
                          Homer, M. E., Hogan, S. J., Di Bernardo, M., & Williams, C. (2004). The
importance of choosing attractors for optimizing chaotic communications.
IEEE Transactions on Circuits and Systems II: Express Briefs, 51(10), 511 -
516. 10.1109/TCSII.2004.835559

Link to published version (if available):
10.1109/TCSII.2004.835559

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

http://dx.doi.org/10.1109/TCSII.2004.835559
http://research-information.bristol.ac.uk/en/publications/the-importance-of-choosing-attractors-for-optimizing-chaotic-communications(c5d7df9d-61f3-4c07-9866-0b10e866a678).html
http://research-information.bristol.ac.uk/en/publications/the-importance-of-choosing-attractors-for-optimizing-chaotic-communications(c5d7df9d-61f3-4c07-9866-0b10e866a678).html


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 51, NO. 10, OCTOBER 2004 511

The Importance of Choosing Attractors for
Optimizing Chaotic Communications

Martin E. Homer, S. John Hogan, Mario di Bernardo, and Chris Williams

Abstract—In this brief, we consider methods to improve the per-
formance of chaotic communication schemes. We study a system
using a receiver which explicitly includes the presence of noise in
the channel. We show how the choice of chaotic dynamical system
generating the transmitted signal is crucial. We observe a large
variation in bit error rate performance of the system as parame-
ters in the maps are changed, and we propose a simple explanation
for this variation.

Index Terms—Bit error rate (BER), chaotic communication, op-
timal estimator, piecewise smooth systems.

I. INTRODUCTION

FOLLOWING the discovery that two chaotic oscillators
can be synchronized [1], there has been a considerable

amount of speculation that chaotic dynamics could lead to the
possibility of secure low power communication systems which
are easy to build, and have low probability of interception
and detection [2]–[5]. In practice, the use of chaos in com-
munication systems has been limited because most schemes
based on synchronization perform poorly in the presence of
a distorting channel. Much recent work has concentrated in
improving chaotic communication schemes to degradation by
noise, band-pass filtering, attenuation, and parameter mismatch
[6]–[12].

Clearly, how noise affects a chaotic communication scheme
is vital. The most frequently used performance indicator for a
communication scheme is the bit error rate (BER); although
other measures, bandwidth or power efficiency for example,
must also be considered.

We consider a scheme using a receiver that is explicitly de-
signed to take account of channel distortion [13], and use piece-
wise-linear maps to generate the transmitted iterates. In par-
ticular, we show that the optimal BER performance of the op-
timal estimator scheme using the piecewise-linear maps is much
lower than that obtained by using skew tent maps, and observe a
wide variation in the BER performance of the system as param-
eters are varied in the piecewise-linear maps. Furthermore, we
provide an explanation for this wide variation in performance
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with reference to any distribution of channel noise or choice of
transmitter maps. This leads us to a method to reduce the BER
still further.

The brief is organized as follows. In Section II we describe
the notation used throughout the paper, review the synthesis
of the optimal estimator in Section III, and describe the piece-
wise-linear map used to generate the transmitted iterates in Sec-
tion IV. In Section V we consider the changes in the BER as
parameters of the transmitter map are varied. In Section VI we
provide an explanation for the differences in performance found
in Section V. Finally, we provide conclusions and suggest pos-
sible areas for further work in Section VII.

II. DEFINITIONS

We follow the notation of [13]. Suppose that we wish to
transmit an -ary symbol . We suppose that the
symbols are samples from a random variable . For simplicity
we shall assume a uniform distribution for , so that

(1)

The chaos-shift keying (CSK) method transmits strings of
iterates to represent one of the

possible symbols. The iterates are generated by one of
chaotic maps depending on the symbol to
be transmitted. Thus, to transmit the -ary symbol , the
transmitted string is

(2)

where denotes the -fold composition of the map . Each
string is generated by its first iterate . We assume that each
chaotic map has a unique stationary distribution, and that it can
be described by a density (true for a wide class of dynamical
systems: ergodic maps, for example, [14]). Thus the first iterates

can be modeled as samples from a random variable . The
random variable of first iterates given a particular transmitted
symbol, , is central to our study; its density function

is known as the invariant density or invariant measure [14].
We define to be the subset of for which . The in-
variant density is known analytically for some maps. It needs to
be computed numerically for others, for which efficient numer-
ical algorithms exist [15].

