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Abstract

We introduce a new framework for a descriptive complexity approach to arithmetic
computations. We define a hierarchy of classes based on the idea of counting
assignments to free function variables in first-order formulae. We completely
determine the inclusion structure and show that #P and #AC0 appear as classes
of this hierarchy. In this way, we unconditionally place #AC0 properly in a strict
hierarchy of arithmetic classes within #P. Furthermore, we show that some of our
classes admit efficient approximation in the sense of FPRAS. We compare our
classes with a hierarchy within #P defined in a model-theoretic way by Saluja et al
and argue that our approach is better suited to study arithmetic circuit classes such
as #AC0 which can be descriptively characterized as a class in our framework.

Keywords: finite model theory, arithmetic circuits, counting classes, Skolem
function

1. Introduction

The complexity of arithmetic computations is a current focal topic in com-
plexity theory. Most prominent is Valiant’s class #P of all functions that count
accepting paths of nondeterministic polynomial-time Turing machines. This class
has interesting complete problems like counting the number of satisfying assign-
ments of propositional formulae or counting the number of perfect matchings of
bipartite graphs (which is equivalent to computing the permanent of the adjacency
matrix of such graphs [1]).
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The class #P has been characterized in a model-theoretic way by Saluja, Sub-
rahmanyam and Thakur in [2]. Their characterization is a natural generalization of
Fagin’s Theorem: Given a first-order formula with a free relational variable, instead
of asking if there exists an assignment to this variable that makes the formula true
(NP = ESO), we now ask to count how many such assignments there are. In
this way, the class #P is characterized: #P = #FOrel. We use the superscript rel
to denote that we are counting assignments to relational variables. The decision
version PP of #P has been characterized from a descriptive complexity point of
view in [3].

From another point of view, the class #P can be seen as the class of those
functions that can be computed by arithmetic circuits of polynomial size, i.e.,
circuits with plus and times gates instead of the usual Boolean gates (cf., e.g., [4]).
This is why here we speak of arithmetic computations. In the following, all circuit
complexity classes we are referring to will be FO-uniform classes, which means
that there are FO-formulae describing the circuits for all input lengths (a formal
definition will be given).

It is very natural to restrict the resource bounds of such arithmetic circuits. An
important class defined in this way is the class #AC0 of all functions computed
by polynomial-size bounded-depth arithmetic circuits. It is interesting to note
that #AC0 and all analogous classes defined by arithmetic circuits, i.e., plus-times
circuits, can also be defined making use of a suitable counting process for Boolean
circuits in which negations only occur in the form of input gates being labeled
as negated: A witness that such a Boolean circuit accepts its input is a so-called
proof tree of the circuit, i.e., a subtree of the circuit unwound into a tree containing
the output gate and for each contained gate a minimum number of its inputs that
allow to deduce that it evaluates to 1. That also means that all contained input gates
have to evaluate to 1. Then the arithmetic class #AC0, restricted to binary inputs,
can be characterized as the counting class of all functions that count proof trees
of (Boolean) AC0 circuits. The correspondence between arithmetic computations
and counting classes is explored in [5]. In this paper, we are mainly interested in
these counting classes, and without further mention we use the notation #AC0 in
this vein.

There was no model-theoretic characterization of #AC0, until it was recently
shown in [6] that #AC0 = #ΠSkolem

1 , where #ΠSkolem
1 means counting of possible

Skolem functions for FO-formulae.
The aim of this paper is to compare the model-theoretic characterization ob-

tained in [2] to that from [6] in order to get a unified view of both arithmetic circuit
classes, #AC0 and #P. This is done by noticing that the number of Skolem func-

2



tions of an FO-formula can be counted as satisfying assignments to free function
variables in a Π1-formula. This gives rise to the idea to restate the result by Saluja
et al counting functions instead of relations. We call our class where we count
assignments to function variables #FO, in contrast to Saluja et al.’s #FOrel. In this
setting, we get #P = #FO = #Π1, which places both classes within #Π1.

Furthermore, we show that #AC0 actually corresponds to a syntactic fragment
#Π

prefix
1 of #Π1 and, considering further syntactic subclasses of #FO defined by

quantifier alternations, we get the inclusions

#Σ0 ( #AC0 = #Π
prefix
1 (

( #Σ1 (
#Π1 = #FO = #P. (1)

Thus we establish (unconditionally, i.e., under no complexity theoretic assumptions)
the complete structure of the alternation hierarchy within #FO and show where
#AC0 is located in this hierarchy.

Once we know that only universal quantifiers suffice to obtain the full class,
i.e., #Π1 = #P, it is a natural question to ask how many universal quantifiers are
needed to express certain functions. We obtain the result that the hierarchy based
on the number of universal variables is infinite; however, a possible connection to
the depth hierarchy within #AC0 remains open.

We also study the question of which of the classes in our hierarchy are tractable.
The main result we obtain is that all functions in Σ1 posses a fully polynomial-
time randomized approximation scheme (see e.g. [7]). For this, we consider
a generalization of disjunctive normal-form we call “pseudo-DNF”. A pseudo-
DNF has identities of the form f (a) = b or f (a) 6= b as literals, where f is a
function symbol, a ∈ Nk for some k ∈ N and b ∈ N. These are then evaluated over
assignments to the function symbols. The main technical result we obtain in this
area is an FPRAS for counting satisfying assignments for pseudo-k-DNF formulae.
Then we show that every problem in #Σ1 can be reduced to such a problem. The
concept of pseudo-DNF and the approximability may be of independent interest.

We see that counting assignments to free function variables instead of relation
variables in first-order formulae leads us to a hierarchy of arithmetic classes
suitable for a study of the power and complexity of the class #AC0. We show that
the hierarchy introduced by Saluja et al. [2] is not suitable for such a goal, see
Section 7.

This paper is an extended full version of an earlier conference paper1. In the

1Arnaud Durand, Anselm Haak, Juha Kontinen and Heribert Vollmer. Descriptive complexity
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meantime, another paper appeared [8] that extended the framework by Saluja et
al. In that paper, a so called quantitative logic is introduced, where arithmetic
operators are introduced into second-order logic. This framework allowed for
characterizations of the classes FP, #P and FPSPACE. Furthermore, in a recent
paper [9], the study of descriptive complexity of arithmetic circuit classes was
extended from #AC0 to other small arithmetic circuit classes: Inspired by a work
of Compton and Laflamme [10], variants of a certain recursion on predicates was
introduced into FO. This yields characterizations of the Boolean classes NC1,
SAC1 and AC1 which extend to the respective counting classes. Another recent
paper [11] studied functions counting assignments to free relational variables in Σ1

1
formulae, including interesting connections to counting problems in team-based
logics. In this way, a characterization of the class # ·NP was obtained.

This paper is organized as follows: In the next section, we introduce relevant
concepts from finite model theory. Here, we also introduce the Saluja et al. hi-
erarchy, and we explain the model-theoretic characterization of #AC0. In Sect. 3
we introduce our new framework and the class #FO and its subclasses. In Sect. 4
we determine the full structure of the alternation hierarchy within #FO and place
#AC0 in this hierarchy. In Sect. 5 we study the class #Σ1 with respect to efficient
approximability and show that every function in this class admits an FPRAS. Fi-
nally, we conclude in Sect. 8 with some open questions. In Sect. 6 we study the
hierarchy defined by the number of universal variables in the #Π1-fragment. In
Sect. 7 we turn to the hierarchy defined by Saluja et al. and show that the arithmetic
class #AC0 is incomparable to all except the level-0 class and the full class of this
hierarchy.

