
Timed Hyperproperties?,??

Hsi-Ming Hoa,1, Ruoyu Zhoub, Timothy M. Jonesb

aDepartment of Informatics, University of Sussex, Brighton, UK
bDepartment of Computer Science and Technology, University of Cambridge, Cambridge, UK

Abstract

We study the satisfiability and model-checking problems for timed hyperproperties specified with HyperMITL,
a timed extension of HyperLTL. While the satisfiability problem can be solved similarly as for HyperLTL,
we show that the model-checking problem for HyperMITL, unless the specification is alternation-free, is
undecidable even when very restricted timing constraints are allowed. On the positive side, we show that
model checking HyperMITL with quantifier alternations is possible under certain semantic restrictions. As
an intermediate tool, we give an ‘asynchronous’ interpretation of Wilke’s monadic logic of relative distance
(L↔d) and show that it characterises timed languages recognised by timed automata with silent transitions.

Keywords:
Timed Automata; Temporal Logics; Cybersecurity

1. Introduction

1.1. Background
One of the most popular specification formalisms for reactive systems is Linear Temporal Logic (LTL),

first introduced into computer science by Pnueli [1] in the late 1970s. The success of LTL can be attributed
to the fact that its satisfiability and model-checking problems are of lower complexity (PSPACE-complete [2],
as compared with non-elementary [3] for the equally expressive first-order logic of order (FO[<])). Moreover,
LTL enjoys simple translations into automata and excellent tool support (e.g., [4, 5]).

While LTL is adequate for describing features of individual execution traces, many security policies
are based on relations between two (or more) execution traces. A standard example of such properties is
observational determinism [6, 7, 8]: for every pair of execution traces, if the low-security inputs agree in
both execution traces, then the low-security outputs in both execution traces must agree as well. Such
properties are called hyperproperties [9]: a model of the property is not a single execution trace but a set
of execution traces. HyperLTL [10], obtained from LTL by adding trace quantifiers, has been proposed as a
specification formalism to express hyperproperties. For example, observational determinism can be expressed
as a HyperLTL formula:

∀πa ∀πb G(Ia = Ib)⇒ G(Oa = Ob) .

HyperLTL inherits almost all the benefits of LTL; in particular, tools that support HyperLTL verification can
be built by leveraging existing tools for LTL.

?This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), through grant references
EP/K026399/1 and EP/P020011/1.
??A preliminary version of this paper appeared in the 26th International Symposium on Temporal Representation and

Reasoning (TIME 2019).
Email addresses: Hsi-Ming.Ho@sussex.ac.uk (Hsi-Ming Ho), ruoyu.zhou@cl.cam.ac.uk (Ruoyu Zhou),

timothy.jones@cl.cam.ac.uk (Timothy M. Jones)
1Most of the work was conducted while the first author was affiliated with the University of Cambridge.

This is the accepted manuscript version of the article.
The final version is available online from Elsevier at: https://doi.org/10.1016/j.ic.2020.104639.
Licensed under CC BY-NC-ND 4.0 http://creativecommons.org/licenses/by-nc-nd/4.0.

https://doi.org/10.1016/j.ic.2020.104639
http://creativecommons.org/licenses/by-nc-nd/4.0

ypublic_out(π1):

T1

0, x, ysecret_in(π1):

select_u32public_in(π1):

xpublic_out(π2):

T2

1, x, ysecret_in(π2):

select_u32public_in(π2):

Figure 1: An attacker can infer the value of the secret selection bit b if T1 6= T2.

For many practical applications, however, in addition to the occurences and orders of events, timing
has to be accounted for as well. For example, one may want to verify that in every execution trace of the
system, whenever a request req is issued, the corresponding acknowledgement ack is received within the
next 5 time units. Timed automata [11] and timed logics [12, 13, 14] are introduced exactly for this purpose,
and it is natural to consider timed variants of observational determinism (and similar properties) in this
context. Indeed, timing anomalies caused by different high-security inputs is a well-known attack vector
that can be exploited to obtain sensitive information [15]; this kind of timing side-channel attacks also play
significant roles in recent high-profile exploits such as Meltdown [16] and Spectre [17]. Below is a simple yet
realistic example of such attacks at the instruction level.

Example 1 ([18]). A C function that selects between two secret variables x and y based on a secret selection
bit b (i.e. the low-security user has access to the low-security output—the value of either x or y—but should
not know it is the value of which of x or y) may be written as follows:

uint32_t select_u32(uint32_t b, uint32_t x, uint32_t y)
{

return b ? x : y;
}

This straightforward implementation, however, may result in a timing side channel—depending on which
compiler optimisations are applied, the execution time may depend on b. If this is the case then an attacker,
provided that he/she can observe the time when the output is returned, can infer b (depicted in Figure 1).2 In
sensitive applications like cryptography libraries and embedded smartcard software, such functions are usually
replaced by functional-equivalent, ‘branch-less’ versions, with the hope of eliminating potential differences in
execution times without sacrificing portability. In this case, one such version is as follows:

uint32_t ct_select_u32(uint32_t b, uint32_t x, uint32_t y)
{

signed bit = 0 - b;
return (x & bit) | (y & ~bit);

}

Unfortunately, such obfuscation efforts can easily be wiped out by more agressive code optimisations. For
instance, after compilation by clang 3.3 (-O2), the C function ct_select_u32 results in the following
assembly code, which contains a conditional jump instruction (branch). This piece of code could reveal b, as
execution times may differ due to branch prediction. We remark that similar issues are of large practical
interest and various approaches to detecting them have been proposed, e.g., [19, 20, 21, 22].

2While events (and sets of events) are shown as rectangles in the figures, they are assumed to occur instantaneously.

2

ct_select_u32:
mov 0x4(%esp),%al
test %al,%al
jne L
lea 0xc(%esp),%eax
mov (%eax),%eax
ret

L: lea 0x8(%esp),%eax
mov (%eax),%eax
ret

Given the highly sophisticated cache hierarchies, pipeline stalls, etc. in contemporary real machines, the
timing side channel in the example above may be difficult to realise and exploit in an actual attack; but such
issues may also manifest themselves in hardware designs (e.g., at the register-transfer level), as illustrated by
the following example.

Example 2 ([23]). An AND gate with two secret inputs A, B, and a public output C (with respective delays
TA, TB , and TC ; we assume that TB > TA and TC > TB −TA) can be modelled as the timed automaton with
two clocks x, y in Figure 2 (see Section 2.2 for a definition of timed automata). Intuitively, the values of A
and B are only known after TA and TB , respectively; the output C = A∧B, on the other hand, has an extra
delay of TC from the point when its value is determined. So for example, if A turned out to be 0 (i.e. event
A0 has occurred), the output C must be 0 as well (i.e. C0 must occur later). But if A = 1 and B = 0, then
C0 will occur at a later time than in the previous case. In other words, when C = 0, a low-security user (to
whom A0 and A1 should not be observable), provided that he/she can measure the time when C0 occurs,
can also infer the value of A while he/she should not be able to. The pair of traces with C = 0 that reveals
A is depicted in Figure 3 and Figure 4. In this simple example, however, the timing side channel can be
easily removed by adding y := 0 on the self-loop on the lower-right location.

A1, x = TA

B1, x = TB

y := 0

B0, x = TB

y := 0

C1, y = TC

A0, x = TA

y := 0

C0, y = TC

Figure 2: A timed automaton modelling an AND gate with inputs A, B and output C with respective delays TA, TB , and TC .

1.2. Contributions
We propose HyperMITL, obtained by adding trace quantifiers toMetric Interval Temporal Logic (MITL) [14],

as a specification formalism for timed hyperproperties. We consider systems modelled as timed automata
whose behaviours are sequences of events that occur at different instants in time (i.e. timed words). It is not
hard to see that, as far as satisfiability is concerned, HyperMITL is similar to HyperLTL, i.e. satisfiability
is decidable for fragments not containing ∀∃. However, in contrast with HyperLTL (whose model-checking
problem is decidable), model checking HyperMITL is undecidable if there is at least one quantifier alternation
in the specification, even when the timing constraints used in either the system or the specification are very
restricted. Still, the alternation-free fragment of HyperMITL, which is arguably sufficient to capture many
timed hyperproperties of practical interest, has a decidable model-checking problem. We also identify a
number of subcases where HyperMITL model checking becomes decidable for larger fragments, such as when
the specification belongs to a certain subclass of one-clock timed automata, or when there is an a priori
bound on either the length of the time domain or the variability of the traces involved. The results reveal
the connections between HyperMITL, timed automata with silent transitions [24], and an ‘asynchronous’
interpretation of the monadic logic of relative distance (L↔d) of Wilke’s [25].

3

0 TA TB

{A1} {B0} {C0}

TC

Figure 3: A trace ρ1 with A = 1, B = 0, and C = 0.

0 TA TB

{A0} {B0} {C0}

TC

Figure 4: A trace ρ2 with A = 0, B = 0, and C = 0.

1.3. Related work
Since the pioneering work of Clarkson and Schneider [9], there has been great interest in specifying and

verifying hyperproperties in the past few years. The framework based on HyperLTL [10] is possibly the most
popular for this purpose, thanks to its expressiveness, flexibility, and relative ease of implementation. In
addition to satisfiability [26, 27] and model checking [10, 28], tools for monitoring HyperLTL also exist [29,
30, 31]. Notably, the complexity of monitoring HyperLTL, as well as model checking HyperLTL on restricted
(tree-shaped or acyclic) Kripke structures, are studied in [32] and shown to be much lower than those of
the general satisfiability and model-checking problems. These results, however, do not apply in the current
timed setting—we will see in Section 4.3 that our main undecidability result holds even with these structural
restrictions on the system model.

Our formulation of HyperMITL is very closely related to HyperSTL [33] originally proposed in the context
of quality assurance of cyber-physical systems. While [33] focusses on testing, we are mainly concerned with
the decidability of verification problems. On the other hand, the semantics of HyperSTL is defined over sets
of continuous signals, i.e. state-based ; as noted in [33], however, the price to pay for this extra generality is
that implementing a model checker for HyperSTL is difficult in practice, especially for systems modelled in
proprietary frameworks, such as Simulink®. Practical reasoning of (event-based) HyperMITL, by contrast, is
more amenable to implementation based on existing highly optimised timed automata verification back ends,
e.g., Uppaal [34].3 Indeed, a prototype model checker based on Uppaal for the synchronous semantics
of HyperMITL (with some restrictions) is reported in [37], although it does not consider the decidability of
verification problems. Another relevant work [38], also based on Uppaal, checks noninterference in systems
modelled as timed automata (similar to Example 4; see below). Their approach, however, is specifically
tailored to noninterference and does not generalise. Some similar (but different) notions of noninterference
for timed automata have been considered in [39, 40].

