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Abstract. In distributed real-time systems, we cannot assume that
clocks are perfectly synchronized. To model them, we use independent
clocks and define their timed semantics. The universal timed language,
and the timed language inclusion of icTA are undecidable. Thus, we
propose Recursive Distributed Event Clock Automata (DECA). DECA
are closed under all boolean operations and their timed language inclu-
sion problem is decidable (more precisely PSPACE-complete), allowing
stepwise refinement. We also propose Distributed Event Clock Temporal
Logic (DECTL), a real-time logic with independent time evolutions. This
logic can be model-checked by translating a DECTL formula into a DECA
automaton.

1 Introduction

Real-Time Distributed Systems (RTDS) take an increasingly important role in
our society, including in aircrafts and spacecrafts, satellite telecommunication
networks or positioning systems. Distributed Systems consist of computer sys-
tems at different locations, that communicate through a network to achieve their
function. Real-Time Systems have to obey strict requirements about the time
of their actions. To ensure these, they rely on clocks. When systems are widely
distributed, we cannot assume that their clocks are perfectly synchronized.

One of the most successful techniques for modeling real-time systems are
Timed Automata (TA) [2]. A timed automaton is a finite automaton augmented
with real-valued clocks. Constraints on these clocks are used to restrict the be-
haviors of the automaton. The model of TA assumes perfect clocks: all clocks
have infinite precision and are perfectly synchronized.

This causes TA to have an undecidable language inclusion problem [2]. The
situation contrasts strongly with the one of automata without real time, where
the problems of complementation, language inclusion, emptiness, union and in-
tersection are decidable, as well as the satisfiability and validity of propositional
linear temporal logic (LTL). These properties are the basis of the success of
model-checking. When all these problems are decidable, we call the formalism
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(automata or logic) fully decidable. These negative results spurred a quest for ex-
pressive but still fully decidable formalisms. To restore decidability, [4] proposed
to restrict the behavior of clocks. The key idea is that the problematic clocks of
TA are reset by non-deterministic transitions. In contrast, an event clock (EC)
xp is reset when a given atomic proposition p occurs. The event clock values are
deterministic and thus Event Clock Automata ECA are determinizable, making
language inclusion decidable and thus enabling refinement based development.
Event clocks can also be introduced in temporal logic [20]. An event clock con-
straint is naturally translated into a proposition �Ip, that means “the last time
that a p occurred was d time units ago, where d lies in I”.

However, the expressiveness of ECA is rather weak. Furthermore, this logic
violates the substitution principle: Any proposition should be replaceable by a
formula. Therefore [12] introduced the notion of “recursive” event. In a recursive
event model, the reset of a clock is decided by a lower-level automaton (or for-
mula). This automaton cannot read the clock that it is resetting. Clock resets are
thus still deterministic, but the concept of “event” is now much more expressive.
�I and �I are modalities that can contain any subformulas, and can be nested.
The temporal logic of recursive event clocks (variously called SCL [20] or Event-
ClockTL [12]) has the same expressiveness as Metric Interval Temporal Logic
MITL [3] (a decidable fragment of Metric Temporal Logic MTL where punctual
constraints U{k} are forbidden) in the interval semantics. First-and second-order
monadic logics with matching expressiveness have been provided [12], yielding a
natural, robust, fully decidable level of real-time expressiveness.

In this paper, we remove the assumption of perfect clock synchronization.
Here, inspired by [6,14,1,10], we study the worst case: the clocks can advance
totally independently if they are in different processes. [18,8] studied the opposite
case, where the difference between clocks (drift) is infinitesimally small.

While [1] only studied untimed languages of their timed automata, namely
the universal and existential languages, our first contribution is to define and
study the corresponding timed languages (Section 4).