Our proofs make use of a number of different results and techniques, some
stemming from computational complexity theory (such as separation of Boolean
circuit classes or the time hierarchy theorem for nondeterministic RAMs), some
from model theory (like closure of certain fragments of first-order logic under
extensions or taking substructures) or descriptive complexity (correspondence
between time-bounded NRAMs and fragments of existential second-order logic).
Most techniques have to be adapted to work in our very low complexity setting
(new counting reductions, use of the right set of built-in relations, etc.). Our paper
sits right in the intersection of finite model theory and computational complexity
theory.

of #AC0 functions. In CSL, volume 62 of LIPIcs, pages 20:1-20:16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.
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2. Definitions and Preliminaries

In this paper we consider finite σ -structures where σ is a finite vocabulary
consisting of relation and constant symbols. For such vocabularies σ , we denote
by STRUC[σ ] the class of finite σ -structures. For a structure A , dom(A ) denotes
its universe. We will always use structures with universe {0,1, . . . ,n−1} for some
n ∈ N\{0}. Sometimes we will assume that our structures contain certain built-in
relations and constants, e.g., ≤2, SUCC2, BIT2 and min. In the following, we will
always make it clear what built-in relations we allow. The interpretations of built-in
symbols are fixed for any size of the universe as follows: ≤2 is the ≤-relation on
N, min is 0, SUCC(i, j) is true, iff i+1 = j, and BIT(i, j) is true, iff the i’th bit of
the binary representation of j is 1. We will generally write encσ (A ) for the binary
encoding of a σ -structure A . For this we assume the standard encoding (see e.g.
[12]): Relations are encoded row by row by listing their truth values as 0’s and 1’s.
Constants are encoded by the binary representation of their value and thus a string
of length blog2(n)c+1. A whole structure is encoded by the concatenation of the
encodings of its relations and constants except for the built-in numerical predicates
and constants: These are not encoded, because they are fixed for any input length.

Since we want to talk about languages accepted by Boolean circuits, we will
need the vocabulary

τstring = (≤2,S1)

of binary strings. A binary string is represented as a structure over this vocabulary
as follows: Let w∈ {0,1}∗ with |w|= n. Then the structure representing this string
is the structure with universe {0, . . . ,n−1}, ≤2 interpreted as the≤-relation on the
natural numbers and x ∈ S, iff the x’th bit of w is 1. The structure corresponding to
string w is denoted by Aw.

For any k, the fragments Σk and Πk of FO are the classes of all formulae in
prenex normal form with a quantifier prefix with k alternations starting with an
existential or an universal quantifier, respectively.

We will now define the class #P and a model-theoretic framework in which the
class can be characterized. Here, we follow [2] only changing the name slightly to
emphasize that we are counting relations in this setting.

Definition 1. A function f : {0,1}∗→ N is in #P, if there is a non-deterministic
polynomial-time Turing machine M such that for all inputs x ∈ {0,1}∗,

f (x) = number of accepting computation paths of M on input x.
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Definition 2. A function f : {0,1}∗→ N is in #FOrel, if there is a vocabulary σ

including built-in linear order ≤, and an FO-formula ϕ(R1, . . . ,Rk,x1, . . . ,x`) over
σ with free relation variables R1, . . . ,Rk and free individual variables x1, . . . ,x`
such that for all A ∈ STRUC[σ ],

f (encσ (A )) = |{(S1, . . . ,Sk,c1, . . . ,c`) |A � ϕ(S1, . . . ,Sk,c1, . . . ,c`}|.

If the input of f is not of this form, we assume f takes the value 0.

In the same fashion we define counting classes using fragments of FO, such
as #Σrel

i and #Πrel
i for arbitrary i. In [2] the following was shown for these classes

(assuming order as the only built-in relation):

Theorem 3. #Σrel
0 = #Πrel

0 ⊂ #Σrel
1 ⊂ #Πrel

1 ⊂ #Σrel
2 ⊂ #Πrel

2 = #FOrel = #P.

Besides this theorem, it was also shown that the functions in #Σrel
0 can be

computed in polynomial time.
To illustrate the definition just given, we repeat an example from Saluja et al.

[2] that will also be important for us later.

Example 4. We will show that #3DNF, the problem of counting the number
of satisfying assignments of a propositional formula in disjunctive normal-form
with at most 3 literals per disjunct, is in the class #Σrel

1 . To do so, we use the
vocabulary σ3DNF = (D0,D1,D2,D3). Given a 3DNF-formula ϕ over variables V ,
we construct a corresponding σ -structure Aϕ with universe V such that for any
x1,x2,x3 ∈V , Di(x1,x2,x3) holds iff

∧
1≤ j≤i¬x j∧

∧
i< j≤3 x j appears as a disjunct.

Now consider the following σ -formula with free relational variable T :

Φ#3DNF(T ) = ∃x∃y∃z
( (

D0(x,y,z)∧T (x)∧T (y)∧T (z)
)

∨
(
D1(x,y,z)∧¬T (x)∧T (y)∧T (z)

)
∨
(
D2(x,y,z)∧¬T (x)∧¬T (y)∧T (z)

)
∨
(
D3(x,y,z)∧¬T (x)∧¬T (y)∧¬T (z)

))
Observe that Φ#3DNF is a Σ1-formula. Evaluated on an input structure Aϕ , it
expresses that an assignment to T defines a satisfying assignment of ϕ . Hence, the
number of assignments T such that Aϕ |= Φ#3DNF(T) is equal to the number of
satisfying assignments of ϕ .

We will next recall the definition of Boolean circuits and counting classes
defined using them. A circuit is a directed acyclic graph (dag), whose nodes (also
called gates) are marked with either a Boolean function (in our case ∧ or ∨), a
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constant (0 or 1), or a (possibly negated) bit of the input. This means that negations
can only occur as part of negated input gates and are not seperate gates. Also, one
gate is marked as the output gate. On any input, a circuit computes a Boolean
function by evaluating all gates according to what they are marked with. The value
of the output gate then is the function value for that input.
When we want circuits to work on different input lengths, we have to consider
families of circuits: A family contains a circuit for any input length n∈N. Families
of circuits allow us to talk about languages being accepted by circuits: A circuit
family C = (Cn)n∈N is said to accept (or decide) the language L, if it computes its
characteristic function cL:

C|x|(x) = cL(x) for all x.

