S
l )

=

(

∑

m∈K

αm − β1

)

(p1 − p̄1) +

(

∑

m∈I∪S

αm − β1

)

(p1 − p̄1)

=

(

∑

m∈K∪S

αm − β1

)

(p1 − p̄1) +

(

∑

m∈I

αm − β1

)

(p1 − p̄1),

where the first equality is satisfied since K1 = I1 = {1} and pK
1 = pI∪S

1 = p̄1.

Note that this last expression is equal to the sum of expressions (6.35) and
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(6.37) since pI
1 = pK∪S

1 = p̄1 and K1 = I1 = {1}. We conclude that (6.27) is

satisfied.

Subcase 1c: 1 ∈ K and pK∪S
1 < pI∪S

1 .

We now necessarily have that pK∪S
1 = pK

1 and that pI
1 = pI∪S

1 . Since

optimal processing times can only take two values it follows that pK∪S
1 =

pK
1 = p̄1 and that pI

1 = pI∪S
1 = p1. Therefore expressions (6.30) and (6.35)

are both equal to zero. So showing that (6.27) is satisfied boils down to

showing that the sum of expressions (6.37) and (6.39) exceeds the sum of

expressions (6.28) and (6.32). First observe for expression (6.37) that
∑

l∈K1

(

∑

m∈K∪S

αm − βl

)

(pl − pK∪S
l )

=

(

∑

m∈K∪S

αm − β1

)

(p1 − p̄1)

≥

(

∑

m∈K

αm − β1

)

(p1 − p̄1) (6.42)

+

(

∑

m∈S1\{1}

αm

)

(p1 − p̄1), (6.43)

where the equality holds because K1 = {1} and because pK∪S
1 = p̄1. The

inequality holds since (S1\{1}) ⊆ S. Since K1 = {1} and pK
1 = p̄1, it

follows that expression (6.42) coincides with expression (6.28). Therefore

it is now sufficient to show that the sum of expressions (6.39) and (6.43)

exceeds expression (6.32). If 1 6∈ S1, then expression (6.39) coincides with

expression (6.32) since pK∪S
m = pI∪S

m for all m ∈ S1\{1}. The non-negativity

of expression (6.43) now implies that the sum of expressions (6.39) and (6.43)

exceeds expression (6.32). So assume that 1 ∈ S1, and rewrite expression

(6.39) as
∑

l,m∈S1:l<m

(αmpK∪S
l − αlp

K∪S
m )+

=
∑

l,m∈S1\{1}:l<m

(αmpK∪S
l − αlp

K∪S
m )+ (6.44)

+
∑

m∈S1\{1}

(αmp̄1 − α1p
K∪S
m )+. (6.45)
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For the equality we have used that pK∪S
1 = p̄1. For the sum of expressions

(6.43) and (6.45) we have that

(

∑

m∈S1\{1}

αm

)

(p1 − p̄1) +
∑

m∈S1\{1}

(αmp̄1 − α1p
K∪S
m )+

≥
∑

m∈S1\{1}

(αmp1 − α1p
K∪S
m )+

=
∑

m∈S1\{1}

(αmpI∪S
1 − α1p

I∪S
m )+. (6.46)

The inequality holds because of Lemma 6.3.4 by taking a1 = α1, a2 =

αm, q1 = p1, q̄1 = p̄1 and q2 = pK∪S
m . The equality is satisfied because

pI∪S
1 = p1 and pK∪S

m = pI∪S
m for all m ∈ S1\{1}. Now observe that the

sum of expressions (6.44) and (6.46) coincides with expression (6.32) since

pK∪S
m = pI∪S

m for all m ∈ S1\{1} and our assumption that 1 ∈ S1. We

conclude that (6.27) is satisfied.

Case 2: I2 = K2.

Since we have assumed that i < k and hence that I 6= K we conclude,

using the structure of σ, that I1 = ∅ and K1 = {1}. We have

v(K) =

(

∑

m∈K

αm − β1

)

(p1 − pK
1 ) (6.47)

+ v(K2) (6.48)

and

v(I ∪ S) =
∑

l∈I∪S

(

∑

m∈I∪S:m≥l

αm − βl

)

(pl − pI∪S
l ) (6.49)

+
∑

T∈C(I∪S)

∑

l,m∈T :l<m

(αmpI∪S
l − αlp

I∪S
m )+. (6.50)

First we note, because I1 = ∅, that v(I) = v(I2) = v(K2). So showing that

(6.27) is satisfied boils down to showing that the sum of expressions (6.47),

(6.49) and (6.50) is exceeded by v(K ∪ S). We will obtain a lower bound of

v(K ∪ S) by creating a processing schedule for coalition K ∪ S, which we
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will denote by (πK∪S , pK∪S). Let the processing times be given by

pK∪S
l =







pI∪S
l , if l ∈ I ∪ S;

pK
l , if l = 1;

pl, if l ∈ N\(K ∪ S).

Let πK∪S be constructed by rearranging the jobs of coalition K ∪ S using

the Smith-rule and our suboptimal processing times. However, only switch

jobs if both are in I ∪S. Observe that (pK∪S , πK∪S) ∈ AS(K ∪ S). We can

conclude for the cost savings of K ∪ S that

v(K ∪ S) ≥

(

∑

m∈K∪S

αm − β1

)

(p1 − pK∪S
1 ) (6.51)

+
∑

l∈(K∪S)\{1}

(

∑

m∈K∪S:m≥l

αm − βl

)

(pl − pK∪S
l ) (6.52)

+
∑

T∈C(I∪S)

∑

l,m∈T :l<m

(αmpK∪S
l − αlp

K∪S
m )+. (6.53)

Expression (6.47) is exceeded by expression (6.51) since pK∪S
1 = pK

1 . Note

that expression (6.52) coincides with expression (6.49) since (K ∪ S)\{1} =

I ∪ S and because pK∪S
l = pI∪S

l for all l ∈ I ∪ S. Furthermore we have that

expressions (6.50) and (6.53) coincide because pI∪S
l = pK∪S

l for all l ∈ I ∪S.

We conclude that the sum of v(K ∪S) and v(I) exceeds the sum of v(I ∪S)

and v(K). 2

The orders described in Theorem 6.3.2 are not the only permutationally

convex orders of cps games. Using Corollary 2.5.1, we conclude that if

σ ∈ Π(N) is permutationally convex, then σ|N |−1 is permutationally convex

as well. Moreover, we will show for cps games that if σ ∈ Π(N) is permu-

tationally convex, then σ1 is permutationally convex as well. We first need

the following lemma.

Lemma 6.3.6 Let (N, σ0, α, β, p, p̄) be a cps situation and (N, v) its corre-

sponding cps game. Let S, T ⊆ N with |S ∩ T | = 1. Then, v(S) + v(T ) ≤

v(S ∪ T ).
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Proof: Let S, T ⊆ N and i ∈ N be such that S ∩ T = {i}. Let T ∗ ∈ C(T )

be such that i ∈ T ∗. Define T ∗
l = {m ∈ T ∗ : m < i} be those players in T ∗

on the left-hand side of i, and T ∗
r = {m ∈ T ∗ : m > i} be those players in T ∗

on the right-hand side of i. Let (σS , pS) ∈ AS(S) be an optimal processing

schedule for coalition S and (σT , pT ) ∈ AS(T ) be an optimal processing

schedule for coalition T . Then

v(S) =
∑

j∈S

(

∑

k∈S:k≥j

αk − βj

)

(pj − pS
j ) (6.54)

+
∑

U∈C(S)

∑

l,m∈U :l<m

(αmpS
l − αlp

S
m)+. (6.55)

The cost savings for coalition S can be split into two parts. The first part,

(6.54), are the (possibly negative) cost savings that are obtained by crashing

jobs. The second part of the cost savings, displayed in expression (6.55), are

the cost savings obtained by interchanging jobs. Similarly,

v(T ) =
∑

j∈T

(

∑

k∈T :k≥j

αk − βj

)

(pj − pT
j ) (6.56)

+
∑

U∈C(T )

∑

l,m∈U :l<m

(αmpT
l − αlp

T
m)+. (6.57)

We will now construct a suboptimal processing schedule for coalition

S ∪ T . We will show that the cost savings obtained at this processing

schedule exceed the sum of v(S) and v(T ). Consider the processing schedule

(σS∪T , pS∪T ) ∈ AS(S ∪ T ) for coalition S ∪ T , where

pS∪T
j =















pS
j , if j ∈ S\{i};

pT
j , if j ∈ T\{i};

min{pS
j , pT

j }, if j = i;

pj , if j ∈ N\(S ∪ T ).

Note that pS∪T satisfies admissibility constraints (6.2) and (6.3). Further-

more, let σS∪T be the order obtained by rearranging the jobs of S ∪ T

according to the Smith-rule using as processing times pS∪T and taking into
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account admissibility constraint (6.1). This yields

v(S ∪ T ) ≥
∑

j∈S∪T

(

∑

k∈S∪T :k≥j

αk − βj

)

(pj − pS∪T
j )

+
∑

U∈C(S∪T )

∑

l,m∈U :l<m

(αmpS∪T
l − αlp

S∪T
m )+

=
∑

j∈S\{i}

(

∑

k∈S∪T :k≥j

αk − βj

)

(pj − pS
j ) (6.58)

+
∑

j∈T\{i}

(

∑

k∈S∪T :k≥j

αk − βj

)

(pj − pT
j ) (6.59)

+

(

∑

k∈S∪T :k≥i

αk − βi

)

(pi − pS∪T
i ) (6.60)

+
∑

U∈C(S∪T )

∑

l,m∈U :l<m

(αmpS∪T
l − αlp

S∪T
m )+. (6.61)

We distinguish between three cases in order to prove our inequality.

Case 1: pS
i = pT

i = pi.

First note that pS∪T
j = pS

j for all j ∈ S and that pS∪T
j = pT

j for all

j ∈ T . Therefore, expression (6.60) is equal to zero because pS∪T
i = pi.

Furthermore, expression (6.58) exceeds expression (6.54), as well as expres-

sion (6.59) exceeds expression (6.56), since pS
i = pT

i = pi. So showing that

v(S)+v(T ) ≤ v(S∪T ) boils down to showing that expression (6.61) exceeds

the sum of expressions (6.55) and (6.57). Let U ∈ C(S) and j, h ∈ U with

j < h. It follows that j, h ∈ W for some W ∈ C(S ∪ T ). We conclude that

the term in (6.55) dealing with j and h also appears in (6.61). Similarly, for

each U ∈ C(T ) and each pair j, h ∈ U with j < h, there is a W ∈ C(S ∪ T )

with j, h ∈ W . Therefore, the term in (6.57) dealing with j, h also appears

in (6.61). Observe that each pair in S is not in T , and that each pair in T

is not in S, because |S ∩ T | = 1. We conclude, due to the non-negativity of

every term in (6.61), that (6.61) exceeds the sum of (6.55) and (6.57).

Case 2: pS
i = pT

i = p̄i.

Note, by definition of pS∪T
i , that pS∪T

i = pS
i = pT

i . This implies that

pS∪T
j = pS

j for all j ∈ S and pS∪T
j = pT

j for all j ∈ T . First we develop a
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lower bound for (6.60):
(

∑

k∈S∪T :k≥i

αk − βi

)

(pi − pS∪T
i )

=

(

∑

k∈S:k≥i

αk − βi

)

(pi − pS∪T
i )

+

(

∑

k∈T :k≥i

αk − βi

)

(pi − pS∪T
i ) + (βi − αi)(pi − pS∪T

i )

≥

(

∑

k∈S:k≥i

αk − βi

)

(pi − pS
i ) (6.62)

+

(

∑

k∈T :k≥i

αk − βi

)

(pi − pT
i ) (6.63)

where the inequality is satisfied since βi ≥ αi, and by assumption pS∪T
i =

pS
i = pT

i . Observe that the sum of expressions (6.58) and (6.62) exceeds

expression (6.54) and that the sum of expressions (6.59) and (6.63) exceeds

expression (6.56). Hence, showing that v(S) + v(T ) ≤ v(S ∪ T ) boils down

to showing that expression (6.61) exceeds the sum of expressions (6.55) and

(6.57). For this last statement we refer to Case 1, where we already showed

this inequality. Note that we can refer to Case 1, since in both cases we

have that pS∪T
j = pS

j for all j ∈ S and pS∪T
j = pT

j for all j ∈ T .

Case 3: pS
i 6= pT

i .