Our second contribution is to extend the Recursive Event Clock Automata
(RECA) with distributed (a.k.a independent) clocks, yielding the Distributed
Recursive Event Clock Automata (DECA). We will show that DECA are de-
terminizable, thus closed under complementation, and thus that their language
inclusion problem is decidable (more exactly, PSPACE-complete). We also show
the decidability and regularity of their existential and universal timed languages
(Section 5).

Our third contribution is to define a temporal logic with multiple observers,
each with its own time evolution. This gives us the (Recursive) Distributed Event
Clock Temporal Logic (DECTL), which is also PSPACE-complete (Section 6).

Structure of the paper. The rest of the paper is organized as follows. Sections
2 and 3 recall preliminary notions. Section 4 extends the semantics to timed
languages. Section 5 defines DECA and studies their properties. Section 6 exam-
ines real-time temporal logics: it recalls EventClockTL [20], then introduces and
studies DECTL. Due to space constraints, we only sketch proofs.
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2 Preliminaries

We briefly recall the various models of time that are used in the literature [5]. We
present our results in the interval semantics, that is the richest and most natural
(but also most difficult) model. We also recall clocks and their constraints.

2.1 Models of Time

Models of time can be linear, considering a single future, or branching, consid-
ering several alternative futures. We only consider linear time in this paper. Our
goal here is to model real-time systems, and thus we use the real numbers as our
model of time. This avoids a premature commitment to a specific discretization
of time. In this paper, we use the interval semantics, where the state of the
model is known at any point in time, as opposed to point semantics, where it is
known only at transitions.

Let P be a finite set of (propositional) atoms. A letter is an element of a finite
set Σ. In this paper, we choose to define a letter as a propositional valuation over
P, so we pose Σ = 2P. Let N be the set of natural numbers, R denote the set of real
numbers, R≥0 the set of non-negative real numbers. We denote by I(R≥0) the
set of real intervals whose bounds are in R≥0. An interval I ∈ I(R≥0) is a convex
subset of R≥0. An interval I is contiguous to I ′ when they are ordered: I < I ′,
and I ∪ I ′ is convex. An (alternating) interval sequence (AIS) is a monotone
sequence I = I0I1 · · · of non-empty intervals of I(R≥0) where : (i) singular and
open intervals alternate; (ii) I0 = {0}; (iii) Ij is contiguous to Ij+1; (iv) if infinite,
the sequence of intervals is progressive, i .e., for every t ∈ R≥0, there exists j ∈ N

such that t ∈ Ij . An interval state sequence (ISS) on Σ is a pair θ = (σ, I) where
σ = σ0σ1 · · · is a (possibly infinite) word σ ∈ Σ≤ω, and I = I0I1 · · · is an AIS of
the same length. This is the analog of a timed word [2]. An ISS can equivalently
be seen as a sequence of pairs in Σ × I(R≥0). It can also be seen as a signal,
i.e. a function from R≥0 → Σ: given t ∈ R≥0, let i ∈ N be the interval such
that t ∈ Ii: We define θ(t) as σi. A signal derived from an ISS will always have
finite variability. Below, our automata will consider two ISS θ1, θ2 that define
the same signal as equivalent, noted θ1 ≡ θ2, even if the intervals might be split
differently.

2.2 Clocks

A clock is a variable that increases with time. Thus, the value of a clock is
the time elapsed since its last reset. When we use continuous time, there is not
always a “last” reset, e.g. when the reset holds in an open interval. For this case,
we will use non-standard clock values of the form υ+, intuitively meaning that
the clock was reset υ units before. The set of non-standard real numbers, noted
R

+
≥0, is the set of {υ, υ+ | υ ∈ R≥0}, ordered by <ns as following: υ1 <ns υ+

2

iff υ1 ≤ υ2. The addition is commutative, and υ+
1 + υ2 = (υ1 + υ2)+. R

+
⊥ is

R
+
≥0 plus a special value ⊥ for uninitialized clocks. ⊥ is not comparable to other

values, and is absorbing for addition.
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Let X be a finite set of clock names. A clock valuation over X is a mapping
ν : X → R

+
⊥. The set of constraints over X, denoted Φ(X), is defined by the

grammar φ ::= true | x ∼ c | φ1 ∧ φ2 where x ∈ X, c ∈ N, and ∼ ∈ {<, ≤, =
, >,≥}. We write ν |= φ when the valuation ν satisfies the constraint φ. When
x has the value ⊥, we evaluate x ∼ c to false.