The complexity classes in circuit complexity are classes of languages that can be
decided by circuit families with certain restrictions to their depth and size. The
depth here is the length of a longest path from any input gate to the output gate of
a circuit and the size is the number of non-input gates in a circuit. Depth and size
of a circuit family are defined as functions accordingly.
Above, we have not restricted the computability of the circuit C|x| from x in any
way. This is called non-uniformity, which allows such circuit families to even
compute non-recursive functions. Since we want to stay within #P, we need some
notion of uniformity. For this, we first define the vocabulary for Boolean circuits
as FO-structures:

τcirc = (E2,G1
∧,G

1
∨,B

1,r1),

where the relations are interpreted as follows:

• E(x,y): gate x is among the inputs of gate y

• G∧(x): gate x is an and-gate

• G∨(x): gate x is an or-gate

• B(x): gate x is an input gate of the circuit that evaluates to 1

• r(x): x is the output gate of the circuit

Note that we are using a predicate for truth of input gates instead of specifying
the associated input bit and whether it is negated or not. This is standard and
ultimately both notions are equivalent when used to define uniform versions of the
usual classes from circuit complexity.
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We will now define FO-uniformity of Boolean circuits in general and the class
AC0. For a definition of FO-interpretations, also called FO-queries, see [12].

Definition 5. A circuit family C = (Cn)n∈N is said to be first-order uniform (FO-
uniform) if there is an FO-interpretation

I : STRUC[τstring∪ (BIT2)]→ STRUC[τcirc]

mapping any structure Aw over τstring to the circuit C|w| given as a structure over
the vocabulary τcirc.

Note that by [13] this uniformity coincides with the maybe better known
DLOGTIME-uniformity for many familiar circuit classes (and in particular for all
classes studied in this paper).

Definition 6. A language L⊆ {0,1}∗ is in AC0, if there is an FO-uniform circuit
family with constant depth and polynomial size accepting L.

It is known that AC0 coincides with the class FO of all languages definable in
first-order logic [14, 12], i.e., informally: AC0 = FO. This identity holds if our
logical language includes the built-in relations of linear order and BIT. Though it is
known that linear order can be defined using BIT, we require that both are present
in our language, because we consider very restricted quantifier prefixes where ≤
cannot be defined with BIT.

We will next define counting classes corresponding to Boolean circuit families.
For a nondeterministic Turing machine, the witnesses we want to count are the
accepting paths of the machine on a given input. Considering polynomial-time
computations, this concept gives rise to the class #P. A witness that a Boolean
circuit accepts its input is a so-called proof tree, a minimal subtree of the circuit
showing that it evaluates to true for a given input. For this, we first unfold the given
circuit into tree shape, and we further require that it is in negation normal form
(meaning that negations only occur directly in front of literals). A proof tree then
is a subtree we get by choosing for any ∨-gate exactly one child and for any ∧-gate
all children, such that every leaf which we reach in this way is a true literal. This
allows us to define the class #AC0 as follows:

Definition 7. A function f : {0,1}∗→ N is in #AC0, if there is an FO-uniform
circuit family C = (Cn)n∈N such that for all w ∈ {0,1}∗,

f (w) = number of proof trees of C|w|(w).
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As was shown in [6], there is a model-theoretic characterization of #AC0. For
this, let us define the Skolemization of an FO-formula ϕ in prenex normal form
by removing all existential quantifiers and replacing each existentially quantified
variable in the quantifier-free part of ϕ by a term consisting of a function applica-
tion to those variables quantified universally to the left of the original existential
quantifier. In other words, every existential variable is replaced by its so-called
Skolem function. Now, #AC0 contains exactly those functions that can be given as
the number of Skolem functions for a given FO-formula.

Definition 8. A function f : {0,1}∗ → N is in the class #ΠSkolem
1 if there is a

vocabulary σ including built-in ≤, BIT and min and a first-order sentence ϕ over
σ in prenex normal form

ϕ , ∃y1∀z1∃y2∀z2 . . .∃yk−1∀zk−1∃yk ψ(y,z),

where ψ is quantifier-free such that for all A ∈ STRUC[σ ], f (encσ (A )) is equal
to the number of tuples ( f1, . . . , fk) of functions such that

A � ∀z1 . . .∀zk−1 ψ( f1, f2(z1), . . . , fk(z1, . . . ,zk−1),z1, . . . ,zk−1).

If the input of f is not of this form, we assume f takes the value 0.

This means that #ΠSkolem
1 contains those functions that, for a fixed FO-formula

ϕ over some vocabulary σ , map an input w to the number of Skolem functions for
ϕ on A = enc−1

σ (w).
The model-theoretic characterization of #AC0 from [6] can now be stated as

follows.

Theorem 9. #AC0 = #ΠSkolem
1 .

The above mentioned result FO = AC0 [14, 12] requires built-in order and
BIT; hence it is no surprise that also for the theorem just given these relations are
needed, and this is the reason why they also appear in Def. 8.

3. Connecting the Characterizations of #AC0 and #P

We will now establish a unified view of the model-theoretic characterizations
of both #AC0 and #P. This will be done by viewing #AC0 as a syntactic subclass
of #FO. Theorem 9 characterizes #AC0 by a process of counting assignments to
function variables in FO-formulae, but only in a very restricted setting. It is natural
to define the process of counting functions in a more general way, similar to the
framework of [2], repeated here in Def. 2, where Saluja et al. count assignments to
free relation variables in FO-formulae to obtain their characterization of #P.
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Definition 10. #FO is the class of all functions f : {0,1}∗→ N for which there is
a vocabulary σ including built-in ≤, BIT and min, and an FO-formula

ϕ(F1, . . . ,Fk,x1, . . . ,x`)

over σ with free function variables F1, . . . ,Fk and free individual variables x1, . . . ,x`
such that for all A ∈ STRUC[σ ],

f (encσ (A )) =
∣∣{( f1, . . . , fk,c1, . . . ,c`)

∣∣A � ϕ( f1, . . . , fk,c1, . . . ,c`
}∣∣.

If the input of f is not of this form, we assume f takes the value 0.

In the same fashion we define counting classes using fragments of FO, such as
#Σi and #Πi for arbitrary i. Note, that the free individual variables could also be
seen as free function variables of arity 0.

We stress that our signatures in the above definition include symbols ≤, BIT,
and min with their standard interpretations; as argued already several times, these
built-ins are necessary in order to obtain a close correspondence between standard
circuit classes like AC0, TC0 and first-order logic (but cf. results that consider
weaker logics and relate them to presumably smaller non-standard complexity
classes [15]). In contrast to our definition, Saluja et al. (see Def. 2) only use
built-in order. Still, we will now see that both concepts, counting relations and
counting functions, are in fact equivalent as long as we use all of FO, even with
different sets of built-in relations.

Theorem 11. #FOrel = #FO = #P.

Proof. The inclusion #FOrel ⊆ #FO is shown as follows: Let f ∈ #FOrel via the
formula ϕ containing free relation variables R1, . . . ,Rk. We can replace Ri by a
function variable Fi of the same arity for all i. We then add a conjunct to the
formula ensuring that for these functions only min and the element x > min with
∀y(y < x→ y = min) are allowed as function values. Then each occurrence of
Ri(z) can be replaced by Fi(z) = min.

The inclusion #FO ⊆ #P is straightforward. The inclusion #P ⊆ #FOrel was
shown in [2].