Without loss of generality assume that pS
i < pT

i , or equivalently pS
i = p̄i

and pT
i = pi. Hence, by definition of pS∪T

i , pS∪T
i = pS

i = p̄i. First we derive

a lower bound for (6.60):
(

∑

k∈S∪T :k≥i

αk − βi

)

(pi − pS∪T
i )

=

(

∑

k∈S:k≥i

αk − βi

)

(pi − pS
i ) +

(

∑

k∈T :k>i

αk

)

(pi − pS
i )

≥

(

∑

k∈S:k≥i

αk − βi

)

(pi − pS
i ) (6.64)

+

(

∑

m∈T ∗
r

αm

)

(pi − pS
i ), (6.65)
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where the equality holds because pS∪T
i = pS

i and the inequality because

T ∗
r ⊆ {k ∈ T : k > i}. Observe that expression (6.59) exceeds expression

(6.56), since pT
i = pi. Furthermore, the sum of expressions (6.58) and (6.64)

exceeds expression (6.54). Therefore, showing that v(S) + v(T ) ≤ v(S ∪ T )

boils down to showing that the sum of expressions (6.61) and (6.65) exceeds

the sum of expressions (6.55) and (6.57). Note that, because |S ∩ T | = 1,

we have the following lower bound for (6.61):

∑

U∈C(S∪T )

∑

l,m∈U :l<m

(αmpS∪T
l − αlp

S∪T
m )+

≥
∑

U∈C(S)

∑

l,m∈U :l<m

(αmpS∪T
l − αlp

S∪T
m )+ (6.66)

+
∑

U∈C(T )

∑

l,m∈U :l<m

(αmpS∪T
l − αlp

S∪T
m )+. (6.67)

Obviously, (6.66) coincides with (6.55), since pS∪T
l = pS

l for all l ∈ S. So

we only need to show that the sum of expressions (6.67) and (6.65) exceeds

expression (6.57). For (6.67) we have that

∑

U∈C(T )

∑

l,m∈U :l<m

(αmpS∪T
l − αlp

S∪T
m )+

=
∑

U∈C(T )

∑

l,m∈U\{i}:l<m

(αmpS∪T
l − αlp

S∪T
m )+ +

∑

l∈T ∗
l

(αip
S∪T
l − αlp

S∪T
i )+

+
∑

m∈T ∗
r

(αmpS∪T
i − αip

S∪T
m )+

≥
∑

U∈C(T )

∑

l,m∈U\{i}:l<m

(αmpT
l − αlp

T
m)+ +

∑

l∈T ∗
l

(αip
T
l − αlp

T
i )+ (6.68)

+
∑

m∈T ∗
r

(αmpS
i − αip

T
m)+. (6.69)

The inequality holds since pS∪T
j = pT

j for all j ∈ T\{i}, pS∪T
i ≤ pT

i and

pS∪T
i = pS

i . Now adding (6.65) and (6.69) yields

(

∑

m∈T ∗
r

αm

)

(pi − pS
i ) +

∑

m∈T ∗
r

(αmpS
i − αip

T
m)+
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≥
∑

m∈T ∗
r

(αmpi − αip
T
m)+

=
∑

m∈T ∗
r

(αmpT
i − αip

T
m)+, (6.70)

where the inequality holds because of Lemma 6.3.4 by taking a1 = αi,

a2 = αm, q1 = pi, q̄1 = pS
i and q2 = pT

m. The equality is satisfied because

pT
i = pi. Observe that the sum of expressions (6.68) and (6.70) coincides

with expression (6.57). 2

We remark that superadditivity together with Lemma 6.3.6 implies that 3-

player cps games are convex. As promised, we now show that if σ ∈ Π(N)

is permutationally convex, then σ1 is permutationally convex as well.

Theorem 6.3.3 Let (N, σ0, α, β, p, p̄) be a cps situation and (N, v) its cor-

responding cps game. If σ ∈ Π(N) is permutationally convex for (N, v), then

σ1 is permutationally convex for (N, v) as well. In particular, mσ1(v) ∈ C(v).

Proof: We need to show for all i, k ∈ {0, . . . , |N | − 1} with i < k, and all

S ⊆ N\[σ1(k), σ1] with S 6= ∅ that

v([σ1(i), σ1] ∪ S) + v([σ1(k), σ1]) ≤ v([σ1(k), σ1] ∪ S) + v([σ1(i), σ1]).

If i = 0, then the inequality is trivially satisfied because (N, v) is superad-

ditive. If i ≥ 2, then the inequality is satisfied since [σ1(i), σ1] = [σ(i), σ],

[σ1(k), σ1] = [σ(k), σ] and because of our assumption that σ is permutation-

ally convex. So let i = 1. Since ([σ1(i), σ1] ∪ S) ∩ [σ1(k), σ1] = {σ1(1)}, the

inequality is satisfied by Lemma 6.3.6 and the fact that v({j}) = 0 for each

j ∈ N . 2

The final theorem of this section shows a way to alter a core element slightly,

such that the new allocation is still in the core.

Theorem 6.3.4 Let (N, σ0, α, β, p, p̄) be a cps situation and (N, v) its corre-

sponding cps game. Let z ∈ C(v) and let j, k ∈ N with j 6= k. Furthermore

let λ ≥ 0 be such that λ ≤ (v({j, k}) − zk)+ and let z̄ be such that z̄i = zi

for all i ∈ N\{j, k}, z̄j = zj − λ and z̄k = zk + λ. Then, z̄ ∈ C(v).
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Proof: If λ = 0, then z̄ = z. Trivially z̄ ∈ C(v). So assume λ > 0. It

follows by definition of λ that v({j, k})− zk > 0 and that zk +λ ≤ v({j, k}).

Showing that z̄ ∈ C(v) boils down to showing that for each S ⊆ N\{k}

with j ∈ S,
∑

i∈S z̄i ≥ v(S). Let S ⊆ N\{k} be such that j ∈ S. Now note

∑

i∈S∪{k}

zi ≥ v(S ∪ {k}) ≥ v(S) + v({j, k}), (6.71)

where the first inequality holds because z ∈ C(v) and the second by Lemma

6.3.6. Thus

∑

i∈S

z̄i =
∑

i∈S

zi−λ =
∑

i∈S∪{k}

zi−zk−λ ≥ v(S)+v({j, k})−zk−λ ≥ v(S),

where the first inequality follows by expression (6.71), and the second be-

cause zk + λ ≤ v({j, k}). 2

Theorem 6.3.4 enables us to show that an even number of marginal vectors is

in the core of a cps game. Let (N, σ0, α, β, p, p̄) be a cps situation and (N, v)

its corresponding cps game. Let σ ∈ Π(N) be such that mσ(v) ∈ C(v).

If k and j are the first and second player with respect to σ, respectively,

then mσ
k(v) = 0 and mσ

j (v) = v({j, k}). Let λ = v({j, k}). According to

Theorem 6.3.4, z̄ ∈ C(v), with z̄ given by z̄k = mσ
k(v) + λ = v({j, k}),

z̄j = mσ
j (v) − λ = 0 and z̄i = mσ

i (v) for all i ∈ N\{j, k}. Observe that

z̄ = mσ1(v), and thus that mσ1(v) ∈ C(v). Therefore we have the following

proposition.

Proposition 6.3.1 Let (N, σ0, α, β, p, p̄) be a cps situation and (N, v) its

corresponding cps game. If σ ∈ Π(N) is such that mσ(v) ∈ C(v), then

mσ1(v) ∈ C(v). In particular, the number of marginal vectors in C(v) is

even.

6.3.3 Convexity

In this section we investigate convexity of cps games. We will show that

cps situations with equal completion time cost coefficients, equal crash time

cost coefficients and equal maximal crash times lead to convex cps games.
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Furthermore we show that by relaxing these conditions, convexity might be

lost.

Theorem 6.3.5 Let (N, σ0, α, β, p, p̄) be a cps situation with αi = αj , βi =

βj and pi − p̄i = pj − p̄j for all i, j ∈ N , and let (N, v) be its corresponding

cps game. Then (N, v) is convex.

Proof: For notational convenience we write αi = α, βi = β and pi − p̄i = q

for all i ∈ N , where α, β and q denote scalars and not vectors. We will

first show that (N, v) is equal to the sum of the corresponding standard

sequencing game and a symmetric game. We then show that this symmetric

game is convex. Since standard sequencing games are convex as well, it

follows that (N, v) is convex.

Let S ⊆ N . Each optimal processing schedule for S can be reached by

first interchanging the jobs, and then reducing the initial processing times to

the optimal processing times. We claim that the cost savings due to reducing

the initial processing times can be easily determined. This can be seen as

follows. Let σ ∈ A(S) be a processing order, and let k ∈ S be the l-th job of

S with respect to σ. Then there are |S| − l jobs of S in the queue behind k.

Hence, if job k crashes, then this yields cost savings of ((|S| − l + 1)α−β)q.

This term is non-negative only if (|S| − l + 1)α− β ≥ 0. Observe that these

cost savings do not depend on σ or on k. We conclude that the cost savings

for coalition S, due to crashing jobs will equal q
∑|S|

l=1((|S| − l + 1)α − β)+.

Note that this expression only depends on the size of S, and not on S itself.

Because the cost savings obtained from optimally crashing jobs are inde-

pendent of the order in which the jobs are processed, it follows that the total

cost savings are maximised if the cost savings obtained from interchanging

jobs are maximised. In particular, the total cost savings are maximised if

the jobs are lined up in order of decreasing urgencies. Therefore

v(S) =
∑

T∈C(S)

∑

i,j∈T :i<j

(αjpi − αipj)+ + q

|S|
∑

l=1

((|S| − l + 1)α − β)+.

In Curiel, Pederzoli, and Tijs (1989) it is shown that (N, z), with z(S) =
∑

T∈C(S)

∑

i,j∈T :i<j(αjpi − αipj)+ for each S ⊆ N , is convex. Hence, for
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convexity of (N, v) it is sufficient to show that (N, w) is convex, where

w(S) = q
∑|S|

l=1((|S| − l + 1)α − β)+ for each S ⊆ N . So let i, j ∈ N , i 6= j,

and S ⊆ N\{i, j}. We distinguish between three cases in order to show

w(S ∪ {i}) + w(S ∪ {j}) ≤ w(S ∪ {i, j}) + w(S).

Case 1: w(S ∪ {i}) = w(S ∪ {j}) = 0.

Trivially, w(S ∪ {i}) + w(S ∪ {j}) = 0 ≤ w(S ∪ {i, j}) + w(S).

Case 2: w(S ∪ {i}) = w(S ∪ {j}) > 0 and w(S) = 0.

Since w(S ∪{i}) > 0 it follows that q > 0. Because w(S) = 0 and q > 0,

|S|α − β ≤ 0. Therefore, w(S ∪ {i}) = w(S ∪ {j}) = ((|S| + 1)α − β)q.

Hence,

w(S ∪ {i}) + w(S ∪ {j}) = 2((|S| + 1)α − β)q

≤ ((|S| + 1)α − β)q + ((|S| + 2)α − β)q

= w(S ∪ {i, j})

= w(S ∪ {i, j}) + w(S).

Case 3: w(S) > 0.

Because w(S) > 0, w(S ∪{i}) = ((|S|+ 1)α− β)q + w(S). Furthermore,

w(S ∪ {i, j}) = ((|S| + 2)α − β)q + w(S ∪ {j}). Therefore,

w(S ∪ {i}) + w(S ∪ {j}) = ((|S| + 1)α − β)q + w(S) + w(S ∪ {j})

≤ ((|S| + 2)α − β)q + w(S) + w(S ∪ {j})

= w(S ∪ {i, j}) + w(S). 2

Let (N, σ0, α, β, p, p̄) be a cps situation with αi = αj , βi = βj and pi − p̄i =

pj − p̄j for all i, j ∈ N . Let (N, v) be its corresponding cps game. According

to the proof of Theorem 6.3.5, (N, v) is the sum of a symmetric game and

the standard sequencing game. Hence, the Shapley value of (N, v) coincides

with the sum of the Shapley value of the symmetric game and the Shapley

value of the standard sequencing game. Since both can be computed easily

it follows that the Shapley value of cps games arising from these special cps

situations can be computed easily.
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The following examples show that by relaxing the conditions of Theorem

6.3.5 convexity might be lost. The first example shows that cps games,

arising from cps situations with equal completion time cost coefficients, equal

crash time cost coefficients and equal crashed processing times, need not be

convex.