It is also possible to extend hyperlogics in other quantitative dimensions orthogonal to time. Hyper-
PCTL [41] can express probabilisitic hyperproperties, e.g., the probability distribution of the low-security
outputs is independent of the high-security inputs. In [42], specialised algorithms are developed for verifying
quantitative hyperproperties, e.g., there is a bound on the number of traces with the same low-security inputs
but different low-level outputs. The current paper is complementary to these works.

3For more detailed accounts of the state-based and event-based semantics for timed automata and logics, see e.g., [35, 36].

4

2. Timed hyperproperties

2.1. Timed words
A timed word over a non-empty finite set Σ of events is a non-empty finite sequence (σ1, τ1) . . . (σn, τn) ∈

(Σ×R≥0)∗ where τ1 . . . τn is an increasing sequence of non-negative real numbers (‘timestamps ’), i.e. τi < τi+1

for all i, 1 ≤ i < n.4 For t ∈ R≥0 and a timed word ρ = (σ1, τ1) . . . (σn, τn), we write t ∈ ρ iff t = τi for some
i, 1 ≤ i ≤ n. We denote by TΣ∗ the set of all timed words over Σ. A timed language (or a trace property) is
a subset of TΣ∗.

2.2. Timed automata
Let X be a finite set of clocks (R≥0-valued variables). A valuation v for X maps each clock x ∈ X to a

value in R≥0. The set G(X) of clock constraints (guards) g over X is generated by g := > | g ∧ g | x ./ c
where ./ ∈ {≤, <,≥, >}, x ∈ X, and c ∈ N≥0. The satisfaction of a guard g by a valuation v (written v |= g)
is defined in the usual way. For t ∈ R≥0, we let v + t be the valuation defined by (v + t)(x) = v(x) + t
for all x ∈ X. For λ ⊆ X, we let v[λ ← 0] be the valuation defined by (v[λ ← 0])(x) = 0 if x ∈ λ, and
(v[λ← 0])(x) = v(x) otherwise.

A timed automaton (TA) over Σ is a tuple A = 〈Σ, S, s0, X,∆, F 〉 where S is a finite set of locations,
s0 ∈ S is the initial location, X is a finite set of clocks, ∆ ⊆ S × Σ × G(X) × 2X × S is the transition
relation, and F is the set of accepting locations. We say that A is deterministic iff for each s ∈ S and σ ∈ Σ
and every distinct pair of transitions (s, σ, g1, λ1, s1) ∈ ∆ and (s, σ, g2, λ2, s2) ∈ ∆, g1 ∧ g2 is not satisfiable.
A state of A is a pair (s, v) of a location s ∈ S and a valuation v for X. A run of A on a timed word
(σ1, τ1) . . . (σn, τn) ∈ TΣ∗ is a sequence of states (s0, v0) . . . (sn, vn) where (i) v0(x) = 0 for all x ∈ X and (ii)
for each i, 0 ≤ i < n, there is a transition (si, σi+1, g, λ, si+1) such that vi + (τi+1 − τi) |= g (let τ0 = 0) and
vi+1 =

(
vi + (τi+1 − τi)

)
[λ ← 0]. A run of A is accepting iff it ends in a state (s, v) with s ∈ F . A timed

word is accepted by A iff A has an accepting run on it. We denote by JAK the timed language of A, i.e. the
set of all timed words accepted by A. Some fundamental results on TAs are that the emptiness problem (is
JAK = ∅?) is decidable (PSPACE-complete), but the universality problem (is JAK = TΣ∗?) and the language
inclusion problem (is JA1K ⊆ JA2K?) are undecidable [11].

A timed automaton with ε-transitions (TAε) additionally admits transitions of the form (s, ε, g, λ, s′) where
ε is a special ‘silent ’ event. In a run of a TAε on a timed word (σ1, τ1) . . . (σn, τn) ∈ TΣ∗, such transitions can
be taken (one or more times) between each pair of ordinary events σi, σi+1 ∈ Σ. In contrast to the untimed
case where ε-transitions can be removed with standard textbook constructions (e.g., [43]), it is known that
TAε’s are strictly more expressive than TAs [24]; in particular, universality becomes decidable for TAs if the
automaton in question uses only one clock [44], but it remains undecidable for TAε’s in that case.

2.3. Timed logics
The set of MITL formulae over a finite set of atomic propositions AP is generated by

ψ := > | p | ψ1 ∧ ψ2 | ¬ψ | ψ1 UI ψ2 | ψ1 SI ψ2

where p ∈ AP and I ⊆ R≥0 is a non-singular interval with endpoints in N≥0 ∪ {∞}. We omit the subscript I
when I = [0,∞) and sometimes write pseudo-arithmetic expressions for constraining intervals, e.g., ‘< 3’ for
[0, 3). The other Boolean operators are defined as usual: ⊥ ≡ ¬> and ψ1 ∨ ψ2 ≡ ¬(¬ψ1 ∧ ¬ψ2). We also
define the dual temporal operators ψ1ŨIψ2 ≡ ¬

(
(¬ψ1) UI (¬ψ2)

)
and ψ1S̃Iψ2 ≡ ¬

(
(¬ψ1) SI (¬ψ2)

)
. Using

these operators, every MITL formula ψ can be transformed into an MITL formula in negative normal form,
i.e. ¬ is only applied to atomic propositions. To ease the presentation, we will also use the usual shortcuts like
FI ψ ≡ >UI ψ, GI ψ ≡ ¬FI ¬ψ, XI ψ ≡ ⊥UI ψ, and the more popular ‘weak-future’ variants of temporal

4We focus on finite timed words in this paper; most of our results (except those rely on the decidability of universality
of one-clock TAs over finite timed words) carry over to the case of infinite timed words with some simple modifications. For
example, in Section 3, suitable subformulae can be added to rule out the runs that get stuck in self-loops labelled with {pε}.

5

operators, e.g., Fψ ≡ ψ ∨ Fψ. Given an MITL formula ψ over AP in negative normal form, a timed word
ρ = (σ1, τ1) . . . (σn, τn) over ΣAP = 2AP, and t ∈ R≥0, we define the MITL satisfaction relation |= as follows:5

• (ρ, t) |= > iff t ∈ ρ;

• (ρ, t) |= ⊥ iff t /∈ ρ;

• (ρ, t) |= p iff t = τi for some i, 1 ≤ i ≤ n and p ∈ σi;

• (ρ, t) |= ¬p iff t = τi for some i, 1 ≤ i ≤ n and p /∈ σi;

• (ρ, t) |= ψ1 ∧ ψ2 iff (ρ, t) |= ψ1 and (ρ, t) |= ψ2;

• (ρ, t) |= ψ1 ∨ ψ2 iff (ρ, t) |= ψ1 or (ρ, t) |= ψ2;

• (ρ, t) |= ψ1 UI ψ2 iff there exists t′ > t such that t′ − t ∈ I, (ρ, t′) |= >, (ρ, t′) |= ψ2, and (ρ, t′′) |= ψ1

for all t′′ such that t′′ ∈ (t, t′) and (ρ, t′′) |= >;

• (ρ, t) |= ψ1ŨIψ2 iff for all t′ > t such that t′ − t ∈ I and (ρ, t′) |= >, either (ρ, t′) |= ψ2 or (ρ, t′′) |= ψ1

for some t′′ such that t′′ ∈ (t, t′) and (ρ, t′′) |= >;

• (ρ, t) |= ψ1 SI ψ2 iff there exists t′, 0 ≤ t′ < t such that t − t′ ∈ I, (ρ, t′) |= >, (ρ, t′) |= ψ2, and
(ρ, t′′) |= ψ1 for all t′′ such that t′′ ∈ (t′, t) and (ρ, t′′) |= >;

• (ρ, t) |= ψ1S̃Iψ2 iff for all t′, 0 ≤ t′ < t such that t − t′ ∈ I and (ρ, t′) |= >, either (ρ, t′) |= ψ2 or
(ρ, t′′) |= ψ1 for some t′′ such that t′′ ∈ (t′, t) and (ρ, t′′) |= >.

We say that ρ satisfies ψ (ρ |= ψ) iff (ρ, 0) |= ψ, and we write JψK for the timed language of ψ, i.e. the set of
all timed words satisfying ψ. It is well known that any MITL formula can be translated into a TA accepting
the same timed language [47]; this implies that the satisfiability and model-checking problems for MITL are
decidable (EXPSPACE-complete).

2.4. Adding trace quantifiers
Let V be an infinite supply of trace variables, the set of HyperMITL formulae over AP are generated by

φ := ∃π φ | ∀π φ | ψ
ψ := > | >π | pπ | ψ1 ∧ ψ2 | ¬ψ | ψ1 UI ψ2 | ψ1 SI ψ2

where π ∈ V , p ∈ AP, and I ⊆ R≥0 is a non-singular interval with endpoints in N≥0 ∪ {∞} (to ease the
notation, we will usually write, e.g., pa for pπa). Without loss of generality we forbid the reuse of trace
variables, i.e. each trace quantifier must use a fresh trace variable. Syntactic sugar is defined as in MITL,
e.g., FI ψ ≡ >UI ψ. A HyperMITL formula is closed if it does not have free occurrences of trace variables.
Following [48], we refer to fragments of HyperMITL by their quantifier patterns, e.g., ∃∗∀∗-HyperMITL. Finally,
note that trace quantifiers can be added to TAs in the same manner (in this case, quantified TAs operate
over ‘stacked’ traces; see the semantics for HyperMITL below).

In contrast with TAs and MITL formulae, which define trace properties, HyperMITL formulae define (timed)
hyperproperties, i.e. sets of trace properties. Depending on whether one requires timestamps in quantified
traces to match exactly (i.e. all quantified traces must synchronise), two possible semantics can be defined
accordingly.

5The formulation of the pointwise semantics of MITL here deviates slightly from the standard one (cf. [45, 46]) to enable a
natural treatment of interleaving of events in different traces.

