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Abstract: The debate between the amodal and the grounded views of cognition seems to be 

stuck. Their only substantial disagreement is about the vehicle or format of concepts. Amodal 

theorists reject the grounded claim that concepts are couched in the same modality-specific 

format as representations in sensory systems. The problem is that there is no clear 

characterization of (modal or amodal) format or its neural correlate. In order to make the 

disagreement empirically meaningful and move forward in the discussion we need a 

neurocognitive criterion for representational format. I argue that efficient coding models in 

computational neuroscience can be used to characterize modal codes: These are codes which 

satisfy special informational demands imposed by sensory tasks. Additionally, I examine 

recent studies on neural coding and argue that although they do not provide conclusive 

evidence for either the grounded or the amodal views, they can be used to determine what 

predictions these approaches can make and what experimental and theoretical developments 

would be required to settle the debate.  

 

1. Introduction 

It seems that the ongoing debate between amodal and grounded views of cognition has 

reached a deadlock. The available data is insufficient to favor one of the views and there is 

no agreement regarding what kind of additional evidence is required to move forward in the 

discussion. Grounded cognition affirms that the main structures underlying our cognitive 

abilities (crucially, mental concepts) are not amodal but rather components of modality-

specific systems for perception, action and emotion. In turn, the classic theories of cognition 

assume that representations are amodal data structures. The grounded view has been 
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supported by cognitive, behavioral, linguistic and neurocognitive evidence.  However, it has 

been argued that none of these sources of evidence is sufficient to rule out relevant versions 

of the amodal approach (e.g., Machery 2007, Mahon 2015). Both amodal and grounded 

theorists agree now that this evidence shows, at best, that conceptual processing involves 

some degree of interaction between modality-independent and modality-specific systems, 

which is compatible with alternative (either amodal or pluralists) proposals (e.g., Dove 2009, 

Leshinskaya and Caramazza 2016).  

The only claim which amodal theorists would reject is about the vehicle or format of 

concepts. They deny that concepts are couched in the same modality-specific code as 

representations in sensory systems. The problem is that both grounded and amodal theorists 

agree that there is no clear characterization of modal or amodal format or the kind of 

neurocognitive evidence required to determine format. Therefore, in order to make their 

disagreement empirically meaningful we need a neurocognitive criterion for representational 

format.  

In this paper, I will suggest that the theoretical framework of efficient coding 

explanations can be employed both to draw the distinction between modal and amodal format 

and to determine what kind of evidence could favor the amodal or the grounded view. In 

section 2, I develop a dilemma for grounded theorists presented by Mahon (2015), which 

implies that they endorse a view that is either compatible with the amodal approach or 

incompatible with neurocognitive evidence. I argue that a grounded view that emphasizes 

format can provide a way out of the dilemma because it constitutes a middle ground between 

weak and strong versions of the proposal. As a view about format, the grounded approach 

can be both substantial and empirically plausible.   

In section 3, I address the question of what neurocognitive evidence can be used to 

determine format. Theorists from both sides of the debate agree that location (i.e., being 

inside a perceptual system), interaction (with a perceptual system) and (modality-specific) 

content are independent (and therefore not reliable indicators) of modal format. This suggests 

that we need a criterion directly based on the intrinsic structure of representations. I propose 

that modal format can be identified by determining the relation between intrinsic structure 

and perceptual processing and claim that efficient coding models can be useful precisely to 

understand this relation.  The main idea is that a code is modal if and only if it satisfies some 



special informational and/or computational demand imposed by a perceptual task. In turn, a 

code is amodal if and only if it does not satisfy any demand of this kind but rather only general 

demands imposed by any information processing task or a specific demand imposed by a 

non-sensory task.  

In section 4, I present the notion of neural coding and characterize different kinds of 

neural codes. I will also explain how these codes are related to the structures that are relevant 

for the debate on grounded cognition. In section 5, I examine recent studies on efficient neural 

coding and argue that although they do not provide conclusive evidence for either the 

grounded or the amodal views, they can be used to determine which predictions they can 

make and which experimental and theoretical developments would be required to move 

forward in the debate. That is, the efficient coding framework can provide a neurocognitive 

characterization of the disagreement between these approaches. 

I suggest that grounded theorists can make use of the hypothesis that sparse codes in 

sensory systems evolved or were developed to represent the statistical structure of their input 

signals. Based on this idea, they can predict that codes in downstream areas dedicated to 

higher cognition preserve sparseness. On the other side, amodal theorists can seek support in 

the proposal that neural structures dedicated to higher cognition developed localist or 

selective codes in order to satisfy demands imposed by specific learning tasks. In this case, 

the predictions that must be tested are related to the implementation of specific computational 

operations and task parameters presupposed by the relevant efficient coding model.  

 

2. The grounded view as a proposal about format 

As mentioned above, the grounded view has been supported by different sources of evidence. 

Originally, diverse behavioral and linguistic experiments have been proposed to show that 

cognition requires perceptual representations (e.g., Wu 1995, Barsalou et al. 1999, Solomon 

and Barsalou 2001, Neininger and Pulvermüller 2003, Hauk et al. 2004; Pulvermüller 2005). 

Here I will focus on findings at the neural level(s). This is because although (as we will see 

briefly) the grounded view is underdetermined by current evidence from neuroscience, it is 

in this domain where we can find additional data to move forward in the discussion.   

The neurocognitive experiments offered to motivate the grounded view show that 

modality-specific regions dedicated to vision and action are activated during concept related 



tasks that do not overtly require sensorimotor processing.  For instance, early brain-imaging 

studies showed that retrieving the name of the typical color of an object elicited activity near 

a region in occipital cortex which is activated during color perception (Martin et al., 1995). 

Similarly, the word ‘kick’ causes the activation of the motor representation of the leg (Hauk 

et al., 2004) and saying ‘hammer’ to a picture of a hammer activates information about how 

to manipulate the object (Chao and Martin, 2000). Some of the examples more recently 

proposed include activation of motor-processing regions by reading about motion (Deen & 

McCarthy, 2010, Saygin, McCullough, Alac, & Emmorey, 2010) and activating 

somatosensory cortex by viewing pictures of graspable objects (Smith & Goodale, 2015). 

These findings have an obvious implication:  Sensory-motor and conceptual processing are 

closely related. However, this is not denied at all by amodal theorists. If there is a 

disagreement between grounded and disembodied views, it is not about whether sensory-

motor systems play a role in conceptual processing but rather about which role they play.  

According to grounded theorists, this evidence implies that the resources required to 

perform the relevant tasks are (in whole or in part) modality-specific and not amodal. The 

expression ‘in whole or in part’ suggests two different readings of the grounded approach. 