Example 6.3.2 Let (N, σ0, α, β, p, p̄) be given by N = {1, 2, 3, 4}, αi = 2,

βi = 5 and p̄i = 2 for all i ∈ N . Furthermore, let p = (7, 3, 3, 7). Let (N, v)

be its corresponding cps game. For each coalition, the optimal process-

ing schedule can be reached by first interchanging jobs, and then crashing

them. Since 2α < β, it follows that 2-player coalitions cannot obtain pos-

itive cost savings by crashing jobs. Since coalition {1, 3} is not allowed to

rearrange the processing order of its jobs, we conclude that v({1, 3}) = 0.

Because 2α < β and 3α > β, coalition N will decide to crash exactly

two jobs. In particular, the jobs in the first and second position of the

optimal processing order will be crashed. Using this fact, it is straight-

forward to see that the schedule ((2, 3, 1, 4), (7, 2, 2, 7)) ∈ AS(N) is opti-

mal. As a result, v(N) = 20. Now observe that ((2, 3, 1, 4), (7, 2, 3, 7)) ∈

AS({1, 2, 3}) and that ((1, 2, 3, 4), (2, 3, 3, 7)) ∈ AS({1, 3, 4}). These sched-

ules yield cost savings of 17 and 5 for coalitions {1, 2, 3} and {1, 3, 4}, re-

spectively. Therefore v({1, 2, 3}) ≥ 17 and v({1, 3, 4}) ≥ 5. We conclude

that v({1, 2, 3}) + v({1, 3, 4}) ≥ 22 > 20 = v(N) + v({1, 3}), and thus that

(N, v) is not convex. 3

The following example shows that cps games, arising from cps situations

with equal completion time cost coefficients, equal processing times, and

equal crashed processing times, need not be convex.

Example 6.3.3 Let (N, σ0, α, β, p, p̄) be given by N = {1, 2, 3, 4, 5}, αi = 2,

pi = 2 and p̄i = 1 for all i ∈ N . Furthermore, let β = (6, 6, 3, 3, 6).

Let (N, v) be its corresponding cps game. For each coalition, the optimal

processing schedule can be reached by first interchanging jobs, and then

crashing them. Since αi = 2 and pi = 2 for all i ∈ N , it follows that

αipj − αjpi = 0 for all i, j ∈ N . That is, first rearranging jobs yields no
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cost savings and no extra costs. Hence, the cost savings for each coalition

consist of cost savings due to crashing only. Because αi = 2 and pi − p̄i = 1

for all i ∈ N , it is optimal to put the jobs with lowest βi to the front of

the queue as much as possible. In particular, for coalitions {1, 3, 4} and N

the optimal schedules are ((1, 2, 3, 4, 5), (2, 2, 1, 2, 2)) ∈ AS({1, 3, 4}) and

((3, 4, 1, 2, 5), (2, 2, 1, 1, 2)) ∈ AS(N), respectively. This yields cost sav-

ings of v({1, 3, 4}) = 1 and v(N) = 12. For coalitions {1, 2, 3, 4} and

{1, 3, 4, 5} the optimal schedules are given by ((3, 4, 1, 2, 5), (2, 2, 1, 1, 2)) ∈

AS({1, 2, 3, 4}) and ((1, 2, 3, 4, 5), (1, 2, 1, 1, 2)) ∈ AS({1, 3, 4, 5}), respec-

tively, with cost savings v({1, 2, 3, 4}) = 8 and v({1, 3, 4, 5}) = 6. We con-

clude that v({1, 2, 3, 4}) + v({1, 3, 4, 5}) = 14 > 13 = v(N) + v({1, 3, 4}),

and thus that (N, v) is not convex. 3

The last example shows that cps games, arising from cps situations with

equal crash time cost coefficients, equal processing times, and equal crashed

processing times, need not be convex.

Example 6.3.4 Let (N, σ0, α, β, p, p̄) be given by N = {1, 2, 3, 4}, βi = 5,

pi = 2 and p̄i = 1 for all i ∈ N . Furthermore, let α = (1, 1, 5, 1). Let (N, v)

be its corresponding cps game. Since coalition {1, 3} is a disconnected coali-

tion, it can only obtain cost savings by crashing job 1. Hence, v({1, 3}) = 1.

For the grand coalition the schedule ((3, 1, 2, 4), (2, 2, 1, 2)) ∈ AS(N) is op-

timal, with cost savings v(N) = 19. Furthermore, ((3, 1, 2, 4), (2, 2, 1, 2)) ∈

AS({1, 2, 3}) and ((1, 2, 3, 4), (1, 2, 1, 2)) ∈ AS({1, 3, 4}). These schedules

lead to cost savings of 18 and 3 for coalitions {1, 2, 3} and {1, 3, 4}, respec-

tively. We conclude that v({1, 2, 3}) + v({1, 3, 4}) ≥ 21 > 20 = v(N) +

v({1, 3}), and thus that (N, v) is not convex. 3

As a final remark we conjecture that if a cps situation (N, σ0, α, β, p, p̄)

satisfies αi = αj , βi = βj and pi = pj for all i, j ∈ N , then its corresponding

cps game is convex.
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6.4 Precedence sequencing games

In this section we study convexity of sequencing games arising from se-

quencing situations where precedence relations are imposed on the jobs.

Precedence relations prescribe an order in which jobs have to be processed.

Specifically, some jobs can only be processed if some other job(s) have been

processed already. In practice many examples can be found where prece-

dence relations play a role. For example, scheduling programs on a com-

puter. In many cases one program needs the output of another program as

input data. Another situation where precedence relations are involved is in

the manufacturing of a car. Before you can paint the car you need to have

the chassis, before you can place the wheels you need already the axles, etc.

In this section, which is based on Hamers, Klijn, and Van Velzen (2005),

we are specifically interested in sequencing situations with chain precedence

relations, and where the initial order is a concatenation of chains. A chain

precedence relation is a precedence relation where each job is preceded by,

and precedes, at most one job. A concatenation of chains arises if, for ex-

ample, all jobs of a chain arrive at the machine at the same moment, and

the jobs are initially ordered according to a first come first serve principle.

We will show that sequencing games arising from these situations, i.e. se-

quencing situations with chain precedences and where the initial order is a

concatenation of chains, are convex.

6.4.1 Precedence sequencing situations and games

In this section we first introduce precedence relations and subsequently we

introduce precedence sequencing games.

A precedence relation P on a finite set N is a set of ordered pairs of N . A

precedence relation is called feasible if it does not contain circuits. Formally,

P is feasible if (i, i) 6∈ P for each i ∈ N , and if there are no j1, . . . , jk ∈ N

with (jm, jm+1) ∈ P for each m ∈ {1, . . . , k−1}, and (jk, j1) ∈ P. We assume

throughout this section that precedence relations are feasible. Furthermore

we assume that precedence relations are minimal in the sense that there are

no superfluous pairs in P. More precisely, if j1, . . . , jk ∈ N are such that
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(ji, ji+1) ∈ P for each i ∈ {1, . . . , k − 1}, then (j1, jk) 6∈ P.

A precedence sequencing situation is a tuple (N,P, σ0, α, p), where N , σ0,

α and p have the same interpretation as in Section 6.2. Additionally, there

is a precedence relation P on N with the interpretation that if (i, j) ∈ P,

then the job of agent i has to be processed before the job of agent j. A

processing order is called feasible with respect to P if for all (i, j) ∈ P, i is

processed before j. We denote the set of all feasible processing orders with

respect to P by Pr(N,P). Of course, we assume that σ0 ∈ Pr(N,P). A

processing order is called optimal if it minimises the total cost of all agents.

Formally, σ ∈ Pr(N,P) is optimal if

∑

i∈N

Ci(σ) ≤
∑

i∈N

Ci(τ) for each τ ∈ Pr(N,P).

In the remainder of this section we introduce precedence sequencing games.

The worth of a coalition in a precedence sequencing game is the maximal

cost savings obtainable by this coalition by means of an admissible and

feasible rearrangement of the initial order. Formally, σ ∈ Pr(N,P) is called

admissible for coalition S ⊆ N if it satisfies (6.1). The set of admissible

and feasible processing orders for coalition S ⊆ N is denoted by AF (S).

Given a precedence sequencing situation (N,P, σ0, α, p, ) the corresponding

precedence sequencing game (N, v) is defined by

v(S) =
∑

i∈S

Ci(σ0) − min
σ∈AF (S)

∑

i∈S

Ci(σ)

for each S ⊆ N . It is straightforward to see that precedence sequencing

games are chain-component additive games with respect to σ0. So cores of

precedence sequencing games are non-empty.

The following example illustrates a precedence sequencing game in case

the directed graph associated to the precedence relation is a tree.

Example 6.4.1 Let (N,P, σ0, α, p) be a precedence sequencing situation,

with N = {1, 2, 3, 4}, P = {(1, 2), (2, 4), (1, 3)}, σ0 = (1, 2, 3, 4), α =

(1, 2, 3, 4) and p = (1, 1, 1, 1). Consider coalition {2, 3, 4}. The admis-

sible and feasible processing orders for this coalition are AF ({2, 3, 4}) =
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{(1, 2, 3, 4), (1, 3, 2, 4), (1, 2, 4, 3)}. Both (1, 3, 2, 4) and (1, 2, 4, 3) yield cost

savings of 1 for {2, 3, 4}. Hence, v({2, 3, 4}) = 1.

It is straightforwardly verified that the worths of the other connected

coalitions are given by v({i}) = 0 for i ∈ {1, 2, 3, 4}, v({1, 2}) = 0, and

v(S) = 1 if S = {2, 3}, {3, 4}, {1, 2, 3}, {1, 2, 3, 4}. �

6.4.2 Convexity

In this section we will establish convexity of precedence sequencing games

corresponding to situations where the precedence relations consist of parallel

chains and the initial orders are concatenations of these chains.

The following example shows that a precedence sequencing game aris-

ing from a sequencing situation where the directed graph associated to the

precedence relation is a tree need not be convex.

Example 6.4.2 Consider the precedence sequencing game of Example

6.4.1. Then v({2, 3}) + v({3, 4}) = 2 > 1 = v({2, 3, 4}) + v({3}), which

implies that (N, v) is not convex. �

Let (N,P, σ0, α, p) be a precedence sequencing situation. Then P is said to

be a network of parallel chains if each player precedes at most one player,

and is preceded by at most one player. Formally, if for each i ∈ N , |{j ∈ N :

(i, j) ∈ P}| ≤ 1 and |{j ∈ N : (j, i) ∈ P}| ≤ 1. A chain is a maximal ordered

set of players {i1, . . . , ik} with (il, il+1) ∈ P for each l ∈ {1, . . . , k − 1}.

Let (N,P, σ0, α, p) be a precedence sequencing situation where P is a

network of parallel chains. Let P (c), c ∈ {1, . . . , C}, denote these chains.

Obviously, the sets P (c), c ∈ {1, . . . , C}, form a partition of N . We will

show that if σ0 is a concatenation of these chains, then the corresponding

precedence sequencing game is convex. First we illustrate concatenations of

chains.

Example 6.4.3 Let (N,P, σ0, α, p) be a precedence sequencing situation,

where N = {1, 2, 3, 4, 5, 6}, P = {(1, 2), (3, 4), (4, 5), (5, 6)}, α =

(2, 5, 6, 6, 3, 6) and pi = 1 for each i ∈ N . The precedence relation P consti-

tutes two chains, {1, 2} and {3, 4, 5, 6}. If σ0 is a concatenation of chains,

then either σ0 = (1, 2, 3, 4, 5, 6) or σ0 = (3, 4, 5, 6, 1, 2). �
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Let (N,P, σ0, α, p) be a precedence sequencing situation where P is a net-

work of parallel chains, and σ0 a concatenation of these chains. Let P (c),

c ∈ {1, . . . , C}, denote these chains. Without loss of generality we assume,

throughout the remainder of this section, that the first positions of σ0 are

taken by the members of P (1), followed by the members of P (2), etc. Let

S ⊆ N be a connected coalition. Then there are c∗, d∗ ∈ {1, . . . , C}, c∗ ≤ d∗,

with

1. S ∩ P (c) = ∅ for each c ∈ {1, . . . , C} with c < c∗ or c > d∗;

2. S ∩ P (c) 6= ∅ for c = c∗ and c = d∗;

3. P (c) ⊆ S for each c ∈ {1, . . . , C} with c∗ < c < d∗.

For any c ∈ {c∗, . . . , d∗}, let chc(S) = S ∩P (c) be the (non-empty) intersec-

tion of S with the players of chain c. Observe that each chc(S) inherits in

a natural way the ordering induced by σ0, and note that chc(S) = P (c) for

each c ∈ {1, . . . , C} with c∗ < c < d∗.

