The complexity of approximating bounded-degree Boolean #CSP

Martin Dyer a,∗, Leslie Ann Goldberg b, Markus Jalsenius c, David Richerby b

a School of Computing, University of Leeds, Leeds, LS2 9JT, UK
b Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK
c Department of Computer Science, University of Bristol, Merchant Venturers Building, Bristol, BS8 1UB, UK

A R T I C L E I N F O
Article history:
Received 7 February 2011
Revised 16 September 2011
Available online 5 October 2012

Keywords:
Counting constraint satisfaction problem
CSP
Approximation algorithm
Complexity

A B S T R A C T
The degree of a CSP instance is the maximum number of times that any variable appears in the scopes of constraints. We consider the approximate counting problem for Boolean CSP with bounded-degree instances, for constraint languages containing the two unary constant relations \{0\} and \{1\}. When the maximum allowed degree is large enough (at least 6) we obtain a complete classification of the complexity of this problem. It is exactly solvable in polynomial time if every relation in the constraint language is affine. It is equivalent to the problem of approximately counting independent sets in bipartite graphs if every relation can be expressed as conjunctions of \{0\}, \{1\} and binary implication. Otherwise, there is no FPRAS unless \(NP = RP\). For lower degree bounds, additional cases arise, where the complexity is related to the complexity of approximately counting independent sets in hypergraphs.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In the constraint satisfaction problem (CSP), we seek to assign values from some domain to a set of variables, while satisfying given constraints on the combinations of values that certain tuples of the variables may take. Constraint satisfaction problems are ubiquitous in computer science, with close connections to graph theory, database query evaluation, type inference, satisfiability, scheduling and artificial intelligence [32,33,36]. CSP can also be reformulated in terms of homomorphisms between relational structures [26] and conjunctive query containment in database theory [32]. Weighted versions of CSP appear in statistical physics, where they correspond to partition functions of spin systems [44].

We give formal definitions in Section 2 but, for now, consider an undirected graph \(G\) and the CSP where the domain is \{red, green, blue\}, the variables are the vertices of \(G\) and the constraints specify that, for every edge \(xy \in G\), \(x\) and \(y\) must be assigned different values. Thus, in a satisfying assignment, no two adjacent vertices are given the same colour: the CSP is satisfiable if, and only if, the graph is 3-colourable. As a second example, given a formula in 3-CNF, we can write a system of constraints over the variables, with domain \{true, false\}, that requires the assignment to each clause of the formula to satisfy at least one literal. Clearly, the resulting CSP is directly equivalent to the original satisfiability problem.

1.1. Decision CSP

In the uniform constraint satisfaction problem, we are given the set of constraints explicitly, as lists of allowable combinations for given tuples of the variables; these lists can be considered as relations over the domain. Since it includes problems...
such as 3-sat and 3-colourability, uniform CSP is \textbf{NP}-complete. However, uniform CSP also includes problems in \textbf{P}, such as 2-sat and 2-colourability, raising the natural question of what restrictions lead to tractable problems. It is natural to restrict either the form of the constraints or of the instances.

The most common restriction is to allow only certain fixed relations in the constraints. The list of allowed relations is known as the constraint language and we write \text{CSP}(\Gamma) for the so-called non-uniform CSP in which each constraint states that the values assigned to some tuple of variables must be a tuple in a specified relation in \Gamma.

The classic example of this is due to Schaefer [37]. Restricting to Boolean constraint languages (i.e., those with domain \{0, 1\}), he showed that \text{CSP}(\Gamma) is in \textbf{P} if \Gamma is included in one of six classes and is \textbf{NP}-complete, otherwise. The Boolean case of CSP is often referred to as “generalized satisfiability” in the literature. More recently, Bulatov has produced a corresponding dichotomy for three-element domains [3].

Restricting to relations of fixed arity over arbitrary finite domains has also been studied in depth. In particular, requiring \Gamma to be a single binary relation gives the directed graph homomorphism problem, and the undirected graph homomorphism problem if the relation is also required to be symmetric. Hell and Nešetřil have shown that, for every symmetric binary relation \(E\), \text{CSP}(E) is either in \textbf{P} or is \textbf{NP}-complete [28]. They conjecture that this holds for all binary relations.

In all the above cases, \text{CSP}(\Gamma) is either in \textbf{P} or \textbf{NP}-complete and Feder and Vardi have conjectured that this holds for all \(\Gamma\) [26]. No such dichotomy can exist for the whole of \textbf{NP} because Ladner has shown that either \(\textbf{P} = \textbf{NP}\) or there is an infinite, strict hierarchy between the two [34]. However, a dichotomy for CSP is possible as there are problems in \textbf{NP} such as graph Hamiltonicity and even connectedness, that cannot be expressed as \text{CSP}(\Gamma)^1 and Ladner’s diagonalization does not seem to be expressible in \text{CSP}[26]. Resolving Hell and Nešetřil’s conjecture for a class of simple acyclic digraphs would immediately resolve the CSP dichotomy [26], though recent work on the dichotomy has focused on methods from universal algebra—see, for example, [3,8] and the references there.

Allowing arbitrary constraint languages but restricting the form of the instances has also been studied. Dechter and Pearl [15] and Freuder [27] have shown that even uniform CSP is in \textbf{P} on instances of bounded tree width; see also [31]. Bounded tree width and other similar restrictions are generalized by the “guarded decompositions” of Cohen, Jeavons and Gyssens [9]. Restricting the degree of instances (the maximum number of times that each variable may appear in the scopes of constraints) is incomparable but not much is known in this case. In the non-uniform Boolean case, Dalmau and Ford have shown that, as long as \(\Gamma\) contains the relations \(R_{zero} = \{0\}\) and \(R_{one} = \{1\}\), \text{CSP}(\Gamma) for instances of degree at most three has the same complexity as the case with no degree restrictions [14]. The degree-2 case has not yet been completely classified, though it is known that degree-2 \text{CSP}(\Gamma) is as hard as general \text{CSP}(\Gamma) whenever \(\Gamma\) contains \(R_{zero}\) and \(R_{one}\) and some relation that is not a \(\Delta\)-matroid [14,25].

1.2. Counting CSP

A generalization of the classical constraint satisfaction problem is to ask how many satisfying solutions there are, rather than just whether the constraints are satisfiable. This is referred to as the counting CSP problem, \#CSP. Clearly, the decision problem is reducible to counting: if we can efficiently count the solutions, we can efficiently determine whether there is at least one. However, the converse does not hold: for example, there are well-known polynomial-time algorithms that determine whether a graph admits a perfect matching but it is \#P-complete to count the perfect matchings, even in a bipartite graph [42].

The class \#P can be considered to be the counting analogue of \textbf{NP}: it is defined as the class of functions \(f\) for which there is a nondeterministic, polynomial-time Turing machine that has exactly \(f(x)\) accepting paths for every input \(x\) [41]. The counting version of any \textbf{NP} decision problem is easily seen to be in \#P. Note that, although \#P plays a similar role in the complexity of function problems to that of \textbf{NP} in decision problems, problems that are complete for \#P under appropriate reductions are, under standard complexity-theoretic assumptions, considerably harder than \textbf{NP}-complete problems. Toda has shown that \#P contains the whole of the polynomial hierarchy [40], but \#P is generally thought not to.

Although it is not known if there is a dichotomy for CSP, Bulatov has recently shown that, for every \(\Gamma\), \#CSP(\Gamma) is either computable in polynomial time or \#P-complete [4]. Two of the present authors have since given an elementary proof of this result and also shown the dichotomy to be decidable [24]. However, it is not obvious how the methods of these results could be applied to bounded-degree CSP.

So, although there is a full dichotomy for \#CSP(\Gamma), results for restricted forms of constraint language are still of interest. For Boolean constraint languages, Creignou and Hermann have shown that only one of Schaefer’s polynomial-time cases survives the transition to counting: \#CSP(\Gamma) has a polynomial-time algorithm if every relation in \(\Gamma\) is affine (i.e., the solution set of a system of linear equations over GF(2) and is \#P-complete, otherwise [12]. It is not surprising that there are fewer tractable cases—it is easy to arrange that every instance of \text{CSP}(\Gamma) be trivially satisfiable (say, by making the all-zeroes assignment satisfying), but the number of non-trivial solutions might be difficult to compute. Dyer, Goldberg and Jerrum [19] extended Creignou and Hermann’s result to weighted Boolean \#CSP. Cai, Lu and Xia [6,7] extended further to

\footnote{This follows from the observation that any set \(S\) of structures (e.g., graphs) that is definable in CSP has the property that, if \(A\in S\) and there is a homomorphism \(B\rightarrow A\), then \(B\in S\); neither the set of Hamiltonian nor connected graphs has this property.}
the case of complex weights and show that the dichotomy holds for the restriction of the problem in which instances have degree 3. Their result implies that the degree-3 problem □\text{CSP}(\Gamma) (#CSP(\Gamma) restricted to instances of degree 3) has a polynomial-time algorithm if every relation in \(\Gamma \) is affine and is \#\text{P}-complete, otherwise.

The case where \(\Gamma \) contains a single symmetric, binary relation \(E \) corresponds exactly to the problem of counting the homomorphisms from an input graph to some fixed undirected graph \(H \), also known as the counting \(H \)-colouring problem. Dyer and Greenhill have shown that \#\text{CSP}(\{E\}) is in polynomial time if \(E \) is a complete relation or defines a complete bipartite graph and is \#\text{P}-complete otherwise [23]. The dichotomy for directed acyclic graphs has been characterized by Dyer, Goldberg and Paterson [21] and, more recently, Cai and Chen have shown a dichotomy for all directed graphs, even in the presence of non-negative algebraic weights [5]. In contrast to the decision problem, it is not known whether a direct proof of the dichotomy for general directed graphs would yield an alternative proof of the dichotomy for arbitrary constraint languages.