Note that #AC0 = #ΠSkolem
1 does not directly arise from this definition by

choosing an appropriate fragment of FO because of the restricted usage of the
second-order variables in Def. 8. Still, we will characterize #AC0 as a syntactic
subclass of #FO as follows.
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Definition 12. Let #Π
prefix
1 be the class of all functions f for which there is a Π1-

formula ϕ(G,x) = ∀y1 . . .∀ykψ(G,x,y1, . . . ,yk) over some vocabulary σ , where ψ

is quantifier-free and in which all arity-a function symbols G (for any a) occur in
ψ only as G(y1, . . . ,ya) such that for all A ∈ STRUC[σ ]

f (encσ (A )) = |{(g,c) |A � ϕ(g,c)}|.

If the input of f is not of this form, we assume f takes the value 0.

Lemma 13. #AC0 = #Π
prefix
1

Proof. By Theorem 9 it suffices to show #ΠSkolem
1 =#Π

prefix
1 . We consider first the

inclusion #ΠSkolem
1 ⊆ #Π

prefix
1 . Let g ∈ #ΠSkolem

1 via a formula ϕ as in Def. 8. Then
we can simply replace the occurrences of variables yi in ψ by the corresponding
function terms. The resulting formula is prefix-restricted as needed and directly
shows g ∈ #Π

prefix
1 .

For #Π
prefix
1 ⊆ #ΠSkolem

1 , let g ∈ #Π
prefix
1 via a formula ϕ . Since all function

symbols occurring in ϕ are only applied to a unique prefix of the universally
quantified variables, they can be seen as Skolem functions of suitable existentially
quantified variables. Thus, we can replace the occurrences of the function symbols
by new variables that are existentially quantified at adequate positions between
the universally quantified variables. If for example, the input for a function was
x1, . . . ,x`, then the new variable is quantified after the part ∀x1 . . .∀x` of the quanti-
fier prefix. Strict alternations in the quantifier-prefix, as required for #ΠSkolem

1 , can
be achieved by adequately adding dummy-variables in between and forcing them
to be equal to min. This yields a formula ϕ ′ that shows g ∈ #ΠSkolem

1 .

4. An Alternation Hierarchy in #FO

In this section we study the quantifier alternation hierarchy of #FO. Interest-
ingly, our approach allows us to locate #AC0 in this hierarchy. First we note that
the whole hierarchy collapses to a quite low class.

Theorem 14. #FO = #Π1

Proof. Let h ∈ #FO via an FO-formula ϕ(F ,x) in prenex normal form. We show
how to transform ϕ to a Π1-formula also defining h. As a first step, we change ϕ in
such a way that for each existential variable instead of “there is an x” we say “there
is a smallest x”. Formally, this can be done with the following transformation:

∃xθ(x) ∃x(θ(x)∧∀z(¬θ(z)∨ x≤ z))

11



applied recursively to all existential quantifiers in ϕ . Note that now for every
satisfied ∃-quantifier there is exactly one witness.

For the sake of argument, suppose that after the above transformation and
conversion to prenex normal form with strict quantifier alternations the formula
ϕ(F ,x) corresponds to

ϕ
′(F ,x) = ∃z1∀y1∃z2 . . .∀y`−1∃z`ψ(F ,x,z1, . . . ,z`,y1, . . . ,y`−1)

where ψ is quantifier-free. Looking at the Skolemization of ϕ ′, our transformation
ensures that every existentially quantified variable has a unique Skolem function.
Thus,

ϕ
′′(F ,x,G1, . . . ,G`) =∀y1 . . .∀y`−1

ψ(F ,x,G1,G2(y1), . . . ,G`(y1, . . . ,y`−1),y1, . . . ,y`−1)

shows h ∈ #Π1.

Next we look at the lowest class in our hierarchy and separate it from #AC0.

Theorem 15. #Σ0 ( #AC0

Proof. We start by showing the inclusion. Certain observations in that proof will
then almost directly yield the strictness. Let f ∈ #Σ0 via the quantifier-free FO-
formula ϕ(F1, . . . ,Fk,x1, . . . ,x`) over some vocabulary σ , where F1, . . . ,Fk are free
function variables and x1, . . . ,x` are free individual variables, that is,

f (encσ (A )) = |{( f1, . . . , fk,c1, . . . ,c`) |A � ϕ( f1, . . . , fk,c1, . . . ,c`)}|.

Without loss of generality we can assume that in ϕ no nesting of function symbols
occurs by replacing each term H(t1, .., tn) everywhere by H(y1, ..,yn), for some
fresh variables y1, ..,yn, and by adding a new conjunct (

∧
1≤i≤n yi = ti) to the

formula. The new conjunct ensures that the interpretations of the new variables yi
are determined by the terms ti and hence the total number of satisfying assignments
remains equal to that of ϕ .

Let A := dom(A ). For all i, let ai be the arity of Fi and let mi be the number
of syntactically different tuples of terms that occur as inputs to Fi within ϕ . Let
ei1, . . . ,eimi be those tuples of terms in the order of their occurrence within ϕ and
let ϕ ′(y11, . . . ,y1m1

, . . . ,yk1, . . . ,ykmk
,x1, . . . ,x`) be ϕ after replacing for all i, j all

occurrences of Fi(ei j) by the new free variable yi j. Let m := ∑i mi.

12



Considering a fixed assignment to the variables x1, . . . ,x`, each ei j has a fixed
value. Thus, we can use free individual variables in order to count the number of
assignments to all terms Fi(ei j) for all (i, j). After that, all fi have to be chosen in
accordance with those choices to get the correct number of functions that satisfy
the formula. Formally, this is done as follows:

f (encσ (A )) = ∑
c∈A`

∑
( f1,..., fk)∈

AAa1×···×AAak

[[A � ϕ( f1, . . . , fk,c1, . . . ,c`)]]

= ∑
c∈A`

∑
d∈Am

∑
( f1,..., fk)∈Gc,d

[[A � ϕ
′(d,c)]],

where Gc,d := {( f1, . . . , fk) ∈ AAa1 ×·· ·×AAak | ∀(i, j) : A � di j = fi(ei j)} and
[[P]] is the 0-1-value of proposition P.

Since [[A � ϕ ′(d,c)]] does not depend on ( f1, . . . , fk), we can multiply by the
cardinality of Gc,d instead of summing:

f (encσ (A )) = ∑
c∈A`,
d∈Am

[[A � ϕ
′(d,c)]] · |Gc,d|

Now we are in a position to show f ∈ #AC0.
The sum only has polynomially many summands and thus can obviously be

computed in #AC0.
For [[A � ϕ ′(d,c)]], the circuit only has to evaluate a quantifier-free formula

depending on an assignment that is given by the path from the root to the current
gate. This is similar to the corresponding part of the proof of FO = AC0 and thus
can be done in AC0 ⊆ #AC0 (viewing AC0 as a class of characteristic functions of
languages).

For |Gc,d| we first note that the total number of possible assignments for f is

|AAa1 ×·· ·×AAak |= |A|∑i |A|ai
.

The definition of G fixes for each function fi the function value on at most mi inputs
to be equal to some di j. This means, that the function value on at least |A|ai−mi
inputs is not determined by the definition of Gc,d and can thus be freely chosen.

