323 research outputs found

    Chaotic communications over radio channels

    Get PDF

    The importance of choosing attractors for optimizing chaotic communications

    Get PDF

    The role of synchronization in digital communications using chaos - part III: performance bounds for correlation receivers

    Get PDF
    For pt. II, see ibid., vol. 45, p. 1129-40 (1998). In a digital communications system, data is transmitted from one location to another by mapping bit sequences to symbols, and symbols to sample functions of analog waveforms. The analog waveform passes through a bandlimited (possibly time-varying) analog channel, where the signal is distorted and noise is added. In a typical conventional system, the analog sample functions sent through the channel are weighted sums of one or more sinusoids, called basis functions; in a chaotic communications system, the sample functions are segments of chaotic waveforms. This three-part paper shows in a tutorial manner how the theory of conventional telecommunications systems can be applied to chaotic modulation schemes. In addition, it discusses the latest results in the field of chaotic communications. In Part III, examples are given of chaotic communications schemes with and without synchronization, and the performance of correlator-based systems is evaluated in the context of noisy, bandlimited channel

    Nonlinear behaviors of second-order digital filters with two’s complement arithmetic

    Get PDF
    The main contribution of our work is the further exploration of some novel and counter-intuitive results on nonlinear behaviors of digital filters and provides some analytical analysis for the account of our partial results. The main implications of our results is: (1) one can select initial conditions and design the filter parameters so that chaotic behaviors can be avoided; (2) one can also select the parameters to generate chaos for certain applications, such as chaotic communications, encryption and decryption, fractal coding, etc; (3) we can find out the filter parameters when random-like chaotic patterns exhibited in some local regions on the phase plane by the Shannon entropies

    Securing and Auto-Synchronizing Communication over Free-Space Optics Using Quantum Key Distribution and Chaotic Systems

    Get PDF
    Free-Space Optical (FSO) communication provides very large bandwidth, relatively low cost, low power, low mass of implementation, and improved security when compared to conventional Free-Space Radio-Frequency (FSRF) systems. In this paper, we demonstrate a communication protocol that demonstrates improved security and longer-range FSO communication, compared to existing FSO security techniques, such as N-slit interferometers. The protocol integrates chaotic communications with Quantum Key Distribution (QKD) techniques. A Lorenz chaotic system, which is inherently secure and auto-synchronized, is utilized for secure data communications over a classical channel, while QKD is used to exchange crucial chaotic system parameters over a secure quantum channel. We also provide a concept of operations for a NASA mission combining chaotic communications and QKD operating synergistically in an end-to-end space communications link. The experimental simulation results and analysis are favorable towards our approach

    Chaotic communications with correlator receivers: theory and performance limits

    Get PDF
    This paper provides a review of the principles of chaotic digital communications using correlator receivers. Modulation schemes using one and two chaotic basis functions, as well as coherent and noncoherent correlation receivers, are discussed. The performance of differential chaos shift keying (DCSK) in multipath channels is characterized. Results are presented for DCSK with multiuser capability and multiple bits per symbol

    The role of synchronization in digital communications using chaos - Part II: Chaotic modulation and chaotic synchronization.

    Get PDF
    For pt. I see ibid., vol. 44, p. 927-36 (1997). In a digital communications system, data are transmitted from one location to another by mapping bit sequences to symbols, and symbols to sample functions of analog waveforms. The analog waveform passes through a bandlimited (possibly time-varying) analog channel, where the signal is distorted and noise is added. In a conventional system the analog sample functions sent through the channel are weighted sums of one or more sinusoids; in a chaotic communications system the sample functions are segments of chaotic waveforms. At the receiver, the symbol may be recovered by means of coherent detection, where all possible sample functions are known, or by noncoherent detection, where one or more characteristics of the sample functions are estimated. In a coherent receiver, synchronization is the most commonly used technique for recovering the sample functions from the received waveform. These sample functions are then used as reference signals for a correlator. Synchronization-based coherent receivers have advantages over noncoherent receivers in terms of noise performance, bandwidth efficiency (in narrow-band systems) and/or data rate (in chaotic systems). These advantages are lost if synchronization cannot be maintained, for example, under poor propagation conditions. In these circumstances, communication without synchronization may be preferable. The theory of conventional telecommunications is extended to chaotic communications, chaotic modulation techniques and receiver configurations are surveyed, and chaotic synchronization schemes are describe
    • …
    corecore