Mahon (2015) distinguishes between strong and weak grounding (or embodiment). Strong 

grounding is the claim that modality-specific representations are necessary and sufficient to 

support conceptual processing. In turn, weak grounding is the thesis that concept-related 

tasks require both modality-specific and modality-independent structures (Binder and Desai, 

2011; Hauk and Tschentscher, 2013; Kiefer and Pulvermüller, 2011; Lambon-Ralph, 2014; 

Meteyard et al. 2012; Zwaan, 2014).  

Given that, according to the strong view, the only representations underlying 

conceptual processing are modality-specific, this approach implies that concepts are 

modality-specific representations. Mahon (2015) points out that it is not clear whether this 

approach has ever been adopted. Leshinskaya and Caramazza (2016) argue that it was 

defended by Barsalou et al. (2003). Also, Meteyard et al. (2012) claim that Pulvermüller 

(2001) and Barsalou (1999) often suggest a strong reading of their views.  Barsalou (2016) 

rejects this interpretation and presents strong grounding as one of the usual caricatures of the 

grounded approach. Although perhaps Barsalou’s proposal can be sometimes read as 

consistent with amodal symbols, there are other grounded views which are more openly 



strong, such as the ones presented by Gallese & Lakoff (2005), Allport (1985) and Glenberg 

& Gallese (2012). Also, Prinz (2002) is very explicit in his endorsement of a strong view (at 

least under one of the possible readings of his proposal1). He is very exhaustive in showing 

how all conceptual tasks can be performed by using only perceptual representations. Anyway, 

it is not important whether strong grounding was actually held. Even if it was a mere 

distortion of actual proposals, it implies a dilemma for grounded theorists. 

Mahon (2015) argues that on the one side, strong embodiment is a thesis that is clearly 

different from any disembodied proposal. However, there is strong neuro-imaging evidence 

against it. On the other side, current evidence is compatible with weak embodiment. The 

problem is that this thesis is not different from disembodied cognition. This means that, if 

the weak and strong views are the only available versions of the grounded approach then 

there is no version which is both different from an amodal approach and consistent with 

neurocognitive evidence.  In a similar vein, Leshinskaya and Caramazza (2016) argue that 

the idea that conceptual representations can be reduced to sensory-motor structures is 

untenable on the face of evidence of neuropsychological damage that give rise to distinct 

disorders, some modality-specific and some modality-general. They also claim that the 

weaker versions of the grounded approach, which claim that conceptual processing requires 

either the interaction between amodal and modality-specific representations or the activation 

of structures that overlap with sensory-motor regions, are compatible with a disembodied 

approach. 

Evidence for some degree of independence between conceptual and perceptual 

processing was originally proposed by Warrington (1975). She described subjects that were 

able to match pictures of different viewpoints of an object but could not name nor describe 

those objects, nor match names to descriptions. These findings led Warrington to conclude 

that perceptual classification and semantic classification depend on systems which can be 

differentially impaired. This conclusion was later supported by, for instance, Hodges (1992) 

                                                           
1 Prinz (2002) claims that concepts are copies of perceptual representations. This idea can have two 
different interpretations that depend on two alternative characterizations of the notion of ‘copy’ (Prinz 2002 
pp. 108-109). According to one reading, copies involve instructions to reactivate representations stored in 
perceptual systems in the absence of external stimuli. Under this view, concepts are not strictly speaking 
copies because they are identified with the reactivated perceptual representations (i.e. they are not the 
instructions). This proposal is a version of strong grounding. Under a second reading, copies are duplicates 
of perceptual representations stored outside perceptual systems. This is a version of the form of weak 
grounding that, I will argue, is more plausible.    



and Hillis & Caramazza (1995). Also, Caramazza & Mahon (2006) show that there is 

consensus regarding the fact that category-specific deficits (involving categories such as 

‘animals’, ‘fruit/vegetables’, and ‘artifacts’) are not associated with modality-specific 

deficits. Likewise, McCaffrey & Machery (2012) indicate that patients with semantic 

dementia, a form of frontotemporal dementia, lose all feature knowledge (visual, auditory, 

tactile, etc.) for specific concepts, while knowledge about those same kinds of features for 

related concepts remains intact. This kind of evidence suggests that, against strong grounding, 

we cannot identify conceptual representations with modality-specific representations. 

Although perceptual representations may play a relevant role in conceptual processing, 

conceptual representations constitute a different set of structures.  

However, we saw that many grounded theorists accept that perceptual and conceptual 

representations are different. Weak grounding is now the dominant view. The problem is that 

if grounded cognition is merely the thesis that conceptual processing involves some kind of 

interaction between conceptual and perceptual representations, it would not be inconsistent 

with an amodal approach. This is because disembodied cognition is essentially a thesis about 

format. Machery is quite explicit on this point:  

 

“In the present context, neo-empiricist and amodal theories of concepts disagree, 

not about the origins of concepts (whether concepts are innate or acquired) or about the 

content of concepts (what concepts represent), but rather about the representational code, 

or format, of concepts […] Neo-empiricists hold that concepts and perceptual or motor 

representations have the same code; amodal theories deny it.” (Machery 2016, p. 1091)  

 

In Mahon’s terms: “if the issue of whether or not concepts are represented in a 

modality-specific format has been resolved, then there is no longer any debate about 

embodiment” (Mahon 2015, p. 423). Weak grounding is consistent with this view because 

interaction between conceptual and perceptual representations has no implication regarding 

conceptual format. As Leshinskaya and Caramazza (2016) point out, interaction is not a 

threat to the amodal view unless one accepts “the false assumption that by interacting with 

sensory-motor representations, concepts have a different nature than if they did not do so” 

(p. 993). As Mahon (2015) puts it, the format of a concept and the format of the 

representations with which it is connected in the input and output systems are independent 



empirical questions. Weak grounding is a substantial claim about how conceptual processing 

is performed and which neural systems it requires. However, it is not a thesis about the nature 

of concepts, which seems to be the core of the amodal view.   

The obvious way out of this dilemma is to find a version of the grounded approach 

that is strong enough to be different from the amodal approach and permissive enough to be 

compatible with the mentioned evidence. Barsalou (2016) describes a proposal which fits 

this description. Unsurprisingly, his characterization depends on a distinction between modal 

and amodal format. He claims that modal representations have an analogical format. A 

representation is analogical if and only if it is isomorphic with the represented object, 

property or event. For instance, a mercury thermometer is an analogue representation of 

temperature because the column of mercury expands and contracts as a function of the 

temperature. Likewise, a map is an analogue representation of an area, because greater 

distances on the map represent greater distances in the represented area (Machery 2016). On 

the contrary, an amodal representation does not exhibit this kind of isomorphism but rather 

has a structure that is arbitrarily related to what it represents.  

Barsalou identifies the amodal approach with the claim that conceptual 

representations (A1) are arbitrarily related to their corresponding categories (that is, they are 

not analogical) and (A2) are sufficient to perform the computations underlying conceptual 

processing. In contrast, his grounded view is that conceptual representations (G1) are 

analogical and (G2) are not sufficient for conceptual processing, i.e., the activation of 

modality-specific systems is also required. This is a version of weak grounding because (G2) 

implies that concepts are not identical with the representations stored in perceptual systems. 