6

2.5. Asynchronous semantics
A trace assignment Π over Σ is a partial mapping from V to TΣ∗. We write Π∅ for the empty trace

assignment and Π[π 7→ ρ] for the trace assignment that maps π to ρ and π′ to Π(π′) for all π′ 6= π. Given a
HyperMITL formula φ over AP whose quantifier-free part is in negative normal form, a trace set T over ΣAP,
a trace assignment Π over ΣAP with range(Π) ⊆ T , and t ∈ R≥0, we define the HyperMITL asynchronous
satisfaction relation |= as follows (we omit the cases where the definitions are obvious or exactly similar):

• (T, t) |=Π > iff t ∈ ρ for some ρ ∈ range(Π);6

• (T, t) |=Π >π iff t ∈ ρ for ρ = Π(π);

• (T, t) |=Π pπ iff t ∈ ρ for ρ = Π(π) and p ∈ σi for the event (σi, t) in ρ;

• (T, t) |=Π ψ1 UI ψ2 iff there exists t′ > t such that t′ − t ∈ I, (T, t′) |=Π >, (T, t′) |=Π ψ2, and
(T, t′′) |=Π ψ1 for all t′′ such that t′′ ∈ (t, t′) and (T, t′′) |=Π >;

• (T, t) |=Π ψ1ŨIψ2 iff for all t′ > t such that t′ − t ∈ I and (T, t′) |=Π >, either (T, t′) |=Π ψ2 or
(T, t′′) |=Π ψ1 for some t′′ such that t′′ ∈ (t, t′) and (T, t′′) |=Π >;

• (T, t) |=Π ∃π φ iff there is a trace ρ ∈ T such that (T, t) |=Π[π 7→ρ] φ;

• (T, t) |=Π ∀π φ iff for all traces ρ ∈ T , (T, t) |=Π[π 7→ρ] φ.

We say that T satisfies a closed HyperMITL formula φ in the asynchronous semantics (T |= φ) iff (T, 0) |=Π∅ φ.
The asynchronous semantics for HyperMITL is the natural choice of semantics for the current event-based

setting. As the examples below illustrate, allowing explicit interleaving of events may simplify the specification
even when no quantitative timing constraint is involved.

Example 3. Consider again the system in Example 2 and a low-security user uL who can observe
{B0, B1, C0, C1} but not {A0, A1}. The property “if B0 occurs in both πa and πb, then the corresponding
C0’s must occur simultaneously in both πa and πb” (a variant of noninference [49]) can be specified with the
following HyperMITL formula in the asynchronous semantics:

φ1 = ∀πa ∀πb
(
FB0

a ∧ FB0
b ⇒ F(C0

a ∧ C0
b)
)
.

In particular, C0
a ∧ C0

b holds only when the two {C0}-events occur simultaneously in πa and πb. It is clear
that the system does not satisfy φ1, as there are two traces of the system where B0 occurs in both, but the
occurrences of C0 are at different times; as we mentioned earlier, this allows uL to infer A by timing C0. If,
on the other hand, the timing accuracy attainable by uL is limited in that it can only differentiate events
that are more than d time units apart, the system can instead be checked against

φ2 = ∀πa ∀πb
(
FB0

a ∧ FB0
b ⇒ F

(
C0
a ∧ (F≤d C

0
b ∨O≤d C

0
b)
))

where the O operator is the past version of the F operator. This will be satisfied if TB − TA ≤ d, and since
uL will not be able to infer A, the system may be considered secure in this case. Finally, note that in the
original (synchronous) semantics for HyperLTL [10], φ1 is satisfied by the system, as events are synchronised
by their positions rather than times of occurrence.

Example 4 (Noninterference in event-based systems [50]). A system operating on sequences of commands
issued by different users can be modelled as a deterministic finite automaton A over Σ = U × C where
U is the set of users and C is the set of commands. Additionally, let Obs be the set of observations and
out : S × U → Obs be the observation function for what can be observed at each location by each user. Let

6Note the dependency of the interpretation of > on Π; in particular, it is possible for a trace set with out-of-sync traces to
satisfy ∀πb (pb U qb) but not ∀πa ∀πb (pb U qb).

7

there be a partition of U into two disjoint sets of users UH ⊆ U and UL ⊆ U . Noninterference requires that
for each w ∈ Σ∗ where w ends with a command issued by a user in UL and A reaches s after reading w, the
subsequence w′ obtained by removing all the commands issued by the users in UH results in a location s′
such that out(s′, uL) = out(s, uL) for each user uL ∈ UL. For our purpose, we can combine A and out (in
the expected way) into an automaton A′ over ΣAP where AP = (U ×C)] (U ×Obs) (atomic propositions in
U × Obs reflect the observations at the location that has just been entered). Checking noninterference then
amounts to model checking A′ (whose locations are all accepting) against the following HyperMITL formula
in the asynchronous semantics:

φ3 = ∀πa ∀πb
(
G(>b ⇒ ψLb ∧ ψ=

U,C) ∧G(>a ∧ ⊥b ⇒ ψHa)⇒ G(>b ⇒ ψ=
out(UL))

)
(where ψLb asserts that the command in πb is issued by a user in UL, ψ=

U,C says that the two synchronised
commands in πa and πb agree on U and C, etc.). Specifically,

• G(>b ⇒ ψLb ∧ψ=
U,C) asserts that πb only contains low commands and πa also contains these commands

at exactly the same instants;

• G(>a ∧ ⊥b ⇒ ψHa) asserts that all the commands that are only present in πa are high commands;

• G(>b ⇒ ψ=
out(UL)) ensures that, after each low command in πb, the observation of each uL ∈ UL is

identical to the observation of uL after the corresponding low command in πa, regardless of the high
commands that occur in the preceding ‘gaps’.

We remark that the asynchronous formulation here is much simpler and clearer than the formulation based
on the original HyperLTL semantics in [10].

2.6. Synchronous semantics
A synchronous semantics, akin to the HyperLTL one we just mentioned, can also be defined for HyperMITL

formulae: each trace quantifier only ranges over traces that synchronise with the traces in the ‘current’
trace assignment. For example, the second quantifier in ∃πa ∃πb ψ requires πb to satisfy (πa, t) |= >a ⇔
(πb, t) |= >b for all t ∈ R≥0. The HyperMITL synchronous satisfaction relation |=sync can be defined
similarly as in Section 2.5 by requiring that the newly quantified trace π synchronises with all the traces
in Π or, alternatively, be expressed directly in the asynchronous semantics. More precisely, for a closed
HyperMITL formula φ = Qφ′ where Q denotes a block of quantifiers of the same type (i.e. all existential
or all universal) and φ′ is a (possibly open) HyperMITL formula, and a set V of trace variables, let
(abusing notation slightly) sync(φ, V) = Q

(
G(
∧
π∈Q∪V >π) ∧ sync(φ′,Q ∪ V)

)
when Q are existential,

sync(φ) = Q
(
G(
∧
π∈Q∪V >π) ⇒ sync(φ′,Q ∪ V)

)
when Q are universal, and sync(ψ, V) = ψ when ψ is

quantifier free. The following lemma enables us to check, for a trace set T and φ as above, whether T |=sync φ
in terms of |= (we rewrite formulae into prenex normal form as appropriate).

Lemma 1. For any trace set T over ΣAP and closed HyperMITL formula φ over AP, T |=sync φ iff
T |= sync(φ, ∅).

Proof. Let ψ be the quantifier-free part of φ. It is clear that (T, 0) |=sync
Π ψ ⇔ (T, 0) |=Π ψ ⇔ (T, 0) |=Π

sync(ψ, V) for any V , provided that Π is synchronised. Without loss of generality, consider

• φ′ = ∃π ψ: Assume that (T, 0) |=sync
Π φ′ for some synchronised Π. This immediately implies

that (T, 0) |=sync
Π[π 7→ρ] ψ for some ρ ∈ T where Π[π 7→ ρ] is also synchronised. From above we

have (T, 0) |=Π[π 7→ρ] sync(ψ, V) where V = V ′ ∪ {π} and V ′ is arbitrary, which in turn implies
(T, 0) |=Π sync(φ′, V ′). Each step can also be reversed, so the converse holds as well.

• φ′ = ∀π ψ: Assume that (T, 0) |=sync
Π φ′ for some synchronised Π. If T = ∅ then (T, 0) |=Π sync(φ′, V ′)

vacuously holds. If T 6= ∅, we have (T, 0) |=sync
Π[π 7→ρ] ψ for all ρ ∈ T that synchronises with Π. For each

such ρ we have (T, 0) |=Π[π 7→ρ] sync(ψ, V) where V = V ′ ∪ {π} and V ′ is arbitrary, and this implies
(T, 0) |=Π sync(φ′, V ′). Each step can also be reversed, so the converse holds as well.

8

Now observe that the steps above are also valid if φ′ is used as ψ. The claim holds by setting V ′ = ∅.

While the synchronous semantics may seem quite restricted (intuitively, the chance that two random
traces of a timed system have exactly the same timestamps is certainly slim!), one can argue that it already
suffices for many applications as in many cases the modelled system admits stuttering steps. We will see
later that for alternation-free HyperMITL, the asynchronous semantics can be emulated in the synchronous
semantics using a ‘weak inverse’ of Lemma 1.

2.7. Satisfiability and model checking
Given a closed HyperMITL formula φ over AP, the satisfiability problem asks whether there is a non-empty

trace set T ⊆ TΣ∗AP satisfying it, i.e. T |= φ (or T |=sync φ, if the synchronous semantics is assumed). Given
a TA A over ΣAP and a closed HyperMITL formula φ over AP, the model-checking problem asks whether
JAK |= φ (or JAK |=sync φ). Our focus in this paper is on the decidability of these problems, as their complexity
(when they are decidable) follow straightforwardly from standard results on MITL [14] and HyperLTL [10, 48].

3. Satisfiability

To emulate interleaving of events (of a concurrent or distributed system, say) in a synchronous setting, it
is natural and necessary to introduce stuttering steps. In the context of verification, it is often a desirable
trait for a temporal logic to be stutter-invariant [51, 52] so that it cannot be used to differentiate traces that
ought to be regarded as the same (e.g., in an iterative refinement process, an abstract component of a system
may be replaced by a concrete implementation that simulates an abstract step with some additional internal
actions). As a simple attempt to reconcile the asynchronous and synchronous semantics of HyperMITL,
we can make use of the same idea to enable synchronisation of interleaving traces while preserving the
semantics. More precisely, let stutter(ρ) for a trace ρ ∈ TΣ∗AP be the maximal set of traces ρ′ ∈ TΣ∗APε
(where APε = AP ∪ {pε}) such that

• for every event (σi, τi) in ρ′, either σi = {pε} or pε /∈ σi;

• ρ can be obtained from ρ′ by deleting all the {pε}-events.