Before stating Sidney’s algorithm, that provides a method to calculate an

optimal order for each connected coalition in case the precedence relation is a

network of parallel chains, we introduce a few more notations and definitions.

Let U = {i1, . . . , ik} be a connected subset of some chain P (c), such that

(il, il+1) ∈ P for each l ∈ {1, . . . , k − 1}. A head of U is a set T ⊆ U such

that T = {i1, . . . , il} for some l ∈ {1, . . . , k}. Similarly, a tail of U is a set

T ⊆ U such that T = {il, . . . , ik} for some l ∈ {1, . . . , k}. For any T ⊆ N ,

T 6= ∅, we define α(T ) =
∑

i∈T αi, p(T ) =
∑

i∈T pi and u(T ) = α(T )
p(T ) , where

u(T ) is called the urgency index of coalition T .

Sidney’s algorithm: Optimal order of connected S

Step 1: Construction of Sidney-components

For every c ∈ {c∗, . . . , d∗}, find the following coalitions:

T c
1 , the largest head of chc(S) that satisfies

u(T c
1 ) = max{u(T ) : T is a head of chc(S)}.
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For m > 1, let T c
m be the largest head of chc(S)\

(

⋃m−1
i=1 T c

i

)

that satisfies

u(T c
m) = max{u(T ) : T is a head of chc(S)\

(m−1
⋃

i=1

T c
i

)

}.

Let mc be the number of sets we obtain in this way. Then,
⋃mc

r=1 T c
r = chc(S).

The sets T c
r (c ∈ {c∗, . . . , d∗} and r ∈ {1, . . . , mc}) are called the Sidney-

components of S.

Step 2: Ordering Sidney-components

Order the Sidney-components of S in weakly decreasing order with respect

to their urgency indices.

The following theorem follows from Sidney (1975).

Theorem 6.4.1 An order resulting from Sidney’s algorithm is admissible,

feasible and optimal for S.

Example 6.4.4 Let (N,P, σ0, α, p) be as defined in Example 6.4.3 with

σ0 = (1, 2, 3, 4, 5, 6). Let S = {2, 3, 4, 5, 6}. Then ch1(S) = {2} and

ch2(S) = {3, 4, 5, 6}. Following the first step of Sidney’s algorithm we ob-

tain T 1
1 = {2}, T 2

1 = {3, 4} and T 2
2 = {5, 6}, with u({2}) = 5, u({3, 4}) = 6

and u({5, 6}) = 4 1
2 , respectively. From the second step of the algorithm and

Theorem 6.4.1 it follows that processing the jobs in the order (1, 3, 4, 2, 5, 6)

is optimal for coalition S given the precedence relation P. �

The following lemmas, which describe relations between urgency indices,

facilitate the proof of our main result.

Lemma 6.4.1 Let S, T ⊆ N be disjoint and non-empty. If u(S) ≥ u(T ),

then u(S) ≥ u(S∪T ) ≥ u(T ). If u(S) > u(T ), then u(S) > u(S∪T ) > u(T ).

If u(S) = u(T ), then u(S) = u(S ∪ T ) = u(T ).
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Proof: Note that

u(S ∪ T ) =
p(S)

p(S) + p(T )
u(S) +

p(T )

p(S) + p(T )
u(T ).

All assertions of the lemma follow directly from the observation that u(S∪T )

is a convex combination of u(S) and u(T ). 2

Lemma 6.4.2 Let S, T, W ⊆ N be pairwise disjoint and non-empty. If

u(W ) ≥ u(T ) ≥ u(S), then u(S ∪ T ∪ W ) ≥ u(S ∪ T ).

Proof: Because u(T ) ≥ u(S) it follows from Lemma 6.4.1 that u(T ) ≥

u(S ∪ T ) ≥ u(S), and therefore u(W ) ≥ u(S ∪ T ). Applying Lemma 6.4.1

again gives u(W ) ≥ u(S ∪ T ∪ W ) ≥ u(S ∪ T ). 2

Lemma 6.4.3 Let T ⊆ N , T 6= ∅ and let T c
1 , . . . , T c

mc
be the Sidney-

components of T for some chain c. Then u(T c
1 ) > u(T c

2 ) > · · · > u(T c
mc

).

Proof: Follows immediately from the definition of the Sidney-components

and Lemma 6.4.1. 2

To prove our main result we need the following notation. For two coalitions

U, V ⊆ N with U ∩ V = ∅, we define

g(U, V ) := max{0, α(V )p(U) − α(U)p(V )}.

Observe that g(U, V ) ≥ 0, and that g(U, V ) > 0 if and only if u(V ) > u(U).

So g(U, V ) are the cost savings that can be obtained by interchanging the

jobs of coalitions U and V , if the jobs of U are ordered directly in front of

the jobs of V . Extending to two collections U ,V ⊆ 2N with U ∩ V = ∅ for

each U ∈ U , V ∈ V, we define

G(U ,V) :=
∑

U∈U ,V ∈V

g(U, V ). (6.72)

Before we prove convexity of precedence sequencing games, we recall a the-

orem of Borm, Fiestras-Janeiro, Hamers, Sánchez, and Voorneveld (2002).

This theorem show that convexity of chain-component additive games is

equivalent to a restricted set of inequalities.
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Theorem 6.4.2 (Borm, Fiestras-Janeiro, Hamers, Sánchez, and

Voorneveld (2002)) Let σ0 : {1, . . . , |N |} → N be an order on N , and

let (N, v) be chain-component additive with respect to σ0. Then (N, v) is

convex if and only if

v(S ∪ {i}) + v(S ∪ {j}) ≤ v(S ∪ {i, j}) + v(S) (6.73)

for each i, j ∈ N , i 6= j, and each connected S ⊆ N\{i, j} such that S ∪ {i}

and S ∪ {j} are connected as well.

Let σ0 : {1, . . . , |N |} → N be an order on N and i, j ∈ N , i 6= j. Then the

only connected coalition S ⊆ N\{i, j} such that S ∪ {i} and S ∪ {j} are

connected as well, is the coalition consisting of the players “in between” i

and j, with respect to σ0. Now we are ready to state and prove our main

theorem.

Theorem 6.4.3 Let (N,P, σ0, α, p) be a precedence sequencing situation

where P is a network of parallel chains and σ0 a concatenation of these

chains. Then the corresponding precedence sequencing game (N, v) is con-

vex.

Proof: According to Theorem 6.4.2 we need to show that (6.73) is satisfied

for all i, j ∈ N , i 6= j, and S ⊆ N\{i, j} such that S consists of all players in

between i and j, with respect to σ0. So let i, j ∈ N , i 6= j, and S ⊆ N\{i, j}

consist of all players in between i and j, with respect to σ0.

If i and j are in the same chain, then no reordering of the players is

feasible, and therefore v(S ∪ {i, j}) = v(S ∪ {j}) = v(S ∪ {i}) = v(S) = 0.

Obviously, (6.73) is satisfied in this case. So assume that i is an element

of chain P (c∗) and j is an element of chain P (d∗), with c∗ < d∗. We will

now partition each of the coalitions S, S ∪ {i}, S ∪ {j} and S ∪ {i, j} into

four sets in order to obtain a usable expression for (6.73). In particular we

use that some elements of the partition of S coincide with elements of the

partitions of S ∪ {i} and S ∪ {j}. Similarly, some elements of the partition

of S ∪ {i, j} coincide with elements of the partitions of S ∪ {i} and S ∪ {j}.
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For an illustration of these sets we refer to Figure 6.1, where the Sidney-

components are the connected sets of jobs that have the same color.7

For V = S ∪ {i, j}, S ∪ {i} let C1(V ) be the collection of Sidney-compo-

nents of V that are contained in P (c∗) and that are not Sidney-components

of S ∪ {j}. Note that C1(S ∪ {i, j}) = C1(S ∪ {i}), because P (c∗) ∩ (S ∪

{i, j}) = P (c∗) ∩ (S ∪ {i}). From Lemma 6.4.4, which is stated and proved

in Section 6.4.3, it follows that C1(S ∪ {i, j}) contains only one Sidney-

component. Let U∗ be the unique element of C1(S ∪ {i, j}) = C1(S ∪ {i}).

For V = S ∪ {j}, S let C1(V ) be the collection of Sidney-components

of V that are contained in P (c∗) and that are not Sidney-components of

S ∪ {i, j}. Note that C1(S ∪ {j}) = C1(S).

For V = S ∪ {i, j}, S ∪ {j} let C4(V ) be the collection of Sidney-

components of V that are contained in P (d∗) and that are not Sidney-

components of S∪{i}. Note that C4(S∪{i, j}) = C4(S∪{j}). From Lemma

6.4.4 it follows that C4(S ∪{i, j}) contains only one Sidney-component. Let

V ∗ be the unique element of C4(S ∪ {i, j}) = C4(S ∪ {j}).

For V = S ∪ {i}, S let C4(V ) be the collection of Sidney-components

of V that are contained in P (d∗) and that are not Sidney-components of

S ∪ {i, j}. Note that C4(S ∪ {i}) = C4(S).

Note that, in case C1(S) = C1(S ∪ {j}) is non-empty, then the last

job of C1(V ) with respect to σ0 coincides in all four situations, i.e. V =

S ∪ {i, j}, S ∪ {i}, S ∪ {j}, S. This follows straightforwardly from Lemma

6.4.4. Similarly, in case C4(S) = C4(S ∪ {i} is non-empty, then the first job

of C4(V ) with respect to σ0 coincides for V = S ∪ {i, j}, S ∪ {i}, S ∪ {j}, S

as well.

7The collections of Sidney-components C2(.) and C3(.) are defined in Lemma 6.4.5, but
can be ignored for the moment.
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S

S ∪ {j}

S ∪ {i}

S ∪ {i, j}

C1(·) C2(·) C3(·) C4(·)
chain P (c∗) chains P (c∗ + 1) up to P (d∗ − 1) chain P (d∗)

chain P (c∗)

chain P (c∗)

chain P (c∗)

chain P (d∗)

chain P (d∗)

chain P (d∗)

i

i

j

j

Figure 6.1: The sets C1(·) up to C4(·).

From Lemma 6.4.5 it follows that

v(S ∪ {i, j}) − v(S ∪ {i}) − v(S ∪ {j}) + v(S)

= G(C1(S ∪ {i, j}), C4(S ∪ {i, j})) − G(C1(S ∪ {i}), C4(S ∪ {i}))

− G(C1(S ∪ {j}), C4(S ∪ {j})) + G(C1(S), C4(S))

= G({U∗}, {V ∗}) − G({U∗}, C4(S ∪ {i}))

− G(C1(S ∪ {j}), {V ∗}) + G(C1(S), C4(S))

= g(U∗, V ∗) −
∑

V ∈C4(S∪{i})

g(U∗, V )

−
∑

U∈C1(S∪{j})

g(U, V ∗) +
∑

U∈C1(S),V ∈C4(S)

g(U, V ),
(6.74)

where the last equality holds by (6.72). Hence, (6.73) is satisfied if expression

(6.74) is non-negative. We distinguish between 2 cases.

Case 1: g(U∗, V ∗) = 0, i.e. u(U∗) ≥ u(V ∗).

Because V ∗ is a Sidney-component, it follows from the definition of

Sidney-components that u(V ∗) ≥ u(V1), where V1 is the first Sidney-compo-
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nent in C4(S ∪ {i}).8 Hence, u(U∗) ≥ u(V1), and g(U∗, V1) = 0. Using

Lemma 6.4.3 it follows that u(U ∗) ≥ u(V1) ≥ u(V ) for each V ∈ C1(S∪{j}),

and therefore that
∑

V ∈C4(S∪{i}) g(U∗, V ) = 0. Similarly, it can be shown

that
∑

U∈C1(S∪{j}) g(U, V ∗) = 0 and
∑

U∈C1(S),V ∈C4(S) g(U, V ) = 0. There-

fore expression (6.74) is zero.

Case 2: g(U∗, V ∗) > 0, i.e. u(V ∗) > u(U∗).

Define

V ∗
a =

⋃

V ∈C4(S∪{i}):g(U∗,V )>0

V ;

V ∗
b = V ∗\V ∗

a .