Restricting the tree-width of instances has a dramatic effect. In the case of counting \(H \)-colourings, restricting the instance to be a graph of tree-width at most \(k \) makes the problem solvable in linear time for any graph \(H \), a result due to Diaz, Serna and Thilikos [16]. This result follows immediately from Courcelle’s theorem, which says that, if a decision problem is definable in monadic second-order logic (which \(H \)-colouring is, for any fixed \(H \)), then both it and the corresponding counting problem are computable in linear time [10,11]. However, invocations of Courcelle’s theorem hide enormous constants in the notation \(O(n) \) (in this case, a tower of twos of height \(|H|\)), while the work of Diaz et al. not only yields practical constants but can also be applied to classes of instances where the tree-width is allowed to grow logarithmically with the order of the graph, rather than being constant.

1.3. Approximate counting

Since \#\text{CSP}(\Gamma) is very often \#\text{P}-complete, approximation algorithms play an important role. The key concept is that of a fully polynomial randomized approximation scheme (FPRAS). This is a randomized algorithm for computing some function \(f(x) \), which takes as input \(x \), along with a constant \(\epsilon > 0 \), and computes a value \(Y \) such that \(e^{-\epsilon}Y/f(x) \leq e^{\epsilon} \) with probability at least \(\frac{1}{4} \) in time polynomial in both \(|x|\) and \(e^{-1} \). See Section 2.4 for details.

Dyer, Goldberg and Jerrum have classified the complexity of approximately computing \#\text{CSP}(\Gamma) for Boolean constraint languages [20]. When all relations in \(\Gamma \) are affine, \#\text{CSP}(\Gamma) can be computed exactly in polynomial time by the result of Creignou and Hermann discussed above [12]. Otherwise, if every relation in \(\Gamma \) can be defined by a conjunction of Boolean implications and pins (i.e., assertions of the form \(v = 0 \) or \(v = 1 \)), then \#\text{CSP}(\Gamma) is as hard to approximate as the problem \#\text{BIS} of counting independent sets in a bipartite graph; otherwise, \#\text{CSP}(\Gamma) is as hard to approximate as the problem \#\text{SAT} of counting the satisfying truth assignments of a Boolean formula. Dyer, Goldberg, Greenhill and Jerrum have shown that the latter problem is complete for \#\text{P} under appropriate approximation-preserving reductions (see Section 2.4) and has no FPRAS unless \(\text{NP} = \text{RP} \) [18], which is thought to be unlikely. The complexity of \#\text{BIS} is currently open: there is no known FPRAS but it is not known to be \#\text{P}-complete, either. \#\text{BIS} is known to be complete with respect to approximation-preserving reductions in a logically-defined subclass of \#\text{P} [18].

1.4. Our result

In this paper we consider the complexity of approximately solving Boolean \#\text{CSP} problems when instances have bounded degree. Following Dalmau and Ford [14] and Feder [25] we consider the case in which \(R_{\text{zero}} = \{0\} \) and \(R_{\text{one}} = \{1\} \) are available. We proceed by showing that any Boolean relation that is not definable as a conjunction of ORs or NANDs can be used in low-degree instances to assert equalities between variables. Thus, we can side-step degree restrictions by replacing high-degree variables with distinct variables that are constrained to be equal, reducing to Dyer, Goldberg and Jerrum’s trichotomy for Boolean \#\text{CSP} without degree restrictions [20].

Our main result, Theorem 24, is a trichotomy for the case in which instances have maximum degree \(d \) for any \(d \geq 6 \). If every relation in \(\Gamma \) is affine then \#\text{CSP}(\Gamma \cup \{R_{\text{zero}}, R_{\text{one}}\}) is solvable in polynomial time. Otherwise, if every relation in \(\Gamma \) can be defined as a conjunction of \(R_{\text{zero}}, R_{\text{one}} \) and binary implications, then \#\text{CSP}(\Gamma \cup \{R_{\text{zero}}, R_{\text{one}}\}) is equivalent in approximation complexity to \#\text{BIS}. Otherwise, it has no FPRAS unless \(\text{NP} = \text{RP} \). Theorem 23 gives a partial classification of the complexity when \(d < 6 \). In the new cases that arise here, the complexity is given in terms of \#w-\text{HIS}_w, the complexity of counting independent sets in hypergraphs of degree at most \(d \) with hyper-edges of size at most \(w \). The complexity of this problem is not fully understood. We explain what is known about it in Section 6.

1.5. Organization

The remainder of the paper is organized as follows. In Section 2, we define the basic notation, relational operations and hypergraph properties that we use, and formally define bounded-degree CSPs. In Section 3, we introduce the classes of relations that we will use throughout the paper and give some of their basic properties. A key tool in this type of work [7,25] is characterizing the ability of certain relations or sets of relations to assert equalities between variables: we show when this can be done in Section 4. The last piece of preparatory work is to show that every Boolean relation that cannot simulate equality in this way is definable by a conjunction of pins and either ORs or NANDs, which is done in Section 5. Our classification of the approximation complexity of bounded-degree Boolean counting CSPs follows, in Section 6.
2. Preliminaries

2.1. Basic notation

We write \(\vec{a} \) for the tuple \((a_1, \ldots, a_r)\), which we often shorten to \(a_1 \ldots a_r\). We write \(a^r\) for the \(r\)-tuple \(a \ldots a\) and \(\vec{a}\vec{b}\) for the tuple formed from the elements of \(\vec{a}\) followed by those of \(\vec{b}\).

The bit-wise complement of a relation \(R \subseteq \{0,1\}^r\) is the relation

\[
\bar{R} = \{(a_1 \oplus 1, \ldots, a_r \oplus 1) \mid \vec{a} \in R\},
\]

where \(\oplus\) denotes addition modulo 2.

We say that a relation \(R\) is \(\text{ppp-definable}\) in a relation \(R'\) and write \(R \leq_{\text{ppp}} R'\) if \(R\) can be obtained from \(R'\) by some sequence of the following operations:

- permutation of columns;
- pinning (taking sub-relations of the form \(R_{i \rightarrow c} = \{\vec{a} \in R \mid a_i = c\}\) for some \(i\) and some \(c \in \{0,1\}\); and
- projection (“deleting the \(i\)th column” to give the relation \(\{a_1 \ldots a_{i-1} a_{i+1} \ldots a_r \mid a_1 \ldots a_r \in R\}\)).

The three p’s in “\(\text{ppp-definable}\)” refer to the initial letters of the words permutation, pinning and projection. Allowing permutation of columns is just a notational convenience: it clearly adds no expressive power.

It is easy to see that \(\leq_{\text{ppp}}\) is a partial order on Boolean relations and that, if \(R \leq_{\text{ppp}} R'\), then \(R\) can be obtained from \(R'\) by first permuting the columns, then making some pins and then projecting.

We write \(R_{\text{zero}} = \{0\}\), \(R_{\text{one}} = \{1\}\), \(R_{= \{0,1\}}\), \(R_{\neq \{0,1\}}\), \(R_{\text{OR}} = \{01,10\}\), \(R_{\text{NAND}} = \{00,01,10\}\), \(R_{\rightarrow \{0,01,11\}}\) and \(R_{\leftarrow \{0,01,11\}}\). For \(k \geq 2\), we write \(R_{\text{OR},k} = \{01,10\}^k \setminus \{0^k\}\) and \(R_{\text{NAND},k} = \{0,1\}^k \setminus \{1^k\}\) (i.e., \(k\)-ary equality, OR and NAND, respectively).

We write \(\text{proj}_i R\) for the projection of \(R\) onto its \(i\)th column and \(\text{proj}_{i,j} R\) for the projection onto columns \(i\) and \(j\).

2.2. Boolean constraint satisfaction problems

A constraint language is a set \(\Gamma = \{R_1, \ldots, R_m\}\) of named Boolean relations. Given a set \(V\) of variables, a constraint over \(\Gamma\) is an expression \(R(v)\) where \(R \in \Gamma\) has arity \(r\) and \(v \in V^r\). Note that, if \(v\) and \(v'\) are variables, neither \(v = v'\) nor \(v \neq v'\) is a constraint, though of course \(R_{= \{0,1\}}(v, v')\) is a constraint if \(R_{= \{0,1\}} \in \Gamma\) and similarly for \(R_{\neq \{0,1\}}\). The scope of a constraint \(R(v)\) is the tuple \(v\). Note that the variables in the scope of a constraint need not all be distinct.

An instance of the constraint satisfaction problem (CSP) over \(\Gamma\) is a set \(V\) of variables and a set \(C\) of constraints over \(\Gamma\) in the variables in \(V\).

An assignment to a set \(V\) of variables is a function \(\sigma : V \rightarrow \{0,1\}\) and it satisfies an instance \((V, C)\) if \(\langle \sigma(v_1), \ldots, \sigma(v_r)\rangle \in R\) for every constraint of the form \(R(v_1, \ldots, v_r)\). Given an instance \(I\) of some CSP, we write \(Z(I)\) for the number of satisfying assignments.

We are interested in the counting CSP problem \#CSP(\(\Gamma\)) (parameterized by \(\Gamma\)), defined as follows:

\textbf{Input:} an instance \(I = (V, C)\) of CSP over \(\Gamma\).

\textbf{Output:} \(Z(I)\).

The degree of an instance is the greatest number of times any variable appears among its constraints. Note that the variable \(v\) appears twice in the constraint \(R(v, v)\). Our specific interest in this paper is in classifying the complexity of bounded-degree counting CSPs. For a constraint language \(\Gamma\) and a positive integer \(d\), define \#CSP\(_d(\Gamma)\) to be the restriction of \#CSP(\(\Gamma\)) to instances of degree at most \(d\).

