5,050 research outputs found

    Characterization of visual object representations in rat primary visual cortex

    Get PDF
    For most animal species, quick and reliable identification of visual objects is critical for survival. This applies also to rodents, which, in recent years, have become increasingly popular models of visual functions. For this reason in this work we analyzed how various properties of visual objects are represented in rat primary visual cortex (V1). The analysis has been carried out through supervised (classification) and unsupervised (clustering) learning methods. We assessed quantitatively the discrimination capabilities of V1 neurons by demonstrating how photometric properties (luminosity and object position in the scene) can be derived directly from the neuronal responses

    CA1-projecting subiculum neurons facilitate object-place learning.

    Get PDF
    Recent anatomical evidence suggests a functionally significant back-projection pathway from the subiculum to the CA1. Here we show that the afferent circuitry of CA1-projecting subicular neurons is biased by inputs from CA1 inhibitory neurons and the visual cortex, but lacks input from the entorhinal cortex. Efferents of the CA1-projecting subiculum neurons also target the perirhinal cortex, an area strongly implicated in object-place learning. We identify a critical role for CA1-projecting subicular neurons in object-location learning and memory, and show that this projection modulates place-specific activity of CA1 neurons and their responses to displaced objects. Together, these experiments reveal a novel pathway by which cortical inputs, particularly those from the visual cortex, reach the hippocampal output region CA1. Our findings also implicate this circuitry in the formation of complex spatial representations and learning of object-place associations

    How Laminar Frontal Cortex and Basal Ganglia Circuits Interact to Control Planned and Reactive Saccades

    Full text link
    The basal ganglia and frontal cortex together allow animals to learn adaptive responses that acquire rewards when prepotent reflexive responses are insufficient. Anatomical studies show a rich pattern of interactions between the basal ganglia and distinct frontal cortical layers. Analysis of the laminar circuitry of the frontal cortex, together with its interactions with the basal ganglia, motor thalamus, superior colliculus, and inferotemporal and parietal cortices, provides new insight into how these brain regions interact to learn and perform complexly conditioned behaviors. A neural model whose cortical component represents the frontal eye fields captures these interacting circuits. Simulations of the neural model illustrate how it provides a functional explanation of the dynamics of 17 physiologically identified cell types found in these areas. The model predicts how action planning or priming (in cortical layers III and VI) is dissociated from execution (in layer V), how a cue may serve either as a movement target or as a discriminative cue to move elsewhere, and how the basal ganglia help choose among competing actions. The model simulates neurophysiological, anatomical, and behavioral data about how monkeys perform saccadic eye movement tasks, including fixation; single saccade, overlap, gap, and memory-guided saccades; anti-saccades; and parallel search among distractors.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-l-0409, N00014-92-J-1309, N00014-95-1-0657); National Science Foundation (IRI-97-20333)

    Acetylcholine neuromodulation in normal and abnormal learning and memory: vigilance control in waking, sleep, autism, amnesia, and Alzheimer's disease

    Get PDF
    This article provides a unified mechanistic neural explanation of how learning, recognition, and cognition break down during Alzheimer's disease, medial temporal amnesia, and autism. It also clarifies whey there are often sleep disturbances during these disorders. A key mechanism is how acetylcholine modules vigilance control in cortical layer

    The cognitive neuroscience of visual working memory

    Get PDF
    Visual working memory allows us to temporarily maintain and manipulate visual information in order to solve a task. The study of the brain mechanisms underlying this function began more than half a century ago, with Scoville and Milner’s (1957) seminal discoveries with amnesic patients. This timely collection of papers brings together diverse perspectives on the cognitive neuroscience of visual working memory from multiple fields that have traditionally been fairly disjointed: human neuroimaging, electrophysiological, behavioural and animal lesion studies, investigating both the developing and the adult brain

    Computational physics of the mind

    Get PDF
    In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures

    An efficient coding approach to the debate on grounded cognition

    Get PDF
    The debate between the amodal and the grounded views of cognition seems to be stuck. Their only substantial disagreement is about the vehicle or format of concepts. Amodal theorists reject the grounded claim that concepts are couched in the same modality-specific format as representations in sensory systems. The problem is that there is no clear characterization of (modal or amodal) format or its neural correlate. In order to make the disagreement empirically meaningful and move forward in the discussion we need a neurocognitive criterion for representational format. I argue that efficient coding models in computational neuroscience can be used to characterize modal codes: These are codes which satisfy special informational demands imposed by sensory tasks. Additionally, I examine recent studies on neural coding and argue that although they do not provide conclusive evidence for either the grounded or the amodal views, they can be used to determine what predictions these approaches can make and what experimental and theoretical developments would be required to settle the debate

    An efficient coding approach to the debate on grounded cognition

    Get PDF
    The debate between the amodal and the grounded views of cognition seems to be stuck. Their only substantial disagreement is about the vehicle or format of concepts. Amodal theorists reject the grounded claim that concepts are couched in the same modality-specific format as representations in sensory systems. The problem is that there is no clear characterization of (modal or amodal) format or its neural correlate. In order to make the disagreement empirically meaningful and move forward in the discussion we need a neurocognitive criterion for representational format. I argue that efficient coding models in computational neuroscience can be used to characterize modal codes: These are codes which satisfy special informational demands imposed by sensory tasks. Additionally, I examine recent studies on neural coding and argue that although they do not provide conclusive evidence for either the grounded or the amodal views, they can be used to determine what predictions these approaches can make and what experimental and theoretical developments would be required to settle the debate
    • …
    corecore