As we saw, this is consistent with the evidence against strong grounding but it is also 

insufficient to distinguish between the amodal and grounded views. Condition (G1), which 

specifies the format of conceptual representations, can be used to draw this distinction. This 

condition implies that although conceptual and perceptual representations are numerically 

different (that is, they are different sets of representations located in different systems) they 

are representations of the same kind: They share a common format. Concepts are not 

representations stored in perceptual systems, but they have a perceptual format. Some version 

of G1 is one of the main tenets of paradigmatic versions of the grounded view (see Machery 



2007). Also, given that amodal format is a constitutive aspect of amodal approaches, (G1) is 

incompatible with them.  

It is confusing that Barsalou (2016) dismisses format as an optional or lateral aspect 

of his view. He affirms that “the focus of grounded researchers has typically been on the 

neural reuse of these regions for conceptual processing, not on their representational format.” 

(p. 1130, his emphasis). The problem with denying that a view on conceptual format is a 

constitutive aspect of the grounded approach is not only that grounded theorists would be 

trapped in Mahon’s dilemma, but also that they would be shying away from a discussion they 

were not losing.  Barsalou (2016) is aware that the idea of an amodal format is a “black hole 

in conceptual space.” He affirms that amodal theorists never provide concrete descriptions 

of what amodal concepts are or how they are supposed to work. In contrast, we saw that he 

does provide a characterization of the distinction between modal and amodal format. This is 

why endorsing (some version of) (G1) seems the best option for a grounded theorist.   

Once we managed to formulate a plausible and substantial version of the grounded 

approach, the next step is to figure out what kind of evidence we need in order to test it. It is 

clear that the neurocognitive evidence mentioned in this section will not do the trick. 

Activation of structures inside perceptual systems is irrelevant to the question of whether 

representations outside perceptual systems have a modal format. In the next section, I will 

evaluate what kind of neurocognitive evidence is relevant to determine representational 

format and outline a proposal, which will be further developed in sections 4 and 5.  

   

3. What counts as evidence for modal or amodal format? 

It is acknowledged by theorists from both sides of the debate that finding evidence for 

representational format at the neural level is a very challenging task. The main problem is 

that many accessible variables of neural processing are independent of format. In the first 

place, we saw that Leshinskaya and Caramazza (2016) affirmed that evidence about the 

interaction between sensory and non-sensory systems has no implications regarding the 

format of structures in non-perceptual systems.  

In the second place, neural location is not indicative of format either.  Martin (2016) 

affirms that the regions where we store information about specific object associated 

properties are located within (or overlap with) perceptual and action systems. Lenshiskaya 



and Caramazza (2016) claim that this is not a problem because neural location does not 

determine the format of a representation. Furthermore, Martin (2016) himself admits that 

location and format are unrelated: “Even in the earliest lowest-level regions of the visual-

processing stream, the format could be depictive on the way up, and propositional on the way 

back down.” (Martin 2016, p. 984). A more substantial reason for rejecting this locationist 

criterion is that it would make grounded cognition conceptually impossible. We saw that 

grounded theorists have to claim that concepts are modal structures located outside 

perceptual systems. It is interesting to notice that this idea backfires on amodal theorists. The 

mere fact that concepts are structures located outside perceptual systems (something that the 

grounded theorist has to concede) does not imply that these have an amodal format. 

 In the third place, grounded theorists propose that conceptual representations retain 

lower-level information (e.g., information coding a particular shape, color, or body action) 

represented in modality-specific systems (e.g., Martin 2007, 2009, 2016, Binder 2016). 

However, even grounded theorists admit that format and content are independent (e.g., 

Binder 2016). That is, one can represent the same information in a perceptual or amodal 

format. In this vein, Mahon affirms that “if information is about a given modality (e.g., 

information about the visual properties of objects, or about object manipulation), then it may 

or may not also be assumed to be represented in a modality-specific format.” (Mahon 2015, 

p. 924).     

Given that we cannot determine format indirectly by using either location, interaction 

or content, it seems that we need a criterion directly based on the intrinsic structure of a modal 

representation. This would require to identify aspects of neural structure that are not only 

accessible but that can also be plausibly considered modal. A proposal of this kind is 

Barsalou’s idea that perceptual representations are analogical. This seems a promising 

criterion because isomorphism is a relatively accessible property of some sensory neural 

structures. Specifically, topographic maps are neural structures implemented by different 

sensory modalities which exhibit some degree of isomorphism with what they represent 

(Swindale 2008). However, this idea has faced different objections related to the conceptual 

problem of what modal format is. Prinz (2002) mentions Wittgenstein’s (1919) idea that there 

is an abstract isomorphism between true sentences and the world. If there was a language of 

thought, utterly removed from perception, it could have this property (Prinz 2002, p. 112). In 



a similar vein, Machery (2016) points out that analogical representations manipulated by 

analogue computers are not perceptual in any clear sense. They may not be employed in any 

perceptual task.  

Instead of trying to identify a different specific defining property of modal intrinsic 

structure I propose that modal format depends on the relation between structure and 

perceptual information processing. Specifically, we can say that a representation is modal if 

and only if its intrinsic structure is determined in some way by special demands imposed by 

a perceptual processing task. This idea was suggested by grounded theorists. For instance, 

Barsalou (2016) claims that different perceptual systems are likely to employ different 

operations and representations which are best suited to perform their different information 

processing tasks. He affirms that:  

 

“Regions of a modality-specific pathway, such as the ventral stream, have probably 

evolved to perform specific types of computations on relevant information. As a 

consequence, the representations and processes in these regions are likely to reflect such 

constraints. As a further consequence, representations and processes are likely to differ 

across modalities (e.g., vision vs. audition vs. action vs. affect vs. taste).” (Barsalou 2016, 

p. 1131).  

 

The fact that a perceptual system employs a given set of representations is determined 

in some way by special constraints imposed by a sensory task. Likewise, Prinz endorsed 

Kosslyn’s idea that different kinds of representations may be better suited for different 

sensory tasks and therefore different systems may employ different representations 

(Kossylyn 1980). He affirms that “the representations ideally suited for deriving information 

from light are not ideal for deriving information from sound.” (Prinz 2002, p. 117). In this 

paper, I will endorse a weaker version of this idea. What makes a format perceptual is being 

determined by an informational demand that is unique to perceptual processing (i.e., that is 

not imposed by any other cognitive task). This is consistent with the possibility that different 

sensory systems share a common perceptual demand and, as a result, they share a common 

perceptual code. As we will see in section 5, this possibility is supported by current evidence.   