We can deal with instances of degree 1 immediately.

\textbf{Theorem 1.} For any \(\Gamma\), \#CSP\(_1(\Gamma)\) \(\in\) FP.

\textbf{Proof.} Because each variable appears at most once, the constraints are independent. Each constraint \(R(v_1, \ldots, v_r)\) can be satisfied in \(|R|\) ways and any variable that does not appear in a constraint can take value either 0 or 1. The total number of assignments is the product of the number of ways each constraint can be satisfied, times \(2^k\), where \(k\) is the number of unconstrained variables. \(\square\)

A key technique in proving hardness results for \#CSP and related problems is pinning \([12,14,19,20,23,25]\). We write \(R_{\text{zero}} = \{0\}\) and \(R_{\text{one}} = \{1\}\) for the two unary relations that contain only zero and one, respectively. We refer to constraints in \(R_{\text{zero}}\) and \(R_{\text{one}}\) as pins and we say that the single variable in the scope of a pin is pinned. To make notation easier,

\[\text{This should not be confused with the concept of primitive positive definability (pp-definability) which appears in algebraic treatments of CSP and \#CSP, for example in the work of Bulatov [4].}\]
we will sometimes write constraints using constants instead of explicit pins. That is, we will write constraints of the form
$R(x_1, \ldots, x_d)$ where each x_i is either a variable from V or a constant 0 or 1 (again, the x_i need not be distinct). Such a
constraint can always be rewritten as a set of “proper” constraints by replacing each instance of a constant 0 or 1 with a
fresh variable v and introducing the appropriate constraint $R_{\text{zero}}(v)$ or $R_{\text{one}}(v)$. Note that every variable introduced in this
way appears exactly twice in the resulting instance so if the degree of the CSP instance is at least two, the transformation
does not increase the instance’s degree. We let Γ_{pin} denote the constraint language $\{R_{\text{zero}}, R_{\text{one}}\}$. When there are no degree bounds, adding pinning does not affect complexity results for either the exact or approximate
version of #CSP. In the exact case, the addition of pinning does not affect the structural properties that determine the
complexity of #CSPM [24] whereas, for approximation on the Boolean domain, there are reductions of the appropriate kind
from #CSP$(\Gamma \cup \Gamma_{\text{pin}})$ to #CSP(Γ) [19,20]. However, these reductions increase the degree of variables so are not applicable
in our setting. In order to make progress, we follow earlier work on degree-bounded CSP [14,25] and assume that pinning is available in constraint languages. This plays a significant role in Section 4.

2.3. Hypergraphs

A hypergraph $H = (V, E)$ consists of a set $V = V(H)$ of vertices and a set $E = E(H) \subseteq \mathcal{P}(V)$ of non-empty hyper-edges. The
degree of a vertex $v \in V(H)$ is the number $d(v)$ of hyper-edges it participates in: $d(v) = |\{e \in E(H) \mid v \in e\}|$. The degree
of a hypergraph is the maximum degree of its vertices. If $w = \max(|e| \mid e \in E(H))$, we say that H has width w.

An independent set in a hypergraph H is a set $S \subseteq V(H)$ such that $e \not\subseteq S$ for every $e \in E(H)$. Notice that we may have
more than one vertex of a hyper-edge in an independent set, so long as at least one vertex of each hyper-edge is omitted.

We write #w-HIS for the following problem:

Input: a width-w hypergraph H
Output: the number of independent sets in H

and #w-HIS$_2$ for the following problem:

Input: a width-w hypergraph H of degree at most d
Output: the number of independent sets in H.

2.4. Approximation complexity

A randomized approximation scheme (RAS) for a function $f : \Sigma^* \rightarrow \mathbb{N}$ is a probabilistic Turing machine that takes as input
a pair $(x, \epsilon) \in \Sigma^* \times (0, 1)$, and produces, on an output tape, an integer random variable Y satisfying the condition $\Pr(\epsilon^{-\rho} \leq
Y/f(x) \leq \epsilon^\rho) \geq \frac{3}{4}$. A fully polynomial randomized approximation scheme (FPRAS) is a RAS that runs in time polynomial in both $|x|$ and ϵ^{-1}.

To compare the complexity of approximate counting problems, we use the AP-reductions of [18]. Suppose that f and g
are functions from some input domain Σ^* to the natural numbers and we wish to compare the complexity of approximately
computing them. An approximation-preserving reduction from f to g is a probabilistic oracle Turing machine M whose input
is a pair $(x, \epsilon) \in \Sigma^* \times (0, 1)$, and which satisfies the following three conditions: (i) every oracle call made by M is of the
form (w, δ) where $w \in \Sigma^*$ is an instance of g and $0 < \delta < 1$ is an error bound satisfying $\delta^{-1} \leq \text{poly}(|x|, \epsilon^{-1})$; (ii) M is a
randomized approximation scheme for f whenever the oracle is a randomized approximation scheme for g; and (iii) the running
time of M is polynomial in $|x|$ and ϵ^{-1}.

If there is an approximation-preserving reduction from f to g, we write $f \leq_{AP} g$ and say that f is AP-reducible to g. If g
has an FPRAS then so does f. If $f \leq_{AP} g$ and $g \leq_{AP} f$ then we say that f and g are AP-interreducible and write $f \equiv_{AP} g$.

AP-reductions are well-suited to approximate counting problems. The class of problems admitting an FPRAS is closed
under these reductions and a Ladner-like hierarchy of AP-interreducible approximation problems has been shown to exis-

3. Classes of relations

A relation $R \subseteq [0, 1]^I$ is affine if it is the set of solutions to some system of linear equations over GF2. That is, there is
a set Σ of equations in variables x_1, \ldots, x_r where each equation has the form $\bigoplus_{i \in I} x_i = c$, where \bigoplus
denotes addition modulo 2, $I \subseteq [1, r]$ and $c \in \{0, 1\}$, and we have $\bar{a} \in R$ if, and only if, the assignment $x_1 \mapsto a_1, \ldots, x_r \mapsto a_r$ satisfies every
equation in Σ. Note that the empty relation is defined by the equation $0 = 1$ (or, more formally, $\bigoplus_{i \in \emptyset} = 1$) and the complete
relation $[0, 1]^I$ is defined by the empty set of equations. If a variable x_i occurs in an equation of the form $x_i = c$, we say
that it is pinned to c.

1 The choice of the value $\frac{1}{2}$ is inconsequential: the same class of problems has an FPRAS if we choose any probability $\frac{1}{2} < p < 1$ [29].
3.1. OR-conj, NAND-conj, IM-conj and normalized formulae

Let OR-conj be the set of Boolean relations that are defined by conjunctions of pins and ORs of any arity and let NAND-conj be the set of Boolean relations definable by conjunctions of pins and NANDs (i.e., negated conjunctions) of any arity. For example, the 8-ary relation defined by the formula

\[(x_1 = 0) \land (x_2 = 1) \land \text{OR}(x_3, x_4, x_5, x_6) \land \text{OR}(x_7, x_8)\]

is in OR-conj. (Note, also, that it does not constrain the variable \(x_7\).) We say that one of the defining formulae of these relations is normalized if

- no pinned variable appears in any OR or NAND,
- the arguments of each individual OR and NAND are distinct,
- every OR or NAND has at least two arguments, and
- no OR or NAND’s arguments are a subset of any other’s.

Note that the formula in the example above is normalized.

Lemma 2. Every OR-conj (respectively, NAND-conj) relation is defined by a unique normalized formula.

Proof. We show the result for OR-conj relations; the case for NAND-conj is similar.

Let \(R\) be an OR-conj relation defined by the formula \(\phi\). The second and subsequent occurrences of any variable within a single clause can be deleted. Any clause that contains a variable pinned to one can be deleted; any variable that is pinned to zero can be deleted from any clause in which it appears. The disjunction \(\text{OR}(x)\) is equivalent to pinning \(x\) to one. If \(\phi\) contains a clause that is a subset of another, any assignment that satisfies the smaller clause necessarily satisfies the latter, which can, therefore, be deleted. This establishes that every OR-conj relation is defined by at least one normalized formula.

To prove uniqueness, suppose that \(R \subseteq \{0, 1\}^r\) is defined by the normalized formulae \(\phi\) and \(\psi\). The two formulae must obviously pin the same variables and we may assume that none are pinned. Consider any clause in \(\phi\), which we may assume, without loss of generality, to be \(\text{OR}(x_1, \ldots, x_k)\). Since no clause of \(\phi\) is a subset of \(\{x_1, \ldots, x_k\}\), every other clause must include at least one variable from \(x_{k+1}, \ldots, x_\ell\) and, therefore, \(0^{\ell-k}1^{k+1}\) satisfies \(\phi\) and \(0^{k+1}1^{\ell-k}\) does not.

Now, suppose that this clause does not appear in \(\psi\). There are two cases. If \(\psi\) contains a clause whose variables are a subset of \(\{x_1, \ldots, x_k\}\), which we may assume, without loss of generality, to be \(\text{OR}(x_1, \ldots, x_\ell)\) for some \(\ell < k\), then \(\psi\) is not satisfied by \(0^{\ell-k}1^{k+1}\). Otherwise, every clause of \(\psi\) contains at least one variable from \(x_{k+1}, \ldots, x_\ell\), so \(0^{\ell-k}\) satisfies \(\psi\). In either case, \(\phi\) and \(\psi\) define different relations. It follows that every clause that appears in \(\phi\) must also appear in \(\psi\). By symmetry, every clause that appears in \(\psi\) must appear in \(\phi\) so the two formulae are identical. \(\Box\)

Given the uniqueness of defining normalized formulae, we define the width of an OR-conj or NAND-conj relation \(R\) to be \(\text{width}(R)\), the greatest number of arguments to any of the ORs or NANDs in the normalized formula that defines it. Note that, from the definition of normalized formulae, there are no relations of width 1. However, a conjunction of pins can be seen as an OR-conj formula with no ORs, i.e., of width 0: such a formula defines the complete relation, possibly padded with some constant columns. A conjunction of pins is also a NAND-conj formula with no NANDs so we will usually just refer to these relations as “relations of width 0.” We define the width of an OR-conj or NAND-conj constraint language to be the greatest width of the relations within it.