Upon transmission, the signal is degraded by noise in the
channel , with random variable , the components
of a realization of the noise are assumed to be identically
distributed, and independent of each other and the transmitted
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signal. The iterates that arrive at the receiver we label as , so
that

(3)

for some function , and hence, are samples from a random
variable . In the case of additive noise, we have

(4)

or for multiplicative noise

(5)

where is a diagonal matrix with entries
The goal of the communication system is to estimate the

transmitted symbol from the received signal ; that is, to find
a function

(6)

We shall review the construction of the function in the next
section.

III. SYNTHESIS OF THE OPTIMAL ESTIMATOR

In this brief, we shall use a receiver that minimizes the prob-
ability of a misdetetected symbol: the optimal estimator [13].
Given a received word it returns the most likely trans-
mitted symbol ; that is, the which maximizes

(7)

It is straightforward to show [13] that this is equivalent to finding
the that maximizes the probability density function (pdf) of

, , so

(8)

In the case of a two-symbol transmitter with , for
example, the optimal estimator reduces to

if
if

(9)

Now we find the received probability density functions in
terms of known distributions. Firstly [16]

(10)

where is the joint distribution function of ,
. Since for general random variables , and ,

(11)

we have that for additive noise

(12)

(13)

(14)

because the signal and noise are independent. Combining (10)
and (14) gives in terms of known density functions: the in-
variant density and the channel noise

(15)

Alternatively, if the noise is multiplicative, we have that

(16)

so

(17)

and hence, the joint density function is given by

(18)

(19)

(20)

(21)

where the vector is defined to be

(22)

Therefore, in the case of multiplicative noise

(23)

In this brief, we shall follow the common assumption that the
channel distortion is additive white Gaussian noise, with zero
mean and variance [17], in which case the pdf is given by

(24)

where is the th component of . However, the general
methods we discover are not restricted to this choice.

IV. CHOICE OF TRANSMITTER MAP

Having described the properties of the receiver, we now con-
sider the choice of the maps used to generate the transmitted
iterates. These maps are generally chosen from a limited range
of candidates: tent maps or shift maps, for example, which have
favorable stochastic properties, such as an analytical expression
for the invariant measure.

In this brief, we choose the transmitter map to be the piece-
wise-linear map

(25)

Piecewise smooth maps have shown to have several advantages
for use in a chaotic communication scheme [18]. Chaotic os-
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Fig. 1. Bifurcation structure of the piecewise-linear map (25). For � > 0,
shaded regions denote areas of stable periodic oscillations with period as
labeled, unshaded regions have chaotic dynamics.

Fig. 2. Bifurcation diagrams for the piecewise-linear map (25). Parameter
values: (a) � = 0:4, � = �8, (b) � = 0:4, � = �30, (c) � = 0:4, � = �40,
and (d) � = 0:4, � = 0:01.

cillations of piecewise smooth systems are generally robust to
changes of parameters [19]. More importantly, the piecewise-
linear map (25) has a wide range of possible dynamic behavior,
depending on the particular choice of the parameters , , and

, and we have a complete understanding of the behavior of the
map (25) for all values of the parameters [20].

The structure of the dynamics in parameter space is sum-
marized in Fig. 1, with sample bifurcation diagrams shown in
Fig. 2. For negative (25) has a single, stable fixed point for all

and . As increases through zero, however,
for parameter values in the shaded regions of Fig. 1, the single
stable fixed point bifurcates directly to a stable periodic point
with period 2 in region 2, period 3 in region 3, etc. [as shown in
Fig. 2(b)]. In the nonshaded regions, the stable fixed point bi-
furcates directly to a chaotic attractor as increases through 0
[as shown in Fig. 2(a) and 2(c)]. The structure of the chaotic at-
tractor varies too: it may be made up of any number of disjoint
bands [as in Fig. 2(c)], or may fill a single contiguous interval [as

Fig. 3. BER for 2-iterate, 2-symbol optimal estimator with transmitted iterates
generated by piecewise-linear map (� and +, with parameter values 1 and 2
respectively, as shown in Table I) and skew tent map (�). Optimal parameter
values for the piecewise-linear map denoted by �. Also shown for comparison
is the BER of a BPSK communication scheme (continuous line).

in Fig. 2(a)]. Most significantly of all, the boundaries between
all of these regions are known in analytic closed form [20].