  An apparent problem with this proposal is that, as we saw in the previous section, 

the only viable version of the grounded view claims that systems which are not dedicated to 



perception but rather to higher cognitive functions employ representations that have a 

perceptual format. If a representation is employed by a non-perceptual system, then it seems 

unlikely that its format will be determined by the demands of a perceptual task (that is, a task 

for which it may not be recruited). However, this is not problematic if we notice that many 

grounded proposals claim that non-perceptual systems preserve modal format. Concepts are 

modal because transmission of information from the modalities to non-sensory systems is 

not an arbitrary transduction into a different code but rather a process that retains (or 

reproduces) sensory coding. If this is the case, non-sensory systems would employ a format 

initially or previously developed to perform perceptual tasks.  

Barsalou (2016) reviews different ways in which concepts could represent abstract 

properties without departing from a modal coding strategy. For instance, conjunctive 

representations proposed by Binder (2016) perform multi-modal data-compression rather 

than arbitrary transduction. Also, distilled abstraction is a process described by Jamrozik et 

al. (2016) through which conceptual representations can acquire abstract content without 

losing modal format. Likewise, Prinz claims that concepts are copies of perceptual 

representations. As I mentioned above (see footnote 1), one of the readings of this idea is that 

representations produced in perceptual systems are duplicated in other systems. Prinz also 

points out that this sort of causal/temporal priority of perceptual representations is a hallmark 

of classic British empiricism (Prinz 2002, p. 108). This means that non-perceptual systems 

could replicate a format which was initially developed to satisfy modality-specific demands. 

Representations in a non-perceptual system could be tokens of a format type that was 

previously (in evolutionary or developmental time) instantiated in a perceptual system to 

satisfy modality-specific demands. 

Besides the fact that this idea has been proposed by grounded theorists, there are 

reasons to affirm that it is also biologically plausible.  It has been pointed out that a feature 

common to engineering and biological systems is the reuse of available circuit elements.  In 

the design of an electronic device the same circuit elements, such as transistors and logic 

gates, are reused many times. Biological systems display the same principle. For instance, 

Alon and colleagues have modeled key wiring patterns, called ‘network motifs’ that are 

repeatedly implemented in a biological network (Alon, 2007a, 2007b; Milo et al., 2002; 

Shen-Orr et al. 2002). Within the domain of cognitive neuroscience, it has been recently 



noticed that different neural systems reuse standard computational modules, called 

‘Canonical Neural Computations’ (CNCs). These modules apply the same operations for 

different information processing tasks in different brain areas (Reynolds 2009).  For instance, 

divisive normalization (one of the most well-studied CNCs) is reused in different systems to 

maximize sensitivity, achieve invariance with respect to some stimulus dimensions or 

optimize stimuli discrimination (Carandini & Heeger 2012). Different neural systems often 

reuse components to perform different information processing tasks.  

The question now is: How can we determine that a given code is the result of 

modality-specific demands? Is this an accessible aspect of neural processing? I will argue 

that his idea can be computationally and neurally tested by using the efficient coding 

approach in cognitive neuroscience. This constitutes a line of investigation which aims to 

explain precisely the presence of a given coding regime in a neural system by its ability to 

optimize specific parameters of information processing. I will say that the code implemented 

by a system is modal if and only if it satisfies special demands imposed by a perceptual task. 

On the contrary, a code is amodal if and only if it does not satisfy any perceptual demand but 

rather only general informational demands (that is, demands imposed by any information 

processing task) or special informational demands imposed by a non-sensory task. In the next 

two sections, I will clarify this criterion by employing the efficient coding approach and 

consider what implications it has regarding the present debate. 

 

4. An efficient coding approach to modal and amodal format 

In the previous section, I proposed to identify modal and amodal representations by assessing 

which demands determine the implementation of a given format. However, it is not obvious 

what format should look like at the neural level.  

Martin (2016) offers a clear description of this problem: 

  

“The problem, however, is that we do not know how to determine the format of a 

representation. What we do know is that at the biological level of description, mental 

representations are in the format of the neural code. No one knows what that is, and no one 

knows how it maps onto the cognitive descriptions of representational formats (i.e., amodal, 

propositional, depictive, iconic, and the like), nor even if those descriptions are appropriate 

for such mapping. What is missing from this debate is agreed-upon procedures for 



determining the format of a representation. Until then, the format question will remain moot. 

It has no practical significance.” (Martin 2016, p. 984). 

  

Following Martin, we can break down the format problem into three sub-problems. 

In the first place, we must determine what neural code is. Then, we must figure out how to 

map neural code onto the kinds of representations that are relevant for the debate. Lastly, we 

must determine what kind of evidence can be used to determine that a given modal or amodal 

code is implemented. In what follows, I will suggest how these three questions can be 

addressed.    

Regarding the first question, although neural coding is a developing field of research 

with many unanswered questions, we have at least some ideas about what neural codes are 

or can be and there are more or less standard procedures to characterize coding in a given 

neural population. A common approach is population analysis, which aims to determine 

coding regime by discovering patterns in the combined activity of different neurons. A 

pattern of spike trains produced by a neural population is often recorded by using electrode 

arrays or (more recently) fluorescence microscopy and interpreted with decoding algorithms 

or information theory. Once its informational properties are understood, the pattern is 

systematically explored to determine which features of the spike trains carry the relevant 

information, i.e., which code the population implements (Quian Quiroga & Panzeri, 2009, 

2013).  

There are two aspects of population activity that are used to characterize neural codes 

and which will be relevant for the present discussion. The first one is density. The density of 

a code is determined by the average fraction of neurons of a given population that are (more 

or less) simultaneously triggered to represent a given condition. Density can vary from close 

to 0 to about 1/2. When density is higher than 1/2 it can be decreased without loss of 

information by replacing each active neuron with an inactive one, and vice versa. Codes with 

lowest density are local codes, in which each condition is represented by only one active 

neuron. The highest density is given by holographic coding. These codes represent each 

condition by the combination of activities of 1/2 neurons of a population. Sparse codes are a 

compromise between dense and local codes. Under this regime, multiple (but few) neurons 



participate in the representation of each condition (Földiák 2002, Földiák & Endres 2008, 

Földiák 2013).  

A second aspect is the distinction between selective and distributed codes. In 

distributed codes different subsets of cells in a population encode different conditions but, 

crucially, these subsets share cells. In contrast, in selective2 coding a population represents 

different conditions by using non-overlapping subsets. This implies that single cells are 

interpretable only if the code is selective. Under this coding regime each unit or neuron 

responds highly selectively to a given condition (e.g., specific faces, objects, or words) such 

that the output of that unit can be interpreted unambiguously. Units of this sort are sometimes 

called localist units or ‘‘grandmother cells”. On the other hand, in distributed representations, 

given that each unit responds to a wide range of different conditions, individual units cannot 

be interpreted without knowing the state of other units in the network (Thorpe 1995, p. 550, 

Page 2000, Bowers 2016). Figure 1 presents an illustrative comparison between a selective 

and a distributed code.  