If for some (i, j), ei j is semantically equal to ei j′ for some j′ < j, it has to hold
that di j = di j′ . Additionally, if such a j′ exists this reduces the number of function
values that are fixed by the di j by 1. To make this formal we define for any (c, i, j)

Sci j = { j′ | j′ < j and A � ei j = ei j′}

13



where we use the extension of = to tuples for simplicity. From the above consider-
ations we get

|Gc,d|= [[
∧
(i, j)

∧
j′
( j′ ∈ Si j)→ di j = di j′]] · |A|∑i |A|ai−mi · |A|∑i j [[Si j 6= /0]].

Since the ai and mi are constants and Si j is FO-definable, |Gc,d| can be com-
puted in #AC0. This concludes the proof for #Σ0 ⊆ #AC0.

Note that for any #Σ0-function f defined using a Σ0-formula without free
second-order variables, f (w) is bounded polynomially in |w| for all inputs w. On
the other hand, the above proof shows that for any #Σ0-function f defined using a
Σ0-formula with at least one free second-order variable, there are constants ci > 0
such that f (w) divisible by |w|∑i |w|ci− const for all inputs w. Thus, the function
f (w) = |w|d|w|/2e ∈ #AC0 is not in #Σ0 which means #Σ0 6= #AC0.

Theorem 16. #ΠSkolem
1 ( #Π1.

Proof. From the above we immediately get #ΠSkolem
1 = #AC0 ( #P = #Π1, where

the strict inclusion follows from the different closure properties of the two classes.
For example, #AC0 is not closed under a certain form of binomial coefficients as
shown in [16] while #P is closed under this operation.

So far we have identified the following hierarchy:

#Σ0 ( #Π
Skolem
1 = #AC0 ( #Π1 = #P. (2)

Next we turn to the class #Σ1 and show that it forms a different branch between
#Σ0 and #Π1.

Lemma 17. There exists a function f which is in #ΠSkolem
1 but not in #Σ1.

Proof. Let τ = {E,c,d,≤,BIT,min} where E is a binary relation symbol and c,d
are constant symbols. Let us consider the function f defined by the number of
Skolem functions of variable z in the formula ∀x∀y∃z ψ(x,y,z) with

ψ = (E(x,y)→ z = c∨ z = d)∧ (¬E(x,y)→ z = c).

For a given τ-structure A with cA 6= dA , it is clear that:

f (encτ(A )) = |{g |A |= ∀x∀y ψ(x,y,g(x,y))}|= 2|E
A |,

14



since each edge gives rise to two possible values for z = g(x,y) and each non edge
to only one value. Thus, f ∈ #ΠSkolem

1 .
Suppose now that f ∈ #Σ1 i.e. that there exists ϕ(H,x) ∈ Σ1 such that for all

τ-structures G ,
f (encτ(G )) = |{(h,a) | G |= ϕ(h,a)}|

and in particular for A as above,

2|E
A | = f (encτ(A )) = |{(h,a) |A |= ϕ(h,a)}|.

Now consider the following structure A ′ defined simply by extending dom(A ) =
{0, ...,n−1} by a new element, i.e., dom(A ′) = {0, ...,n}. Note that EA = EA ′ ,
hence the two structures have the same number of edges. To make the presentation
simpler, suppose H =H and that the arity of H is one. Any given h0 : dom(A )−→
dom(A ), can be extended in several ways on the domain dom(A ′) in particular
as h1 and h2 below:

• h1(x) = h(x) for all x ∈ dom(A ) and h1(n) = c.

• h2(x) = h(x) for all x ∈ dom(A ) and h2(n) = d.

Formulae in Σ1 are preserved under extension of models so if a and h0 are such
that A |= ϕ(h0,a) then A ′ |= ϕ(h1,a) and A ′ |= ϕ(h2,a). Hence,

|{(h,a) |A ′ |= ϕ(h,a)}|> |{(h,a) |A |= ϕ(h,a)}|.

On the other hand, f (encτ(A )) = f (encτ(A ′)) holds, hence our assumption that
ϕ(H,x) ∈ Σ1 defines f has led to a contradiction.

For the opposite direction, we first show the following lemma.

Lemma 18. The function #3DNF is complete for #P under AC0-Turing-reductions.

Proof. A reduction of the #P-complete problem #3CNF to #3DNF is as follows:
Given a 3CNF-formula ϕ over n variables, we first construct ϕ ′ = ¬ϕ . This is a
3DNF-formula. Obviously, the number of satisfying assignments of ϕ is equal
to 2n minus the number of satisfying assignments of ϕ ′. Since this reduction
can be computed by an AC0-circuit and moreover #3CNF is #P-complete under
AC0-reductions (as follows from the standard proof of the NP-completeness of
SAT), #3DNF is complete for #P under AC0-Turing-reductions.

Lemma 19. There exists a function which is in #Σ1 but not in #ΠSkolem
1 .
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Proof. Using FTC0 to denote the functional version of TC0, we first note that
FTC0 6= #P: For the sake of contradiction, assume FTC0 = #P. For any class
F of functions {0,1}∗→ N let C ·F be the class of all languages L for which
there are f ,g ∈F such that for all x ∈ {0,1}∗, x ∈ L⇔ f (x) > g(x). We obtain
PP = C ·#P⊆ C ·FTC0 = TC0 which is a contradiction to TC0 ( PP [17]. Note that
C ·FTC0 = TC0 is obvious from the definition: Computing two FTC0-functions
and comparing them can be done in TC0, while for the converse we can just use
the characteristic function of any language in TC0 and the constant-0 function.

We now show this lemma by modifying the counting problem #3DNF to get
a #P-complete function inside of #Σ1. If the reduction we use can be computed
in FTC0, the modified version of #3DNF can not be in #ΠSkolem

1 = #AC0 ⊆ FTC0,
because this would contradict FTC0 6= #P.

Consider the vocabulary σ3DNF and the formula Φ#3DNF(T ) from example
4. Let σ be the vocabulary extending σ3DNF with built-in ≤, BIT and min. To
get a function in #Σ1, we need to use a free function variable instead of the free
relation variable T . Since we cannot use universal quantifiers, relations cannot
be represented uniquely as functions of the same arity. In order to still get a #P-
complete problem, we want to make sure that compared to #3DNF, the function
value of our new counting function only differs from the one of #3DNF by a factor
depending on the input length, not on the specific satisfying assignments. To
achieve this, we encode any relation T0 interpreting T as a function f as follows:
interpret for all x an even function value f (x) as T0(x) being false and an odd
function value f (x) as T0(x) being true. If the size of the universe is even this
ensures that the numbers of 1’s and 0’s in a satisfying assignment do not influence
the factor by which the new counting function differs from #3DNF.

Following this idea we define for all σ -structures A

#3DNFfunc(encσ (A )) ··= |{ f |A �Φ#3DNFfunc( f )}|,

where Φ#3DNFfunc(F) is Φ#3DNF(T ) after replacing for all variables x subformulae
of the form T (x) by BIT(min,F(x)). By definition, #3DNFfunc ∈ #Σ1.