This extends to trace sets T ⊆ TΣ∗AP in the obvious way. For a closed alternation-free HyperMITL formula φ =
Qψ over AP, let ψ′ be the formula obtained by replacing, e.g., all >π with ¬pεπ, in ψ, and define stutter(φ) =
Qψ′′ (a HyperMITL formula over APε) where ψ′′ = G(

∨
π∈Q ¬pεπ) ∧

(∧
π∈QG(pεπ ⇒

∧
p∈AP ¬pπ)

)
∧ ψ′ when

Q are existential and ψ′′ = G(
∨
π∈Q ¬pεπ) ∧

(∧
π∈QG(pεπ ⇒

∧
p∈AP ¬pπ)

)
⇒ ψ′ when Q are universal.

Intuitively, ψ′′ ensures that the traces involved are well-formed (i.e. satisfy the first condition above). The
following lemma follows from a simple structural induction.

Lemma 2. For any trace set T over ΣAP and closed alternation-free HyperMITL formula φ = Qψ over AP
(Q is either a block of existential quantifiers or universal quantifiers and ψ is quantifier free), T |= φ iff
stutter(T) |=sync stutter(φ).

Proof. Without loss of generality let Q be existential. If Q consists of a single quantifier ∃π then clearly
T |= φ ⇔ stutter(T) |=sync stutter(φ) (|= and |=sync coincides in this case, and the quantifier-free part
of stutter(φ) can only be satisfied if pε never holds in π). If Q consists of multiple quantifiers, then the
quantifier-free part of φ is satisfied by Π (with domain(Π) = Q) iff the quantifier-free part of stutter(φ)
is satisfied by its stuttered counterpart Π′ such that each trace in Π′ is well-formed, Π′ is synchronised
(i.e. the timestamps of any two traces in Π′ match exactly), and (T, t) |=Π′

∨
π∈Q ¬pεπ for any t ∈ R≥0

such that (T, t) |=Π′ >. This implies range(Π′) |=sync stutter(φ), and stutter(T) |=sync stutter(φ) since
range(Π′) ⊆ stutter(T). The converse is similar.

The following two lemmas follow from Lemma 2 and the fact that for alternation-free HyperMITL formulae,
satisfiability in the synchronous semantics can be reduced, in the same way as HyperLTL, to MITL satisfiability
by introducing k copies of fresh atomic propositions (where k is the number of trace quantifiers).

9

Lemma 3. The satisfiability problem for ∃∗-HyperMITL is decidable.

Lemma 4. The satisfiability problem for ∀∗-HyperMITL is decidable.

Lemma 2, however, does not extend to larger fragments of HyperMITL. For example, consider the trace
set T with two traces {({p}, 1)({r}, 3), ({q}, 2)} and φ = ∃πa ∀πb (F pa ∧ ¬F qb). Now it is obvious that
T 6|= φ, but since ({p}, 1)({r}, 3) ∈ stutter(T) does not synchronise with any trace ρ′ ∈ stutter((q, 2)), we
have stutter(T) |=sync stutter(φ) (the definition of stutter(·) is extended to general HyperMITL formulae, as
in Lemma 1). Still, it is not hard to see that the crucial observation used in ∃∗∀∗-HyperLTL satisfiability
(if ∃π0 . . . ∃πk ∀π′0 . . . ∀π′` ψ is satisfiable, it must be satisfied by the trace set {π0, . . . πk} and thus is equi-
satisfiable with an ∃∗-HyperLTL formula) extends to HyperMITL in the asynchronous semantics; the following
lemma then follows from Lemma 3.

Lemma 5. The satisfiability problem for ∃∗∀∗-HyperMITL is decidable.

Finally, note that the undecidability of ∀∃-HyperLTL carries over to HyperMITL: in the synchronous
semantics, the reduction from Post’s correspondence problem in [48] applies directly with some trivial
modifications (as we work with finite traces); undecidability then holds for the case of asynchronous semantics
as well, by Lemma 1.

Lemma 6. The satisfiability problem for ∀∃-HyperMITL is undecidable.

Theorem 1. The satisfiability problem for HyperMITL is decidable if the formula does not contain ∀∃.

4. Model checking

We now turn to the model-checking problem, which behaves quite differently than in the case of HyperLTL.

4.1. The alternation-free case
Without loss of generality, we consider only the case of ∃∗-HyperMITL in the asynchronous semantics.

By Lemma 2, checking JAK |= φ (for a TA A over ΣAP and a closed ∃∗-HyperMITL formula φ over AP)
is equivalent to checking stutter(JAK) |=sync stutter(φ). To this end, we define stutter(A) as the TA over
ΣAPε obtained from A by adding a self-loop labelled with {pε} to each location; it should be clear that
Jstutter(A)K = stutter(JAK). In this way, the problem reduces to model checking ∃∗-HyperMITL in the
synchronous semantics, which can be reduced to MITL model checking in the same way as model checking
∃∗-HyperLTL reduces to LTL model checking (by introducing fresh atomic propositions).

Theorem 2. Model checking alternation-free HyperMITL is decidable.

4.2. The general case
Recall that the model-checking problem for HyperLTL is decidable even when the specification involves

nested quantifiers. This is unfortunately not the case for HyperMITL: allowing only one quantifier alternation
already leads to undecidability. To see this, recall that any TA can be written as a formula ∃X ψ where X
is a set of (new) atomic propositions and ψ is an MITL formula [53, 54]. The undecidable TA universality
problem—given a TA A over Σ, deciding whether JAK = TΣ∗—can thus be reduced to model checking
HyperMITL: one simply checks whether there exists an X-labelling for every timed word over Σ so that ψ is
satisfied. Here we show that model checking HyperMITL with quantifier alternations in the asynchronous
semantics is essentially a harder problem: as we will see later, it necessarily involves TAε’s and therefore
remains undecidable even when both the model and the specification are deterministic and only one of them
uses a single clock (i.e. the other is untimed); by contrast, TA universality over finite timed words is decidable
when the TA uses only one clock [44].

Instead of detailing the encoding based on TA (TAε) universality above, we adapt the undecidability proof
of the reactive synthesis problem for MITL in [55], which itself is by reduction from the halting problem for

10

s0 s1 s2

s3

s4

s5

s6

s7

s8

s9 shalt

(s0, ε)→ (s1, a)→ (s2, ab)→ (s4, b)→ (s6, bd)→ (s7, d)→ (s9, ε)→ (shalt , h)

a! b!

b?

a?

c!

d!

c?

e?

b?

f?

g!

d?

h!

Figure 5: A DCM and its unique halting computation.

deterministic channel machines (DCMs), known to be undecidable [56]. Note that, in contrast to HyperMITL
model checking, timed reactive synthesis is decidable when the specification is deterministic [57]; in this
sense, quantification over traces is more powerful than quantification over strategies (there is a winning
strategy of the controller for all possible strategies of the environment).7 For our purpose, we introduce
the CI operator, in which we allow I to be singular (note that this is merely syntactic sugar and does not
increase the expressiveness of MITL [53, 54]):

• (T, t) |=Π CI φ iff there exists t′, 0 ≤ t′ < t such that t − t′ ∈ I, (T, t′) |=Π >, (T, t′) |=Π φ, and
(T, t′′) 6|= Πφ for all t′′ such that t′′ ∈ (t′, t) and (T, t′′) |=Π >.

Intuitively, CI φ asserts that the time difference between now and the last time at which φ holds is in I. Let
LTLC be the fragment of MITL where all timed subformulae must be of the form CI φ, and all φ’s in such
subformulae must be ‘pure past’ formulae; these requirements ensure that LTLC, in which we will write the
quantifier-free part of the specification, translates into deterministic TAs [58]. We will first do the proof for
the case of asynchronous semantics and then adapt it to the case of synchronous semantics.

Theorem 3. Model checking ∃∗∀∗-HyperMITL and ∀∗∃∗-HyperMITL are undecidable in the asynchronous
semantics.

Proof. A DCM S = 〈S, s0, shalt ,M,∆〉 can be seen as a finite automaton equipped with an unbounded
fifo channel: S is a finite set of locations, s0 is the initial location, shalt is the halting location (such that
shalt 6= s0), M is a finite set of messages, and ∆ ⊆ S × {m!,m? | m ∈ M} × S is the transition relation
satisfying the following determinism hypotheses: (i) (s, q, s′) ∈ ∆ and (s, q, s′′) ∈ ∆ implies s′ = s′′; (ii) if
(s,m!, s′) ∈ ∆ then it is the only outgoing transition from s. Without loss of generality, we further assume
that there is no incoming transition to s0, no outgoing transition from shalt , and (s0, q, s

′) ∈ ∆ implies
that q ∈ {m! | m ∈ M} and s′ 6= shalt . The semantics of S can be described with a graph G(S) with
vertices {(s, x) | s ∈ S, x ∈ M∗} and edges defined as follows: (i) (s, x) → (s′, xm) if (s,m!, s′) ∈ ∆; (ii)
(s,mx) → (s′, x) if (s,m?, s′) ∈ ∆. In other words, m! ‘writes’ a copy of m to the tail of the channel and
m? ‘reads’ a copy of m off the head of the channel. We say that S halts if there is a path in G(S) from
(s0, ε) to (shalt , x) (a halting computation of S) for some x ∈M∗. An example DCM and its unique halting
computation are depicted in Figure 5.

The idea, as in many similar proofs (e.g., [46]), is to encode a halting computation of S as a trace where
each m? is preceded by a corresponding m! exactly 1 time unit earlier, and each m! is followed by an m?

7Indeed, the quantifier-free part ψ in the encoding mentioned above (based on labelling timed words with propositions in X)
is already in LTLC and thus is deterministic.

11

s0 s1 s2

s3

s4

s5

s6

s7

s8

s9 shalt

s1

{pread}

{a!, pbegin}

{p1}

{b!}

{b?}

{a?}

{c!}

{d!}

{c?}

{e?}

{b?}

{f?}
{g!}

{d?}

{h!, pend}

{q1}

Figure 6: The model A from the DCM in Figure 5.

0

{pbegin , a!} {b!} {a?}{d!} {b?} {d?} {pend , h!}

1

1

1

Figure 7: A trace that encodes the halting computation of
the DCM in Figure 5. Note that each m! is followed by a
corresponding m? exactly 1 time unit later.

exactly 1 time unit later if shalt has not been reached yet (in other words, the channel can be non-empty
when shalt is reached). To this end, let the model A be an (untimed) finite automaton over Σ = 2AP where
AP = {m!,m? | m ∈ M} ∪ {pbegin , pend , pread , p1, q1} and whose set of locations is S ∪ {s1}, where s1 is a

new non-accepting location. The transitions of A follow S: for each m ∈ M , s
{m?}−−−→ s′ is a transition of

A iff (s,m?, s′) ∈ ∆, and similarly for m!—except for those going out of s0 or going into shalt , on which
we further require pbegin or pend to hold, respectively. Let s0 be the initial location and shalt be the only

accepting location, and finally add transitions s0
{pread}−−−−→ shalt and s0

{p1}−−−→ s1
{q1}−−−→ shalt . It is clear that A

is deterministic and it accepts only three types of traces (see Figure 6):
1. From s0 through some other locations of S and finally shalt , i.e. those respecting the transition relation,

but not necessarily the semantics, of S.
2. From s0 to shalt in a single transition (on which pread holds).
3. From s0 to s1 and then shalt .