We define IM-conj to be the class of relations defined by a conjunction of pins and (binary) implications. This class is called \(\text{IM}_2\) in [20]. Say that a conjunction of pins and implications is normalized if no pinned variable appears in an implication and every implication has distinct arguments.

Lemma 3. Every relation in IM-conj is defined by a normalized formula.

Proof. Let \(R \in \text{IM-conj}\) be defined by the formula \(\phi\). Any implication \(x \rightarrow y\) can be deleted as it does not constrain the value of \(x\). If the variable \(y\) is pinned to zero then any implication \(y \rightarrow z\) can be deleted and any implication \(z \rightarrow y\) can be replaced by pinning \(z\) to zero. If \(y\) is pinned to one, \(y \rightarrow z\) can be replaced by pinning \(z\) to one and \(z \rightarrow y\) can be deleted. Iterating, we can remove all implications involving pinned variables. \(\Box\)

Note that, in contrast to normalized OR-conj and NAND-conj formulae, normalized IM-conj formulae are not necessarily unique. For example, the following three normalized formulae all define the same relation:

\[
\begin{align*}
x &\rightarrow y \\
x &\rightarrow z \\
x &\rightarrow y \\
\end{align*}
\]

\[
\begin{align*}
x &\rightarrow y \\
x &\rightarrow z \\
\end{align*}
\]

\[
\begin{align*}
x &\rightarrow y \\
\end{align*}
\]
3.2. ppp-Defining Boolean connectives

Lemma 4. If \(R \in \text{IM-conj} \) is not affine, then \(R \rightarrow \leq_{ppp} \bar{R} \).

Proof. Let \(R \in \text{IM-conj} \) be defined by the normalized formula \(\phi \). If there are variables \(x_1, \ldots, x_t \) such that \(\phi \) contains the implications \(x_1 \rightarrow x_2, \ldots, x_{t-1} \rightarrow x_t \) and \(x_t \rightarrow x_1 \) then, in any satisfying assignment for \(\phi \), the variables \(x_1, \ldots, x_t \) must take the same value. Hence, we may assume that, if \(\phi \) contains such a cycle of implications, it also contains \(x_i \rightarrow x_j \) for every distinct pair \(x_i, x_j \in \{x_1, \ldots, x_t\} \).

There are two cases. First, if \(\phi \) is symmetric (in the sense that, for every implication \(x \rightarrow y \) in \(\phi \), the formula also contains \(y \rightarrow x \)) then \(\phi \) is equivalent to a conjunction of pins and equalities between variables, so \(R \) is affine. Otherwise, there must be at least one pair of variables such that \(x \rightarrow y \) is a conjunct of \(\phi \) but \(y \rightarrow x \) is not. We ppp-define implication by pinning to zero every unpinned variable \(v_1 \) such that there is a chain of implications \(v_1 \rightarrow v_2, \ldots, v_{r-1} \rightarrow v_r \), \(v_r \rightarrow x \), and pinning to one every other unpinned variable apart from \(x \) and \(y \). Finally, project out the \(r-2 \) constant columns. \(\square \)

Lemma 5. If \(R \in \text{OR-conj} \) has width \(w \), then \(R_{\text{OR},2}, \ldots, R_{\text{OR},w} \leq_{ppp} R \). Similarly, if \(R \in \text{NAND-conj} \) has width \(w \), then \(R_{\text{NAND},2}, \ldots, R_{\text{NAND},w} \leq_{ppp} R \).

Proof. Let \(R \in \text{OR-conj} \) have arity \(r \) and width \(w \). Let \(R \) be defined by the normalized formula \(\phi \) which, without loss of generality, we may assume to contain the clause \(\text{OR}(x_1, \ldots, x_w) \). Since \(\phi \) is normalized, every other clause must contain at least one variable from \(x_{w+1}, \ldots, x_r \). For any \(k \) with \(2 \leq k \leq w \), we can ppp-define \(R_{\text{OR},k} \) by pinning \(x_{k+1}, \ldots, x_w \) to zero and pinning \(x_{w+1}, \ldots, x_r \) to one.

The proof for \(R \in \text{NAND-conj} \) is similar. \(\square \)

3.3. Characterizations

The following proposition establishes a duality between OR-conj and NAND-conj relations. Whenever we say that \(R \) is OR-conj or NAND-conj, it is equivalent to say that \(R \) or \(\bar{R} \) is OR-conj, where \(\bar{R} \) is the bit-wise complement of \(R \), as defined in Section 2.1. Of course, it is also equivalent to say that \(R \) or \(\bar{R} \) is NAND-conj.

Proposition 6. A relation \(R \subseteq \{0,1\}^r \) is in \(\text{OR-conj} \) if, and only if, \(\bar{R} \in \text{NAND-conj} \).

Proof. Suppose \(R \) is defined by the normalized formula

\[
P \land \bigwedge_{1 \leq j \leq m} \bigvee_{i \in I_j} x_i,
\]

where \(P \) is a conjunction of pins and \(I_1, \ldots, I_m \subseteq [1,r] \). Then \(\bar{R} \) is defined by the formula

\[
P' \land \bigwedge_{1 \leq j \leq m} \bigvee_{i \in I_j} \neg x_i,
\]

where \(P' \) is the conjunction of pins with the opposite values to those in \(P \). This formula is equivalent to

\[
P' \land \bigwedge_{1 \leq j \leq m} \neg \bigwedge_{i \in I_j} x_i,
\]

which is a NAND-conj formula, as required. The argument is reversible. \(\square \)

Given tuples \(\bar{a}, \bar{b} \in \{0,1\}^r \), we write \(\bar{a} \leq \bar{b} \) if \(a_i \leq b_i \) for all \(i \in [1,r] \). If \(\bar{a} \leq \bar{b} \) and \(\bar{a} \neq \bar{b} \), we write \(\bar{a} \prec \bar{b} \). We say that a relation \(R \subseteq \{0,1\}^r \) is monotone if, whenever \(\bar{a} \in R \) and \(\bar{a} \leq \bar{b} \), then \(\bar{b} \in R \). We say that \(R \) is antitone if, whenever \(\bar{a} \in R \) and \(\bar{b} \leq \bar{a} \), then \(\bar{b} \in R \). That is, changing zeroes to ones in a tuple in a monotone relation gives another tuple in the relation; similarly, antitone relations are preserved by changing zeros to ones. It is easy to see that \(\bar{R} \) is monotone if, and only if, \(\bar{R} \) is antitone. We say that a relation is pseudo-monotone (respectively, pseudo-antitone) if its restriction to non-constant columns is monotone (respectively, antitone). The following is a simple consequence of results in [30, Section 7.1.1].

Proposition 7. A relation \(R \subseteq \{0,1\}^r \) is in \(\text{OR-conj} \) (respectively, \(\text{NAND-conj} \)) if, and only if, it is pseudo-monotone (respectively, pseudo-antitone).
4. Simulating equality

An important ingredient in bounded-degree dichotomy theorems [7,25] is showing how to express equality using constraints from a constraint language that does not necessarily include the equality relation. In this section, we give the definitions that we need and some results about when equality can be expressed in our setting.

Recall that, for all integers $k \geq 2$, $R_{\text{eq},k}$ is the k-ary equality relation $\{0^k, 1^k\}$. We say that a constraint language Γ simulates $R_{\text{eq},k}$ if, for some $\ell \geq k$ there is an integer $m \geq 1$ and a $(\Gamma \cup \Gamma_{\text{pin}})$-CSP instance I with variables x_1, \ldots, x_{ℓ} and such that I has exactly m satisfying assignments σ with $\sigma(x_1) = \cdots = \sigma(x_k) = 0$, exactly m with $\sigma(x_1) = \cdots = \sigma(x_k) = 1$ and no other satisfying assignments. If, further, the degree of I is d and the degree of each variable x_1, \ldots, x_{ℓ} is at most $d - 1$, we say that Γ simulates $R_{\text{eq},k}$ with d variable repetitions or, for brevity, that Γ d-simulates $R_{\text{eq},k}$. We say that Γ d-simulates equality if it d-simulates $R_{\text{eq},k}$ for all $k \geq 2$. If only one relation R is involved in the simulation, we drop the curly brackets and say that R, rather than $[R]$, d-simulates equality.

The point of this slightly strange definition is that, if Γ d-simulates equality, we can express the constraint $y_1 = \cdots = y_k$ in $\Gamma \cup \Gamma_{\text{pin}}$ and then use each y_i in one further constraint, while still having an instance of degree d. The variables $x_{k+1}, \ldots, x_{\ell}$ in the definition function as auxiliary variables and do not appear in any other constraint. This means that, if the variable y occurs $k > d$ times in some instance, we can replace the successive occurrences with distinct variables y_1, \ldots, y_k that are constrained to be equal, giving an equivalent instance of degree at most d.

Proposition 8. If Γ d-simulates equality, then $\#\text{CSP}(\Gamma) \leq_{AP} \#\text{CSP}_d(\Gamma \cup \Gamma_{\text{pin}})$.