From Lemma 6.4.3 it follows that V ∗
a is a head of V ∗ consisting of the players

of the Sidney-components in C4(S∪{i}) with higher urgency index than U ∗.

Note that j ∈ V ∗
b , and therefore V ∗

b 6= ∅. Similarly we define

U∗
b =

⋃

U∈C1(S∪{j}):g(U,V ∗)>0

U ;

U∗
a = U∗\U∗

b .

From Lemma 6.4.3 it follows that U ∗
b is a tail of U∗ consisting of the players

of the Sidney-components in C1(S∪{j}) with lower urgency index than V ∗.

Note that i ∈ U∗
a and therefore U ∗

a 6= ∅. Rewriting the first two terms of

(6.74) we obtain

g(U∗, V ∗) −
∑

V ∈C4(S∪{i})

g(U∗, V )

= g(U∗, V ∗) −
∑

V ∈C4(S∪{i}):V ⊆V ∗
a

g(U∗, V )

= α(V ∗)p(U∗) − α(U∗)p(V ∗)

−
∑

V ∈C4(S∪{i}):V ⊆V ∗
a

(

α(V )p(U∗) − α(U∗)p(V )

)

= α(V ∗)p(U∗) − α(U∗)p(V ∗) − α(V ∗
a )p(U∗) + α(U∗)p(V ∗

a )

= α(V ∗
b )p(U∗) − α(U∗)p(V ∗

b ), (6.75)

8If C4(S ∪ {i}) = ∅, then trivially
∑

V ∈C4(S∪{i}) g(U∗, V ) = 0.
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where the second equality follows from u(V ∗) > u(U∗) and u(V ) > u(U∗)

for all V ∈ C4(S ∪{i}) with V ⊆ V ∗
a . Rewriting the last two terms of (6.74)

we obtain

−
∑

U∈C1(S∪{j})

g(U, V ∗) +
∑

U∈C1(S),V ∈C4(S)

g(U, V )

≥ −
∑

U∈C1(S∪{j}):U⊆U∗
b

g(U, V ∗) +
∑

U∈C1(S),V ∈C4(S):U⊆U∗
b
,V ⊆V ∗

a

g(U, V )

≥ −
∑

U∈C1(S∪{j}):U⊆U∗
b

(

α(V ∗)p(U) − α(U)p(V ∗)

)

+
∑

U∈C1(S),V ∈C4(S):U⊆U∗
b
,V ⊆V ∗

a

(

α(V )p(U) − α(U)p(V )

)

= −α(V ∗)p(U∗
b ) + α(U∗

b )p(V ∗) + α(V ∗
a )p(U∗

b ) − α(U∗
b )p(V ∗

a )

= −α(V ∗
b )p(U∗

b ) + α(U∗
b )p(V ∗

b ). (6.76)

The first inequality follows from the definition of U ∗
b and g(U, V ) ≥ 0 for

all U, V ⊆ N . The second inequality follows from the definition of U ∗
b and

g(U, V ) ≥ α(V )p(U) − α(U)p(V ) for all U, V ⊆ N .

Substituting (6.75) and (6.76) in (6.74) we obtain

v(S ∪ {i, j}) − v(S ∪ {i}) − v(S ∪ {j}) + v(S)

≥ α(V ∗
b )p(U∗

a ) − α(U∗
a )p(V ∗

b ). (6.77)

To show that expression (6.77) is non-negative, we will prove that u(V ∗
b ) ≥

u(V ∗) and u(U∗) ≥ u(U∗
a ). This implies, using the assumption u(V ∗) >

u(U∗), that u(V ∗
b ) > u(U∗

a ). As a result expression (6.77) is non-negative.

Suppose that V ∗
a = ∅, then V ∗

b = V ∗ and hence u(V ∗
b ) = u(V ∗). So

suppose that V ∗
a 6= ∅ and suppose that u(V ∗

a ) > u(V ∗
b ). Then, using Lemma

6.4.1 it follows that u(V ∗
a ) > u(V ∗) > u(V ∗

b ). This implies that V ∗ is

not a Sidney-component of S ∪ {i, j}, which is a contradiction. Hence,

u(V ∗
b ) ≥ u(V ∗

a ) and using Lemma 6.4.1 it follows that u(V ∗
b ) ≥ u(V ∗). The

proof that u(U∗) ≥ u(U∗
a ) runs similarly. 2

Finally we illustrate that convexity might be lost if the initial order is not a

concatenation of chains.
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Example 6.4.5 Let the precedence sequencing situation (N,P, σ0, α, p) be

given by N = {1, 2, 3}, P = {(1, 3)}, σ0 = (1, 2, 3), α = (1, 2, 3), and

p = (1, 1, 1). Hence, σ0 is not a concatenation of chains. Let (N, v) be the

corresponding precedence sequencing game. We leave it to the reader to

verify that v({2}) = 0, v({1, 2}) = 1, v({2, 3}) = 1 and v({1, 2, 3}) = 1.

Hence, v({1, 2}) + v({2, 3}) = 2 > 1 = v({1, 2, 3}) + v({2}). So (N, v) is not

convex. �

6.4.3 Proofs of lemmas

In this section we state and prove two lemmas needed for the proof of The-

orem 6.4.3. We will use the notation introduced in the proof of Theorem

6.4.3.

Lemma 6.4.4 The sets C1(S ∪ {i, j}) and C4(S ∪ {i, j}) contain precisely

one element (i.e. Sidney-component).

Proof: From Step 1 of Sidney’s algorithm, and from the definition of

C4(S ∪ {i, j}), it follows immediately that C4(S ∪ {i, j}) contains precisely

one element.

We will now show that C1(S ∪ {i, j}) contains a single element. If i is

the only player in P (c∗) ∩ (S ∪ {i, j}), then C1(S ∪ {i, j}) = {{i}} and we

are done. So assume that i is not the only player in P (c∗) ∩ (S ∪ {i, j}).

The Sidney-component of S ∪ {i, j} containing i is the union of {i}, a

number of Sidney-components of S ∪ {j}, and possibly a head of a Sidney-

component of S∪{j}. That is, the Sidney-component of S∪{i, j} containing

i is of the form {i}∪
⋃m−1

l=1 Al∪B, where Al is a Sidney-component of S∪{j}

for each l ∈ {1, . . . , m − 1} and B is a head of Sidney-component Am. We

show that B = Am. Suppose to the contrary that B 6= Am.

From Step 1 of Sidney’s algorithm it follows that u({i}∪
⋃m−1

l=1 Al∪B) ≥

u({i} ∪
⋃m−1

l=1 Al). If u(B) < u({i} ∪
⋃m−1

l=1 Al), then it follows from Lemma

6.4.1 that u({i}∪
⋃m−1

l=1 Al∪B) < u({i}∪
⋃m−1

l=1 Al), which is a contradiction.

Hence, u(B) ≥ u({i} ∪
⋃m−1

l=1 Al).

Moreover, since Am is a Sidney-component of S∪{j}, u(Am\B) ≥ u(B).

Hence, we have u(Am\B) ≥ u(B) ≥ u({i} ∪
⋃m−1

l=1 Al). From Lemma 6.4.2,
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by using S = {i} ∪
⋃m−1

l=1 Al, T = B and W = Am\B, we obtain that

u({i}∪
⋃m

l=1 Al) ≥ u({i}∪
⋃m−1

l=1 Al∪B), which contradicts that the Sidney-

component of S∪{i, j} containing i is {i}∪
⋃m−1

l=1 Al ∪B. We conclude that

C1(S ∪ {i, j}) contains a single element. 2

Lemma 6.4.5 It holds that

v(S ∪ {i, j}) − v(S ∪ {i}) − v(S ∪ {j}) + v(S)

= G(C1(S ∪ {i, j}), C4(S ∪ {i, j})) − G(C1(S ∪ {i}), C4(S ∪ {i}))

−G(C1(S ∪ {j}), C4(S ∪ {j})) + G(C1(S), C4(S)).

Proof: Besides the already introduced sets C1(V ) and C4(V ), where V =

S∪{i, j}, S∪{i}, S∪{j}, S, we introduce the following collections of Sidney-

components (for an illustration see Figure 6.1). For V = S ∪ {i, j}, S ∪ {i}

let C2(V ) be the collection of Sidney-components of V that are contained

in P (c∗) and that are also Sidney-components of S ∪ {j}.

For V = S ∪ {j}, S let C2(V ) be the collection of Sidney-components

of V that are contained in P (c∗) and that are also Sidney-components of

S ∪ {i, j}. Note that C2(S ∪ {i, j}) = C2(S ∪ {i}) = C2(S ∪ {j}) = C2(S).

For V = S ∪ {i, j}, S ∪ {j} let C3(V ) be the collection of Sidney-

components of V that are contained in P (d∗) and that are also Sidney-

components of S ∪ {i}.

For V = S ∪ {i}, S let C3(V ) be the collection of Sidney-components

of V that are contained in P (d∗) and that are also Sidney-components of

S ∪ {i, j}. Note that C3(S ∪ {i, j}) = C3(S ∪ {i}) = C3(S ∪ {j}) = C3(S).

For l ∈ {c∗+1, . . . , d∗−1} let Dl be the collection of Sidney-components

that are contained in chain P (l).

Finally, for V = S∪{i, j}, S∪{i}, S∪{j}, S let C12(V ) = C1(V )∪C2(V )

and let C34(V ) = C3(V ) ∪ C4(V ).

From Sidney’s algorithm, the definition of the game (N, v), and (6.72) it

follows that for T = S ∪ {i, j}, S ∪ {i}, S ∪ {j}, S we have
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v(T ) =G(C12(T ), C34(T )) +
d∗−1
∑

l=c∗+1

G(C12(T ), Dl)

+
∑

l,m∈{c∗+1,...,d∗−1}:l<m

G(Dl, Dm) +
d∗−1
∑

l=c∗+1

G(Dl, C34(T )).

(6.78)

Now it follows that

v(S ∪ {i, j}) − v(S ∪ {i}) − v(S ∪ {j}) + v(S)

= G(C12(S ∪ {i, j}), C34(S ∪ {i, j})) − G(C12(S ∪ {i}), C34(S ∪ {i}))

−G(C12(S ∪ {j}), C34(S ∪ {j})) + G(C12(S), C34(S))

= G(C1(S ∪ {i, j}), C34(S ∪ {i, j})) − G(C1(S ∪ {i}), C34(S ∪ {i}))

−G(C1(S ∪ {j}), C34(S ∪ {j})) + G(C1(S), C34(S))

= G(C1(S ∪ {i, j}), C4(S ∪ {i, j})) − G(C1(S ∪ {i}), C4(S ∪ {i}))

−G(C1(S ∪ {j}), C4(S ∪ {j})) + G(C1(S), C4(S))

The first equality follows from (6.78) and C12(S ∪ {i, j}) = C12(S ∪ {i}),

C12(S ∪ {j}) = C12(S), C34(S ∪ {i, j}) = C34(S ∪ {j}), and C34(S ∪ {i}) =

C34(S). The second equality follows from Ck(S ∪ {i, j}) = Ck(S ∪ {i}) =

Ck(S ∪ {j}) = Ck(S) for k = 2, 3, from C4(S ∪ {i, j}) = C4(S ∪ {j}) and

from C4(S ∪ {i}) = C4(S). The third equality follows from C3(S ∪ {i, j}) =

C3(S ∪ {i}) = C3(S ∪ {j}) = C3(S), from C1(S ∪ {i, j}) = C1(S ∪ {i}) and

from C1(S ∪ {j}) = C1(S). This completes the proof of the lemma. 2

6.5 Weak-relaxed sequencing games

In standard sequencing games, rearrangements of the initial order are admis-

sible for a coalition if no jumps take place over agents outside this coalition.

In Curiel, Potters, Rajendra Prasad, Tijs, and Veltman (1993) it is argued

that this notion of admissibility is too restrictive. Specifically, agents outside

a coalition will not object to jumps, as long as their completion times do

not increase. Hence, it is suggested that a reordering should be admissible

for a coalition, as long as the completion times of the agents outside the
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coalition do not increase. In this way the class of relaxed sequencing games

is defined. It is shown in Slikker (2003) that relaxed sequencing games have

non-empty cores.

In this section, which is based on Van Velzen and Hamers (2003) we

study weak-relaxed sequencing games. These games arise from sequencing

situations where exactly one agent has the power to jump. Of course, a jump

is only allowed if the completion time of the agents outside the coalition does

not increase. We will show that cores of weak-relaxed sequencing are non-

empty by proving that these games are permutationally convex with respect

to some special order.

