154 research outputs found

    Counting Computations with Formulae: Logical Characterisations of Counting Complexity Classes

    Get PDF
    We present quantitative logics with two-step semantics based on the framework of quantitative logics introduced by Arenas et al. (2020) and the two-step semantics defined in the context of weighted logics by Gastin & Monmege (2018). We show that some of the fragments of our logics augmented with a least fixed point operator capture interesting classes of counting problems. Specifically, we answer an open question in the area of descriptive complexity of counting problems by providing logical characterisations of two subclasses of #P, namely SpanL and TotP, that play a significant role in the study of approximable counting problems. Moreover, we define logics that capture FPSPACE and SpanPSPACE, which are counting versions of PSPACE

    On the power of counting the total number of computation paths of NPTMs

    Full text link
    Complexity classes defined by modifying the acceptance condition of NP computations have been extensively studied. For example, the class UP, which contains decision problems solvable by non-deterministic polynomial-time Turing machines (NPTMs) with at most one accepting path -- equivalently NP problems with at most one solution -- has played a significant role in cryptography, since P=/=UP is equivalent to the existence of one-way functions. In this paper, we define and examine variants of several such classes where the acceptance condition concerns the total number of computation paths of an NPTM, instead of the number of accepting ones. This direction reflects the relationship between the counting classes #P and TotP, which are the classes of functions that count the number of accepting paths and the total number of paths of NPTMs, respectively. The former is the well-studied class of counting versions of NP problems, introduced by Valiant (1979). The latter contains all self-reducible counting problems in #P whose decision version is in P, among them prominent #P-complete problems such as Non-negative Permanent, #PerfMatch, and #Dnf-Sat, thus playing a significant role in the study of approximable counting problems. We show that almost all classes introduced in this work coincide with their '# accepting paths'-definable counterparts. As a result, we present a novel family of complete problems for the classes parity-P, Modkp, SPP, WPP, C=P, and PP that are defined via TotP-complete problems under parsimonious reductions.Comment: 19 pages, 1 figur

    The complexity of approximating bounded-degree Boolean #CSP

    Get PDF
    AbstractThe degree of a CSP instance is the maximum number of times that any variable appears in the scopes of constraints. We consider the approximate counting problem for Boolean CSP with bounded-degree instances, for constraint languages containing the two unary constant relations {0} and {1}. When the maximum allowed degree is large enough (at least 6) we obtain a complete classification of the complexity of this problem. It is exactly solvable in polynomial time if every relation in the constraint language is affine. It is equivalent to the problem of approximately counting independent sets in bipartite graphs if every relation can be expressed as conjunctions of {0}, {1} and binary implication. Otherwise, there is no FPRAS unless NP=RP. For lower degree bounds, additional cases arise, where the complexity is related to the complexity of approximately counting independent sets in hypergraphs

    Descriptive complexity of #P functions : A new perspective

    Get PDF
    We introduce a new framework for a descriptive complexity approach to arithmetic computations. We define a hierarchy of classes based on the idea of counting assignments to free function variables in first-order formulae. We completely determine the inclusion structure and show that #P and #AC0 appear as classes of this hierarchy. In this way, we unconditionally place #AC0 properly in a strict hierarchy of arithmetic classes within #P. Furthermore, we show that some of our classes admit efficient approximation in the sense of FPRAS. We compare our classes with a hierarchy within #P defined in a model-theoretic way by Saluja et al. and argue that our approach is better suited to study arithmetic circuit classes such as #AC0 which can be descriptively characterized as a class in our framework.Peer reviewe

    A PCP Characterization of AM

    Get PDF
    We introduce a 2-round stochastic constraint-satisfaction problem, and show that its approximation version is complete for (the promise version of) the complexity class AM. This gives a `PCP characterization' of AM analogous to the PCP Theorem for NP. Similar characterizations have been given for higher levels of the Polynomial Hierarchy, and for PSPACE; however, we suggest that the result for AM might be of particular significance for attempts to derandomize this class. To test this notion, we pose some `Randomized Optimization Hypotheses' related to our stochastic CSPs that (in light of our result) would imply collapse results for AM. Unfortunately, the hypotheses appear over-strong, and we present evidence against them. In the process we show that, if some language in NP is hard-on-average against circuits of size 2^{Omega(n)}, then there exist hard-on-average optimization problems of a particularly elegant form. All our proofs use a powerful form of PCPs known as Probabilistically Checkable Proofs of Proximity, and demonstrate their versatility. We also use known results on randomness-efficient soundness- and hardness-amplification. In particular, we make essential use of the Impagliazzo-Wigderson generator; our analysis relies on a recent Chernoff-type theorem for expander walks.Comment: 18 page
    • …
    corecore