 

 

 

 

Figure 1. Adapted from Page (2000). Four names represented by (a) distributed coding and (b) selective coding.  

Each 1 and 0 represents an active or inactive cell, respectively. Rows represent the population response to each stimulus. 

 

The dense/sparse and the distributed/selective distinctions are related. A distributed 

code requires some degree of density (i.e., more than one cell has to respond to each stimuli) 

                                                           
2 Selective coding is often also called ‘localist’. Given that low density codes have a similar name, I will avoid 
using this expression. 



in order to form overlapping sets of neurons. Also, populations in visual areas are known to 

be both sparse and selective (Lehky et al 2005 and see section 5). However, these notions are 

relatively independent. A given population can implement a sparse and distributed code if 

overlapping subsets of cells fire in response to different stimuli and each of those subsets are 

constituted by very few cells. In turn, a selective and dense representation could be 

implemented by a population in which many redundant neurons respond selectively to the 

same input (Bowers 2016)3.  

The second problem mentioned by Martin is the mapping problem. The described 

codes appear at the level of neural populations. How do we know that structures at this level 

can be identified with the representations that are relevant for the present debate? There are 

two aspects to this question which can be addressed separately. First, we must determine 

whether structures at the cellular or population level can be identified with the kinds of 

representations posited by grounded and amodal theorists.  

As it happens, this can be done for many relevant representations. For instance, some 

grounded theorists have proposed that conceptual processing employs distributed 

representations. These structures are not distributed in the sense specified above but rather in 

the sense that they have no central point of convergence and involve dispersion of perceptual 

and motor features across modal association cortices (e.g., Allport 1985; Gage & Hickok 

2005). One way to understand the implementation of distributed representations is by using 

the Hebbian notion of a cell assembly. This is a set of strongly connected cells formed when 

neurons in different cortical areas are frequently active at the same time (Palm et al. 2014, 

Holtmaat & Caroni 2016). This characterization of distributed representations, which has 

been proposed by Pulvermüller (e.g., Pulvermüller 1999, 2013) situates them at the same 

cellular level as neural codes. Another kind of grounded structure is cross-modal conjunctive 

representation (CCR) (e.g., Binder 2016). These are structures that respond preferentially to 

a particular combination of inputs. It has been pointed out that CCRs can be instantiated in 

single cells having a local coding regime (Quiroga, Reddy, Kreiman, Koch, & Fried, 2005) 

and also in distributed neural ensembles or networks (O’Reilly & Busby, 2001). A third 

example are amodal structures that exhibit cross-modal responses to a given class of stimuli. 

                                                           
3 I thank an anonymous reviewer for stressing the relevance of distinguishing between these two 
parameters of neural coding. 



In contrast with distributed representations (and consistent with the so called amodal hubs), 

these structures constitute central points of convergence for different modal inputs. The most 

striking findings supporting the existence of these amodal concepts come from the research 

on number representation (e.g., Dehaene et al. 1998, Piazza et al. 2006). These 

representations can respond to a given cardinality independently of stimulus modality. 

Interestingly, cross-modal number representations have been found at the cellular level. 

Andreas Nieder has studied ‘number neurons’, which have a maximum discharge rate to a 

preferred numerosity across different modalities (Nieder 2016). In a similar study, Vergara 

et al. (2016) showed that individual neurons in the pre-supplementary motor area (pre-SMA) 

exhibit cross-modal responses to specific frequencies. These examples imply that at least 

some of the relevant structures proposed both by modal and amodal theorists can be found at 

the same level as neural codes.  

After determining that a given neural code constitutes the format of, for instance, a 

conjunctive representation, we still have to assess whether this code is modal or amodal. The 

second aspect of the second question is to determine whether neural codes can be mapped 

onto known modal or amodal formats discussed in the literature. We do not know which of 

the mentioned neural codes could implement, for example, propositional (e.g., Pylyshyn, 

2003) or depictive (e.g., Kosslyn, Thompson, & Ganis, 2006) format. However, this is not 

necessary. Once we endorse the criterion proposed in the previous section, we only need to 

figure out whether a given code satisfies special demands required by a perceptual task in 

order to determine if it is modal or not. This leads us to the third problem: How can we 

determine that a code is modal in this sense? There is a tradition of investigation in cognitive 

neuroscience which studies how neural coding contributes to optimize the transmission of 

information. Efficient coding models have been recently introduced in the philosophical 

literature by Mazviita Chirimuuta in order to discuss the nature of computational explanation 

in cognitive neuroscience (Chirimuuta 2014, 2017). My aim is to apply this view to the 

present discussion on representational format.  

 

5. Implications from the efficient coding approach 

The efficient coding approach is a tradition that can be traced back to classical theoretical 

work by Horace Barlow. He hypothesized that optimizing information transmission is a 



driving force in the evolution and/or development of neural codes (Barlow 1959). 

Informational and computational demands can be used to explain why the brain implements 

a given coding strategy. Briefly, an efficient coding explanation requires first specifying 

which demands must be satisfied in order to perform efficiently a given information 

processing task. Then, we build models of different hypothetical coding strategies which the 

brain could plausibly implement and which satisfy to some degree the specified demands. If 

the most efficient strategy lines up with the actual one, we have an explanation of why it was 

implemented (see Chirimuuta 2014). In this section I will suggests how grounded and amodal 

theorists can use efficient coding models in order to make predictions about neural coding.   

 

5.1. Amodal codes  

Some theoretical results and experimental data provided within this framework seem to favor 

the amodal view. At the end of section 3 I mentioned that a code is amodal if and only if it is 

not the result of demands which are unique to sensory tasks. This is compatible with two 

possibilities. An amodal code could be determined either by specific demands of a non-

sensory task or by general demands shared by all neural information processing tasks4. Some 

early studies suggest that the development of neural codes is driven by general requirements, 

such as maximizing representational capacity (i.e., the number of conditions or the amount 

of information that a system can represent) and minimizing metabolic cost. Considering that 

the brain is one of the metabolically most active organs of the body (Sokoloff 1989), Levy 

and Baxter (1996) proposed that neural coding must result from an optimal compromise 

between energy and informational efficiency. In this vein, Attwell and Laughlin (2001) offer 

a characterization of the optimality of distributed neural coding on the basis of a detailed 

energy budget for signaling in the grey matter5.  