Proof. Let I be an instance of $\#\text{CSP}(\Gamma)$. We produce a new CSP instance I' over the constraint language Γ augmented with $R_{\text{eq},k}$ constraints for certain values of i as follows. For each variable x that appears $k > d$ times in I, replace the occurrences with new variables x_1, \ldots, x_k and add the constraint $R_{\text{eq},k}(x_1, \ldots, x_k)$. Clearly, $Z(I') = Z(I)$.

Note that every variable in I' either occurs exactly once in an equality constraint (one of the form $R_{\text{eq},1}(\bar{x})$) and exactly once in a Γ-constraint or occurs in no equality constraints and at most d times in Γ-constraints. Since Γ d-simulates equality, we can replace the equality constraints with $(\Gamma \cup \Gamma_{\text{pin}})$-constraints, using fresh auxiliary variables for each equality, to give an instance I'' of $(\#\text{CSP}(\Gamma \cup \Gamma_{\text{pin}}))$ with degree d. There is some constant m, depending only on the number and arities of the equality constraints in I', such that $Z(I'') = mZ(I')$. Since m can be computed in polynomial time, we have an AP-reduction. □

Lemma 9. Let $R \subseteq \{0, 1\}^*$. If $R^\leftrightarrow \leq_{\text{ppp}} R$, $R^{\neq} \leq_{\text{ppp}} R$ or $R \rightarrow \leq_{\text{ppp}} R$, then R 3-simulates equality.

Note that, if $R^\leftrightarrow \leq_{\text{ppp}} R$ then $R \rightarrow \leq_{\text{ppp}} R$, also.

Proof of Lemma 9. For each $k \geq 2$, we show how to 3-simulate $R_{\text{eq},k}$. We may assume without loss of generality that the ppp definition of $R_{\text{eq},k}$, R^{\neq} or $R \rightarrow$ from R involves applying the identity permutation to the columns, pinning columns 3 to $3 + p - 1$ inclusive to zero, pinning columns $3 + p$ to $3 + p + q - 1$ inclusive to one (that is, pinning $p \geq 0$ columns to zero and $q \geq 0$ to one) and then projecting away all but the first two columns.

Suppose first that $R^\leftrightarrow \leq_{\text{ppp}} R$ or $R^{\neq} \leq_{\text{ppp}} R$. R must contain $\alpha \geq 1$ tuples that begin 00^p1^q, $\beta \geq 0$ that begin 010^p1^q and $\gamma \geq 1$ that begin 110^p1^q, with $\beta = 0$ unless we are ppp-defining R^\leftrightarrow.

We consider, first, the case where $\alpha = \gamma$, and show that we can 3-simulate $R_{\text{eq},k}$, expressing the constraint $R_{\text{eq},k}(x_1, \ldots, x_k)$ with the constraints

\[
R(x_1x_20^p1^q\ast), R(x_2x_30^p1^q\ast), \ldots, R(x_{k-1}x_k0^p1^q\ast), R(x_kx_10^p1^q\ast),
\]

where \ast denotes a fresh $(r - 2 - p - q)$-tuple of variables in each constraint. This set of constraints is equivalent to either $x_1 = \cdots = x_k = x_1$ or $x_1 \rightarrow \cdots \rightarrow x_k \rightarrow x_1$ so, in either case, constrains the variables x_1, \ldots, x_k to have the same value, as required. Every variable occurs at most twice and there are α^k solutions to these constraints that put $x_1 = \cdots = x_k = 0$, the same number with $x_1 = \cdots = x_k = 1$ and no other solutions. Therefore, R 3-simulates $R_{\text{eq},k}$, as required.

We now show, by induction on r, the arity of R, that we can 3-simulate $R_{\text{eq},k}$ even if α is not necessarily equal to γ. For the base case, $r = 2$, we have $\alpha = \gamma = 1$ and we are done. For the inductive step, let $r > 2$ and assume, without loss of generality that $\alpha > \gamma$ (we are already done if $\alpha = \gamma$ and the case $\alpha < \gamma$ is symmetric). In particular, we have $\alpha \geq 2$, so there are distinct tuples $000^p1^q\bar{a}$ and $000^p1^q\bar{b}$ in R. R also contains a tuple $110^p1^q\bar{c}$. Choose j such that $\bar{d} \neq j$. Pinning the $(2 + p + q + j)$th column of R to c_j and projecting out the resulting constant column gives a relation of arity $r - 1$ that still contains at least one tuple beginning 000^p1^q and at least one beginning 110^p1^q: by the inductive hypothesis, this relation 3-simulates $R_{\text{eq},k}$.
Finally, we consider the case that \(R_{\neq} \leq_{ppp} R \) contains \(\alpha \geq 1 \) tuples beginning \(01^p1^q \) and \(\beta \geq 1 \) beginning \(10^p1^q \) and no other tuples. We express the constraint \(R_{=,k}(x_1, \ldots, x_k) \) by introducing fresh variables \(y_1, \ldots, y_k \) and using the constraints
\[
R(x_1 y_1 0^p 1^q), R(y_1 x_2 0^p 1^q), \\
R(x_2 y_2 0^p 1^q), R(y_2 x_3 0^p 1^q), \\
\vdots \\
R(x_{k-1} y_{k-1} 0^p 1^q), R(y_{k-1} x_k 0^p 1^q), \\
R(x_k y_k 0^p 1^q), R(y_k x_1 0^p 1^q),
\]
where \(* \) denotes a fresh \((r - 2 - p - q)\)-tuple of variables in each constraint, as before. There are \(\alpha^k \beta^k \) solutions when \(x_1 = \cdots = x_k = 0 \) (and \(y_1 = \cdots = y_k = 1 \)) and \(\beta^k \alpha^k \) solutions when the \(x \)'s are 1 and the \(y \)'s are 0. There are no other solutions and no variable is used more than twice.

The following technical lemma and the definitions that support it are used only to prove Lemma 11. For \(c \in (0, 1) \), an \(r \)-ary relation is \(c \)-valid if it contains the tuple \(c \). Given a relation \(R \subseteq [0, 1]^r \), a tuple \(\bar{a} \in R \) that contains both zeroes and ones and a constant \(c \in [0, 1] \), let \(R_{\bar{a}, c} \) be the result of pinning the set of columns \(\{i \mid a_i = c \} \) to \(c \) and then projecting out those columns. Observe that \(R_{\bar{a}, c} \) is always \((1-c)\)-valid (because it contains the projection of \(\bar{a} \)) and is \(c \)-valid if \(R \) is \(\bar{a} \)-valid (because then it contains the projection of \(\bar{c} \)).

Lemma 10. Let \(r \geq 3 \) and let \(R_{=, r} \subseteq R \subseteq [0, 1]^r \). There are \(\bar{a} \in R \) and \(c \in [0, 1] \) such that \(R_{\bar{a}, c} \) is not complete.

Proof. Suppose there is a tuple \(\bar{a} \in R \setminus \{0^r\} \) such that changing some zero in \(\bar{a} \) to a one gives a tuple \(\bar{a}' \not\in R \). Then \(R_{\bar{a}, 1} \) does not contain the relevant projection of \(\bar{a}' \) and we are done. Similarly, if there is a tuple \(\bar{b} \in R \setminus \{1^r\} \) that leaves \(R \) by changing some one to a zero, then \(R_{\bar{b}, 0} \) is not complete. If no such tuple exists, then either \(R = [0, 1]^r \) or \(R = R_{=, r} \), violating our assumptions.

Lemma 11. Let \(r \geq 2 \) and let \(R \subseteq [0, 1]^r \) be 0- and 1-valid but not complete. Then \(R \) 3-simulates equality.

Proof. We show by induction on \(r \) that either \(R_0 \) or \(R_1 \) is ppp-definable in \(R \), and the result follows by Lemma 9.

In the case \(r = 2 \), \(R \) is either \(R_0 \) or \(R_1 \). For \(r \geq 3 \), if \(R = R_{=, r} \), then \(\text{proj}_{1,2} R = R_{=, r} \). Otherwise, by Lemma 10, there is some \(\bar{a} \in R \) and \(c \in [0, 1] \) such that \(R_{\bar{a}, c} \) is not complete. Since \(R_{\bar{a}, c} \leq_{ppp} R \) and is 0- and 1-valid, we are done by the inductive hypothesis.

We will next show that, if binary OR is ppp-definable in \(R \) and binary NAND in \(R' \), then the constraint language \(\{R, R'\} \) 3-simulates equality (\(R \) and \(R' \) need not be distinct). To do this, we will use the following sets of constraints, \(\xi_k \), for \(k \geq 2 \):
\[
\xi_k = \{ R_{\text{OR}}(x_i, y_i) \mid 1 \leq i \leq k \} \cup \{ R_{\text{NAND}}(y_i, x_{i+1}) \mid 1 \leq i < k \} \cup \{ R_{\text{NAND}}(y_k, x_1) \}.
\]

The key point about these constraints is that they show that any language that contains \(R_{=, k} \) and \(R_{\text{NAND}} \) 3-simulates equality.

Lemma 12. An assignment \(\sigma \) to \(\{x_1, \ldots, x_k, y_1, \ldots, y_k\} \) satisfies all constraints in \(\xi_k \) if, and only if, \(\sigma(x_1) = \cdots = \sigma(x_k) \neq \sigma(y_1) = \cdots = \sigma(y_k) \).

Proof. It is easy to check that assignments of the given type satisfy \(\xi_k \). Conversely, suppose that \(\sigma \) satisfies \(\xi_k \).

If \(\sigma(x_1) = 0 \), we have \(\sigma(y_1) = 1 \) because \(R_{=, 1}(x_1, y_1) \) is satisfied and we must have \(\sigma(x_2) = 0 \) because \(R_{\text{NAND}}(y_1, x_2) \) is satisfied. By a trivial induction, \(\sigma(x_i) = 0 \) and \(\sigma(y_i) = 1 \) for all \(i \).

