19 research outputs found

    Revisiting Reachability in Timed Automata

    Full text link
    We revisit a fundamental result in real-time verification, namely that the binary reachability relation between configurations of a given timed automaton is definable in linear arithmetic over the integers and reals. In this paper we give a new and simpler proof of this result, building on the well-known reachability analysis of timed automata involving difference bound matrices. Using this new proof, we give an exponential-space procedure for model checking the reachability fragment of the logic parametric TCTL. Finally we show that the latter problem is NEXPTIME-hard

    Timed pushdown automata revisited

    Full text link
    This paper contains two results on timed extensions of pushdown automata (PDA). As our first result we prove that the model of dense-timed PDA of Abdulla et al. collapses: it is expressively equivalent to dense-timed PDA with timeless stack. Motivated by this result, we advocate the framework of first-order definable PDA, a specialization of PDA in sets with atoms, as the right setting to define and investigate timed extensions of PDA. The general model obtained in this way is Turing complete. As our second result we prove NEXPTIME upper complexity bound for the non-emptiness problem for an expressive subclass. As a byproduct, we obtain a tight EXPTIME complexity bound for a more restrictive subclass of PDA with timeless stack, thus subsuming the complexity bound known for dense-timed PDA.Comment: full technical report of LICS'15 pape

    Model Checking for Probabilistic Timed Automata

    Get PDF

    Timed Automata May Cause Some Troubles

    Get PDF
    Timed automata are a widely studied model. Its decidability has been proved using the so-called region automaton construction. This construction provides a correct abstraction for the behaviours of timed automata, but it does not support a natural implementation and, in practice, algorithms based on the notion of zones are implemented using adapted data structures like DBMs. When we focus on forward analysis algorithms, the exact computation of all the successors of the initial configurations does not always terminate. Thus, some abstractions are often used to ensure termination, among which, a widening operator on zones. In this paper, we study in details this widening operator and the forward analysis algorithm that uses it. This algorithm is most used and implemented in tools like Kronos and Uppaal. One of our main results is that it is hopeless to find a forward analysis algorithm, that uses such a widening operator, and which is correct. This goes really against what one could think. We then study in details this algorithm in the more general framework of updatable timed automata, a model which has been introduced as a natural syntactic extension of classical timed automata. We describe subclasses of this model for which a correct widening operator can be found

    Interrupt Timed Automata: verification and expressiveness

    Get PDF
    We introduce the class of Interrupt Timed Automata (ITA), a subclass of hybrid automata well suited to the description of timed multi-task systems with interruptions in a single processor environment. While the reachability problem is undecidable for hybrid automata we show that it is decidable for ITA. More precisely we prove that the untimed language of an ITA is regular, by building a finite automaton as a generalized class graph. We then establish that the reachability problem for ITA is in NEXPTIME and in PTIME when the number of clocks is fixed. To prove the first result, we define a subclass ITA- of ITA, and show that (1) any ITA can be reduced to a language-equivalent automaton in ITA- and (2) the reachability problem in this subclass is in NEXPTIME (without any class graph). In the next step, we investigate the verification of real time properties over ITA. We prove that model checking SCL, a fragment of a timed linear time logic, is undecidable. On the other hand, we give model checking procedures for two fragments of timed branching time logic. We also compare the expressive power of classical timed automata and ITA and prove that the corresponding families of accepted languages are incomparable. The result also holds for languages accepted by controlled real-time automata (CRTA), that extend timed automata. We finally combine ITA with CRTA, in a model which encompasses both classes and show that the reachability problem is still decidable. Additionally we show that the languages of ITA are neither closed under complementation nor under intersection

    Utilization of timed automata as a verification tool for real-time security protocols

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 85-92)Text in English; Abstract: Turkish and Englishxi, 92 leavesTimed Automata is an extension to the automata-theoretic approach to the modeling of real time systems that introduces time into the classical automata. Since it has been first proposed by Alur and Dill in the early nineties, it has become an important research area and been widely studied in both the context of formal languages and modeling and verification of real time systems. Timed automata use dense time modeling, allowing efficient model checking of time-sensitive systems whose correct functioning depend on the timing properties. One of these application areas is the verification of security protocols. This thesis aims to study the timed automata model and utilize it as a verification tool for security protocols. As a case study, the Neuman-Stubblebine Repeated Authentication Protocol is modeled and verified employing the time-sensitive properties in the model. The flaws of the protocol are analyzed and it is commented on the benefits and challenges of the model

    Analysis and Applications of Timed Service Protocols

    Get PDF
    International audienceWeb services are increasingly gaining acceptance as a framework for facilitating application-to-application interactions within and across enterprises. It is commonly accepted that a service description should include not only the interface, but also the business protocol supported by the service. The present work focuses on the formalization of an important category of protocols that includes time-related constraints (called timed protocols), and the impact of time on compatibility and replaceability analysis. We formalized the following timing constraints: C-Invoke constraints define time windows within which a service operation can be invoked while M-Invoke constraints define expiration deadlines. We extended techniques for compatibility and replaceability analysis between timed protocols by using a semantic-preserving mapping between timed protocols and timed automata, leading to the identification of a novel class of timed automata, called protocol timed automata (PTA). PTA exhibit a particular kind of silent transition that strictly increase the expressiveness of the model, yet they are closed under complementation, making every type of compatibility or replaceability analysis decidable. Finally, we implemented our approach in the context of a larger project called ServiceMosaic, a model-driven framework for Web service life-cycle management
    corecore