3 Automata Background

Based on time and clocks, several variants of timed automata have been proposed
after the seminal Timed Automata (TA) [2]. Below, we review briefly icTA [1]
and RECA [12], that are the basis of our DECA.

We use an interval semantics throughout the paper, i.e. predicates (or letters)
are functions of time with finite variability. In particular, we do not allow to
be in two locations, or to make two transitions, at the same time. Transitions
are taken in a single instant; therefore we have to stay in a location during an
open interval. Thus, we have to label both locations and transitions (together,
we call them locansitions) to ensure that predicates are always defined. Time
thus strictly increases along an ISS, as in [2]. We allow unobservable transitions
[7], that were absent from [2]: here, they are expressed as a transition with the
same label as the previous and next location.

3.1 Timed Automata

A Timed Automaton (TA) [2] is a finite state automaton augmented with clocks:
real variables that can be reset to 0, and otherwise increase at a uniform rate.
Time is thus global, and clocks are perfectly precise and synchronized.

Definition 1. A Timed Automaton is a tuple A = (Σ,X,S, s0,→ta, Inv, λ,F),
with:

(i) Σ, a finite alphabet. In this paper, we take Σ = 2P.
(ii) X, a finite set of positive real variables called clocks.
(iii) S, a finite set of locations.
(iv) S0 ⊆ S, the initial locations.
(v) →ta⊆ S×Φ(X)× 2X × S, a finite set of transitions, each with a guard and

a reset.
(vi) Inv : S → Φ(X) gives the invariant.
(vii) λ : (S ∪ →ta) → Σ, a labelling of locations and transitions.
(viii) F , an acceptance condition. For instance, for finite acceptance, we have

F ⊆ S, a set of final locations. We also use Büchi acceptance (where F ⊆ S)
or parity conditions (where F : S → N).

TA are neither determinizable nor complementable. Their emptiness problem
can be solved using the region construction, but their inclusion problem is
undecidable [2].
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3.2 Timed Automata with Independent Clocks

Distributed Timed Automata (DTA) [14,1] consist of a number of local timed
automata, called processes. Each processes owns clocks. The clocks of a same
process evolve synchronously, but independently of the clocks of the other pro-
cesses. The idea is that the clocks of the same process are all computed from a
same hardware clock. A clock can be read by any process, but can only be reset
by its owner process.

The homonymous Distributed Timed Automata of [10] work differently: they
model processes whose execution is interleaved by a scheduler. Thus, only one
process increases its (perfect) clocks at a time. They are a subclass of stopwatch
automata.

In [1], DTA are not much studied. Instead, their product is first computed,
giving rise to the class of Timed Automata with independent clocks (icTA).

Definition 2. An icTA is a pair (A, π), where A is a TA and π : X → Proc
maps each clock to a process.

Definition 3. A Rate is a tuple τ = (τq)q∈Proc of local time functions. Each
local time function τq maps the reference time to the time of process q, i.e, τq :
R≥0 −→ R≥0. The functions τq must be continuous, strictly increasing, divergent,
and satisfy τq(0) = 0.

Note that the reference time is arbitrary, and thus not meaningful.

Definition 4. Given a clock valuation ν : X → R≥0, a rate τ , and two reference
times t1 > t2, the valuation ν + (t1 − t2) maps x to ν(x) + τπ(x)(t1) − τπ(x)(t2).