In order to determine the impact of different coding strategies on neural energy 

consumption, the authors consider a system that must represent 100 different sensory or 

motor conditions. One possibility is using a selective code in which each of the 100 

conditions is represented by a single active cell. This would require to recruit 100 cells. As 

                                                           
4 I thank an anonymous reviewer for suggesting the possibility of dedicated but non-sensory codes 
5 Attwell & Laughlin (2001) call this code ‘sparse’. As we will see below, this expression is often used to refer 
to very different coding regimes. However, as I mentioned, it is relevant to distinguish between sparse and 
distributed coding.   



soon as we begin to depart from this selective coding regime towards a distributed one, an 

increase in energy efficiency is patent. If each condition is represented by the simultaneous 

firing of 2 cells (with the others not firing) and different representations can share cells, only 

15 neurons are needed to represent 100 conditions. This is given by the equation (which I 

will call the “capacity/code/components equation” or “3C equation”) that relates 

representational capacity or number of conditions represented (R) with the number of cells 

or components of the system or population (n) and number of active cells that represent each 

condition (np): 

                                      

𝑅: 𝑛!/[(𝑛 − 𝑛𝑝)! (𝑛𝑝)!] 

 

In our case, 3C implies that 15!/(13! 2!) = 105. Similarly, if each condition is represented by 

3 firing cells and different representations can overlap, 3C implies that only 10 cells are 

needed to represent 100 conditions (given that 10!/(7! 3!) = 120), which is a further 

improvement of energy efficiency 6 . These results imply that the implementation of 

distributed coding is not motivated by special perceptual demands (i.e., unique to sensory 

tasks) but rather only by general demands. Any information processing task can be improved 

by minimizing metabolic cost without reducing representational capacity. This is why 

distributed codes can be considered amodal.  

The main problem with this approach is that current evidence suggests that codes in 

neural structures underlying higher cognition are selective and not distributed. We saw that 

in distributed codes each cell is used to represent different conditions and therefore these 

conditions cannot be decoded by recording a single cell but rather all (or part of) the 

population has to be taken into account (Thorpe 1995, p. 550). Several studies imply that 

relevant information can be extracted from single units in key areas associated with higher 

cognition. 

Although the role of the prefrontal cortex is difficult to characterize, it has been often 

associated with functions that play a crucial role in higher cognition and intelligent behavior. 

                                                           
6 This is an abstract and schematic characterization of energy optimization. See Attwell and Laughlin (2001) 
to understand how the biochemical variables that constitute the metabolic cost of neural signaling are 
involved. 



It is considered that its basic function is the representation and execution of new forms of 

organized goal-directed action. This main function depends on the so-called executive 

functions of the prefrontal cortex: planning, decision-making, working memory (the memory 

required for the performance of acts in the short term), preparatory set (the priming of sensory 

and motor neural structures for the performance of an act contingent on a prior event), and 

inhibitory control (Fuster 2015, ch. 1). 

What do we know about the prefrontal representations that subserve these functions? 

A relevant model affirms that prefrontal populations implement what has been called 

‘adaptive coding’. The central idea is that throughout much of prefrontal cortex the response 

properties of single neurons are highly adaptable. Any given cell has the potential to change 

its tuning properties. In a particular task context, many cells become tuned to code 

information that is specifically relevant to this task (e.g., Duncan 2001, Woolgar et al. 2011, 

Stokes et al. 2013). A second and related aspect of prefrontal cells is mixed selectivity (MS). 

The firing patterns of individual MS neurons are modulated by each of multiple task 

dimensions. Prefrontal cells often code some combination of sensory stimuli, task rule and 

motor response which are relevant for a task being performed (see Fusi et al. 2016).  

These aspects of prefrontal representations (adaptive coding and mixed selectivity) 

are not related to neural coding but rather only to neural information.  The facts that prefrontal 

cells can change the information that they carry and that they can represent many task-

relevant features at the same time do not inform us per se about which response properties 

carry this information, i.e., which code they implement. However, physiological studies 

aimed at characterizing these properties of prefrontal information processing do reveal 

something about prefrontal codes. In these studies, the relevant information can be very often 

decoded from single cells (e.g., Freedman et al. 2001, Rigotti et al. 2013). As we saw, this is 

possible only if a selective code is employed. These findings suggest that prefrontal codes 

are selective and therefore they are not determined solely by the general demands of 

minimizing metabolic cost and maximizing informational capacity. An additional demand 

may preclude the implementation of a distributed code.   

 It is relevant to mention that the same point applies to another neural structure which 

is also crucial for higher cognition. The hippocampus is often considered the site of different 

forms of declarative memory (e.g., semantic and episodic memory) and also contributes to 



spatial navigation. It is known that information about different domains can be decoded from 

individual hippocampal cells (Eichenbaum 2016).  The classic study by O’Keefe & 

Dostrovsky (1971) showed that different neurons in the hippocampus of a rat constitute a 

spatial map in which each neuron responded solely or maximally when it was situated in a 

particular part of a platform facing in a particular direction. Recent evidence shows that there 

are also hippocampal ‘time cells’, each of which fires in sequence when an animal is at a 

particular moment in a temporally structured experience (Manns et al. 2007, Pastalkova et al 

2008, Gill et al. 2011, McDonald et al. 2011. See Eichenbaum 2014 for a recent review).  

Also, in a task where choice performance is guided by odor cues and not their spatial 

locations, hippocampal individual cells were selective for specific odors (Muzzio et al., 2009) 

Of course, the fact that non-sensory areas implement selective coding does not imply 

that they use modal codes. Perhaps the additional demand that motivates using a selective 

(instead of a distributed) code is non-sensory. It has been argued that these codes are 

determined by the second kind of amodal demand I mentioned (i.e. a demand imposed by a 

specific but non-sensory task). For instance, Marr (1971) suggested that the non-overlapping 

representations of selective coding are useful for fast learning tasks performed by episodic 

memory. The main idea is that when memory representations overlap, new learned memories 

will often interfere with old memories. More recently, Bowers et al. (2014) argued that 

learning tasks performed by short-term memory (STM) in the cortex require selective coding 

for co-activating multiple representations at the same time. The basic claim is that when we 

represent more than one condition by activating at the same time the activity patterns that 

represent each condition, distributed codes will often generate ambiguities. We often cannot 

decode the different conditions when the patterns are blended together (Figure 2). This is the 

so-called superposition catastrophe (Von der Malsburg, 1986). Bowers et al. (2014) showed 

that a recurrent Parallel Distributed Processing (PDP) model trained to co-activate and recall 

multiple words at the same time succeeded by learning highly selective letter and word codes. 

They claim that this could explain the selective coding of neurons in cortex given that the 

cortex supports STM in various domains (Cowan, 2001). 



 

 

Figure 2. Adapted from Bowers et al. (2014). Each 1 and 0 represents an active or inactive cell, respectively. 

Rows represent the population response to each stimulus. The population implements a distributed code. The two bottom 

rows represent conjunctions of conditions by simultaneously activating the components that represent each condition. The 

resulting patterns are ambiguous. 

 

 If this hypothesis was correct, selective codes in non-perceptual areas would be the 

result of a demand imposed by a non-sensory task and therefore could be considered amodal. 

However, the mentioned evidence is far from conclusive7. A first problem is that PDP models 

are not intended to be biologically realistic. Plaut and McClelland (2010) have pointed out 

that, traditionally, the primary goal of the PDP approach is accounting for behavioral data. 