Knowing exactly the boundaries of the chaotic regions in
space allows us with complete confidence to choose pa-

rameters at which the map is chaotic. There is no question,
as in many smooth dynamical systems, that we may acciden-
tally find a periodic window within a chaotic attractor, as the
chaos produced by the piecewise-linear map is robust. In the
next section, we show how varying the parameter values of the
piecewise-linear map (25) within the chaotic regions, produces
a significant variation in the performance of the communication
scheme.

V. BER PERFORMANCE

The standard performance measure for communication
schemes is the BER or probability of a misdetected symbol,
computed as a function of . is the symbol energy,
defined by

(26)

which may be rewritten as

(27)

(28)

using the assumption that the symbols are distributed uni-
formly in the transmitted message. is the noise spectral den-
sity; in the case of additive white Gaussian noise with zero mean
and variance

(29)

Fig. 3 shows BER plots for a 2-symbol 2-iterate optimal
estimator scheme, for various values of the symbol parameters

and , as reported in Table I. To produce
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TABLE I
VALUES OF THE PARAMETERS � , � AND � , � USED IN SIMULATIONS

Fig. 4. BER for 2-iterate (�) 8-iterate (+), and 16-iterate ( ), 2-symbol
optimal estimator, with transmitted iterates generated by piecewise-linear map
at parameter values 1 (as shown in Table I).

this graph, we vary the channel noise variance (and hence
), and observe the number of mis-detected symbols

by direct simulation. These results may also be computed by
evaluation of an explicit expression for the BER

(30)

derived in [21]; it is not restricted to any particular choice of
transmitter maps or distribution of noise in the channel. For
comparison, Fig. 3 also shows the BER performance achieved
by using skew tent maps to generated the transmitted iterates
[13].

The most important conclusion from Fig. 3 is that there is a
large variation in performance of the communication scheme as
the parameters and are varied. It is also clear that using the
piecewise-linear map gives a better BER performance than the
skew tent map.

While the BER performance of the optimal estimator scheme
is far from the result obtained from a conventional communi-
cation scheme, such as BPSK, we are only using two iterates
of the chaotic maps to characterize each transmitted symbol
(i.e., ). For larger , the BER improves substantially as

decreases. The BER curves for 2-iterate, 8-iterate, and
16-iterate, 2-symbol optimal estimator schemes (so , 8,
16 and ) for the piecewise-linear map are shown in Fig. 4.
We do not, however, note an optimal value in our simulations.

Using an optimization algorithm (Matlab routine fmin-
con),we can find parameter values which minimize the BER
(for fixed ). These values are

(31)

(32)

Fig. 5. Sketch plots of received probability density functions. The
BER increases as the residue integral, shown shaded, increases; so
BER(a) < BER(b) < BER(c).

(labeled 1 in Table I), and they give a BER considerably lower
than tent maps, as shown in Fig. 3. This computational opti-
mization is only possible because we have a complete under-
standing of the dynamics of the transmitter maps: we can pre-
scribe the boundaries of the chaotic regions in parameter space
analytically, we know that there will be no windows of period-
icity within the chaotic zones, and can even prescribe the type
of chaotic attractor. The parameter values found were the result
of constraining the optimization routine to the regions labeled
2 and 3 in Fig. 1. Several other regions were chosen for subse-
quent executions of the optimization routine, but no points with
lower BER were found.

We now wish to understand why these parameter values min-
imize the BER, and why there is such a large variation in the
performance of the communication scheme. We have investi-
gated simple quantities such as the Lyapunov exponents of the
transmitter map (25) in the neighborhood of the optimal param-
eter values, and found no obvious connection between the min-
imum of BER and the Lyapunov exponents. We now show how
the BER performance is, in fact, controlled by the attractor and
invariant measure of the transmitter map.

VI. EXPLANATION OF THE VARIATION IN BER

The variation in BER, observed by the numerical explorations
above, may be explained by considering the expression for the
BER of an optimal estimator scheme

(33)

as derived in [21].
To reduce the BER for fixed we must increase

(34)

by manipulating . Fig. 5 shows the effect of changing density
functions (in the case and ) in an idealized
scenario. The maximum value of is equal to , achieved if
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Fig. 6. Transmitted attractors (bits 0 and 1) for: (a) the piecewise-linear maps
at optimal parameter values and (b) skew tent maps.

and only if all the density functions are disjoint, as shown
in Fig. 5(a) (where ). As the density functions begin
to overlap, the value of decreases, since the parts of the
density functions that are not a maximum do not contribute
to the integral. The amount by which decreases is exactly
the integral over the non-maximum portions of the density
functions, shown shaded in Fig. 5. So to minimize BER, we
must minimize this residue integral over the non-maximum
portions of the .