We now want to reduce #3DNF to #3DNFfunc. Since the idea above only works
if the universe has even cardinality, the first step of the reduction is doubling the size
of the universe. Let A be a structure and A ′ the structure that arises from A by
doubling the size of the universe. Let A = {0, . . . ,n−1} and A′ = {0, . . . ,2n−1}
be their respective universes. Each assignment T0 for T with A � Φ#3DNF(T0)
gives rise to the following set of assignments for f with A ′ �Φ#3DNFfunc( f ):

ST0 = { f : A′→ A′ | for all x ∈ A : f (x)≡ 1 mod 2 ⇔ T0(x)}.
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These sets are disjoint and by definition of Φ#3DNFfunc(F) their union is equal
to { f |A ′ �Φ#3DNFfunc( f )}. For each T0, the functions f in ST0 have n choices for
f (x), if x ∈ A and 2n choices, if x /∈ A. Thus, |ST0 |= |A||A| · (2 · |A|)|A|, yielding

#3DNF(encσ3DNF(A )) =
#3DNFfunc(encσ (A ′))

|A|2|A| ·2|A|
.

Doubling the size of the universe can be done in FTC0 by adding the adequate
number of 0-entries in the encodings of all relations.

The term |A|2|A| ·2|A| can be computed in #AC0 ⊆ FTC0 and division can be
done in FTC0 due to [18].

Since #3DNF is #P-complete under AC0-Turing-reductions by Lemma 18, this
means that #3DNFfunc is #P-complete under TC0-Turing-reductions.

So Lemmas 17 and 19 show that #Σ1 and #ΠSkolem
1 are incomparable, and

we obtain the inclusion chain #Σ0 ( #Σ1 ( #Π1 = #P. Together with (2) and
Lemma 13 we therefore obtain

#Σ0 ( #AC0 = #Π
prefix
1 (

( #Σ1 (
#Π1 = #FO = #P. (1)

5. Feasibility of #Σ1

One of the main goals of Saluja et al. in their paper [2] was to identify feasible
subclasses of #P. They showed that #Σrel

0 -functions can be computed in polynomial
time, but even more interestingly, that functions from a certain higher class #RΣ2
allow a fully polynomial-time randomized approximation scheme. In this vein, we
study the feasibility of the class #Σ1 in terms of approximability. We will show that
every counting function in the class #Σ1 has a fully polynomial-time randomized
approximation scheme (FPRAS). As an intermediate step we introduce the class of
pseudo-DNF formulae as well as associated computational problems. It turns out
that every problem in #Σ1 is reducible to the counting of satisfying assignments
of a restricted pseudo-DNF formula and this problem—called #kPDNF—has an
FPRAS. This approach is to a degree in analogy to the approach by Saluja et al
showing that every problem in #Σrel

1 has an FPRAS. As a new tool we introduce
the problem #kPDNF.

Definition 20. Let f : {0,1}∗ → N be a counting problem. f is said to have a
fully polynomial-time randomized approximation scheme (FPRAS), if there is a
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randomized algorithm M working on inputs (x,ε) with x ∈ {0,1}∗,ε ∈Q such that
for all such inputs:

• P

[
|M(x,ε)− f (x)|> ε · | f (x)|

]
< 1

4 , where M(x,ε) is the random variable

describing the output of M on input (x,ε),

• the running time of M on input (x,ε) is bounded by a polynomial in |x|, 1
ε
.

We define the following type of reduction that preserves existence of FPRAS
for languages:

Definition 21. Let f ,g be counting problems. We say f is polynomial-time
rational-product reducible to g if there are polynomial-time computable functions
r : {0,1}∗→{0,1}∗, h : {0,1}∗→Q+, such that for all w ∈ {0,1}∗:

f (w) = h(w) ·g(r(w)).

Notation: f ≤Q-pr g.

The following Lemma is an obvious observation. We still give a proof for
completeness.

Lemma 22. Let f ,g be counting problems, f ≤Q-pr g and g has an FPRAS. Then
f has an FPRAS.

Proof. Let r and h be as in Definition 21 and

f (w) = h(w) ·g(r(w)).

The following is an FPRAS for f :

Require: w, ε

Compute in polynomial time r(w)
t← ε-approximation of g(r(w)) using the FPRAS for g
return h(w) · t

The running-time of the FPRAS for g in this algorithm is polynomial in |r(w)|,
1/ε and hence also in |w|, 1/ε . We now have

|g(r(w))− t| ≤ ε ·g(r(w))⇔ h(w) · |g(r(w))− t| ≤ ε ·h(w) ·g(r(w))
⇔ |h(w) ·g(r(w))−h(w) · t| ≤ ε ·h(w) ·g(r(w))
⇔ | f (w)−h(w) · t| ≤ ε · f (w).
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This means the error of the new FPRAS for f on input w is bounded by ε iff the
error of the FPRAS for g on input r(w) is bounded by ε . Furthermore, the new
FPRAS does not use additional randomness beyond the randomness used by the
FPRAS for g. This means that the error probability is still bounded by 1

4 , finishing
the proof.

Let F = {Fi | i ∈ N} be a countable set of function symbols and let ar(Fi)
denote the arity of Fi. A pseudo-DNF formula is a formula ϕ of the following
form:

ϕ =
m1∨
i=1

m2∧
j=1

`i, j,

where `i, j , Fi, j(ai, j) = bi, j or `i, j , Fi, j(ai, j) 6= bi, j with Fi, j ∈F , ai, j ∈ Nar( fi)

and bi, j ∈ N for all 1≤ i≤ m1 and 1≤ j ≤ m2.
We denote by [n]0 the set of number from 0 to n. Let ϕ be a pseudo-DNF

formula as above and n ∈ N. An assignment of ϕ over [n]0 is an assignment θ

mapping each function symbol occurring in ϕ to an interpretation as a function
over [n]0 of corresponding arity. We say that θ is a satisfying assignment of ϕ if
there is an i such that for all j we have

θ(Fi, j)(ai, j) = bi, j if `i, j is the formula Fi, j(ai, j) = bi, j

and respectively for the case that `i, j is the formula Fi, j(ai, j) 6= bi, j.
We now define the satisfiability problem for pseudo-DNF formulae as follows:

Problem: PDNF-SAT
Input: (1n,ϕ), where n ∈ N, ϕ is a pseudo-

DNF formula and all numbers occur-
ring in ϕ are bounded by n

Question: Is there a satisfying assignment of ϕ

over [n]0?

We also define the counting version of the above:

Problem: #PDNF
Input: (1n,ϕ), where n ∈ N, ϕ is a pseudo-

DNF formula and all numbers occur-
ring in ϕ are bounded by n

Output: number of satisfying assignments of
ϕ over [n]0
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We will consider PDNFs with a bounded number of literals in each disjunct and
bounded arity of function symbols. Let k-PDNF(m) be the class of PDNFs where
each disjunct consists of at most k literals and the arity of each occurring function
symbol is bounded by m. Furthermore, let k-PDNF(m)-SAT and #k-PDNF(m) be
the above problems restricted to the respective inputs.

It can easily be seen that #k-PDNF(m) is #P-complete under subtractive reduc-
tions (see [19]): Membership is immediate. For hardness one can introduce
the respective class of Pseudo-CNFs and the related problems. Encoding a
Boolean assignment as a function of arity 1 it is straightforward to show that
#k-CNF≤ #k-PCNF(1) under parsimonious reductions. By using the same idea
as for the reduction from #k-CNF to #k-DNF one can then show that #k-PDNF(1)
is #P-hard under subtractive reductions.