Definition 5. A run of an icTA A for τ is an ISS alternating states and transi-
tions (β, I) where β = ζ0, q1, ζ1, q2, . . . , I = {0}, ]0, t1[, {t1}, ]t1, t2[, . . ., the states
qi ∈ Q = {(si, νi) ∈ S × R

X
≥0 | νi |= Inv(si)}. It must satisfy:

1. the starting state is q0 = (s0, ν0), where ν0 assigns 0 to all the clocks, and
s0 ∈ S0.

2. When spending time ]ti−1, ti[ in qi = (si, νi), the invariant must stay contin-
uously true: ∀t ∈]ti−1, ti[: νi + (t − ti−1)) |= Inv(si).

3. When following a transition ζi = (si, φ, Y, si+1) ∈ →icTA, the clock constraint
φ must be satisfied: νi + (ti − ti−1) |= φ. The clocks in Y are then reset:
νi+1 = (νi + (ti − ti−1))[Y → 0]. This transition is instantaneous.

4. The acceptance condition is verified, e.g. for a finite automaton, sn ∈ F .

Definition 6. Given a run ρ = (ζ0, (s1, ν1), ζ1, (s2, ν2), . . . , I) we define its ISS,
noted λ(ρ), as (λ(ζ0), λ(s1), λ(ζ1), λ(s2), . . . , I).

Definition 7. The language L(B, τ) is the set of ISS of accepting runs of B for
τ , closed under ≡.
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3.3 Recursive Event Clocks Automata

Recursive Event Clock Automata (RECA) [19,12] extend ECA [5]. “Recursive”
refers to the fact that the resets of an event clock xB are controlled by a lower-
level automaton B: When B visits a monitored locansitions (location or tran-
sition), it resets xB. Symmetrically, prediction clocks of the form yB measure
the time until B can next visit one of its monitored locansitions. Distributed
Real-Time Automata [9] are a special case of RECA where only the time since
the last change of labelling can be measured.

Definition 8. A RECA A of level l ∈ N is a tuple composed of:

(i) Σ is a finite alphabet.
(ii) S is a finite set of locations.
(iii) S0 ⊆ S are the initial locations.
(iv) →reca⊆ S × S are the transitions.
(v) C is a finite set of clocks, of the form xB or yB, with B a lower-level RECA.
(vi) λ : (S ∪ →reca) → Σ is a labelling function.
(vii) Inv : (S ∪ →reca) → Φ(C) gives the guard or invariant.
(viii) M ⊆ (S ∪ →reca) is the set of monitored locansitions: when the automaton

visits them, it resets its two associated clocks xA, yA.
(ix) F is an acceptance condition.

RECA can be determinized and thus complemented: They are fully decidable
[19,12]. They are quite expressive, since they can express the logic MITL [3], but
less expressive than TA (otherwise we would lose full decidability).

Below, we assume the uniform naming conventions defined in this section.

4 Timed Languages

Surprisingly, Akshay et al. [1] only consider untimed languages for their timed
automata. We are interested in timed languages, but we have a different time
scale for each process; thus each process p will determine a timed language
observed by p. These languages only differ by their timings. Let τp be the rate of
process p. τp extends naturally to intervals, to interval sequences, to ISS, and to
timed languages: Given an ISS θ = (σ, I) expressed in the reference time, τp(θ)
is (σ, τp(I)). The timed language for τ observed by p is τp(L(B, τ)). When there
is only one process, i.e. Proc = {q}, the timed language observed by q is the
usual timed language L(A) of its TA. When τ is a vector of identity functions,
we also obtain the usual timed language whatever the observer process chosen.

When we want to avoid some forbidden timed behaviours (ISS) , we consult
the existential timed semantics: we consider time evolutions as non-deterministic,
since this gives the worst-case assumption. If we want a given timed behaviour
to be possible whatever the evolution of local times, we look at the universal
semantics.