These models are aimed at reproducing human performance in cognitive tasks as it occurs in 

real time and how performance changes over the course of normal and abnormal development 

and in adulthood. Neural verisimilitude is not a priority. Moreover, there are specific aspects 

of the PDP architecture that seem to undermine its biological plausibility, such as 

backpropagation. Bowers himself has criticized PDP models on the basis that theorists in the 

PDP tradition often claim that single hidden units in PDP networks are uninterpretable, which 

                                                           
7 I am indebted to an anonymous reviewer for pointing out the following shortcomings of Bower’s proposal. 
I will suggest below that these are not irresoluble problems but only difficulties that call for further 
theoretical and experimental developments. 



is inconsistent with neurophysiological data from cortical recordings (Bowers 2009, 2010). 

Therefore, it seems that more work has to be done in order to present a biologically plausible 

characterization of the computations that relate learning task demands with selective coding. 

Lately, biological plausibility has become a more central issue for theorists working in the 

PDP tradition. It has been pointed out that new methodologies used in cognitive neuroscience 

(such as multivariate pattern analysis and representational similarity analysis) capture 

insights derived from PDP models.  Also, observations from neuroscience are now being 

used to constrain the architecture of simulated neural network models (Rogers & McClelland 

2014).  

A second problem is that, under some conditions, distributed codes can avoid the 

superposition catastrophe. Critically, in both of the two simulations proposed by Bowers et 

al. (2014) the models successfully recalled lists of three words relying on few localist codes. 

His model implies that the number of local representations increases only when the list (i.e., 

the number of conditions that are simultaneously represented) is longer. This finding suggests 

that distributed codes have some limited capacity to overcome the superposition catastrophe. 

In this vein, Botvinick and Plaut (2006) proposed a recurrent PDP model of immediate serial 

recall that succeeded in avoiding the superposition catastrophe with distributed codes and 

could support short-term memory. Of course, distributed solutions only work under certain 

conditions (see also Bowers et al. 2016). However, in order to claim that selective codes in 

episodic and short-term memory result from this constraint one should offer a precise 

characterization of these conditions and determine whether these are met by the relevant 

learning tasks.  

To summarize, I described two lines of investigation that can be used to claim that 

higher cognitive areas use amodal codes. The argument based on Bowers et al. (2014) seems 

more plausible than the one based on Atwell and Laughlin (2001) because only the former is 

consistent with neurophysiological data from prefrontal and hippocampal recordings. 

However, the evidence for amodal selective codes is inconclusive. In order to further explore 

his proposal there are at least two questions that should be answered. In the first place, it must 

be determined whether the studied neural structures exhibit relevant similarities with PDP 

models or, alternatively, whether biologically plausible PDP models also produce selective 

codes during the relevant learning tasks. In the second place, it should be ascertained whether 



the specific conditions met by the relevant learning tasks (number of conditions represented, 

number of components, list length, etc.)  are those that make it impossible to provide a 

distributed solution to the superposition problem.  An alternative possibility is that selective 

coding is not required at all by memory learning tasks but is rather the result of specific 

demands imposed upstream by sensory processing. In the next section I will explore a line 

of investigation that seeks to characterize the codes underlying efficient perceptual 

processing.  

 

5.2. Modal codes  

A long-standing hypothesis affirms that the visual system implements sparse coding in order 

to satisfy special perceptual demands. Classic theoretical work suggests that response 

properties of neurons in the early visual system are the result of properties of the organism’s 

visual environment. The images received by the retina when viewing the natural world have 

a relatively regular statistical structure, which arises from the contiguous structure of objects 

and surfaces in the environment (Olshausen & Field 2004). Attneave (1954) and Barlow 

(1961) proposed that visual neurons are adapted (through evolutionary and developmental 

processes) to represent these statistical properties.  

Barlow (1961) hypothesized that early sensory neurons are able to remove statistical 

redundancy in the sensory input by representing only the signals that occur most frequently 

in the natural environment. Many theorists have subsequently claimed that the sparse 

representations that capture this statistical structure have the same receptive field properties 

as simple-cells in primary visual cortex (e.g, Field 1987, Olshausen & Field 1996, Bell & 

Sejnowski 1997, van Hateren & van der Schaaf 1998, van Hateren & Ruderman 1998 and 

Hyvarinen & Hoyer 2000).  Some of the studies advanced by these authors show that after 

being trained in detecting natural images, sets of model cells only respond to properties that 

typically occur in those images. Therefore, these sets can represent any given image by using 

a small number of active units (i.e. by using a sparse code). Crucially, these studies revealed 

that the receptive fields of trained units resemble those of visual cortical cells. Both are 

spatially localized, oriented, and bandpass (i.e., selective to spatial structure at a particular 

scale). This suggests that visual systems actually implement this coding strategy. More 

recently, it has been suggested that sparse coding may reflect a general principle of sensory 



processing across sensory modalities. This strategy has been studied not only in vision, but 

also in audition (DeWeese et al. 2003), and olfaction (Perez-Orive et al. 2002; Stopfer 2007).  

Although the similarity between trained artificial units and cortical cells supports the 

hypothesis that sensory systems implement a sparse code, different attempts have been made 

to provide more direct evidence. Ideally, the best way to determine the implementation of a 

sparse code is by recording (often with electrode arrays) simultaneously from the different 

units in a population and assessing the average number of units that respond to each image 

in a relevant stimulus set. This measure is what is known as ‘population sparseness’. Given 

that the technical limitations of electrode arrays make it difficult to record simultaneously 

from all of the units in large populations, population sparseness is often measured by using a 

different property known as lifetime sparseness. This is a measure of the responses of 

individual neurons to many stimuli from a given set. A cell with high lifetime sparseness 

responds to very few stimuli from a given set whereas a population with high population 

sparseness is one in which very few cells are activated in response to each stimulus (Willmore 

& Tolhurst 2001).  

Measuring lifetime sparseness is supposed to be an adequate way to determine 

population sparseness because both characterize the ‘peakedness’ of a neural response. This 

alleged connection between lifetime and population sparseness is useful for our debate 

because lifetime sparseness is closely related to selectivity. We saw that a selective 

representation is only activated by one item from a stimulus set (it is not part of the 

representation of different stimuli). This means that it has very high lifetime sparseness (see 

Bowers 2010). We know that responses in sensory systems are selective. For instance, 

neurophysiological studies showed that as one progresses along the ventral stream of the 

visual system, individual neurons become selective for increasingly complex stimuli, from 

spots of light and oriented bars in early visual areas to parts of borders in intermediate areas 

and complex objects and faces in higher visual areas (Mély & Serre 2017). We also know 

that higher cognitive structures (such as the PFC or the hippocampus) have selective units. If 

selectivity is a reliable indicator of high population sparseness then it would seem that sparse 

codes are implemented in perceptual systems and preserved in higher cognitive areas. This 

idea could be used to support the grounded view.  