Lemma 23. For all f ∈ #Σ1 there are k,m ∈ N such that f ≤Q-pr #k-PDNF(m).

Proof. Let f ∈ #Σ1 via ∃yψ(y,z,G), that is,

f (w) = |{(g,a) |Aw � ∃yψ(y,a,g)}|,

where by the introduction of existentially quantified new variables we may without
loss of generality assume that ψ is quantifier-free, in DNF and all occurrences
of function symbols in ψ are of the form F(x1) = x2 or F(x1) 6= x2, where F is
a function symbol, x1 a tuple of first order variables of appropriate arity and x2
a first order variable. Let t be a bound on the number of literals per disjunct in
ψ . Let m be the highest arity among function symbols in G. Furthermore, let
p be the arity of y and q be the arity of z. Let dom(Aw)

p =·· {y1, . . . ,y|w|p} and
dom(Aw)

q =·· {z0, . . . ,z|w|q−1}.
Now, for each zi, write the meaning of the existential quantifier out as a dis-

junction of polynomial size:

∃yψ(y,zi,G) 
|w|p∨
j=1

ψ(y j,zi,G)

Define ψ ′zi
(G) to be this formula after evaluating according to Aw. That means, only

a Boolean combination of atomic formulae of the form Gi(b) = c and Gi(b) 6= c
remains (here b and c are constants), while all occurrences of symbols from the
signature as well as equalities not involving free function variables have been
evaluated.
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We now use a tuple of new function symbols H to sum over the different values
for z using the following disjoint disjunction:

θAw
··= [ψ ′z0

(G)∧H(0) = 0]∨ . . .∨ [ψ ′z|w|q−1
(G)∧H(0) = z|w|q−1]

Let θ ′Aw
be θAw transformed to a PDNF in the obvious way, e.g. in the first disjunct

H(0) = 0 is added to all terms of ψ ′z0
(G). The universe for the evaluation of θ ′Aw

is
dom(Aw) = [|w|−1]0. Since by using H we split for each different tuple assigned
to z, the number of satisfying assignments to the function symbols in θ ′Aw

is the
sum of numbers of satisfying assignments for G,H over all different values for z.
Since for H we only fix the value for input 0 (and the output for all other inputs
can be chosen arbitrarily), we get

#PDNF(θ ′Aw
,1|w|−1) =

(
|w||w|

q−1
)
· f (w).

Note that we have bounds on the number of different function symbols, the arity of
functions symbols and the number of literals in each term as follows: The tuple H
is of size q and each function symbol in this tuple has arity 1. The arity of function
symbols in G is bounded by m. Furthermore, the number of literals in each term in
θ ′Aw

is bounded by t +q and hence θ ′Aw
is a (t +q)-PDNF(m). Since (θ ′Aw

,1|w|−1)

and the function nnq−1 (for constant q) are computable in polynomial time, this
proves f ≤Q-pr #(t +1)-PDNF(m).

The proof of Lemma 23 is inspired by Lemma 1 from [2]; however since they
use a Boolean encoding of the different values of z, they need logarithmic clause
width (#k · logDNF).

In order to show that #k-PDNF(m) has FPRAS for all k,m ∈ N, we first need
the following Chernoff bound by Mitzenmacher and Upfal [20].

Lemma 24. Let X1, . . . ,Xn be independent Poisson trials such that Pr(Xi = 1) = pi.
Let X = ∑

n
i=1 Xi and µ = E[X ]. For 0 < δ < 1,

Pr(|X−µ| ≥ δ µ)≤ 2e−µδ 2/3.

Here, Pr(A) is the probability of event A and E[X ] is the expected value of
random variable X .

We will now prove that the number of satisfying assignments of k-PDNF(m)s
can be approximated by an FPRAS for any k,m ∈ N.
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Lemma 25. #k-PDNF(m) has FPRAS for all k,m ∈ N.

Proof. Let k,m ∈N. We give an FPRAS for #k-PDNF(m). Let (ϕ,1n) be an input
for #k-PDNF(m). This means that all numbers occurring in ϕ are bounded by
n. Let ` be the number of function symbols occurring in ϕ and without loss of
generality let the function symbols occurring in ϕ be Fi with arities ai = ar(Fi)
where 1≤ i≤ `. The total number of assignments of ϕ over [n]0 is

`

∏
i=1

nnai
= n∑

`
i=1 nai

.

Now, if there is any satisfiable disjunct d, it fixes at most k function values. That
means at least n∑i nai−k assignments over [n]0 satisfy d, which is at least a 1

nk fraction
of all assignments.

Let X be the {0,1}-valued random variable obtained by picking an assignment
of ϕ uniformly at random and returning 1 iff that assignment satisfies ϕ . Let p be
the probability of X being 1. Then E[X ] = p. We now apply Lemma 24: Let t ∈ N
and X1, . . . ,Xt be independent instances of X . By Lemma 24 for every 1 > ε > 0 it
holds that

Pr

(∣∣∣∣∣ t

∑
i=1

Xi−E[
t

∑
i=1

Xi]

∣∣∣∣∣> ε ·E[
t

∑
i=1

Xi]

)
≤ 2e−E[∑

t
i=1 Xi]ε

2/3.

For ε ≥ 1 we can simply use some fixed value < 1 instead to get the desired
approximation. Dividing the inequality inside Pr(·) by t and using E[∑t

i=1 Xi]
t =

E[X ] = p, we obtain

Pr
(∣∣∣∣∑t

i=1 Xi

t
− p
∣∣∣∣> ε · p

)
≤ 2e−ptε2/3.

This means that we can approximate p by ∑
t
i=1 Xi

t with the desired error prob-
ability by choosing t such that the right-hand side is bounded by 1

4 . This yields
t > 3·ln8

pε2 . Since for p > 0 we have p≥ 1
nk , we choose

t =
3dln8e ·nk

ε2 +1.

For p = 0 there will never be an error with any number of trials.
Now t is polynomially bounded in 1

ε
and n and computable in polynomial time.

We can now approximate the number of satisfying assignments by the total number
of assignments times the above approximation of p. By these considerations,
Algorithm 1 is an FPRAS for #k-PDNF(m).
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Algorithm 1 FPRAS for k-PDNF(m)

Require: (ϕ,1n), where ϕ is a k-PDNF(m), ε

if ε ≥ 1 then
ε = 0.9

end if
sat← 0
t← 3dln8e·nk

ε2 +1
for i = 1 to t do

Pick an assignment θ of ϕ over [n]0 uniformly at random
if θ satisfies ϕ then sat← sat+1
end if

end for
Let {F1, . . . , F̀ } be the function symbols occurring in ϕ

ai← ar(Fi)

return n∑
`
i=1 nai · sat

t

6. Hierarchy Based on the Number of Universal Variables

In this section we study another hierarchy in #FO based on syntactic restrictions,
this time given by the number of universal variables.

Let Πk
1 denote the class of Π1 formulae of the form

∀x1 · · ·∀xkψ,

where ψ is a quantifier-free formula. The function class corresponding to Πk
1 is

denoted by #Πk
1. We will show that

#Π
k
1 ( #Π

k+1
1 , (3)

for all k ≥ 1. These results can be shown by applying a result of Grandjean and
Olive which we will discuss next.