Definition 9. For an automaton B and one of its processes p, we define:
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– the existential timed language observed by p : L∃(B, p) =
⋃

τ∈Rates τp(L(B, τ))
– the universal timed language observed by p : L∀(B, p) =

⋂
τ∈Rates τp(L(B, τ))

This variety of languages leads to three generalisations of the classical problems
of emptiness, inclusion, intersection and union. First, the τ -wise definitions:

Definition 10. Given icTA A,B, C,

1. C is an intersection of A,B iff ∀τ ∈ Rates,L(C, τ) = L(A, τ) ∩ L(B, τ)
2. C is a union of A,B iff ∀τ ∈ Rates,L(C, τ) = L(A, τ) ∪ L(B, τ)
3. C is a complement automaton of A iff ∀τ ∈ Rates,L(C, τ) = L(A, τ)c, where

c is the complement operator.
4. A is language-included in B iff ∀τ ∈ Rates,L(A, τ) ⊆ L(B, τ)
5. The emptiness problem for A is ∀τ ∈ Rates,L(A, τ) = ∅

The p-existential and p-universal variants use respectively the existential and
universal timed languages observed by p.

4.1 Timed Languages of icTA

The existential timed languages of icTA are timed regular [2]:

Theorem 1. For any icTA B, L∃(B, p) is the language of a TA.

Proof. (sketch) This TA can be computed by a variant of the region construction,
of which the construction of [1] is a special case. Let q ∈ Proc \ {p} be a process
whose clocks we want to eliminate, i.e. we have an icTA B on Proc and we would
like to construct an icTA on Proc \ {q} whose existential language is preserved
for any observer but q. We construct the region automaton, but on the clocks
of q only. If a locansition had invariant

∧
p∈Proc φp, its associated regions have

invariant
∧

p∈Proc{q} φp. The constraints on clocks of q are not lost, they become
part of the region constraint. This gives a region icTA without the clocks of q, and
where the locations are now a pair of an original location and a region constraint
on clocks of q, which has the required languages. If we want to eliminate several
processes, we eliminate them one by one: eliminating several processes together
would give a result that does not reflect the independence of their clocks.

However, the emptiness of their universal timed languages is undecidable, and
thus cannot be the language of a TA.

Theorem 2. icTA are closed under τ-wise and p-existential intersection and
union, and under p-universal intersection.

However, icTA are not determinizable, nor closed under timed complement,
and their inclusion problem is undecidable (whether τ -wise, p-existential, or
p-universal), essentially because TA [2] are a special case of icTA.
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5 Distributed Event Clock Automata

To restore full decidability, we use event clocks [5]. For expressiveness, we use
RECA [12] with independent clocks [1]. The distributed event clock (DEC) xq

A
(or yq

A) records the time since the last (resp. next) time that the automaton A
could visit a monitored locansition, measured in the local time of process q.

Definition 11. A distributed recursive event clock automaton (DECA) is a pair
(A, π) where A is a RECA and π : C → Proc maps each clock to a process.

For better readability, we write the owner process in the clock name: π(xq
A) = q.

Definition 12. A run ρ of a DECA A for a rate τ is an ISS alternating transi-
tions and locations (ζ0, s1, ζ1, s2, . . . , I), such that:

(i) The run starts from an initial location: ζ0 ∈ S0 × S.
(ii) The run follows discrete transitions: ζi = (si, si+1) ∈→reca

(iii) The clock constraints (invariant or guard) are satisfied by the valuation of
the clocks (defined below): ∀t ∈ R≥0, ν(λ(ρ), t, τ) |= Inv(ρ(t)).

(iv) It satisfies the acceptance condition.

Definition 13. The ISS of a run ρ = (s, I), noted λ(ρ), is the pair (λ(s), I).

Definition 14. A accepts an ISS θ at t with τ , if there is a run ρ for θ that
visits a monitored location at t. This is noted (t, θ) ∈ L+(A,τ), its anchored
language.

This acceptance time will be used to reset the associated clocks xq
A below.