Otherwise, \(\sigma(x_1) = 1 \). If \(\sigma(x_i) = 0 \) for any \(i > 1 \) then, by the same argument as above, \(\sigma(x_i) = 0 \) for all \(i \in [1, k] \), contradicting the assumption that \(\sigma(x_1) = 1 \). Therefore, \(\sigma(x_i) = 1 \) for all \(i \). To satisfy the constraints \(R_{\text{NAND}}(y_1, x_{i+1}) \), we must have \(\sigma(y_i) = 0 \) for all \(i \).

We now show that, in fact, we do not need to have \(R_{=, k} \) and \(R_{\text{NAND}} \) in our constraint language \(\Gamma' \): it suffices to be able to ppp-define them from relations in \(\Gamma' \).

Lemma 13. If \(R_{\neq} \leq_{ppp} R \) and \(R_{\text{NAND}} \leq_{ppp} R' \) then \(\{R, R'\} \) 3-simulates equality.
Proof. Suppose first that \(R \) and \(R' \) are two distinct relations. We may assume, as in the proof of Lemma 9, that the ppp definition of \(R_{OR} \) from \(R \) involves performing some permutation and projecting to the first two columns after pinning the next \(p \) columns to zero and the \(q \) columns after that to one. We may suppose further that it is not possible to pin any more columns of \(R \) and still ppp-define \(R_{OR} \). Without loss of generality, we may assume the permutation to be the identity.

Under these assumptions, \(R \) contains a \(\alpha \)-1 tuples beginning \(010^p1^q \), \(\beta \)-1 tuples beginning \(100^p1^q \) and \(\gamma \)-1 tuples beginning \(110^p1^q \), but none beginning \(000^p1^q \). We first show that, if \(\alpha \neq \beta \), then we are done because \(R \not\preceq_{ppp} R \), which means that \(R \) 3-simulates equality by Lemma 9.

To this end, suppose \(\alpha > \beta \) so, in particular, \(\alpha \geq 2 \) and there are distinct tuples \(010^p1^q \) and \(100^p1^q \) in \(R \). We may assume, without loss of generality, that \(\beta \geq 1 \), since, otherwise, one of the tuples \(010^p1^q \) and \(100^p1^q \) in \(R \) is exactly the same as one of the tuples \(010^p1^q \) and \(100^p1^q \) in \(R \). Suppose now that we pin the \((2 + p + q + 1)\)th column of \(R \) to \(c_1 \). \(R \) cannot contain any tuple \(110^p1^q \) with \(d_1 = c_1 \) because it is not possible to pin more columns and still ppp-define \(R_{OR} \). But then \(R \) contains tuples beginning with each of \(010^p1^q c_1 \) and \(100^p1^q c_1 \) and none beginning \(000^p1^q c_1 \) or \(110^p1^q c_1 \), so \(R \not\preceq_{ppp} R \). We similarly have \(R \not\preceq_{ppp} R \) if \(\alpha < \beta \). From this point, we may assume that \(\alpha = \beta \).

Similarly, either \(R \not\preceq_{ppp} R' \), so we are done, or \(R' \) contains \(\alpha' \)-1 tuples beginning with each of \(010^p1^q \) and \(100^p1^q \), \(\gamma' \)-1 tuples beginning \(000^p1^q \) and no tuples beginning \(110^p1^q \).

We now show how to simulate equality. We can 3-simulate \(R_{=,k} \) by replacing the constraint \(R_{=,k}(x_1, \ldots, x_k) \) with the following set of constraints, modelled on \(\Xi_k \):

\[
\Xi_k = \left\{ R(x_1, y, 01^1^q) \mid 1 \leq i \leq k \right\} \cup \left\{ R'(y_{i+1}, 10^1^q) \mid 1 \leq i < k \right\} \cup \left\{ R'(y, x, 01^1^q) \right\},
\]

where the \(y_i \) are fresh variables and, as before, \(* \) denotes a fresh tuple of variables for each constraint, of the appropriate length. By Lemma 12, an assignment \(\sigma \) satisfies \(\Xi_k \) if, and only if, \(\sigma(x_1) = \cdots = \sigma(x_k) \neq \sigma(y_1) = \cdots \sigma(y_k) \).

Further, there are \(\alpha \)-ways to satisfy the variables denoted by \(* \) in each \(R \) constraint and \(\alpha' \)-ways in each \(R' \) constraint. Therefore, there are \((\alpha \alpha')^k \) satisfying assignments for \(\Xi_k \) corresponding to each satisfying assignment for \(R_{=,k} \) and we are done.

Notice that our assumption that the ppp definitions of \(R_{OR} \) in \(R \) and \(R_{NAND} \) in \(R' \) involve the identity permutation, pinning sequential columns to zero and one and projecting to the first two columns was made only for the notational convenience of referring to “tuples beginning \(010^1^p \)” and so on. This being the case, there is no requirement that \(R \) and \(R' \) be distinct, so the proof is complete.

Note that there are relations, such as \(R_{=,3} \), that 2-simulate equality, though we do not require this, here, so we omit the proof.

5. Classifying relations

We are now ready to prove that every Boolean relation \(R \) in \(OR\)-conj, in \(NAND\)-conj or 3-simulates equality. Given \(r \)-ary relations \(R_0 \) and \(R_1 \), we write \(R_0 + R_1 \) for the relation \(\{0 \bar{a} \mid \bar{a} \in R_0\} \cup \{1 \bar{a} \mid \bar{a} \in R_1\} \). The proof of the classification is by induction on the arity of \(R \) and proceeds by decomposing \(R \) as \(R_0 + R_1 \).

Recall that a width-zero \(OR\)-conj (or, equivalently, \(NAND\)-conj) relation is a complete relation, possibly padded with some constant columns.

Lemma 14. Let \(R_0, R_1 \subseteq OR\text{-}conj \) have arity \(r \) and width zero and let \(R = R_0 + R_1 \). Then, \(R \in OR\text{-}conj, R \in NAND\text{-}conj \) or \(R \) 3-simulates equality.

Proof. We may assume that \(R \) has no constant columns, since adding or removing such columns does not affect whether a relation is \(OR\)-conj or \(NAND\)-conj or whether it 3-simulates equality.

For \(i \in \{2, r + 1\} \), let \(R_i' = \text{proj}_i R \), so each \(R_i' \not\preceq_{ppp} R \). If any \(R_i' \) is \(R_\text{=,k} \), \(R_\text{\rightarrow} \) or \(R_\text{\leftarrow} \) then \(R \) 3-simulates equality by Lemma 9. Otherwise, each \(R_i' \) is either \(\{0 \mid 0^2 \}, OR_1 \) or \(NAND_1 \). If \(R_j' = R_\text{OR} \) and \(R_k' = R_\text{NAND} \) for some \(j \) and \(k \), then \(R \) 3-simulates equality by Lemma 13. Otherwise, if no \(R_i' = R_{NAND} \), let \(I = \{ i \mid R_i' = R_\text{OR} \} \). Then,

\[
R = \bigwedge_{i \in I} \text{OR}(x_i, x_i),
\]

so \(R \in OR\)-conj. If no \(R_i' = R_\text{OR} \), then \(R \in NAND\)-conj, by a similar argument.

Lemma 15. Let \(R_0, R_1 \subseteq \{0, 1\}^r \) be \(OR\)-conj and let \(R = R_0 + R_1 \). Then, \(R \in OR\text{-}conj, R \in NAND\text{-}conj \) or \(R \) 3-simulates equality.

Proof. We may assume, as before, that \(R \) has no constant columns. We may also assume that at least one of \(R_0 \) and \(R_1 \) has positive width: otherwise, the result is immediate from the previous lemma. We split the remaining work into two cases.

Case 1: \(R_0 \subseteq R_1 \). Note that \(R_1 \) cannot have any constant columns in this case, since the same column would also have to be constant in \(R_0 \), giving a constant column in \(R \).
Suppose \(R_i \) is defined by the normalized OR-conj formula \(\phi_i \) in variables \(x_2, \ldots, x_{i+1} \). Then \(R \) is defined by the formula

\[
\phi_0 \lor (x_1 \equiv 1 \land \phi_1) \equiv (\phi_0 \lor x_1 = 1) \land (\phi_0 \lor \phi_1) \\
\equiv (\phi_0 \lor x_1 = 1) \land \phi_1,
\]

where the first equivalence is the distribution law and the second is because \(\phi_0 \) implies \(\phi_1 \) (because \(R_0 \subseteq R_1 \)). We consider the following two cases.

Case 1.

1. **Case 1.1:** \(R \) has no constant columns. \(\phi_0 \) contains no pins and \(x_1 = 1 \) is equivalent to \(OR(x_1) \) so we can rewrite \(\phi_0 \lor x_1 = 1 \) in CNF. Therefore, the formula (1) defines an OR-conj relation.

2. **Case 1.2:** \(R \) is equality by Lemma 13; otherwise, we are in one of the first two cases.

Case 2:

1. **Case 2.1:** \(R \) has a constant column. \(R_1 \) has no constant columns so, if \(\text{proj}_k R_0 = \{0\} \) for some \(k \), then \(\text{proj}_{1,k+1} R = R_{\equiv} \), and \(R \) 3-simulates equality by Lemma 9. If every constant column of \(R_0 \) is all ones, then \(\phi_0 \) is in CNF since every pinning \(x_i = 1 \) in \(\phi_0 \) can be written OR(\(x_i \)). We can therefore rewrite \(\phi_0 \lor x_1 = 1 \) in CNF, as in Case 1.1.