Definition 26. We denote by ESO f (k∀) the class of ESO-sentences in Skolem
normal form

∃F1 . . .∃Fn∀x1 . . .∀xkψ,

where ψ is a quantifier-free formula.
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It was shown in [21] that with respect to any finite signature σ

ESO f (k∀) = NTIMERAM(nk),

where NTIMERAM(nk) denotes the family of classes of σ -structures that can be
recognized by a non-deterministic RAM in time O(nk). Note that by [22],

NTIMERAM(nk)( NTIMERAM(nk+1).

These results can be used to show the strictness of the variables hierarchy (see (3)).

Theorem 27. Let k ≥ 1. Then

#Π
k
1 ( #Π

k+1
1 .

Proof. Let us fix σ = {<,BIT,min,P}, where P is unary. By the above there
exists a sentence ∃F1 · · ·∃Fnψ ∈ ESO f ((k+1)∀)[σ ] defining a binary language L
which cannot be defined by any sentence χ ∈ ESO f (k∀)[σ ]. We claim that the
function f associated with the formula ψ(F1, ...,Fn) ∈Π

k+1
1 ,

f (encσ (A )) = |{( f1, ..., fn) |A |= ψ( f1, ..., fn)}|,

is not a member of #Πk
1. For a contradiction, assume that f ∈ #Πk

1. Then there
exists a formula χ(G,y) ∈Πk

1 such that

f (encσ (A )) = |{(g,y) |A |= χ(g,y)}|

By the above, the sentence ∃G∃yχ , where y is a tuple of arity-0 functions, defines
the language L, and hence contradicts the assumption that L cannot be defined by
any ESO f (k∀)[σ ]-sentence.

It is an interesting open question to study the relationship of #AC0 with the
classes #Πk

1.

7. #AC0 compared to the classes from Saluja et al.

In this section we study the relationship of #AC0 to the syntactic classes
introduced in [2]. As in [2], these classes are defined assuming a built-in order
relation only.

Theorem 28. • #Σrel
0 ( #AC0,
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• Let C ∈ {#Σrel
1 ,#Πrel

1 ,#Σrel
2 }. Then the following holds: #AC0 6⊆ C and

C 6⊆ #AC0.

Proof. The proof of the inclusion #Σrel
0 ( #AC0 is analogous to the proof of

Theorem 15 and is thus omitted.
For the second statement recall from Theorem 3 that #Σrel

1 ⊂ #Πrel
1 ⊂ #Σrel

2 .
The claim C 6⊆ #AC0 for C ∈ {#Σrel

1 ,#Πrel
1 ,#Σrel

2 } can be proven as follows: From
Example 4 we know that #3DNF∈C and from Lemma 18 we know that #3DNF is
#P-complete under AC0-Turing-reductions. Now suppose #3DNF ∈ #AC0. Then

#P ⊆ FAC0#AC0
⊆ FTC0 [6], contradicting FTC0 6= #P, which was shown in the

proof of Lemma 19. Hence #3DNF 6∈ #AC0 and C 6⊆ #AC0.
It remains to show #AC0 6⊆ C . We show this by an argument similar to the

proof that #HAMILTONIAN is not in #Σrel
2 , showing the separation of #Σrel

2 from
#FO, see Theorem 2 in [2]. We will show that a very simple function f is not in C .
Define f as follows: f (w) = 1, if |w| is even, and f (w) = 0 otherwise. Obviously
f ∈ #AC0. It now suffices to show that f 6∈ #Σrel

2 . For contradiction, assume that
f ∈ #Σrel

2 via a formula ϕ(R,x) ∈ Σrel
2 , where

ϕ(R,x) = ∃y∀zθ(R,x,y,z),

and θ is a quantifier-free formula. Let s and t be the lengths of the tuples x and
y, respectively. Let n≥ s+ t +1 be even and let w ∈ {0,1}n. By the assumption,
there exists R, a, b such that

Aw |= ∀zθ(R,a,b,z).

By the choice of n, we can find i ∈ {0, ..,n−1} such that i does not appear in the
tuples a and b. Let Aw′ denote the structure arising by removing the element i
from the structure Aw, and let R∗ denote the relations arising by removing tuples
with the element i from R. By closure under substructures of universal first-order
formulae, it follows that

Aw′ |= ∀zθ(R∗,a,b,z),

implying that f (Aw′)≥ 1. But |w′| is odd and hence f (Aw′) = 0 contradicting the
assumption that the formula ϕ(R,x) defines the function f .

8. Conclusion

In this paper we have investigated a descriptive complexity approach to arith-
metic computations. We have introduced a new framework to define arithmetic
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functions by counting assignments to free function variables of first-order formu-
lae. Compared to a similar definition of Saluja et al. where assignments to free
relational variables are counted, we obtain a hierarchy with a completely different
structure, different properties and different problems. The main interest in our
hierarchy is that it allows the classification of arithmetic circuit classes such as
#AC0, in contrast to the one from Saluja et al. We also show that all problems in
the Σ1-level of our hierarchy are efficiently approximable in the sense of FPRAS.
To establish this result we also introduce so-called Pseudo-DNF-formulae which
are formulae in disjunctive normal-form where literals are constraints on certain
functions and show that the number of satisfying assignments to function symbols
for such formulae is efficiently approximable with an FPRAS.

We have only started the investigation of our framework, and many questions
remain open for future research:

1. Sipser proved a depth hierarchy within the Boolean class AC0 [23]. This
hierarchy can be transferred into the context of arithmetic circuits: There is an
infinite depth hierarchy within #AC0. This hierarchy is connected to the hierarchy
obtained by restricting the number of different arities of Skolem functions in
#ΠSkolem

1 . Similarly, Rossman proved a size hierarchy within AC0 [24] over ordered
graphs. Again, this hierarchy can be transferred into the context of arithmetic
circuits and again there is likely a connection to a hierarchy within #ΠSkolem

1 , that
is, the hierarchy obtained by restricting the number of variables in #ΠSkolem

1 . It
could be interesting to further study these hierarchies within #ΠSkolem

1 and make
the connections to known hierarchies precise.

2. The connection between #AC0 and the variable hierarchy studied in Sect.6
is not clear. We think it would be interesting to study if #AC0 is fully contained in
some finite level of this hierarchy.

3. In Sect. 7, we clarified the inclusion relation between the class #AC0 and
all classes of the Saluja et al. hierarchy. We consider it interesting to extend this
systematically by studying the status of all further possible inclusions between
classes from our hierarchy and classes of the Saluja et al. hierarchy. For example,
it can be shown that #Σrel

1 6⊆ #Σ1 by showing that the function counting the number
of satisfying assignments of a propositional formula in 3DNF is not in #Σ1.

4. We consider it interesting to study systematically the role of built-in relations.
E.g., Saluja et al. define their classes using only linear order, and prove the hierarchy
structure given in Theorem 3. It can be shown that by adding BIT, SUCC, min and
max we obtain #Πrel

1 = #P. How does their hierarchy change when we generally
introduce SUCC or BIT?

5. As mentioned before, functions counting assignments to free relational
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variables in Σ1
1 formulae have been studied [11]. We believe a systematic study of

counting free relational or functional variables in fragments of second-order logic
might be worthwhile.
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