Definition 15. The DEC valuation depends on the ISS θ, on the reference time
of evaluation t, and on the rate τ . It assigns a (non-standard) positive real, or
undefined, to each clock variable.

ν(θ, t, τ, xq
B) =

⎧⎨
⎩

τq(t) − τq(r) if r = max{s < t|(s, θ) ∈ L+(B,τ)} exists
(τq(t) − τq(r))+ else, if r = sup{s < t|(s, θ) ∈ L+(B,τ)} exists
⊥ else

ν(θ, t, τ, yq
B) =

⎧⎨
⎩

τq(l) − τq(t) if l = min{s > t|(s, θ) ∈ L+(B,τ)} exists
(τq(l) − τq(t))+ else, if l = inf{s > t |(s, θ) ∈ L+(B,τ)} exists
⊥ else

Definition 16. The timed language of a DECA A, noted L(A, τ), are the ISS
of its runs for τ , closed under ≡.

Example 1. The example of Fig.1 from [1] is in fact both a DECA and an icTA
A over Proc = {p, q}, and the set of propositions P = {a, b, c}. Locations have
no invariant and an ε labelling. Both clocks are reset by the initial monitored
transition of B. After this, they may diverge. The existential timed languages,
here, are read from the automaton:
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{a}
0 < xp

B < 1
∧ 0 < xq

B < 1

{a}
0 < xp

B < 1
∧ 0 < xq

B < 1

{b}
xp
B ≥ 1

xq
B ≤ 1

{b}
xp
B ≥ 1

xq
B ≤ 1

{b}
xp
B < 1

xq
B = 1

{c}
xp
B < 1

xq
B > 1

{}
�

{}
�

{}
�

{}
�

{}
�

{}
�   

{}
� {a,b,c}

reset

High Level DECA A Lower Level Automaton B

Fig. 1. Example of DECA from [1]

L∃(A, p) = ITL1({(a, tp1) | 0 < tp1 < 1} ∪ {(b, tp1) | tp1 ≥ 1} ∪ {(c, tp1) | 0 < tp1 < 1}
∪{(a, tp1), (b, t

p
2) | 0 < tp1 < 1 ∧ tp1 < tp2})

L∃(A, q) = ITL({(a, tq1) | 0 < tq1 < 1} ∪ {(b, tq1) | 0 < tq1 ≤ 1} ∪ {(c, tq1) | tq1 > 1}
∪{(a, tq1), (b, t

q
2) | 0 < tq1 < 1 ∧ tq1 < tq2 ≤ 1})

Here, all universal timed languages are empty: L∀(A, p) = ∅ = L∀(A, q). For
instance, we cannot have (a, ta) ∈ L∀(A, p), because there are some τ where the
time of q increases steeply, and gets over 1 before the time of p could reach ta.
However, the universal untimed language L∀(A) is {a, ab}.

5.1 Timed Languages of DECA

DECA inherit the main property of RECA: they are determinizable. The theorems
below are valid for the finite version, but also for the infinite ones, e.g. for Büchi
automata, which are determinized to a parity automaton [17].

Definition 17. A DECA A is deterministic iff all the following conditions hold:

(i) A has exactly one initial location {s0} = S0;
(ii) It has no ε-transitions: There are no two successive locations s1 → s2, with

the same labellings: λ(s1) = λ(s1, s2) = λ(s2).
(iii) Any two distinct successor locations s2 �= s3, s1 → s2, s1 → s3 with same

labellings: λ(s2) = λ(s3) and λ(s1, s2) = λ(s1, s3), have mutually exclusive
clock constraints: ν � Inv(s1, s2) ∧ Inv(s1, s3).

Theorem 3. Given a deterministic DECA, a rate τ , an ISS θ, there is at most
one accepting run on τ for θ, i.e. λ(ρ) ≡ θ.

As for RECA, prediction clocks render a deterministic DECA dependent on the
future, and thus unsuitable for realizability [11].

We don’t have space to present our determinization construction [19], but its
complications rather stems from continuous time than from DEC.