2. **Case 2.2:** \(R \) has no constant columns. By Proposition 7, \(R_1 \) is monotone. Let \(\hat{a} \in R_0 \setminus R_1 \): by applying the same permutation to the columns of \(R_0 \) and \(R_1 \), we may assume that \(\hat{a} = 0^\ell 1^{r-\ell} \). We must have \(\ell \geq 1 \) as every non-empty \(r \)-ary monotone relation contains the tuple \(1^r \). Let \(\hat{b} \in R_1 \) be a tuple such that \(a_i = b_i \) for all \(i \) in a maximal initial segment of \([1, r] \). By monotonicity of \(R_1 \), we may assume that \(\hat{b} = 0^\ell 1^{r-\ell} \). Further, we must have \(k < \ell \), since, otherwise, we would have \(\hat{b} < \hat{a} \), and this contradicts our choice of \(\hat{a} \notin R_1 \).

Now, consider the relation

\[
R' = \{a_0a_1 \ldots a_{\ell-k} | a_0 0^k a_1 \ldots a_{\ell-k} 1^{r-\ell} \in R\},
\]

which is the result of pinning columns 2 to \((k + 1) \) of \(R \) to zero and columns \((r - \ell + 1) \) to \((r + 1) \) to one and discarding the resulting constant columns. \(R' \) contains \(0^{\ell-k+1} \) and \(1^{r-k+1} \) but is not complete, since it does not contain \(10^\ell \). By Lemma 11, \(R' \) 3-simulates equality, so \(R \) does, too. \(\square \)

The following corollary follows from Proposition 6 and the facts that \(\overline{R_0 + R_1} = \overline{R_1} + \overline{R_0} \) and that, if \(\overline{R} \) 3-defines equality, then so does \(R \) (since the equality relation is its own bit-wise complement).

Corollary 16. Let \(R_0, R_1 \in \text{NAND-conj} \) and let \(R = R_0 + R_1 \). Then \(R \in \text{OR-conj} \), \(R \in \text{NAND-conj} \) or \(R \) 3-simulates equality.

Theorem 17. Every Boolean relation is in OR-conj, is in NAND-conj or 3-simulates equality.

Proof. Let \(R \) be a Boolean relation. We proceed by induction on its arity, \(r \). If \(r \leq 2 \), then, if \(R \) is neither OR-conj nor NAND-conj then it can only be \(R_m, R_{\lor}, R_{\land} \) or \(R_{\equiv} \); all of these 3-simulate equality by Lemma 9.

For the inductive step, let \(R \) have arity \(r+1 > 2 \) and let \(R_0 \) and \(R_1 \) be such that \(R = R_0 + R_1 \). By the inductive hypothesis, each of \(R_0 \) and \(R_1 \) is in OR-conj, in NAND-conj or 3-simulates equality.

If either of \(R_0 \) and \(R_1 \) 3-simulates equality, then so does \(R \). Otherwise, either both are in OR-conj, both are in NAND-conj or one is in OR-conj and the other is in NAND-conj. In the first two cases, \(R \) is in OR-conj or in NAND-conj or 3-simulates equality by Lemma 15 or Corollary 16. In the third case, if \(R_0 \) and \(R_1 \) have positive width, then \(R \) 3-simulates equality by Lemma 13; otherwise, we are in one of the first two cases. \(\square \)

6. Complexity

The complexity of approximating \(\#CSP(\Gamma) \) where the degree of instances is unbounded is given by Dyer, Goldberg and Jerrum [20, Theorem 3].

Theorem 18. Let \(\Gamma \) be a Boolean constraint language.

- If every \(R \in \Gamma \) is affine, then \(\#CSP(\Gamma) \in \text{FP} \).

- If every \(R \in \Gamma \) is poly-affine, then \(\#CSP(\Gamma) \in \text{FP} \).

- If every \(R \in \Gamma \) is semi-affine, then \(\#CSP(\Gamma) \in \text{FP} \).

- If every \(R \in \Gamma \) is semi-semi-affine, then \(\#CSP(\Gamma) \in \text{FP} \).

- If every \(R \in \Gamma \) is semi-affine, then \(\#CSP(\Gamma) \in \text{FP} \).

- If every \(R \in \Gamma \) is semi-semi-affine, then \(\#CSP(\Gamma) \in \text{FP} \).

- If every \(R \in \Gamma \) is semi-affine, then \(\#CSP(\Gamma) \in \text{FP} \).

- If every \(R \in \Gamma \) is semi-semi-affine, then \(\#CSP(\Gamma) \in \text{FP} \).
Proposition 19. If \(\Gamma \subseteq IM\text{-conj} \) contains a non-affine relation, then for all \(d \geq 3 \), \(\#\text{CSP}_d(\Gamma \cup \Gamma_{\text{pin}}) \equiv_{AP} \#\text{BIS} \).

Proof. It is immediate from [20, Lemma 9] that \(\#\text{CSP}_d(\Gamma \cup \Gamma_{\text{pin}}) \leq_{AP} \#\text{BIS} \).

For the converse, first observe that, by [20, Lemma 8], \(\#\text{BIS} \leq_{AP} \#\text{CSP}(R_{\rightarrow}) \) and, since \(R_{\rightarrow} \) 3-simulates equality by Lemma 9, we have \(\#\text{CSP}(R_{\rightarrow}) \leq_{AP} \#\text{CSP}_d(R_{\rightarrow} \cup \Gamma_{\text{pin}}) \) for all \(d \geq 3 \) by Proposition 8. We must show that \(\#\text{CSP}_d(R_{\rightarrow} \cup \Gamma_{\text{pin}}) \leq_{AP} \#\text{CSP}_d(\Gamma \cup \Gamma_{\text{pin}}) \).

To this end, let \(R \) be any non-affine relation in \(\Gamma \). By Lemma 4, \(R_{\rightarrow} \leq_{\text{ppp}} R \) and the ppp definition involves projecting only pinned columns. Therefore, we can express the constraint \(R_{\rightarrow}(x, y) \) by a constraint of the form \(R(v_1, \ldots, v_r), \) where, for some \(i \) and \(j \), \(v_i = x \) and \(v_j = y \) and the other variables are pinned to zero or one. \(\Box \)

Lemma 20. For \(d \geq 2 \) and \(w \geq 2 \),

\[
\#w\text{-HIS}_d \equiv_{AP} \#\text{CSP}_d(\{R_{\text{OR},w} \cup \Gamma_{\text{pin}}\}) \equiv_{AP} \#\text{CSP}_d(\{R_{\text{NAND},w} \cup \Gamma_{\text{pin}}\}).
\]

Proof. The second equivalence is trivial, since \(R_{\text{OR},w} \) and \(R_{\text{NAND},w} \) are bit-wise complements of each other.

For the first equivalence, let \(H \) be an instance of \(\#w\text{-HIS}_d \). We create an instance of \(\#\text{CSP}_d(\{R_{\text{OR},w} \cup \Gamma_{\text{pin}}\}) \) as follows. The variables are \(\{x_v \mid v \in V(H)\} \) and, for each hyper-edge \(\{v_1, \ldots, v_r\} \), there is a constraint \(R_{\text{OR},w}(x_{v_1}, \ldots, x_{v_r}, 0, \ldots, 0) \).

Each vertex appears in at most \(d \) hyper-edges so each variable appears in at most \(d \) constraints. It is easy to see that a configuration \(\sigma \) of the resulting \(\#\text{CSP}_d(\{R_{\text{OR},w} \cup \Gamma_{\text{pin}}\}) \) instance is satisfying if, and only if, \(\{v : \sigma(x_v) = 0\} \) is an independent set in \(H \).

Conversely, if we are given an instance of \(\#\text{CSP}_d(\{R_{\text{OR},w} \cup \Gamma_{\text{pin}}\}) \), we create an instance \(H \) of \(\#w\text{-HIS}_d \) as follows. There is a vertex \(v_x \) for every variable \(x \). For every constant \(R_{\text{OR},w}(x_1, \ldots, x_w) \) (where the \(x_i \) are not necessarily distinct), add the hyper-edge \(\{v_{x_1}, \ldots, v_{x_w}\} \). Now, for every constraint \(R_{\text{OR},w}(x) \), delete the vertex \(v_x \) and remove it from every hyper-edge that contains it. For every constraint \(R_{\text{OR},w}(x) \), delete \(v_x \) and delete every hyper-edge that contains it. It is easy to see that a configuration \(\sigma \) is satisfying if, and only if, it satisfies the pins and the set \(\{v : \sigma(x) = 0\} \cap V(H) \) is independent in \(H \). \(\Box \)

In the following two propositions, we just prove the OR-conj cases; the NAND-conj cases are equivalent.

Proposition 21. Let \(R \) be an OR-conj or NAND-conj relation of width \(w > 0 \). Then, for \(d \geq 2 \), \(\#w\text{-HIS}_d \leq_{AP} \#\text{CSP}_d(\{R \cup \Gamma_{\text{pin}}\}) \).

Proof. By Lemma 5, \(R_{\text{OR},w} \leq_{\text{ppp}} R \) and the ppp definition involves pinning and then projecting away all but \(w \) of the columns. Thus, an \(R_{\text{OR},w} \)-constraint can be simulated by an \(R \)-constraint in which some elements of the scope are constants. The result follows from Lemma 20. \(\Box \)

We define the **variable rank** of an OR-conj or NAND-conj relation \(R \) to be \(\text{vrank}(R) \), the greatest number of times that any variable appears in the (unique) normalized formula that defines \(R \). We similarly define the variable rank of an OR-conj or NAND-conj constraint language to be the maximum variable rank of the relations within it.

Proposition 22. Let \(R \) be an OR-conj or NAND-conj relation of width \(w > 0 \) and variable rank \(k \). Then, for \(d \geq 2 \), \(\#\text{CSP}_d(\{R \cup \Gamma_{\text{pin}}\}) \leq_{AP} \#w\text{-HIS}_{kd} \).