6.5.1 Cores of weak-relaxed sequencing games

In this section we define the class of weak-relaxed sequencing games. Let

(N, σ0, α, p) be a sequencing situation and let j ∈ N . For the sake of no-

tational simplicity we assume throughout this section that σ0(i) = i for

each i ∈ {1, . . . , |N |}. Before we define the weak-relaxed sequencing game

(N, wj), we first define relaxed sets of admissible rearrangements. In order

to define these sets, we distinguish between two sets of coalitions: coalitions

that include player j and coalitions that do not include player j. If S ⊆ N

is such that j 6∈ S, then the set of weak-relaxed admissible rearrangements,

WRj(S), coincides with A(S). That is, σ ∈ WRj(S) if σ satisfies (6.1). If

S ⊆ N is such that j ∈ S, then a reordering is called admissible if it leaves

the positions of the players in N\S fixed, the completion times of the jobs

in N\S do not increase and at most one jump takes place, of player j with

another player in S, say player m. Formally, σ ∈ WRj(S) if

σ−1(i) = σ−1
0 (i)

for each i ∈ N\S, if

∑

k∈{1,...,|N |}:k≤σ−1(i)

pσ(k) ≤
∑

k∈{1,...,|N |}:k≤σ−1
0 (i)

pσ(k)

for all i ∈ N\S, and if there exists an m ∈ S such that

{j ∈ N\S : σ−1(j) ≤ σ−1(i)} = {j ∈ N\S : σ−1
0 (j) ≤ σ−1

0 (j)}
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for all i ∈ S\{j, m}. The corresponding weak-relaxed sequencing game

(N, wj) associated with j is defined by

wj(S) =
∑

i∈S

Ci(σ0) − min
σ∈WRj(S)

∑

i∈S

Ci(σ),

for all S ⊆ N . We remark that weak-relaxed sequencing games are su-

peradditive. In fact, superadditivity of weak-relaxed sequencing games can

be proved similarly to superadditivity of cps games in Lemma 6.3.2. If

(N, v) is the standard sequencing game associated with (N, σ0, α, p), then

v(S) ≤ wj(S) for each S ⊆ N with equality if j 6∈ S or if S is connected.

The next example illustrates weak-relaxed sequencing games. In par-

ticular it shows that weak-relaxed sequencing games need not be chain-

component additive with respect to σ0, nor convex.

Example 6.5.1 Let (N, σ0, α, p) be a sequencing situation with N =

{1, 2, 3}, α = (2, 3, 5) and p = (2, 1, 1). Let j = 3. The corresponding

weak-relaxed sequencing game (N, w3) is displayed in Table 6.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

w3(S) 0 0 0 4 11 2 14

Table 6.1: The weak-relaxed sequencing game (N, w3).

We explain w3({1, 3}). Because p1 ≥ p3 we have that WR3({1, 3}) =

{(1, 2, 3), (3, 2, 1)}. The cost savings for coalition {1, 3} at the processing

order (3, 2, 1) are equal to 11. Hence, w3({1, 3}) = 11. Observe that weak-

relaxed sequencing games need not be chain-component additive with re-

spect to σ0, since w3({1})+w3({3}) = 0 < 11 = w3({1, 3}). Moreover, weak-

relaxed sequencing games need not be convex, since w3({1, 2})+w3({1, 3}) =

15 > 14 = w3(N) + w3({1}). 3

The upcoming theorem shows that cores of weak-relaxed sequencing games

are non-empty. Specifically, it shows that the order that begins with players

j − 1 up to 1, continues with j + 1 up to |N |, and ends with player j, is

permutationally convex.
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Theorem 6.5.1 Let (N, σ0, α, p) be a sequencing situation and let j ∈ N .

Let (N, wj) be the corresponding weak-relaxed sequencing game. Let πj ∈

Π(N) be such that πj(i) = j − i for each i ∈ {1, . . . , j − 1}, πj(i) = i + 1

for each i ∈ {j, . . . , |N |− 1}, and πj(|N |) = j. Then πj is a permutationally

convex order for (N, wj). In particular, mπj
(wj) ∈ C(wj).

Proof: We need to show

wj([πj(i), πj ]∪S)+wj([πj(k), πj ]) ≤ wj([πj(k), πj ]∪S)+wj([πj(i), πj ])

for all i, k ∈ {1, . . . , |N | − 1} with i < k and S ⊆ N\[πj(k), πj ] with S 6= ∅.

Let i, k ∈ {0, . . . , |N | − 1} with i < k and S ⊆ N\[πj(k), πj ] with S 6= ∅. If

i = 0, then the inequality follows from superadditivity, so assume that i > 0.

Observe, since i, k < |N |, that j 6∈ [πj(i), πj ] and j 6∈ [πj(k), πj ]. Therefore,

wj([πj(i), πj ]) = v([πj(i), πj ]) and wj([πj(k), πj ]) = v([πj(k), πj ]), where

(N, v) is the standard sequencing game associated with (N, σ0, α, p).

Now let σopt ∈ WRj([πj(i), πj ] ∪ S) be an optimal processing order for

coalition [πj(i), πj ] ∪ S. We distinguish between two cases.

Case 1: σopt ∈ A([πj(i), πj ] ∪ S).

Observe that

wj([πj(k), πj ] ∪ S) + wj([πj(i), πj ])

≥ v([πj(k), πj ] ∪ S) + v([πj(i), πj ])

≥ v([πj(i), πj ] ∪ S) + v([πj(k), πj ])

= wj([πj(i), πj ] ∪ S) + wj([πj(k), πj ]).

The first inequality is satisfied because wj([πj(k), πj ]∪S) ≥ v([πj(k), πj ]∪S)

and because wj([πj(i), πj ]) = v([πj(i), πj ]). The second inequality follows

from convexity of (N, v). The equality is satisfied because wj([πj(i), πj ] ∪

S) = v([πj(i), πj ]∪S) follows from the assumption that σopt ∈ A([πj(i), πj ]∪

S) and because wj([πj(k), πj ]) = v([πj(k), πj ]).

Case 2: σopt 6∈ A([πj(i), πj ] ∪ S).
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First observe that σopt 6∈ A([πj(i), πj ]∪S) implies that j ∈ S. Secondly,

observe that our assumption implies that at σopt player j has switched po-

sition with a player, say player m, from a different component. Note that,

because [πj(i), πj ]∪ {j} is connected, it follows that m 6∈ [πj(i), πj ]. Hence,

m ∈ S.

With loss of generality assume that m > j. The proof for the case m < j

runs similar, and is therefore omitted. Note that, because m > j, we obtain

from the admissibility of σopt that pj ≥ pm.

Note that σopt can be obtained from σ by first switching players j and

m and then putting each component in decreasing order of urgency indices.

So the total cost savings of [πj(i), πj ]∪S can be decomposed into two parts

as well. Namely in cost savings obtained by switching j and m, and in cost

savings obtained by reordering the connected components. The cost savings

obtained by switching j and m, denoted by P , are equal to

P = αm(pj + . . . + pm−1) − αj(pj+1 + . . . + pm)

+
∑

h∈[πj(i),πj ]∪S:j<h<m

(pj − pm)αh.

The first term of P coincides with the cost savings obtained from moving job

m up in the queue. The second term expresses the (negative) cost savings

resulting from moving job j down in the queue. Finally, the completion of

the jobs in between j and m decreases with an amount of pj − pm, and this

explains the third term of P .

The cost savings that can be obtained by reordering the players after the

switch of players j and m has taken place, can be expressed using a standard

sequencing game. Specifically, let σ ∈ Pr(N) be the order obtained from σ0

by switching j and m. Formally, σ(i) = i for each i ∈ {1, . . . , |N |}\{j, m},

σ(j) = m and σ(m) = j. Consider the sequencing situation (N, σ, α, p) and

the corresponding sequencing game (N, vσ). Then,

wj([πj(i), πj ] ∪ S) = P + vσ([πj(i), πj ] ∪ S). (6.79)

Now we provide a lower bound for the cost savings that [πj(k), πj ] ∪ S can

obtain. Consider the following admissible, but not necessarily optimal, re-

ordering for [πj(k), πj ]∪S. First switch players j and m, even if these players
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are in the same component. Secondly, reorder the connected components

using the Smith-rule. Now first observe that the cost savings obtained by

the switch of j and m, denoted by Q, equal

Q =αm(pj + . . . + pm−1) − αj(pj+1 + . . . + pm)

+
∑

h∈[πj(k),πj ]∪S:j<h<m

(pj − pm)αh.

The cost savings obtained by rearranging the jobs after the switch of j and

m equal vσ([πj(k), πj ] ∪ S). Hence,

wj([πj(k), πj ] ∪ S) ≥ Q + vσ([πj(k), πj ] ∪ S). (6.80)

From pj ≥ pm and ([πj(i), πj ] ∪ S) ⊆ ([πj(k), πj ] ∪ S) we conclude that

Q ≥ P . This yields

wj([πj(k), πj ] ∪ S) + wj([πj(i), πj ])

≥ Q + vσ([πj(k), πj ] ∪ S) + vσ([πj(i), πj ])

≥ P + vσ([πj(i), πj ] ∪ S) + vσ([πj(k), πj ])

= wj([πj(i), πj ] ∪ S) + wj([πj(k), πj ]).

The first inequality holds by (6.80) and because j, m 6∈ [πj(i), πj ] imply

vσ([πj(i), πj ]) = wj([πj(i), πj ]). The second inequality follows from con-

vexity of (N, vσ) and Q ≥ P . The equality is due to (6.79) and because

j, m 6∈ [πj(k), πj ] imply vσ([πj(k), πj ]) = wj([πj(k), πj ]). 2

6.6 Queue allocation of indivisible objects

Many housing associations use waiting lists to allocate houses to tenants.

Typically, the tenant on top of the waiting list is assigned his top choice,

the tenant ordered second is assigned his top choice among the remaining

houses, etc. A major reason why this mechanism is considered not very

desirable is that the outcome of the procedure might not be efficient for

society. In particular, by collaboration the total group of tenants might be

able to achieve a higher utility.
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A situation where a finite number of indivisible objects need to be al-

located to the same number of individuals with respect to some queue is

studied in Svensson (1994). To be more precise, Svensson (1994) discusses

a situation with a finite number of indivisible objects, the same number

of individuals, and an exogenously given queue. Subsequently, an alloca-

tion method is proposed and it is shown that it satisfies certain desirable

properties.

This section, which is based on Hamers, Klijn, Slikker, and Van Velzen

(2004), discusses a model similar to that of Svensson (1994). The main dif-

ference is that in our model we assume that the preferences of the agents

over the set of objects are expressed in monetary units. This implies that

the allocation proposed by Svensson (1994) might not be efficient for soci-

ety. Only by collaborating will the agents be able to reach a society-efficient

allocation. Because of this collaboration individual agents might not be sat-

isfied with the final assignment of the objects. We assume that these agents

are compensated by means of side-payments. Our main result is that the

society-efficient assignment is supported by side-payments that guarantee

stability, i.e. each coalition has an incentive to collaborate with society.

Another well-known model with indivisible objects is the housing market

of Shapley and Scarf (1974). This housing market considers a finite num-

ber of agents, each initially possessing an object (house). The agents have

preferences over the set of objects. It is shown that core allocations exist

for this model. In Tijs, Parthasarathy, Potters, and Rajendra Prasad (1984)

the model of Shapley and Scarf (1974) is adapted by assuming that the pref-

erences of the agents can be expressed by monetary units. In this way the

class of permutation games is introduced and the non-emptiness of the core

is shown. Hence, our adaptation of the model of Svensson (1994) parallels

the adaptation of the housing market by Tijs, Parthasarathy, Potters, and

Rajendra Prasad (1984).
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6.6.1 Assignment games, permutation games and extensive

form games

In this section we shortly introduce some game theoretical concepts. First

we recall some notions from cooperative game theory. The section ends with

a brief description of extensive form games.