1 ITL will add the missing intervals between time points.
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Theorem 4. Determinization preserves the τ-wise, existential and universal
languages.

Theorem 5. DECA are closed under union, intersection and complementation,
whether τ-wise, p-existential and p-universal.

Theorem 6. For all DECA B, p ∈ Proc,L∃(B, p) is the language of a RECA.

Proof. (sketch) We eliminate each process q �= p in turn from the DECA while
preserving the existential language of the remaining processes. We first com-
plete and determinize automata appearing in the clocks of this process q. We
then make their product with the main automaton. We then perform the region
construction [3] on the clocks of q. Remember that the clocks are constrained
to be 0 in the respective monitored locansition, i.e. when at least one original
monitored locansition appears in this construction, and that prediction clocks
run backwards so that it is the complement of their fractional part that par-
ticipates in the region construction [3]. The region construction for prediction
clocks is non-deterministic and is not a bisimulation quotient, unlike the one of
TA, but preserves the language [19]. Note that the elimination of the clocks of
one process only, allows independent evolution of the other clocks.

Theorem 7. The τ-wise and p-existential emptiness, universality and language
inclusion problem for DECA are PSPACE-complete.

Finite automata have the same complexity, thus the added expressiveness is “for
free”.

Theorem 8. For all DECA B, q ∈ Proc,L∀(B, q) is the language of a RECA.

Proof. (sketch) We complete and determinize the main automaton A. Then we
apply the region construction for independent clocks [1]. The automaton becomes
non-deterministic, because each region has several successors, depending on τ .
Transitions are also considered as regions. A region constraint is expressed as
a conjunction

∧
p∈Proc φp. We choose as invariant of each region locansition φq.

The other constraints are part of the identity of the region, but are not kept as
an invariant. Then we determinize it again but we mark as final the locations
where all members are final (which, in turn, means that one of their members is
an original final location), to represent that the ISS must be accepted under all
evolutions of time τ .

In contrast, the universal language of DTA and icTA is undecidable [1].

6 Recursive Distributed Event Clocks Temporal Logic

The aim of this section is to construct a fully decidable distributed logic to
specify real-time requirements when time scales can be independent.
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6.1 Syntax

Our Distributed Event Clock Temporal Logic (DECTL) extend the Event Clock
Temporal Logic (EventClockTL) [20,12] with distributed (a.k.a. independent)
real-time modalities. As in Section 3.2, we assume a set of processes Proc. The
clocks of each process will evolve according to its local time given by a Rate τ .

DECTL is based on LTL, and adds two local real-time modalities. The record-
ing modality �q

Iφ means that φ was true for the last time at reference time t1
and that the distance, as measured by the time scale of q, is within the interval
I: τq(t0) − τq(t1) ∈ I. Symmetrically, the predicting modality �q

Iφ says that
the next φ will occur within I according to the local time of q. With only one
process, we find back EventClockTL [20].

Definition 18. The formulas of DECTL are defined by the grammar:

φ ::= true | p | �q
I φ | �q

I φ | φ1 ∧ φ2 | ¬φ | φ1 U φ2 | φ1 S φ2

where p ∈ P is an atom, I ∈ I(N) is an interval and q ∈ Proc is a process.

6.2 Semantics

Definition 19. The satisfaction of a DECTL formula φ is noted (t, θ) |=τ φ.
We omit τ and θ below, since they are fixed.

t |= p iff p ∈ θ(t)
t |= ¬φ iff t �|= φ
t |= φ1 ∧ φ2 iff t |= φ1 and t |= φ2

t |= φ1Uφ2 iff ∃t′ > t, t′ |= φ2 and ∀t′′ ∈ (t, t′), t′′ |= φ1

t |= φ1Sφ2 iff ∃t′ < t, t′ |= φ2 and ∀t′′ ∈ (t′, t), t′′ |= φ1

t |= �q
Iφ iff ∃t′ < t, τq(t) − τq(t′) ∈ I ∧ t′ |= φ

and ∀t′′ < t, τq(t) − τq(t′′) < I, t′′ �|= φ
t |= �q

Iφ iff ∃t′ > t, τq(t′) − τq(t) ∈ I ∧ t′ |= φ
and ∀t′′ > t, τq(t′′) − τq(t) < I, t′′ �|= φ

