23,347 research outputs found

    Characterising Probabilistic Processes Logically

    Full text link
    In this paper we work on (bi)simulation semantics of processes that exhibit both nondeterministic and probabilistic behaviour. We propose a probabilistic extension of the modal mu-calculus and show how to derive characteristic formulae for various simulation-like preorders over finite-state processes without divergence. In addition, we show that even without the fixpoint operators this probabilistic mu-calculus can be used to characterise these behavioural relations in the sense that two states are equivalent if and only if they satisfy the same set of formulae.Comment: 18 page

    Time Resolution Dependence of Information Measures for Spiking Neurons: Atoms, Scaling, and Universality

    Full text link
    The mutual information between stimulus and spike-train response is commonly used to monitor neural coding efficiency, but neuronal computation broadly conceived requires more refined and targeted information measures of input-output joint processes. A first step towards that larger goal is to develop information measures for individual output processes, including information generation (entropy rate), stored information (statistical complexity), predictable information (excess entropy), and active information accumulation (bound information rate). We calculate these for spike trains generated by a variety of noise-driven integrate-and-fire neurons as a function of time resolution and for alternating renewal processes. We show that their time-resolution dependence reveals coarse-grained structural properties of interspike interval statistics; e.g., τ\tau-entropy rates that diverge less quickly than the firing rate indicate interspike interval correlations. We also find evidence that the excess entropy and regularized statistical complexity of different types of integrate-and-fire neurons are universal in the continuous-time limit in the sense that they do not depend on mechanism details. This suggests a surprising simplicity in the spike trains generated by these model neurons. Interestingly, neurons with gamma-distributed ISIs and neurons whose spike trains are alternating renewal processes do not fall into the same universality class. These results lead to two conclusions. First, the dependence of information measures on time resolution reveals mechanistic details about spike train generation. Second, information measures can be used as model selection tools for analyzing spike train processes.Comment: 20 pages, 6 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/trdctim.ht

    Contributions to the relativistic mechanics of continuous media

    Get PDF
    This is a translation from German of an article originally published inProceedings of the Mathematical-Natural Science Section of the Mainz Academy of Science and Literature, Nr. 11, 1961 (pp. 792–837) (printed by Franz Steiner and Co, Wiesbaden), which is Paper IV in the series ldquoExact Solutions of the Field Equations of General Relativity Theoryrdquo by Pascual Jordan, Jürgen Ehlers, Wolfgang Kundt and Rainer K. Sachs. The translation has been carried out by G. F. R. Ellis (Department of Applied Mathematics, University of Cape Town), assisted by P. K. S. Dunsby, so that this outstanding review paper can be readily accessible to workers in the field today. As far as possible, the translation has preserved both the spirit and the form of the original paper. Despite its age, it remains one of the best reviews available in this area

    Final state interaction in the production of heavy unstable particles

    Full text link
    We make an attempt to discuss in detail the effects originating from the final state interaction in the processes involving production of unstable elementary particles and their subsequent decay. Two complementary scenarios are considered: the single resonance production and the production of two resonances. We argue that part of the corrections due to the final state interaction can be connected with the Coulomb phases of the involved charge particles; the presence of the unstable particle in the problem makes the Coulomb phase ``visible''. It is shown how corrections due to the final state interaction disappear when one proceeds to the total cross-sections. We derive one-loop non-factorizable radiative corrections to the lowest order matrix element of both single and double resonance production. We discuss how the infrared limit of the theories with the unstable particles is modified. In conclusion we briefly discuss our results in the context of the forthcoming experiments on the W+WW^+W^- and the ttˉt\bar t production at LEP 22 and NLC.Comment: 33 pages, latex, 6 figures (added), version accepted for publication in Nuc. Phys. B, substantial revisio

    Divergence theorems in path space III: hypoelliptic diffusions and beyond

    Get PDF
    Let xx denote a diffusion process defined on a closed compact manifold. In an earlier article, the author introduced a new approach to constructing admissible vector fields on the associated space of paths, under the assumption of ellipticity of xx. In this article, this method is extended to yield similar results for degenerate diffusion processes. In particular, these results apply to non-elliptic diffusions satisfying H\"ormander's condition

    Large distance behaviour of light cone operator product in perturbative and nonperturbative QCD regimes

    Full text link
    We evaluate the coordinate space dependence of the matrix elements of the commutator of the electromagnetic and gluon currents in the vicinity of the light-cone but at large distances within the parton model, DGLAP, the resummation approaches to the small x behaviour of DIS processes, and for the Unitarity Bound. We find that an increase of the commutator with relative distance pypy as (py)f(py,y2=t2r2)\propto (py)f(py,y^2=t^2-r^2) is the generic property of QCD at small but fixed space-time interval y2=t2r2y^2=t^2-r^2 in perturbative and nonperturbative QCD regimes. We explain that the factor pypy follows within the dipole model (QCD factorization theorem) from the properties of Lorents transformation. The increase of f(r)f(r) disappeares at central impact parameters if cross section of DIS may achieve the Unitarity Limit. We argue that such long range forces are hardly consistent with thermodynamic equilibrium while a Unitarity Limit may signal equilibration. Possible implications of this new long range interaction are briefly discussed.Comment: 23 page

    The Athena Astrophysical MHD Code in Cylindrical Geometry

    Full text link
    A method for implementing cylindrical coordinates in the Athena magnetohydrodynamics (MHD) code is described. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we present a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web

    Astrophysical Weighted Particle Magnetohydrodynamics

    Full text link
    This paper presents applications of weighted meshless scheme for conservation laws to the Euler equations and the equations of ideal magnetohydrodynamics. The divergence constraint of the latter is maintained to the truncation error by a new meshless divergence cleaning procedure. The physics of the interaction between the particles is described by an one-dimensional Riemann problem in a moving frame. As a result, necessary diffusion which is required to treat dissipative processes is added automatically. As a result, our scheme has no free parameters that controls the physics of inter-particle interaction, with the exception of the number of the interacting neighbours which control the resolution and accuracy. The resulting equations have the form similar to SPH equations, and therefore existing SPH codes can be used to implement the weighed particle scheme. The scheme is validated in several hydrodynamic and MHD test cases. In particular, we demonstrate for the first time the ability of a meshless MHD scheme to model magneto-rotational instability in accretion disks.Comment: 27 pages, 24 figures, 1 column, submitted to MNRAS, hi-res version can be obtained at http://www.strw.leidenuniv.nl/~egaburov/wpmhd.pd

    Equivalence-Checking on Infinite-State Systems: Techniques and Results

    Full text link
    The paper presents a selection of recently developed and/or used techniques for equivalence-checking on infinite-state systems, and an up-to-date overview of existing results (as of September 2004)
    corecore