A bipartite matching situation (N, M, U) consists of two disjoint finite

sets of agents N , M , and an |N |×|M |-matrix U . If agents i ∈ N and j ∈ M

collaborate they achieve a utility of Uij ∈ R. This matching situation was

first modelled as a cooperative game in Shapley and Shubik (1972), in the

following way. Let S ⊆ N and T ⊆ M . A matching µ for S ∪ T consists

of disjoint pairs in S × T . Let M(S, T ) denote the set of all matchings for

coalition S∪T . The assignment game (N ∪M, vA) is defined by vA(S∪T ) =

max{
∑

(i,j)∈µ Uij : µ ∈ M(S, T )} for all S ⊆ N and T ⊆ M . That is, the

worth of a coalition is obtained by maximising the sum of the utilities over

the set of matchings for this coalition. A matching that maximises the sum

of utilities is called optimal. It is well-known that assignment games have a

non-empty core (cf. Shapley and Shubik (1972)). In particular, let µ be an

optimal matching and let x = (u, v) ∈ RN × RM . Then, x ∈ C(vA) if and

only if ui + vj = Uij for each (i, j) ∈ µ, ui + vj ≥ Uij for each i ∈ N , j ∈ M ,

and xk ≥ 0 for each k ∈ N ∪ M .

A permutation situation (N, M, U) consists of a finite set of agents N , a

finite set of objects M , such that |N | = |M |, and an |N | × |M |-matrix U .

Each agent i ∈ N initially possesses object i ∈ M . The utility that agent

i ∈ N receives from the consumption of object j ∈ M is given by Uij ∈ R.

By reallocating their initially owned objects the agents can possibly achieve

a higher utility. Permutation situations can be modelled as cooperative

games in the following way. A reallocation of the objects of coalition S ⊆ N

among the members of S can be expressed by a bijection πS : S → O(S),

where O(S) denotes the set of objects initially owned by coalition S. Let

Π(S, O(S)) denote the set of all bijections from S to O(S).9 The permutation

game (N, vP ) is defined by vP (S) = max{
∑

i∈S UiπS(i) : πS ∈ Π(S, O(S))}

for all S ⊆ N . That is, the worth of a coalition is the maximum utility it

9In this section we denote the set of bijections from a set A to a set B by Π(A, B).
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can achieve by reallocating their initially owned objects among its members.

Permutation games were studied first in Tijs, Parthasarathy, Potters,

and Rajendra Prasad (1984). In that paper a link was established between

the cores of assignment games and permutation games. It was shown that

each core element of an assignment game gives rise to a core element of

a related permutation game. In Quint (1996) it was shown that all core

elements of a permutation game can be obtained from the core of some

associated assignment game.

To conclude this section we shortly introduce extensive form games.10

We first remark that we only consider extensive form games without chance

nodes, but with perfect information. An extensive form game is a 4-tuple

(P, T, C, u), where P is a finite set of players, T is a rooted tree with non-

terminal node set V1 and terminal node set V2, C : V1 → P is a control

function, and u : V2 → RP is a function expressing the utility that each

player receives at each terminal node. For each i ∈ P let ci ⊆ V1 be the set

of nodes controlled by i, i.e. ci = {v ∈ V1 : C(v) = i}. A strategy of player

i ∈ P is a map yi : ci → V1 ∪ V2 such that (v, yi(v)) is an arc in T for all

v ∈ ci. So a strategy for player i describes at each node controlled by player

i the direction in which the game proceeds. The set of all strategies of player

i is denoted by Σi. It is obvious that each strategy profile (yi)i∈P leads to a

unique terminal node. So each strategy profile (yi)i∈P induces an outcome at

the extensive form game. Hence, there exists a utility function from the set

of strategy profiles
∏

i∈P Σi to RP . We will denote this utility function, with

slight abuse of notation, by u as well. We say that yi ∈ Σi is a best reply for

player i against y−i = (yj)j∈P\{i} ∈
∏

j∈P\{i} Σj if ui(y−i, yi) ≥ ui(y−i, zi)

for all zi ∈ Σi. In other words, a player’s strategy is a best reply against

some strategy profile of the other players if he cannot be strictly better off

by unilaterally deviating from this strategy.

10For a full description of extensive form games, see for example Mas-Colell, Whinston,
and Green (1995).
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6.6.2 Object allocation situations and games

In this section we introduce our object allocation situation and a correspond-

ing cooperative game.

An object allocation situation is a 4-tuple (N, M, U, σ0). Here N is a

finite set of agents, M is a finite set of indivisible objects, U is a non-

negative |N | × |M |-matrix that expresses the utility of each object for each

agent, and σ0 is an initial order on N . We assume that there are as many

agents as objects, i.e. |N | = |M |.11 The initial order should be interpreted

as the order in which the agents may choose from the set of objects, i.e.

agent σ0(1) has the first choice, agent σ0(2) the second, etc. Without loss

of generality, let σ0(i) = i for all i ∈ {1, . . . , |N |}.

Let (N, M, U, σ0) be an object allocation situation. We will analyse this

situation using cooperative game theory. At our cooperative game we define

the worth v(S) of a coalition S ⊆ N as the maximum total utility it can

guarantee itself without any help from N\S. This utility can be determined

in two stages. In the first stage, all players sequentially choose an object,

respecting σ0. In the second stage, the members of S reallocate the chosen

objects among themselves to reach coalitional efficiency. Obviously, the

outcome of this reallocation depends on the objects chosen by the members

of S, and therefore also on the objects chosen by the members of N\S.

In order to describe the value v(S) of a coalition S ⊆ N , we define

an (auxiliary) extensive form game ({S, N\S}, T, CS , uS) with player set

{S, N\S}. We first describe the rooted tree T . Let k ∈ {1, . . . , |M |}. The

set of injective maps from {1, . . . , k} to M is denoted by Sk. A map π ∈ Sk is

interpreted as a situation where object π(i) is chosen by agent i for each i ∈

{1, . . . , k}. Similarly, we define S0 as the situation where none of the objects

is chosen yet. Let T be the rooted tree with node set
⋃|M |

k=0 Sk and root S0.

There is an arc between π ∈ Sk and τ ∈ Sk+1 with k ∈ {0, . . . , |M | − 1}, if

and only if π(i) = τ(i) for all i ∈ {1, . . . , k}. That is, there is an arc between

π and τ if π can be extended to τ by assigning object τ(k + 1) to player

k + 1. So, V1 =
⋃|M |−1

k=0 Sk and V2 = S|M | are the sets of non-terminal and

11The situation where |M | < |N | is captured by introducing worthless null objects.
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terminal nodes, respectively.

We define the control function CS :
⋃|M |−1

k=0 Sk → {S, N\S} as follows.

Let π ∈ Sk for some k ∈ {0, . . . , |M | − 1}. Then we define CS(π) = S if

and only if k + 1 ∈ S. So coalition S controls the nodes at which one of its

members is to choose an object. Let ΣS and ΣN\S be the set of all possible

strategies of players S and N\S, respectively.

Finally, we describe the utility function uS : ΣS × ΣN\S → R{S,N\S}.

Let y = (yS , yN\S) ∈ ΣS × ΣN\S . Let τ ∈ Sm be the terminal node reached

by strategy profile y, and let HS(τ) = {τ(i) : i ∈ S} be the corresponding

set of objects obtained by S. Now define uS
S(y) = max{

∑

i∈S Uiπ(i) : π ∈

Π(S, HS(τ))}, and uS
N\S(y) = −uS

S(y). So, the payoff of S at terminal node

τ ∈ Sm is the maximum utility S obtains after reallocating the initially

chosen objects and the payoff for N\S is just the opposite of the payoff of S.

Hence, N\S maximises its payoff at the extensive form game by minimising

the payoff of S.

Now we define the object allocation game (N, v) by

v(S) = max
yS∈ΣS

min
yN\S∈ΣN\S

uS
S(y) for all S ⊆ N.

Note that v(S) is precisely the maximum utility coalition S can guarantee

itself without any help from N\S. Also, notice that v(N) = vA(N ∪ M),

where (N ∪ M, vA) is the assignment game corresponding to the bipartite

matching situation (N, M, U).

We illustrate the object allocation game in the following example.

Example 6.6.1 Let N = {1, 2, 3}, M = {A, B, C} and U =





3 6 2
4 5 3
5 3 0



 .

The object allocation game (N, v) is given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

v(S) 6 4 0 10 7 6 14
.

To see for instance why v({1, 3}) = 7 consider the extensive form game

({{1, 3}, {2}}, T, C{1,3}, u{1,3}) which is depicted in Figure 6.2. If coalition

{1, 3} chooses object A as a first choice, then the utility it will achieve is
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equal to 7, since player {2} will choose object B in order to maximise its

own payoff at the extensive form game. If coalition {1, 3} chooses object

B or C first, then coalition {2} will obviously maximise its payoff at the

extensive form game by choosing object A. This leads to a utility of 6 for

coalition {1, 3}. Hence, coalition {1, 3} can guarantee itself a payoff of 7 by

first choosing object A. We conclude that v({1, 3}) = 7. 3

���������� ?

HHHHHHHHHj
�

�
�

��	 ? ?

@
@

@
@@R

�
�

�
��	

@
@

@
@@R

? ? ? ? ? ?

S0

S1

S2

S3

s

s s s

s s s s s s

s s s s s s

{1, 3}

{2} {2} {2}

{1, 3} {1, 3} {1, 3} {1, 3} {1, 3} {1, 3}

(7,−7) (11,−11) (6,−6) (11,−11) (6,−6) (7,−7)

A B C

B C A C A B

C B C A B A

Figure 6.2: The extensive form game ({{1, 3}, {2}}, T, C{1,3}, u{1,3}).

6.6.3 Cores of object allocation games

In this section we show that the core of object allocation games is non-

empty. In fact, we provide a method to obtain core elements by using core

elements from a related assignment game. Furthermore, we show that for

a special class of utility profiles the object allocation game coincides with a

corresponding permutation game.

The following theorem shows the non-emptiness of the core of object

allocation games.

Theorem 6.6.1 Let (N, M, U, σ0) be an object allocation problem and let

(N, v) be its corresponding game. Let (N, M, U) be the corresponding bipar-
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tite matching problem and let (N ∪M, vA) be the corresponding assignment

game. Let (u, w) ∈ C(vA) and let τ : {1, . . . , |M |} → M be a bijection such

that wτ(1) ≥ . . . ≥ wτ(|M |). Define xi = ui + wτ(i) for all i ∈ N . Then,

x ∈ C(v).

Proof: By definition of x,
∑

i∈N xi = vA(N∪M). Since vA(N∪M) = v(N),
∑

i∈N xi = v(N). It remains to show that
∑

i∈S xi ≥ v(S) for each S ⊆ N .

Let S ⊆ N and consider the extensive form game ({S, N\S}, T, CS , uS).

Consider the following (possibly non-optimal) strategy zN\S ∈ ΣN\S for

player N\S: “always pick the object with highest wi that is still avail-

able.” More precisely, let zN\S ∈ ΣN\S be such that zN\S(σ) = π for

each σ ∈ Sk, k + 1 ∈ N\S, and π ∈ Sk+1 with wπ(k+1) ≥ wj for all

j ∈ M\{σ(1), . . . , σ(k)}.

Now if player S would use a similar strategy in the strategic form game

as player N\S, i.e. also “always pick the highest wi that is still available,”

then player S would acquire {τ(i) : i ∈ S} as its set of objects. If player S

uses a different strategy, then, given player N\S’s strategy zN\S , it would

obtain a set of objects A with lower wi-values. Formally,

∑

a∈A

wa ≤
∑

i∈S

wτ(i). (6.81)

In particular, let player S play a best reply against strategy zN\S . Let A∗ be

the set of objects acquired by S. Let π : S → A∗ be the optimal reallocation

of the obtained objects. From (6.81) it follows that

∑

i∈S

wπ(i) =
∑

a∈A∗

wa ≤
∑

i∈S

wτ(i). (6.82)

Hence,

∑

i∈S

xi =
∑

i∈S

ui +
∑

i∈S

wτ(i) ≥
∑

i∈S

ui +
∑

i∈S

wπ(i)

≥ vA(S ∪ {π(i) : i ∈ S}) =
∑

i∈S

Uiπ(i).
(6.83)

The first inequality is due to (6.82). The second inequality is satisfied be-

cause (u, w) ∈ C(vA). The last equality is satisfied since the matching
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{(i, π(i)) : i ∈ S} is an optimal reallocation, and hence optimal for coalition

S ∪ {π(i) : i ∈ S} at the assignment game (N, vA).

From the definition of the game (N, v) it follows that

∑

i∈S

Uiπ(i) = max
yS∈ΣS

uS
S(yS , zN\S) ≥ max

yS∈ΣS

min
yN\S∈ΣN\S

uS
S(y) = v(S). (6.84)

Now the theorem follows immediately from (6.83) and (6.84). 2

The next example illustrates Theorem 6.6.1. Moreover, it shows that in

general not all core elements of the object allocation game can be obtained

via the technique of Theorem 6.6.1.