Example 2. The formula ¬(Fb ∧ ¬ �q
≤1 b), where Fb = true Ub says that the

first b, if any, must occur within 1 second, as measured by q. It holds on the
automation of Fig.1. However, the formula measured by p, ¬(Fb∧¬�p

≤1 b), does
not hold.

6.3 Decidability

Theorem 9. For any DECTL formula φ, there is a DECA automaton Aφ with
the same anchored language: (t, θ) ∈ L+(A,τ) iff (t, θ) |=τ φ.

Proof. (sketch) The translation to a Generalised Büchi tableau is done level by
level, where the level of a formula is the nesting depth of real-time modalities
[19]. A formula �q

Iφ is translated as constraint xq
Aφ

∈ I. The monitored loca-
tions of Aφ are those containing φ. The initial locations are those containing
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¬true Strue . The transitions are the sets of closure formulae that entail instan-
taneity. Each location has the Hintikka property: the conjunction of its formulae
is satisfied exactly by the ISS of the runs visiting it, at the time they visit it.

The construction is exponential in the size of the non-real time part of the
formula, but linear in the real-time part. The test of emptiness is done by the
region construction presented in Section 5, that is exponential in the real-time
part but linear for the rest.

Theorem 10. Satisfiability and validity of DECTL are PSPACE-complete.

The axiomatisation of this logic happens to be given in [21]. There, shift and
order axioms express the pairwise synchronisation of real-time modalities. We
restrict them to modalities of the same process.

6.4 Extensions

(1) We can extend the known expressive equivalence of EventClockTL and MITL+
Past [12] to construct a distributed version of MITL (DMITL) with indepen-
dent modalities Up

I ,Sp
I .

(2) DECTL is expressively equivalent to DQTL, a new first-order monadic logic
with a metric quantifiers ∃t ∈p]t0, t0 + k[ . φ, ∃t ∈p]t0 − k, t0[ . φ, where φ
has only the free variable t (see [13] for QTL).

(3) The more expressive logic DMECTL allows to observe not only the last φ,
but also the last but n φ [15]. This logic is still translatable in DECA.

(4) This logic is expressively equivalent to DQ2MLO, a new first-order monadic
logic with a metric quantifier ∃t ∈p]t0, t0 + k[ . φ, ∃t ∈p]t0 − k, t0[ . φ, where
φ has only the free variables t0, t (see [13] for Q2MLO).

(5) We can add DECA automata operators [22].
(6) We can add second-order quantification on predicates that are not subjected

to a real-time constraint.
(7) We can also introduce these independent modalities Up

I ,Sp
I in a linear μ-

calculus.

The last three extensions are expressively equivalent.

7 Conclusions

We have proposed the basis of a framework for analyzing distributed real-time
systems through of the introduction of independent (or distributed) event clocks,
inspired by icTA [1]. In contrast to [1], we have given a real-time semantics, and
thus we can specify real-time properties. We have defined DECA and showed that
they are fully decidable, and that their language inclusion problem is PSPACE-
complete, as for classical automata. This give us an algorithm to verify real-time
properties. Since the number of regions is reduced wrt. ECA, we can even expect
faster verification. They are also a good basis for partial-order techniques [6]. The
universal (timed) languages of DECA are decidable and (timed) regular, unlike
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the universal languages of icTA [1]. We proposed the logic DECTL to specify
real-time properties with distributed observers. The problems of satisfiability,
validity and model-checking of DECTL are PSPACE-complete, as for LTL - we
cannot hope better.
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