It remains to write a specification φ such that JAK |= φ exactly when A accepts a trace of type (1) that
also respects the semantics of S (one such trace that corresponds to the unique halting computation of the
DCM in Figure 5 is depicted in Figure 7). This is where the traces of types (2) and (3) come into play: for
example, if a trace of type (1) issues a read m? without a corresponding write m!, then a trace of type (3)
can be used to ‘pinpoint’ the error. More precisely, let φ = ∃πa ∀πb (ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4) where

• ψ1 = F penda ensures that πa is of type (1);

• ψ2 = F(preadb ∧ ψR) ⇒ F(preadb ∧ C≥1 p
begin
a), where ψR =

∨
{m?

a | m ∈ M}, is a simple sanity check
which ensures that in πa, each m? must happen at time ≥ t+ 1 if pbegin happens at t;

• ψ3 =
∧
m∈M

(
F(q1

b ∧m?
a)⇒

(
F(pbegina ∧F p1

b)∧F(q1
b ∧C=1 p

1
b)⇒ F(p1

b ∧m!
a)
))

ensures that each m?,

if it happens at t, is preceded by a corresponding m! at t− 1 in πa;

• ψ4 =
∧
m∈M

(
F(p1

b ∧m!
a)⇒ F(penda ∧C<1 p

1
b) ∨

(
F(q1

b ∧C=1 p
1
b)⇒ F(q1

b ∧m?
a)
))

ensures that each

m! at t is followed by a corresponding m? at t+ 1 (unless pend happens first) in πa.

Now we claim that ψ1 ∧ψ2 ∧ψ3 ∧ψ4 can be replaced by a formula equivalent to a one-clock deterministic TA.
Observe that the only timed subformulae are C≥1 p

begin
a , C=1 p

1
b , and C<1 p

1
b . As p

1 and pread cannot happen
in the same trace (πb), it is not hard to see that the reduction remains correct if we replace C≥1 p

begin
a by

C≥1(pbegina ∨ p1
b) in ψ2. Similarly, if we already know that p1

b happens after pbegina , we can replace C=1 p
1
b

and C<1 p
1
b by C=1(pbegina ∨ p1

b) and C<1(pbegina ∨ p1
b) (respectively) in ψ3 and ψ4 to obtain ψ′3 and ψ′4. The

resulting formula ψ1 ∧ ψ′2 ∧ ψ′3 ∧ ψ′4 can readily be translated into a one-clock deterministic TA.
We finish this proof with two observations:

12

1. As each of p1, q1, and pread can appear at most once in a single trace, the past subformulae can be
replaced by future ones (the resulting formula can no longer be translated into a deterministic TA,
however). For example, we may write F(p1

b ∧ F≤1 q
1
b ∧ F≥1 q

1
b) instead of F(q1

b ∧C=1 p
1
b).

2. It is possible to move all the timing constraints into the model and use an untimed HyperLTL formula
as the specification: in the model, ensure that p1 and q1 are separated by exactly 1 time unit, and add

s0
{p2}−−−→ s1

{q2}−−−→ shalt such that p2 and q2 are separated by < 1 time unit; in the specification, use p2,
q2 to rule out those πa’s with some m? at < 1 time unit from pbegin .

Now we consider the synchronous semantics. The corresponding result is weaker in this case, as we will
see in the next section that in several subcases the problem becomes decidable. Still, the reduction above
can be made to work if the model has one clock and an extra trace quantifier is allowed.

Theorem 4. Model checking ∃∗∀∗-HyperMITL and ∀∗∃∗-HyperMITL are undecidable in the synchronous
semantics.

Proof. We use a modified model A′ whose set of locations is S ∪ {s1, s2, s3, s4}; the transitions are similar

to A in the proof of Theorem 3, but we now use a clock x in the path s0
{p1}−−−→
x:=0

s1
{q1}−−−−−−→

x≥1,x:=0
shalt , the

paths s0
{p2}−−−→
x:=0

s2
{q2}−−−−−−→

x≤1,x:=0
shalt , s0

{p3}−−−→
x:=0

s3
{q3}−−−−−−→

x>1,x:=0
shalt , s0

{p4}−−−→
x:=0

s4
{q4}−−−−−−→

x<1,x:=0
shalt are added, and

s0
{pread}−−−−→ shalt is removed. Moreover, a self-loop labelled with {pε} (and resets no clock) is added to each of

s0, s1, s2, s3, s4, and shalt . The specification is φ′ = ∃πa ∀πb ∀πc
∧

1≤i≤9 ψ
′
i where

∧
1≤i≤9 ψ

′
i is the following

untimed LTL formula:

• ψ′1 = F penda ;

• ψ′2 = F(q4
b ∧ ψR)⇒ ¬F(p4

b ∧ pbegina) where ψR =
∨
{m?

a | m ∈M};

• ψ′3 =
∧
m∈M

(
F(q1

b ∧ q2
c ∧m?

a) ∧ F(p1
b ∧ p2

c)⇒ F(p1
b ∧ p2

c ∧m!
a)
)
;

• ψ′4 = F(q3
b ∧ ψR)⇒ ¬F(p3

b ∧X q3
b);

• ψ′5 = F(q3
b ∧ q4

c ∧ ψR)⇒ ¬F(p3
b ∧X p4

c);

• ψ′6 = F(p4
b ∧ ψW)⇒ ¬F(q4

b ∧ ¬X>) where ψW =
∨
{m!

a | m ∈M};

• ψ′7 =
∧
m∈M

(
F(p1

b ∧ p2
c ∧m!

a) ∧ F(q1
b ∧ q2

c)⇒ F
(
q1
b ∧ q2

c ∧ (m?
a ∨ pεa)

))
;

• ψ′8 = F(p3
b ∧ ψW)⇒ ¬F(p3

b ∧X q3
b);

• ψ′9 = F(p3
b ∧ p4

c ∧ ψW)⇒ ¬F(q3
b ∧X q4

c).

We now claim that JA′K |= φ′ iff A′ accepts a trace that encodes a halting computation of S. Intuitively, ψ′1,
ψ′2 play similar roles as ψ1, ψ2 in the proof of Theorem 3; ψ′3 ensures that if each m? at t is preceded by an
event at t − 1 then m! must hold there, and ψ′4, ψ′5 ensures that each m? at t is actually preceded by an
event at t− 1. The roles of ψ′6, ψ′7, ψ′8, and ψ′9 are analogous.

• (⇐): Let πa be the trace that encodes a halting computation of S in the same way as before, with
the exception that it now contains a {pεa}-event at t+ 1 for each m!

a-event at t that is not read as A′
reaches shalt ; in other words, there may be a number of {pεa}-events after where penda holds. Apparently
ψ′1 is satisfied, and it is easy to verify that each of ψ′2 to ψ′9 will be satisfied for any πb and πc.

• (⇒): As ψ′1 is satisfied we know that πa must follow the transitions of S (potentially with some
{pεa}-events before pbegina and after penda). If it is not in the required form (respect the semantics of S
and has some {pεa}-events matching the leftover m!

a’s), then one of the following must be true:

13

– Some m?
a happens before t+ 1 where pbegina happens at t in πa: there is a trace πb where p4

b and
q4
b align with pbegina and the m?

a in question. This implies that ψ′2 does not hold.

– Some m?
a happens at t+ 1 and there is an event at t in πa, but m!

a does not hold there: there are
traces πb, πc where p1

b and p2
c happen at t and q1

b and q2
c happen at t+ 1. This implies that ψ′3

does not hold.

– Some m?
a happens at t+ 1 and there is no event in [t, t+ 1) in πa: there is a trace πb where q3

b

and p3
b align with that m?

a and the event just before it, so ψ′4 does not hold.

– Some m?
a happens at t+ 1 and there is no event at t, but there are events in [0, t) and (t, t+ 1) in

πa: there are traces πb, πc where q3
b and q4

c both happen at t+ 1, p3
b aligns with the last event in

[0, t), and p4
c aligns with the first event in (t, t+ 1). This implies that ψ′5 does not hold.

– Some m!
a happens at t and there is no event in [t+ 1,∞) in πa: there is a trace πb where p4

b and
q4
b align with that m!

a and the last event in πa, thus ψ′6 does not hold.

– Some m!
a happens at t and there is an event at t+ 1 in πa, but m!

a or pεa do not hold there: ψ′7
does not hold.

– Some m!
a happens at t and there is no event in (t, t+ 1] in πa: ψ′8 does not hold.

– Some m!
a happens at t and there is no event at t, but there are events in (t, t+ 1) and (t+ 1,∞)

in πa: ψ′9 does not hold.

So, πa is a valid encoding of a halting computation of S.

4.3. Restricted models
We conclude this section by showing that the undecidability results above can actually be obtained for

trivial systems with only a single location. In particular, the structural restrictions considered in [32] have
no effect on the decidability of HyperMITL model checking. To see this, note that we can introduce a fresh
atomic proposition ps for each location s such that ps holds whenever the transition taken enters s; the
transition relation can then be enforced with a simple LTL formula.

Corollary 1. Model checking ∃∗∀∗-HyperMITL and ∀∗∃∗-HyperMITL are undecidable in the asynchronous
semantics for systems with only one location.

Corollary 2. Model checking ∃∗∀∗-HyperMITL and ∀∗∃∗-HyperMITL are undecidable in the synchronous
semantics for systems with only one location.

5. Decidable subcases

While the negative results in the previous section may be disappointing, we stress again that model
checking alternation-free HyperMITL is no harder than MITL model checking, and it can in fact be carried
out with algorithms and tools for the latter. In any case, we now identify several subcases where model
checking is decidable beyond the alternation-free fragment.