Example 6.6.2 Let (N, M, U, σ0) be the object allocation situation from

Example 6.6.1, and (N, v) the corresponding game. Consider the corre-

sponding bipartite matching situation (N, M, U) and assignment game

(N ∪ M, vA). Note that (u, w) ∈ C(vA) with u = (2, 3, 3) and w =

(wA, wB, wC) = (2, 4, 0). Clearly wB ≥ wA ≥ wC . Now let x1 = u1+wB = 6,

x2 = u2 + wA = 5, and x3 = u3 + wC = 3. From Theorem 6.6.1 it follows

that x = (6, 5, 3) ∈ C(v).

We will now show that not each element of C(v) is achievable by the

method of Theorem 6.6.1. Consider y = (8, 4, 2) ∈ C(v). Suppose that

(u′, w′) ∈ C(vA) is such that u′
1+w′

τ(1) = 8, u′
2+w′

τ(2) = 4, and u′
3+w′

τ(3) = 2

where τ : {1, 2, 3} → M is a bijection with w′
τ(1) ≥ w′

τ(2) ≥ w′
τ(3).

First note that (N, M, U) has a unique optimal matching µ = {(1, B),

(2, C), (3, A)}. So, since (u′, w′) ∈ C(vA), it holds that u′
1 + w′

B = U1B = 6,

u′
2 + w′

C = U2C = 3, and u′
3 + w′

A = U3A = 5. Since u′
2 + w′

τ(2) = 4

and u′
2 + w′

C = 3, it follows that w′
τ(2) > w′

C . So, w′
τ(1) ≥ w′

τ(2) > w′
C .

Hence, τ(3) = C. Because u′
1 + w′

τ(1) = 8 it follows that w′
τ(1) > w′

B,

and thus that τ(1) 6= B. We conclude that w′
A ≥ w′

B ≥ w′
C . Hence,

u′
2 + w′

B = u′
2 + w′

τ(2) = 4 < 5 = vA({2, B}) contradicting (u′, w′) ∈ C(vA).

3

Our second result deals with a special case of object allocation situations.

Let (N, M, U, σ0) be an object allocation situation where all agents prefer the
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first object over the second, the second object over the third, etc. Then, the

object allocation game coincides with a corresponding permutation game.

Proposition 6.6.1 Let (N, M, U, σ0) be an object allocation situation with

Uj1 ≥ . . . ≥ Uj|M | for all j ∈ N and let (N, v) be its corresponding object

allocation game. Let (N, M, U) be the corresponding permutation situation

and (N, vP ) its corresponding game. Then, the games (N, v) and (N, vP )

coincide.

Proof: We show that for all S ⊆ N it holds that v(S) = vP (S). Let S ⊆ N

and consider the extensive form game ({S, N\S}, T, CS , uS). First we show,

by giving a strategy for player S, that at the extensive form game player S

can obtain a payoff of at least vP (S). This implies v(S) ≥ vP (S).

Consider the following strategy zS ∈ ΣS for player S at the extensive

form game: “always pick the remaining object with lowest index number,”

i.e. pick the remaining object with highest utility. In other words, zS is such

that zS(σ) = τ for each σ ∈ Sk, k + 1 ∈ S, and τ ∈ Sk+1 with τ(k + 1) =

min{j : j ∈ M\{σ(1), . . . , σ(k)}}. Let the best reply of player N\S against

this strategy of S result in a set of objects A = {a1, . . . , a|S|} ⊆ M for S.

We assume, without loss of generality, that the elements of A are ordered

a1 < a2 < . . . < a|S|.
12

Denote the set of objects initially owned by S in the permutation situa-

tion (N, M, U) by O(S) = {b1, . . . , b|S|}. We assume, without loss of gener-

ality, that this set is ordered b1 < b2 < . . . < b|S|. Note that by definition of

strategy zS player S will obtain a better set of objects at the extensive form

game in the sense that aj ≤ bj for all j ∈ {1, . . . , |S|}. Now let π∗ : S → B

be the optimal reallocation of the objects in B among the members of S,

i.e.
∑

i∈S Uiπ∗(i) = max{
∑

i∈S Uiπ(i) : π ∈ Π(S, B)}. Furthermore, define

π̄ : S → A by π̄(i) = aj if and only if π∗(i) = bj . In other words, assign

the j-th object of A to player i if and only if it is optimal to assign the j-th

object of B to i. Now

vP (S) = max{
∑

i∈S

Uiπ(i) : π ∈ Π(S, B)}

12Recall that M = {1, . . . , m} and that ai < ak implies that Uji ≥ Ujk for all j ∈ N .
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=
∑

i∈S

Uiπ∗(i)

≤
∑

i∈S

Uiπ̄(i)

≤ max{
∑

i∈S

Uiπ(i) : π ∈ Π(S, A)}

≤ v(S).

The first inequality holds because π∗(i) ≥ π̄(i) for all i ∈ S. The second

inequality is satisfied because π̄ might be non-optimal. The last inequality

is satisfied since the strategy of S might be non-optimal.

Finally, we prove the inequality v(S) ≤ vP (S) by considering the follow-

ing strategy for N\S: “always pick the remaining object with lowest index

number.” It is obvious that if N\S uses this strategy, then S cannot do bet-

ter than to obtain the set of objects B. By reallocation of the objects in B

player S obtains a maximal total utility of vP (S). Therefore, v(S) ≤ vP (S).

2
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Samenwerking in netwerken

en volgordeproblemen

Samenvatting

Het onderwerp van deze verhandeling is coöperatieve speltheorie. Deze tak

van wetenschap houdt zich voornamelijk bezig met het wiskundig beschrij-

ven en analyseren van samenwerkingsverbanden binnen een economische

context. Met name de totstandkoming en de verdeling van synergievoor-

delen ontstaan door samenwerking zijn onderwerp van studie.

Binnen de coöperatieve speltheorie wordt een wiskundig model van syn-

ergievoordelen ontsproten aan een samenwerkingsverband aangeduid met

de term “spel”. De betrokken economische agenten worden heel toepasselijk

“spelers” genoemd. Het bekendst zijn spelen met overdraagbaar nut. Een

spel met overdraagbaar nut beschrijft voor iedere groep spelers de mone-

taire waarde van de synergievoordelen die deze groep kan genereren door

middel van samenwerking. Deze waardes kunnen vervolgens worden ge-

bruikt om te bepalen welke samenwerkingsverbanden zullen ontstaan, en

hoe de synergievoordelen zullen worden verdeeld. Het moge duidelijk zijn

dat deze twee vraagstukken gerelateerd zijn. De uiteindelijke samenwer-

kingsverbanden zullen afhangen van de verdeling van de synergievoordelen,

en de verdeling hangt weer af van de ontstane samenwerkingsverbanden.

Eén van de voornaamste doelstellingen binnen de coöperatieve speltheorie

is het “eerlijk” verdelen van synergievoordelen. Met dit doel is er een scala

aan oplossingsconcepten ontwikkeld. Een oplossingsconcept is grof gezegd

een afbeelding die aan ieder coöperatief spel één of meerdere verdelingen
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toekent.

Dit proefschrift behandelt verscheidene aspecten van coöperatieve spel-

theorie. Ten eerste poogt het relaties tussen eigenschappen en oplossingscon-

cepten van spelen te onderzoeken. Ten tweede worden verscheidene samen-

werkingsverbanden gemodelleerd als spelen, en worden deze spelen vervol-

gens onderzocht.

Deze verhandeling begint met een inleidend hoofdstuk, Hoofdstuk 1.

Dit hoofdstuk geeft een korte introductie tot de coöperatieve speltheorie,

alsmede een bespreking van de meest elementaire wiskundige begrippen en

notaties die dit proefschrift sieren. Het hoofdstuk eindigt met een vooruit-

blik naar de volgende hoofdstukken.

Hoofdstuk 2 is geheel en al gewijd aan marginale vectoren. Dit zijn

oplossingsconcepten die gerelateerd zijn aan volgordes op de spelersverza-

meling. Binnen de speltheorie is het welbekend dat er een relatie bestaat

tussen marginalen en convexiteit. In Hoofdstuk 2 wordt deze relatie verder

uitgeplozen. Er wordt gepoogd verzamelingen marginalen te construeren

met de volgende eigenschap: als de marginalen in deze verzameling zich in

de kern van een spel bevinden, dan is dit spel noodzakelijkerwijs convex.

Het hoofdresultaat van het hoofdstuk is de bepaling van de minimale cardi-

naliteit van zulke verzamelingen, en een constructieve methode om tot zulke

minimale verzamelingen te komen.

Het onderwerp van Hoofdstuk 3 is boom-component additieve spelen.

Dit zijn superadditieve spelen waarbij de mogelijke samenwerkingsverban-

den van de spelers beperkt worden door een exogeen gegeven boom, d. i.

alleen samenhangende groepen spelers worden in staat geacht synergievoor-

delen te genereren. Het hoofdstuk richt zich met name op eigenschappen

als stabiliteit van de kern, exactheid, uitbreidbaarheid en grootheid van de

kern. Voor het speciale geval van keten-component additieve spelen wordt

stabiliteit van de kern zelfs gekarakteriseerd.

Het daaropvolgende hoofdstuk bespreekt kostenverdelingen bij de plaat-

sing van faciliteiten. Hierbij wordt gebruik gemaakt van het graaftheo-

retische concept “dominerende verzameling”. Er worden drie verschillende

spelen gëıntroduceerd die het kostenverdelingsprobleem modelleren. Deze
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spelen verschillen door de mogelijkheden die groepen spelers hebben om

faciliteiten te plaatsen. Er worden relaties tussen de spelen onderzocht,

alsmede eigenschappen als niet-leegheid van de kern en convexiteit.

Hoofdstuk 5 houdt zich bezig met de verdeling van onderhoudskosten van

netwerken. Dit is een bekend kostenverdelingsprobleem binnen de coöpera-

tieve speltheorie. Echter, in de literatuur wordt de aanname gemaakt dat

iedere speler zich op precies één plek in het netwerk bevindt. In Hoofdstuk

5 wordt met behulp van een voorbeeld aangetoond dat deze aanname niet

altijd realistisch is. Vervolgens beschouwt het hoofdstuk kostenverdelings-

problemen waarbij de aanname niet geldt. Voor de bijbehorende spelen

worden niet-leegheid van de core aangetoond, alsmede verscheidene oplos-

singsconcepten bestudeerd.

Het laatste hoofdstuk is geheel gewijd aan machinevolgordeproblemen.

Bij een machinevolgordeprobleem is er een machine die verscheidene taken

moet uitvoeren die beheerd worden door verschillende spelers. De machine

kan slechts één taak tegelijk afhandelen, dus staan de spelers netjes in de rij

te wachten alvorens hun taak afgehandeld wordt. Aangezien niet alle taken

even urgent zijn, kunnen er kosten bespaard worden door spelers van plaats

te laten wisselen. De vraag is nu natuurlijk hoe deze kostenbesparingen

verdeeld dienen te worden over de spelers. In Hoofdstuk 6 worden verschei-

dene machinevolgordeproblemen bestudeerd. Ten eerste wordt een model

beschouwd waarin de spelers niet alleen de mogelijkheid hebben van plaats

te wisselen, maar tevens de mogelijkheid hebben de afhandelingstijd van

hun taak te reduceren, tegen een verhoogd tarief. Voor dit model wordt de

kern bestudeerd, alsmede convexiteit in enkele speciale gevallen. Ten tweede

wordt een model gëıntroduceerd waarin voorrangsrelaties een rol spelen. Er

wordt aangetoond dat als de voorrangsrelatie bestaat uit een serie parallelle

ketens, en de initiële volgorde een aaneenschakeling van deze ketens is, dat

dan het bijbehorende machinevolgordespel convex is. Vervolgens volgt er een

korte beschouwing over machinevolgordespelen met een ruimere verzameling

toegelaten herrangschikkingen. Voor deze spelen wordt niet-leegheid van de

kern aangetoond. Het laatste gedeelte van het hoofdstuk, en proefschrift,

beschouwt de verdeling van een eindig aantal ondeelbare objecten over een
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zelfde aantal spelers. Er wordt aangetoond dat samenwerking ondersteund

wordt door stabiele zijbetalingen.