Nevertheless, Willmore et al. (2011) showed that lifetime and population sparseness 

are only related under very special conditions (namely, only if neural responses are 

independent and identically distributed) and that these conditions are not met by visual 

populations. Lifetime sparseness does not imply population sparseness. I already mentioned 

that selectivity and (population) sparseness are independent: a population in which all cells 

are selective for the same stimulus will have high lifetime sparseness (they only fire in the 

presence of that stimulus) but low population sparseness (they all fire in the presence of the 

stimulus). Therefore, lifetime sparseness cannot be used to show either that sensory systems 

implement sparse codes or that sparse codes are preserved in areas dedicated to higher 

cognition. 

Fortunately, the relatively recent development of optical techniques has provided the 

necessary tools to overcome the technical limitations of electrode arrays. Transcranial two-

photon microscopy (TPM) is a very powerful fluorescence imaging technique that can be 

applied to living tissue up to about 1 mm in depth and at a spatial resolution of less than 1 

μm (e.g., Ustione & Piston 2011). More importantly, two-photon imaging can reach a very 

high spatial density, recording the activity of hundreds of neurons in small volumes of the 

visual cortex. This means that TPM can be used to directly measure population sparseness. 

In a recent study Froudarakis et. al (2014) used TPM to record the activity of nearly all of 

the neurons in small volumes of the visual cortex in mice and directly detect high population 

sparseness. This kind of study provides very solid evidence for sparse coding in sensory areas. 

Additionally, they found that population sparseness was higher for natural images than for 

control movies in which relevant high-order statistical information was removed. This 

suggests that sparse codes are not only implemented by visual areas but also correlated with 

the statistical properties of natural visual signals.  

These findings suggest two ways in which the grounded approach can be explored. 

In the first place, a grounded hypothesis can be formulated in terms of sparseness. Sparse 

codes are modal because they are the result of constraints imposed by sensory processing. 

Therefore, grounded theorists can predict that codes employed by neural structures dedicated 

to higher cognition preserve sparseness. To the best of my knowledge, sparseness has not yet 

been studied in higher cognitive areas. However, we saw this is now technically possible. 

Fluorescence techniques could be used in order to measure population sparseness, for 



instance, in prefrontal and hippocampal structures. A second possibility is to evaluate the 

idea that selectivity contributes in some way to efficient sensory processing. As I mentioned, 

we know that neural responses in sensory and non-sensory systems are selective. However, 

the parameter that is known to optimize sensory processing (population sparseness) is 

independent of selectivity (or lifetime sparseness) and the contribution of the later to 

perception is still not well understood (Willmore et al. 2011). What we learnt from Attwell 

and Laughlin’s argument is that selective codes are very expensive. Therefore, it seems 

plausible that there is some constraint forcing the implementation of a selective strategy. The 

question is whether this constraint is unique to sensory processing.   The grounded view could 

be supported by showing that selective codes satisfy some sensory demand.   

There is a final question that is relevant for understanding how the efficient coding 

framework shapes the debate on grounded cognition: What is the relation between the amodal 

and grounded predictions about neural coding? I mentioned that the grounded view would be 

vindicated if it is found that sparse codes are preserved in areas dedicated to higher cognition 

and that selectivity is the result of demands imposed by sensory tasks. In turn, the amodal 

view would be supported by evidence that codes for higher cognition are not sparse and that 

their selectivity is the result of non-sensory demands. However, we saw that selectivity and 

sparseness are not incompatible. Therefore, grounded and amodal predictions could be both 

confirmed. It could be the case that central codes preserve sparseness and that their selectivity 

is the result of non-sensory demands. If this was the case, the evidence would support other 

positions that already have an important place in the debate.  

Hybrid and pluralist views claim that higher cognition requires different kinds of 

structures (Dove 2009, Lambon Ralph et al. 2010, Reilly et al. 2016, Shallice & Cooper 2013, 

Zwaan 2014). These approaches are usually classified as hybrid or pluralist, depending on 

the relation they postulate between these structures. Hybrid theories claim that individual 

concepts are a combination of different types of structures whereas pluralist theories claim 

that each category is represented by different structures and each of them constitutes an 

independent concept (Machery 2009, Weiskopf 2009). An efficient coding version of a 

hybrid view could be that individual neural representations in higher cognitive areas are both 

sparse and selective (and sparseness is the result of a sensory demand whereas selectivity is 

not). That is, they have a modal and an amodal aspect. In turn, an efficient coding pluralist 



view could be that some of these structures are selective but not sparse and others are sparse 

but not selective. These considerations show that the possible predictions about format that 

can be made by using the efficient coding framework are rich enough to characterize the 

different positions within the debate.  

 

5. Conclusion 

I have argued that a substantial and empirically plausible version of the grounded approach 

affirms that concepts are structures with modal format situated outside perceptual systems. 

Elaborating on a suggestion advanced by grounded theorists, I proposed that modal codes are 

those that were developed or adapted to satisfy specific informational demands imposed by 

sensory tasks. I showed that the efficient coding framework can be used to identify modal or 

amodal codes at the neural level, therefore making the debate on format empirically 

meaningful. 

    A first approximation to the efficient coding literature reveals that current models and 

physiological data do not provide conclusive support for or against the grounded view. 

However, they can be used to articulate predictions that grounded and amodal approaches 

can make regarding neural coding and specify the experimental and theoretical developments 

that must be advanced in order to confirm these predictions. Regarding the amodal view, a 

plausible hypothesis is that non-sensory neural structures dedicated to episodic and short-

term memory developed selective codes in order to satisfy demands imposed by learning 

tasks. I suggested that this proposal is appealing because selective coding seems ubiquitous 

in brain areas dedicated to higher cognition. However, further experimental research is 

required in order to show that the proposed PDP models are actually implemented by the 

relevant neural structures and to determine whether the tasks performed by these structures 

meet the conditions that make a distributed solution to the superposition problem impossible.   

 Regarding the grounded view, a promising proposal is that sparse codes in sensory 

systems evolved to respond to the statistical structure of their input signals. I mentioned that 

there is solid evidence both for the fact that sensory systems implement sparse codes and that 

sparse codes optimize the representation of sensory information. In this case, what is required 

is to determine whether downstream areas dedicated to higher cognition preserve sparseness. 

A different approach would be to determine whether the property that we know to be shared 



by perceptual and non-perceptual codes (selectivity) plays a significant role in efficient 

sensory processing.  

  The fact that the efficient coding framework can be used to formulate empirically 

testable hypothesis about modal and amodal format motivates the introduction of the 

literature on neural coding into the discussion on grounded cognition. Efficient coding 

constitutes a prolific framework for thinking about how format is implemented at the neural 

level and how it is related to information processing.  
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