5.1. Untimed model + untimed specification
The first case we consider is when both the model and the specification are untimed, and the asynchronous

semantics is assumed. Our algorithm follows the lines of [10] and is essentially based on self-composition
(cf. [59], and many others; see the references in [10]) of the model; the difficulty here, however, is to
handle interleaving of events. Let the model A be a finite automaton over ΣAP and the specification be
a (untimed) closed HyperMITL formula over AP. Without loss of generality, we assume the specification
to be φ = ∃π1 ∀π2 . . . ∃πk−1 ∀πk ψ, which can be rewritten into ∃π1 ¬∃π2 ¬ . . . ∃πk−1 ¬∃πk ¬ψ. We start by
translating stutter(¬ψ) (in which we replace all occurrences of >i with ¬pεi , i.e. regarded here simply as an
MITL formula over (APε)k = {pi | p ∈ APε, 1 ≤ i ≤ k}) into the equivalent finite automaton over Σ(APε)k ,
and take its product with (i) the automaton for G(

∨
1≤i≤k ¬pεi)∧

(∧
1≤i≤kG(pεi ⇒

∧
p∈AP ¬pi)

)
and (ii) the

14

automaton obtained from stutter(A) by extending the alphabet to Σ(APε)k and renaming all the occurrences
of p to pk, to obtain B. Now let C be the projection of B onto (APε)k−1 = {pi | p ∈ APε, 1 ≤ i ≤ k − 1}
(this step corresponds to ∃ in ¬∃πk). By construction, B accepts traces that are well-formed in dimensions
1 to k − 1, and so does C; but C may accept traces containing {pεi | 1 ≤ i ≤ k − 1}-events. We replace
these events by ‘real’ ε’s, which are then removed to obtain C′. Finally, we complement C′ to obtain C′′
(this step corresponds to ¬ in ¬∃πk). We can then start over by taking the product of C′′, the automaton
for G(

∨
1≤i≤k−1 ¬pεi) ∧

(∧
1≤i≤k−1 G(pεi ⇒

∧
p∈AP ¬pi)

)
, and the automaton obtained from stutter(A) by

extending the alphabet to Σ(APε)k−1 and renaming all the occurrences of p to pk−1; the resulting automaton
is the new B. We continue this process until the outermost quantifier ∃π1 is reached, when we test the
emptiness of B (at this point, it is an automaton over ΣAPε).

Proposition 1. Model checking HyperMITL is decidable when the model and the specification are both
untimed.

5.2. One clock + one alternation
The model-checking algorithm outlined in the previous case crucially depends on the fact that both A and

φ are untimed, hence their product (in the sense detailed in the previous case) can be complemented. When
the synchronous semantics is assumed and there is only one quantifier alternation in φ, it might be the case
that we do not actually need complementation. For example, if A is untimed and φ = ∀πa ∃πb ∃πc ψ where ψ
translates into a one-clock TA, the corresponding model-checking problem clearly reduces to universality
for one-clock TAs, which is decidable but non-primitive recursive [60].8 This observation applies to other
cases as well, such as when A is a one-clock TA and φ = ∃πa ∀πb ψ where ψ is untimed; here model checking
reduces to language inclusion between two one-clock TAs.

5.3. Untimed model + MIA specification
The main obstacle in applying the algorithm above to larger fragments of HyperMITL, as should be clear

now, is that universal quantifiers amount to complementations, which are not possible in general in the case
of TAs. Moreover, we note that the usual strategy of restricting to deterministic models and specifications
does not help, as the projection steps (which corresponds to trace quantifiers) in the algorithm necessarily
introduces non-determinism. To make the algorithm work for larger fragments, we essentially need a class
of automata that is both closed under projection and complementable. Fortunately, there is a subclass of
one-clock TAs that satisfies these conditions. We consider two additional restrictions on one-clock TAs:

• Non-Singular (NS): a one-clock TA is NS if all the guards are non-singular (i.e. must be of the form
x ∈ I where x is the single clock and I is a non-singular interval).

• Reset-on-Testing (RoT): a one-clock TA is RoT if whenever the guard of a transition is not >, x must
be reset on that transition.

One-clock TAs satisfying both NS and RoT are called metric interval automata (MIAs), which are deter-
minisable [61]. Since the projection operation cannot invalidate NS and RoT, the algorithm above can be
applied when the synchronous semantics is assumed, A is untimed, ψ or ¬ψ translates to a MIA, and only
one complementation is involved; in this case it runs in elementary time.

Proposition 2. Model checking ∀∗∃∗-HyperMITL (∃∗∀∗-HyperMITL) is decidable in the synchronous se-
mantics when the model is untimed and ψ (¬ψ) translates into a MIA in the specification φ = ∀π1 . . . ∃πk ψ
(φ = ∃π1 . . . ∀πk ψ).

On the other hand, we can adapt the proof of Theorem 4 to show that model checking an untimed model
against an ∃∗∀∗-HyperMITL specification φ in the synchronous semantics, when the quantifier-free part ψ
(instead of ¬ψ) translates into a MIA, remains undecidable.

8This case is undecidable in the asynchronous semantics by Theorem 3; as explained above, the algorithm may introduce
ε-transitions in the asynchronous semantics, while universality for one-clock TAε’s is undecidable [60].

15

Proposition 3. Model checking ∃∗∀∗-HyperMITL is undecidable in the synchronous semantics when the
model is untimed and ψ in the specification φ = ∃π1 . . . ∀πk ψ translates into a MIA.

Proof. We use A′′, obtained by dropping all the timing constraints in A′ in the proof of Theorem 4 and

adding two paths s0
{p3
′
}−−−→ s′3

{q3
′
}−−−→ shalt and s0

{p4
′
}−−−→ s′4

{q4
′
}−−−→ shalt , as the model. Then, we replace the

formula
∧

1≤i≤9 ψ
′
i by a MIA—as only one clock is allowed, each condition that involves timing must be

enforced by a separate ‘configuration’ of πb and πc. For the following construction to work, we additionally
require that in πa (which encodes a halting computation of S), if two events are separated by exactly 1 time
unit then they must be a valid write-read pair.

• ψ′1 = F penda : this can be enforced by an untimed automaton A1.

• ψ′2 = F(q4
b ∧ ψR)⇒ ¬F(p4

b ∧ pbegina) where ψR =
∨
{m?

a | m ∈M}: We use A′2 to enforce that πb, πc
both go through s4. Then, let A2 be the product of A′2 and the union of the equivalent automata for
the following:

– It is not the case that q4
b , q

4
c , and ψR hold simultaneously at some event.

– It is not the case that p4
b , p

4
c , and pbegina hold simultaneously at some event.

– p4
b and q4

b are separated by ≥ 1 time unit.
– p4

c and q4
c are separated by ≥ 1 time unit.

• ψ′3 =
∧
m∈M

(
F(q1

b ∧ q2
c ∧m?

a) ∧ F(p1
b ∧ p2

c)⇒ F(p1
b ∧ p2

c ∧m!
a)
)
and ψ′7 =

∧
m∈M

(
F(p1

b ∧ p2
c ∧m!

a) ∧

F(q1
b ∧ q2

c) ⇒ F
(
q1
b ∧ q2

c ∧ (m?
a ∨ pεa)

))
: similarly, we use A′3 to enforce that πb goes through s1 and

πc goes through s2. Let A3 be the product of A′3 and the union of the equivalent automata for the
following:

– For the same m ∈M , p1
b , p

2
c , and m!

a hold simultaneously at some event, and q1
b , q

2
c , and m?

a ∨ pεa
hold simultaneously at some event.

– p1
b and q1

b are separated by < 1 time unit.
– p2

c and q2
c are separated by > 1 time unit.

• ψ′4 = F(q3
b ∧ ψR)⇒ ¬F(p3

b ∧X q3
b): we use A′4 to enforce that πb, πc both go through s3. Let A4 be

the product of A′4 and the union of the equivalent automata for the following:

– It is not the case that q3
b , q

3
c , and ψR hold simultaneously at some event.

– It is not the case that p3
b and p3

c hold simultaneously at some event.
– It is not the case that p3

b , p
3
c hold simultaneously at some event and q3

b , q
3
c hold simultaneously at

the next event.
– p3

b and q3
b are separated by ≤ 1 time unit.

– p3
c and q3

c are separated by ≤ 1 time unit.

• ψ′5 = F(q3
b ∧ q4

c ∧ ψR) ⇒ ¬F(p3
b ∧X p4

c): we use A′5 to enforce that πb goes through s3 and πc goes
through s4. Let A5 be the product of A′5 and the union of the equivalent automata for the following:

– It is not the case that q3
b , q

3
4 , and ψR hold simultaneously at some event.

– It is not the case that p3
b holds at some event and p4

c holds at the next event.
– p3

b and q3
b are separated by ≤ 1 time unit.

– p4
c and q4

c are separated by ≥ 1 time unit.

Similarly we have A6, A8, and A9 (using the paths going through s′3 and s′4). The specification is the product
of A1 and the union of A2, A3, A4, A5, A6, A8, A9, Arest where Arest accepts the remaining configurations
of πb and πc. It is clear that the resulting automaton can be modified to use only one clock.

16

Model
Spec. untimed NS+RoT NS RoT

untimed Dec.
(Proposition 1)

Dec. for ∀∗∃∗
(Proposition 2)

Undec. for ∃∀∀
(Proposition 3)

Undec. for ∃∀∀
(Proposition 3)

NS+RoT Undec. for ∃∀∀
(Theorem 4) Undec. Undec. Undec.

NS Undec. Undec. Undec. Undec.

RoT Undec. Undec. Undec. Undec.

Table 1: Decidability of model checking untimed or one-clock TAs against (one-clock) HyperMITL in the synchronous semantics;
NS stands for Non-Singular constraints and RoT stands for Reset-on-Testing.

5.4. Bounded time domains
We now show that when there is an a priori bound N (where N is a positive integer) on the length of

the time domain, the model-checking problem for full HyperMITL becomes decidable; in fact, in the case of
synchronous semantics it reduces to the satisfiability problem for QPTL [2]. From a practical point of view,
this implies that time-bounded HyperMITL verification (at least for the ∃∗∀∗-fragment, say) can be carried
out with highly efficient, off-the-shelf tools that work with LTL and (untimed) automata, such as SPOT [62],
GOAL [63], and Owl [64].

We assume the asynchronous semantics. For a given N , we consider all traces in which all timestamps
are less than N . Denote by JAK[0,N) the set of all such traces in JAK; the model-checking problem then
becomes deciding whether JAK[0,N) |= φ. As before, we assume φ to be ∃π1 ¬∃π2 ¬ . . . ∃πk−1 ¬∃πk ¬ψ.
Following [65, 66], we can use the stacking construction to obtain, from the conjunction ψ′ of stutter(¬ψ) and
G(
∨
π∈Q ¬pεπ) ∧

(∧
π∈QG(pεπ ⇒

∧
p∈AP ¬pπ)

)
, an equi-satisfiable untimed (QPTL [2]) formula φ = ∃W ψ′

over the stacked alphabet (APε)k ∪ Q (where (APε)k = {pi,j | p ∈ APε, 1 ≤ i ≤ k, 0 ≤ j < N} and
Q = {qj | 0 ≤ j < N}). We apply the following modifications to φ to obtain φ′:

• Introduce atomic propositions {pεi | 1 ≤ i ≤ k} and add the conjunct

∧1≤i≤kG
((
∧0≤j<N (qj ⇒ pεi,j)

)
⇔ pεi

)
;

• Introduce atomic propositions {qi,j | 1 ≤ i ≤ k, 0 ≤ j < N} and add the conjunct

∧1≤i≤kG
(
∧0≤j<N (¬pεi ∧ qj ⇔ qi,j)

)
;

• Project away {pεi,j | 1 ≤ i ≤ k, 0 ≤ j < N} and Q;

• Replace all occurrences of pεi by ⊥i.

