3,950 research outputs found

    Using fast and accurate simulation to explore hardware/software trade-offs in the multi-core era

    Get PDF
    Writing well-performing parallel programs is challenging in the multi-core processor era. In addition to achieving good per-thread performance, which in itself is a balancing act between instruction-level parallelism, pipeline effects and good memory performance, multi-threaded programs complicate matters even further. These programs require synchronization, and are affected by the interactions between threads through sharing of both processor resources and the cache hierarchy. At the Intel Exascience Lab, we are developing an architectural simulator called Sniper for simulating future exascale-era multi-core processors. Its goal is twofold: Sniper should assist hardware designers to make design decisions, while simultaneously providing software designers with a tool to gain insight into the behavior of their algorithms and allow for optimization. By taking architectural features into account, our simulator can provide more insight into parallel programs than what can be obtained from existing performance analysis tools. This unique combination of hardware simulator and software performance analysis tool makes Sniper a useful tool for a simultaneous exploration of the hardware and software design space for future high-performance multi-core systems

    BEEBS: Open Benchmarks for Energy Measurements on Embedded Platforms

    Full text link
    This paper presents and justifies an open benchmark suite named BEEBS, targeted at evaluating the energy consumption of embedded processors. We explore the possible sources of energy consumption, then select individual benchmarks from contemporary suites to cover these areas. Version one of BEEBS is presented here and contains 10 benchmarks that cover a wide range of typical embedded applications. The benchmark suite is portable across diverse architectures and is freely available. The benchmark suite is extensively evaluated, and the properties of its constituent programs are analysed. Using real hardware platforms we show case examples which illustrate the difference in power dissipation between three processor architectures and their related ISAs. We observe significant differences in the average instruction dissipation between the architectures of 4.4x, specifically 170uW/MHz (ARM Cortex-M0), 65uW/MHz (Adapteva Epiphany) and 88uW/MHz (XMOS XS1-L1)

    Statistical Reliability Estimation of Microprocessor-Based Systems

    Get PDF
    What is the probability that the execution state of a given microprocessor running a given application is correct, in a certain working environment with a given soft-error rate? Trying to answer this question using fault injection can be very expensive and time consuming. This paper proposes the baseline for a new methodology, based on microprocessor error probability profiling, that aims at estimating fault injection results without the need of a typical fault injection setup. The proposed methodology is based on two main ideas: a one-time fault-injection analysis of the microprocessor architecture to characterize the probability of successful execution of each of its instructions in presence of a soft-error, and a static and very fast analysis of the control and data flow of the target software application to compute its probability of success. The presented work goes beyond the dependability evaluation problem; it also has the potential to become the backbone for new tools able to help engineers to choose the best hardware and software architecture to structurally maximize the probability of a correct execution of the target softwar

    Static analysis of energy consumption for LLVM IR programs

    Get PDF
    Energy models can be constructed by characterizing the energy consumed by executing each instruction in a processor's instruction set. This can be used to determine how much energy is required to execute a sequence of assembly instructions, without the need to instrument or measure hardware. However, statically analyzing low-level program structures is hard, and the gap between the high-level program structure and the low-level energy models needs to be bridged. We have developed techniques for performing a static analysis on the intermediate compiler representations of a program. Specifically, we target LLVM IR, a representation used by modern compilers, including Clang. Using these techniques we can automatically infer an estimate of the energy consumed when running a function under different platforms, using different compilers. One of the challenges in doing so is that of determining an energy cost of executing LLVM IR program segments, for which we have developed two different approaches. When this information is used in conjunction with our analysis, we are able to infer energy formulae that characterize the energy consumption for a particular program. This approach can be applied to any languages targeting the LLVM toolchain, including C and XC or architectures such as ARM Cortex-M or XMOS xCORE, with a focus towards embedded platforms. Our techniques are validated on these platforms by comparing the static analysis results to the physical measurements taken from the hardware. Static energy consumption estimation enables energy-aware software development, without requiring hardware knowledge

    Exploiting Fine-Grain Concurrency Analytical Insights in Superscalar Processor Design

    Get PDF
    This dissertation develops analytical models to provide insight into various design issues associated with superscalar-type processors, i.e., the processors capable of executing multiple instructions per cycle. A survey of the existing machines and literature has been completed with a proposed classification of various approaches for exploiting fine-grain concurrency. Optimization of a single pipeline is discussed based on an analytical model. The model-predicted performance curves are found to be in close proximity to published results using simulation techniques. A model is also developed for comparing different branch strategies for single-pipeline processors in terms of their effectiveness in reducing branch delay. The additional instruction fetch traffic generated by certain branch strategies is also studied and is shown to be a useful criterion for choosing between equally well performing strategies. Next, processors with multiple pipelines are modelled to study the tradeoffs associated with deeper pipelines versus multiple pipelines. The model developed can reveal the cause of performance bottleneck: insufficient resources to exploit discovered parallelism, insufficient instruction stream parallelism, or insufficient scope of concurrency detection. The cost associated with speculative (i.e., beyond basic block) execution is examined via probability distributions that characterize the inherent parallelism in the instruction stream. The throughput prediction of the analytic model is shown, using a variety of benchmarks, to be close to the measured static throughput of the compiler output, under resource and scope constraints. Further experiments provide misprediction delay estimates for these benchmarks under scope constraints, assuming beyond-basic-block, out-of-order execution and run-time scheduling. These results were derived using traces generated by the Multiflow TRACE SCHEDULING™(*) compacting C and FORTRAN 77 compilers. A simplified extension to the model to include multiprocessors is also proposed. The extended model is used to analyze combined systems, such as superpipelined multiprocessors and superscalar multiprocessors, both with shared memory. It is shown that the number of pipelines (or processors) at which the maximum throughput is obtained is increasingly sensitive to the ratio of memory access time to network access delay, as memory access time increases. Further, as a function of inter-iteration dependency distance, optimum throughput is shown to vary nonlinearly, whereas the corresponding Optimum number of processors varies linearly. The predictions from the analytical model agree with published results based on simulations. (*)TRACE SCHEDULING is a trademark of Multiflow Computer, Inc
    corecore