Proof. Given an instance \(I \) of \(\#\text{CSP}_d(\{R \cup \Gamma_{\text{pin}}\}) \), we produce an instance \(I' \) of the problem \(\#\text{CSP}(\{R_{\text{OR},w}, \ldots, R_{\text{OR},w} \cup \Gamma_{\text{pin}}\}) \) with the same variables by replacing every \(R \)-constraint with the \(R_{\text{OR},w} \)-constraints and pins corresponding to the normalized formula that defines \(R \). Clearly, \(Z(I) = Z(I') \) but a variable that appeared \(d \) times in \(I \) appears up to \(kd \) times in \(I' \), so we have established that

\[
\#\text{CSP}_d(\{R \cup \Gamma_{\text{pin}}\}) \leq_{AP} \#\text{CSP}_{kd}(\{R_{\text{OR},2}, \ldots, R_{\text{OR},w} \cup \Gamma_{\text{pin}}\}) \\
\leq_{AP} \#\text{CSP}_{kd}(\{R_{\text{OR},w} \cup \Gamma_{\text{pin}}\}),
\]

where the last reduction holds because the constraint \(R_{\text{OR},s}(x_1, \ldots, x_s) \) is equivalent to \(R_{\text{OR},w}(x_1, \ldots, x_s, 0, \ldots, 0) \) for any \(s < w \). By Lemma 20, \(\#\text{CSP}_{kd}(\{R_{\text{OR},w} \cup \Gamma_{\text{pin}}\}) \) is AP-equivalent to \(\#w\text{-HIS}_{kd} \). \(\Box \)
We now give the complexity of approximating $\text{#CSP}_d(\Gamma \cup \Gamma_{\text{pin}})$ for $d \geq 3$.

Theorem 23. Let Γ be a Boolean constraint language and let $d \geq 3$.

- If every $R \in \Gamma$ is affine, then $\text{#CSP}_d(\Gamma \cup \Gamma_{\text{pin}}) \in \text{FP}$.
- Otherwise, if $\Gamma \subseteq \text{IM-conj}$, then $\text{#CSP}_d(\Gamma \cup \Gamma_{\text{pin}}) \equiv \text{AP} \ #\text{BIS}$.
- Otherwise, if $\Gamma \subseteq \text{OR-conj}$ or $\Gamma \subseteq \text{NAND-conj}$, then $\text{#w-HIS}_d \leq_{\text{AP}} \text{#CSP}_d(\Gamma \cup \Gamma_{\text{pin}}) \leq_{\text{AP}} \text{#w-HIS}_{kd}$, where $w = \text{width}(\Gamma)$ and $k = \text{vrank}(\Gamma)$.
- Otherwise, $\text{#CSP}_d(\Gamma \cup \Gamma_{\text{pin}}) \equiv \text{AP} \ #\text{SAT}$.

Proof. The first three cases are immediate from **Theorem 18** and **Propositions 19, 21 and 22**. Note that $\Gamma \cup \Gamma_{\text{pin}}$ is affine if, and only if, Γ is.

For the remaining case, suppose that Γ is not affine, $\Gamma \not\subseteq \text{IM-conj}$, $\Gamma \not\subseteq \text{OR-conj}$ and $\Gamma \not\subseteq \text{NAND-conj}$. Since $\Gamma \cup \Gamma_{\text{pin}}$ is neither affine nor a subset of IM-conj, we have $\text{#CSP}(\Gamma \cup \Gamma_{\text{pin}}) \equiv \text{AP} \ #\text{SAT}$ by **Theorem 18** so, if we can show that Γ d-simulates equality, then $\text{#CSP}_d(\Gamma \cup \Gamma_{\text{pin}}) \equiv \text{AP} \ #\text{CSP}(\Gamma \cup \Gamma_{\text{pin}})$ by **Proposition 8** and we are done. If Γ contains a relation R that is neither OR-conj nor NAND-conj, then R 3-simulates equality by **Theorem 17**. Otherwise, Γ must contain distinct relations $R_1 \in \text{OR-conj}$ and $R_2 \in \text{NAND-conj}$ that are non-affine so have width at least two, so Γ 3-simulates equality by **Lemma 13**. □

Sly has shown that there can be no FPRAS for the problem of counting independent sets in graphs of maximum degree at least 6, unless $\text{NP} = \text{RP}$ [39]. Clearly, if there is no FPRAS for counting independent sets in such graphs, there can be no FPRAS for #w-HIS_d with $w \geq 2$ and $d \geq 6$. Further, since #SAT is complete for AP-reducibility [18], #SAT cannot have an FPRAS unless $\text{NP} = \text{RP}$. Thus, **Theorem 24** below is an immediate corollary of **Theorem 23**.

Theorem 24. Let Γ be a Boolean constraint language and let $d \geq 6$.

- If every $R \in \Gamma$ is affine, then $\text{#CSP}_d(\Gamma \cup \Gamma_{\text{pin}}) \in \text{FP}$.
- Otherwise, if $\Gamma \subseteq \text{IM-conj}$, then $\text{#CSP}_d(\Gamma \cup \Gamma_{\text{pin}}) \equiv \text{AP} \ #\text{BIS}$.
- Otherwise, there is no FPRAS for $\text{#CSP}_d(\Gamma \cup \Gamma_{\text{pin}})$, unless $\text{NP} = \text{RP}$.

Note. That $\Gamma \cup \Gamma_{\text{pin}}$ is affine (respectively, in OR-conj or in NAND-conj) if, and only if, Γ is. Therefore, the case for large-degree instances ($d \geq 6$) corresponds exactly in complexity to the unbounded case [20].

For lower degree bounds, the picture is more complex. To put **Theorem 23** in context, we give a summary of what is known about the approximability of #w-HIS_d for various values of d and w.

The case $d = 1$ is clearly in FP (**Theorem 1**) and so is the case $d = w = 2$, which corresponds to counting independent sets in graphs of maximum degree two. For $d = 2$ and width $w \geq 3$, Dyer and Greenhill have shown that there is an FPRAS for #w-HIS_2 [22]. For $d = 3$, they have shown that there is an FPRAS if the width w is at most 3. For larger width, the approximability of #w-HIS_2 is still not known. With the width restricted to $w = 2$ (ordinary graphs), Weitz has shown that, for degree $d \in [3, 4, 5]$, there is a deterministic approximation scheme that runs in polynomial time (a PTAS) [43]. This extends a result of Luby and Vigoda, who gave an FPRAS for $d \leq 4$ [35]. For $d > 5$, approximating #w-HIS_2 becomes considerably harder. Dyer, Frieze and Jerrum showed that, for $d = 6$, the Monte Carlo Markov chain technique is likely to fail, in the sense that a certain class of Markov chains are provably slowly mixing [17]. They also showed that, for $d = 25$, there can be no polynomial-time algorithm for approximate counting, unless $\text{NP} = \text{RP}$. As mentioned above, Sly has recently improved on this, showing that there can be no FPRAS for $d \geq 6$ unless $\text{NP} = \text{RP}$. **Table 1** summarizes the results.

Returning to bounded-degree #CSP, the case $d = 2$ seems to have a rather different flavour to degree bounds three and higher. This is also the case for decision CSP—recall that the complexity of degree-d CSP($\Gamma \cup \Gamma_{\text{pin}}$) is the same as unbounded-degree CSP($\Gamma \cup \Gamma_{\text{pin}}$) for all $d \geq 3$ [14], while degree-2 CSP($\Gamma \cup \Gamma_{\text{pin}}$) is often easier than the unbounded-degree case [14,25] but there are still constraint languages Γ for which the complexity of degree-2 CSP($\Gamma \cup \Gamma_{\text{pin}}$) is open.

Our key techniques for determining the complexity of $\text{#CSP}_d(\Gamma \cup \Gamma_{\text{pin}})$ for $d \geq 3$ are the 3-simulation of equality and **Theorem 17**, which says that every Boolean relation is in OR-conj, in NAND-conj or 3-simulates equality. However, it seems

Table 1. A summary of known approximability of #w-HIS_d. For values of d and w not covered by the table, the approximability is still unknown.

<table>
<thead>
<tr>
<th>Degree d</th>
<th>Width w</th>
<th>Approximability of #w-HIS_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≥ 2</td>
<td>Exact counting in FP</td>
</tr>
<tr>
<td>2</td>
<td>≥ 2</td>
<td>Exact counting in FP</td>
</tr>
<tr>
<td>2</td>
<td>≥ 3</td>
<td>FPRAS [22]</td>
</tr>
<tr>
<td>3</td>
<td>≥ 3</td>
<td>FPRAS [22]</td>
</tr>
<tr>
<td>3, 4, 5</td>
<td>≥ 2</td>
<td>PTAS [43]</td>
</tr>
<tr>
<td>≥ 6</td>
<td>≥ 2</td>
<td>No FPRAS unless $\text{NP} = \text{RP}$ [39]</td>
</tr>
</tbody>
</table>
that not all relations that 3-simulate equality also 2-simulate equality so the corresponding classification of relations does not appear to hold. It seems that different techniques will be required for the degree-2 case. For example, it is possible that there is no FPRAS for #BIS and, therefore, no FPRAS for #CSP₂(Γ ∪ Γpin) except when Γ is affine. However, Bubley and Dyer have shown that there is an FPRAS for the restriction of #SAT in which each variable appears at most twice, even though the exact counting problem is #P-complete [2]; the corresponding constraint language is not affine. This also shows that there is a class C of constraint languages for which #CSP₂(Γ ∪ Γpin) has an FPRAS for every Γ ∈ C but for which no exact polynomial-time algorithm exists, unless FP = #P.

We leave the complexity of degree-2 #CSP and of #BIS and the various parameterized versions of the counting hypergraph independent sets problem as open questions.

References