Now, as we mentioned earlier, we can write A as an L↔d formula φA = ∃XA ψA where XA is a set of atomic
propositions such that AP ∩ XA = ∅ and ψA is an MITL formula over AP ∪ XA. Let φA be its stacked
counterpart ∃XA ∃Y ψA; we translate φA back into an untimed automaton A over the stacked alphabet
AP ∪Q. The problem thus reduces to untimed model checking of A against ∃π1 ∀π2 . . . ∃πk−1 ∀πk φ′ in the
asynchronous semantics, which is decidable by Proposition 1 (φ′ has outermost existential propositional
quantifiers, but clearly the equivalent automaton for stutter(φ′) can be used directly in the algorithm).

Finally, note that the proof is simpler for the case of synchronous semantics: we can simply work with a
(non-stuttering) L↔d formula in all the intermediate steps without translating it into an automaton, and then
check the satisfiability of the final formula by stacking it into a QPTL formula.

Proposition 4. Model checking HyperMITL is decidable when the time domain is [0, N), where N is a given
positive integer.

17

5.5. Bounded variability
We end this section by showing that HyperMITL model checking also becomes decidable if there is an a

priori bound on the variabiity of traces. The variability of a timed word is the maximum possible number of
events in any open unit interval; a timed word is of bounded variability kvar if its variability is less or equal
than kvar (where kvar is a positive integer). For our purpose, we give an alternative, ‘asynchronous’ semantics
for L↔d , and show that L↔d in this semantics captures exactly the class of timed languages accepted by TAε’s.

Recall from [25] that the set of monadic logic of distance (Ld) formulae over AP are generated by

φ := Qpx | Qactx | x < x′ | Xx | d(x, x′) ∼ c | φ1 ∧ φ2 | ¬ψ | ∃xφ | ∃X φ

where p ∈ AP, i ∈ {0, . . . ,m − 1}, ∼∈ {=, 6=, <,>,≤,≥}, and c ∈ N≥0. The relative distance formula
←
d (X,x) ∼ c is defined by

←
d (X,x) ∼ c ≡ ∃x′

(
x′ < x ∧Xx′ ∧ ¬∃x′′ (x′ < x′′ < x ∧Xx′′) ∧ d(x, x′) ∼ c

)
.

Intuitively, this says that looking back from x, the last event where X holds is ∼ c away; similarly we define
→
d (X,x) ∼ c. The set of monadic logic of relative distance (L↔d) formulae over AP are Ld formulae of the

form ∃X1 . . . ∃Xm ψ where ψ is built from Qpx, Qact , x < x′, Xix,
←
d (Xi, x) ∼ c,

→
d (Xi, x) ∼ c using Boolean

operators, first-order quantifiers, and second-order quantifiers for set variables other than X1, . . . , Xm.
With every timed word ρ = (σ1, τ1) . . . (σn, τn) over ΣAP we associate a structure Mρ whose universe

is the non-negative real line R≥0. The monadic predicate Qact holds at t ∈ R≥0 if t is an ‘action point ’,
i.e. t ∈ ρ. The monadic predicates Qpx may only hold at action points, i.e. it holds at t ∈ R≥0 iff t = τi for
some i, 1 ≤ i ≤ n and p ∈ σi. The order relation x < x′ is interpreted in the expected way. The distance
predicate d(x, x′) ∼ c holds iff |x− x′| ∼ c. The set variables are quantified over finite discrete subsets of the
universe, i.e. isolated points scattered along the non-negative real line.

The first observation is that allowing set variables to contain points between action points in ρ does not
increase expressiveness; in other words, the class of languages expressible in the monadic second-order logic
of order is the same in both the asynchronous semantics and the (traditional) synchronous semantics. This
can be proved along the same lines as the proofs of Büchi’s theorem [67, 68] and Proposition 1 (exploiting
the fact that ε-transitions can easily be removed in non-deterministic automata).

Proposition 5. The untimed fragment of Ld (obtained from Ld by disallowing distance predicates) in the
asynchronous semantics is as expressive as non-deterministic automata.

By contrast, L↔d becomes more expressive in the asynchronous semantics: it characterises exactly the
class of timed languages expressible as TAε’s (in the synchronous semantics, L↔d is as expressive as TA).

Proposition 6. L↔d in the asynchronous semantics is as expressive as TAε.

Proof (sketch). Following [25], we can get rid of all future relative distance formulae
→
d (X,x) ∼ c by

introducing set variables that label the truth value of such formulae. When we replace ∃X1 . . . ∃Xm ψ with
∃X̄ ∃Ē ∃Ḡ∃Ḡ′ ∃K ψ′, where ψ′ is a modified formula using the new set variables, we also add conjuncts to
ψ′ to ensure that the new set variables only contain action points and points where at least one of X1, . . . ,
Xm holds. When adding transitions to the resulting automaton, make use of ε-transitions when Qact does
not hold. For the other direction, when capturing transitions with existentially quantified set variables, add
conjuncts to ensure that those for ε-transitions are ‘out-of-sync’ with action points.

To recover the decidability of HyperMITL model checking in the case of bounded-variable traces, we
consider a bounded-variable asynchronous semantics for L↔d where all set variables are of bounded variability
kvar , i.e. for each X, the formula Mρ, t |= Xx holds for at most kvar different t’s in every open unit interval.
In this case, we can show that L↔d is closed under complementation in almost the same way as in the
synchronous semantics [25].

18

Proposition 7. L↔d in the asynchronous semantics is closed under complementation if all set variables are
of bounded variability kvar where kvar is a positive integer.

Now, it is clear that HyperMITL model checking can be done when all traces are bounded-variable:
the algorithm closely follows Proposition 1, but we have to add appropriate conjuncts to ensure that
{Qpi | p ∈ AP} for some i (1 ≤ i ≤ k) may only hold at points where Qacti holds. We can now state the
main result of this subsection.

Proposition 8. Model checking HyperMITL is decidable when all traces are of bounded variability kvar where
kvar is a positive integer.

6. Conclusion

We leave as future work to investigate whether a suitable notion of ‘timing fuzziness’ (e.g., [69, 70, 71]) can
be incorporated, either to recover decidability of model checking or better align with practical applications,
e.g., monitoring of cyber-physical systems [72, 73]. Another possible direction is to identify a decidable
fragment of L↔d in the asynchronous semantics (this should be possible, e.g., MITL interpreted continuouly
over timed words [74] is decidable) and see how it links back to a similar fragment of HyperMITL.

References

[1] A. Pnueli, The temporal logic of programs, in: FOCS, IEEE, 1977, pp. 46–57.
[2] A. P. Sistla, M. Y. Vardi, P. Wolper, The complementation problem for Büchi automata with applications to temporal

logic (extended abstract), in: ICALP, Vol. 194 of LNCS, Springer, 1985, pp. 465–474.
[3] L. Stockmeyer, The complexity of decision problems in automata theory and logic, PhD thesis, TR 133, M.I.T., Cambridge

(1974).
[4] G. J. Holzmann, The model checker SPIN, IEEE Transactions on Software Engineering 23 (5) (1997) 279–295.
[5] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella, NuSMV2: An

opensource tool for symbolic model checking, in: CAV, Vol. 2404 of LNCS, Springer, 2002, pp. 359–364.
[6] A. W. Roscoe, Csp and determinism in security modelling, in: S&P, IEEE Computer Society, 1995, pp. 114–127.
[7] S. Zdancewic, A. C. Myers, Observational determinism for concurrent program security, in: CSFW, IEEE Computer

Society, 2003, p. 29.
[8] M. Huisman, P. Worah, K. Sunesen, A temporal logic characterisation of observational determinism, in: CSFW, IEEE

Computer Society, 2006, p. 3.
[9] M. R. Clarkson, F. B. Schneider, Hyperproperties, Journal of Computer Security 18 (6) (2010) 1157–1210.

[10] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, C. Sánchez, Temporal logics for hyperproperties,
in: POST, Vol. 8414 of LNCS, Springer, 2014, pp. 265–284.

[11] R. Alur, D. L. Dill, A theory of timed automata, Theoretical Computer Science 126 (2) (1994) 183–235.
[12] R. Koymans, Specifying real-time properties with metric temporal logic, Real-Time Systems 2 (4) (1990) 255–299.
[13] R. Alur, T. A. Henzinger, A really temporal logic, Journal of the ACM 41 (1) (1994) 164–169.
[14] R. Alur, T. Feder, T. A. Henzinger, The benefits of relaxing punctuality, Journal of the ACM 43 (1) (1996) 116–146.
[15] P. C. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems, in: CRYPTO, Vol.

1109 of LNCS, Springer, 1996, pp. 104–113.
[16] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom,

M. Hamburg, Meltdown: Reading kernel memory from user space, in: USENIX Security Symposium, USENIX Association,
2018, pp. 973–990.

[17] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom, Spectre
attacks: Exploiting speculative execution, CoRR abs/1801.01203 (2018).

[18] L. Simon, D. Chisnall, R. J. Anderson, What you get is what you C: Controlling side effects in mainstream C compilers, in:
EuroS&P, IEEE, 2018, pp. 1–15.

[19] G. Barthe, G. Betarte, J. D. Campo, C. Luna, System-level non-interference of constant-time cryptography. Part I: Model,
J. Autom. Reasoning 63 (1) (2019) 1–51.

[20] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, M. Emmi, Verifying constant-time implementations, in: T. Holz,
S. Savage (Eds.), USENIX Security, USENIX Association, 2016, pp. 53–70.

[21] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B. Parno, A. Rane, S. T. V. Setty, L. Thompson, Vale:
Verifying high-performance cryptographic assembly code, in: E. Kirda, T. Ristenpart (Eds.), USENIX Security, USENIX
Association, 2017, pp. 917–934.

[22] S. Blazy, D. Pichardie, A. Trieu, Verifying constant-time implementations by abstract interpretation, Journal of Computer
Security 27 (1) (2019) 137–163.

[23] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, K. Ohta, Fault sensitivity analysis, in: S. Mangard, F.-X.
Standaert (Eds.), CHES, Vol. 6225 of Lecture Notes in Computer Science, Springer, 2010, pp. 320–334.

19

[24] B. Bérard, A. Petit, V. Diekert, P. Gastin, Characterization of the expressive power of silent transitions in timed automata,
Fundam. Inform 36 (2-3) (1998) 145–182.

[25] T. Wilke, Specifying timed state sequences in powerful decidable logics and timed automata, in: FTRTFT, Vol. 863 of
LNCS, Springer, 1994, pp. 694–715.

[26] B. Finkbeiner, C. Hahn, M. Stenger, Eahyper: Satisfiability, implication, and equivalence checking of hyperproperties, in:
CAV, Vol. 10427 of Lecture Notes in Computer Science, Springer, 2017, pp. 564–570.

[27] B. Finkbeiner, C. Hahn, T. Hans, Mghyper: Checking satisfiability of HyperLTL formulas beyond the ∃∗∀∗ fragment, in:
ATVA, Vol. 11138 of Lecture Notes in Computer Science, Springer, 2018, pp. 521–527.

[28] B. Finkbeiner, M. N. Rabe, C. Sánchez, Algorithms for model checking HyperLTL and HyperCTL∗, in: CAV, Vol. 9206 of
LNCS, Springer, 2015, pp. 30–48.

[29] S. Agrawal, B. Bonakdarpour, Runtime verification of k-safety hyperproperties in HyperLTL, in: CSF, IEEE Computer
Society, 2016, pp. 239–252.

[30] B. Finkbeiner, C. Hahn, M. Stenger, L. Tentrup, Monitoring hyperproperties, in: RV, Vol. 10548 of LNCS, Springer, 2017,
pp. 190–207.

[31] B. Finkbeiner, C. Hahn, M. Stenger, L. Tentrup, RVHyper: A runtime verification tool for temporal hyperproperties, in:
TACAS, Vol. 10806 of Lecture Notes in Computer Science, Springer, 2018, pp. 194–200.

[32] B. Bonakdarpour, B. Finkbeiner, The complexity of monitoring hyperproperties, in: CSF, IEEE Computer Society, 2018,
pp. 162–174.

[33] L. V. Nguyen, J. Kapinski, X. Jin, J. V. Deshmukh, T. T. Johnson, Hyperproperties of real-valued signals, in: MEMOCODE,
ACM, 2017, pp. 104–113.

[34] K. G. Larsen, P. Pettersson, W. Yi, Uppaal in a nutshell, International Journal on Software Tools for Technology Transfer
1 (1-2) (1997) 134–152.

[35] R. Alur, T. A. Henzinger, Logics and models of real time: A survey, in: REX, Vol. 600 of LNCS, Springer-Verlag, 1992, pp.
74–106.

[36] J. Ouaknine, J. Worrell, Some recent results in metric temporal logic, in: FORMATS, Vol. 5215 of LNCS, Springer, 2008,
pp. 1–13.

[37] J. Heinen, Model checking timed hyperproperties, Master’s thesis, Saarland University (2018).
[38] C. Gerking, D. Schubert, E. Bodden, Model checking the information flow security of real-time systems, in: ESSoS, Vol.

10953 of LNCS, Springer, 2018, pp. 27–43.
[39] G. Gardey, J. Mullins, O. H. Roux, Non-interference control synthesis for security timed automata, Electr. Notes Theor.

Comput. Sci 180 (1) (2007) 35–53.
[40] P. Vasilikos, F. Nielson, H. R. Nielson, Secure information release in timed automata, in: POST, Vol. 10804 of LNCS,

Springer, 2018, pp. 28–52.
[41] E. Ábrahám, B. Bonakdarpour, HyperPCTL: A temporal logic for probabilistic hyperproperties, in: QEST, Vol. 11024 of

Lecture Notes in Computer Science, Springer, 2018, pp. 20–35.
[42] B. Finkbeiner, C. Hahn, H. Torfah, Model checking quantitative hyperproperties, in: CAV, Vol. 10981 of Lecture Notes in

Computer Science, Springer, 2018, pp. 144–163.
[43] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.
[44] J. Ouaknine, J. Worrell, On the language inclusion problem for timed automata: Closing a decidability gap, in: LICS,

IEEE Computer Society, 2004, pp. 54–63.
[45] R. Alur, T. A. Henzinger, Real-time logics: Complexity and expressiveness, Information and Computation 104 (1) (1993)

35–77.
[46] J. Ouaknine, J. Worrell, On the decidability and complexity of metric temporal logic over finite words, Logical Methods in

Computer Science 3 (1) (2007).
[47] R. Alur, T. A. Henzinger, Back to the future: towards a theory of timed regular languages, in: FOCS, IEEE Computer

Society, 1992, pp. 177–186.
[48] B. Finkbeiner, C. Hahn, Deciding hyperproperties, in: CONCUR, Vol. 59 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 2016, pp. 13:1–13:14.
[49] J. McLean, A general theory of composition for trace sets closed under selective interleaving functions, in: S&P, IEEE

Computer Society, 1994, pp. 79–93.
[50] J. A. Goguen, J. Meseguer, Security policies and security models, in: S&P, IEEE Computer Society, 1982, pp. 11–20.
[51] L. Lamport, What good is temporal logic?, in: R.E.A. Mason (Ed.), IFIP Congress, North-Holland, Amsterdam, 1983, pp.

657–667.
[52] A. Kučera, J. Strejček, The stuttering principle revisited, Acta Informatica 41 (7–8) (2005) 415–434.
[53] T. A. Henzinger, J.-F. Raskin, P.-Y. Schobbens, The regular real-time languages, in: ICALP, Vol. 1443 of LNCS, Springer,

1998, pp. 580–591.
[54] J.-F. Raskin, Logics, automata and classical theories for deciding real time, Ph.D. thesis, FUNDP (Belgium) (1999).
[55] T. Brihaye, M. Estiévenart, G. Geeraerts, H.-M. Ho, B. Monmege, N. Sznajder, Real-time synthesis is hard!, in: FORMATS,

Vol. 9884 of LNCS, Springer, 2016, pp. 105–120.
[56] D. Brand, P. Zafiropulo, On communicating finite state machines, Journal of the ACM 30 (1983) 323–342.
[57] D. D’Souza, P. Madhusudan, Timed control synthesis for external specifications, in: STACS, Vol. 2285 of LNCS, Springer,

2002, pp. 571–582.
[58] L. Doyen, G. Geeraerts, J.-F. Raskin, J. Reichert, Realizability of real-time logics, in: FORMATS, Vol. 5813 of LNCS,

Springer, 2009, pp. 133–148.
[59] G. Barthe, P. R. D’Argenio, T. Rezk, Secure information flow by self-composition, Mathematical Structures in Computer

20

Science 21 (6) (2011) 1207–1252.
[60] P. A. Abdulla, J. Deneux, J. Ouaknine, K. Quaas, J. Worrell, Universality analysis for one-clock timed automata, Fundam.

Inform 89 (4) (2008) 419–450.
[61] T. Ferrère, The compound interest in relaxing punctuality, in: FM, Vol. 10951 of LNCS, Springer, 2018, pp. 147–164.
[62] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, L. Xu, Spot 2.0 - a framework for LTL and ω-automata

manipulation, in: ATVA, Vol. 9938 of LNCS, Springer, 2016, pp. 122–129.
[63] M.-H. Tsai, Y.-K. Tsay, Y.-S. Hwang, Goal for games, omega-automata, and logics, in: CAV, Vol. 8044 of Lecture Notes in

Computer Science, Springer, 2013, pp. 883–889.
[64] J. Kretínský, T. Meggendorfer, S. Sickert, Owl: A library for ω-words, automata, and ltl, in: ATVA, Vol. 11138 of Lecture

Notes in Computer Science, Springer, 2018, pp. 543–550.
[65] J. Ouaknine, A. Rabinovich, J. Worrell, Time-bounded verification, in: Proceedings of CONCUR 2009, Vol. 5710 of LNCS,

Springer, 2009, pp. 496–510.
[66] H.-M. Ho, On the expressiveness of metric temporal logic over bounded timed words, in: RP, Vol. 8762 of Lecture Notes in

Computer Science, Springer, 2014, pp. 138–150.
[67] J. R. Büchi, Weak second-order arithmetic and finite automata, Zeitschrift für mathematische Logik und Grundlagen der

Mathematik 6 (1960) 66–92.
[68] J. R. Büchi, On a Decision Method in Restricted Second Order Arithmetic, in: Proceedings of the 1960 International

Congress of Logic, Methodology and Philosophy of Science, Stanford University Press, 1962, pp. 1–12.
[69] R. Alur, S. L. Torre, P. Madhusudan, Perturbed timed automata, in: HSCC, Vol. 3414 of LNCS, Springer, 2005, pp. 70–85.
[70] V. Gupta, T. A. Henzinger, R. Jagadeesan, Robust timed automata, in: HART, Vol. 1201 of LNCS, Springer, 1997, pp.

331–345.
[71] A. Donzé, O. Maler, Robust satisfaction of temporal logic over real-valued signals, in: FORMATS, Vol. 6246 of LNCS,

Springer, 2010, pp. 92–106.
[72] B. Bonakdarpour, J. V. Deshmukh, M. Pajic, Opportunities and challenges in monitoring cyber-physical systems security,

in: ISoLA, Vol. 11247 of LNCS, Springer, 2018, pp. 9–18.
[73] E. Bartocci, J. V. Deshmukh, A. Donzé, G. E. Fainekos, O. Maler, D. Nickovic, S. Sankaranarayanan, Specification-based

monitoring of cyber-physical systems: A survey on theory, tools and applications, in: Lectures on Runtime Verification,
Vol. 10457 of LNCS, Springer, 2018, pp. 135–175.

[74] D. D’Souza, P. Prabhakar, On the expressiveness of MTL in the pointwise and continuous semantics, International Journal
on Software Tools for Technology Transfer 9 (1) (2007) 1–4.

21

	Introduction
	Background
	Contributions
	Related work

	Timed hyperproperties
	Timed words
	Timed automata
	Timed logics
	Adding trace quantifiers
	Asynchronous semantics
	Synchronous semantics
	Satisfiability and model checking

	Satisfiability
	Model checking
	The alternation-free case
	The general case
	Restricted models

	Decidable subcases
	Untimed model + untimed specification
	One clock + one alternation
	Untimed model + MIA specification
	Bounded time domains
	Bounded variability

	Conclusion