So in order to explain the variation in BER, we must inves-
tigate ; given by (15) in the case of additive noise. In the
limit of zero additive noise, we have (where
is the Dirac delta function), and hence

(35)

Thus in the case of zero noise, the received density function is
just the transmitted attractor, weighted by the invariant measure.
For very small noise, these density functions become blurred,
but essentially look very similar to in the noise free case; the
structure of the attractors is not destroyed. Therefore, to reduce

the BER we must move the attractors further apart, or reduce
the invariant measure where they are close together.

We can now explain the large variation in BER, as the param-
eters of the chaotic transmitter maps change. Fig. 6 shows plots
of the transmitted attractors in the case of the piecewise-linear
map (at the optimal parameter values identified above) and skew
tent maps, and the corresponding invariant densities. They show
that, in the noise free case, the piecewise-linear density func-
tions intersect once, while the tent maps intersect twice. Thus,
in the noise free case, the piecewise-linear maps will provide su-
perior performance to skew tent maps. As noise is introduced,
the attractors will become diffused. This diffusion will cause an
increase in the BER, but since there will be more overlap in the
skew tent map case than for the piecewise-linear map, the latter
will give rise to superior BER performance.

It is also clear from this argument how to improve the BER
performance still further. If, for example, we modify the trans-
mitter map for symbol to be , then the intersection
at between the two attractors shown in Fig. 6(a) will be
removed, and so the residue integral should decrease, and the
BER reduced further.

Heuristically, the further apart the portions of transmitted at-
tractor with high measure, the lower BER. This is an attractive
conclusion, in that it is similar in spirit to ideas in conventional
communication theory, where to maximize discrimination be-
tween transmitted symbols, poles in a constellation diagram are
moved as far apart as possible.

VII. CONCLUSION

In this brief, we have considered the effect of changing the
chaotic transmitter of a chaotic communication scheme. We
use a receiver that explicitly includes the effect of channel
disturbance in its design. To generate the transmitted iterates
we choose a class of piecewise-linear maps whose dynamics
are completely understood.

We have shown that the choice of chaotic attractor is crucial in
determining BER performance. Furthermore, we have proposed
a simple mechanism for the observed variation of BER, in terms
of the transmitted attractors and invariant measure of the trans-
mitter system: the further apart portions of transmitted attractor
with high measure, the lower the BER. Our conclusion is not
restricted to any particular distribution of noise in the channel.

There are many possible areas for further work. Real com-
munication systems work in continuous, not discrete, time, and
it is important to ensure that these ideas are still applicable in
such a setting. The general idea of the optimal estimator should
remain the same; the received data will be in the form of a con-
tinuous function instead of a discrete vector, but this should not
present any problem to the method. Moreover, for a real-world
scheme, we must understand how the performance varies with
other, more realistic channels, perhaps tailoring the statistics of
the transmitted signal to the properties of the channel, leading
to a trade-off in performance versus efficiency. It is also impor-
tant to understand whether our improvement in BER is at the
expense of some other measure of performance such as band-
width efficiency, and how such quantities vary as the chaotic
system is changed.



516 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 51, NO. 10, OCTOBER 2004

REFERENCES

[1] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,”
Phys. Rev. Lett., vol. 8, pp. 821–824, 1990.

[2] C. Grebogi, Y. C. Lai, and S. Hayes, “Control and applications of chaos,”
Int. J. Bifurc. Chaos, vol. 7, pp. 2175–2197, 1997.

[3] P. M. Kennedy, R. Rovatti, and G. Setti, Chaotic Electronics in Telecom-
munications. Boca Raton, FL: CRC Press, 2000.

[4] G. Chen and M. J. Ogorzalec, “Theme issue on the control and synchro-
nization of chaos,” Int. J. Bifurc. Chaos, vol. 10, no. 3–4, 2000.

[5] M. Hasler, G. Mazzini, M. Ogorzalek, R. Rovatti, and G. Setti, “Scan-
ning the special issue—special issue on applications of nonlinear dy-
namics to electronic and information engineering,” Proc. IEEE, vol. 90,
pp. 631–640, 2002.

[6] M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K.
Yao, and A. Volkovskii, “Chaotic pulse position modulation: a robust
method of communicating with chaos,” IEEE Commun. Lett., vol. 4,
pp. 128–130, 2000.

[7] L. Kocarev, U. Parlitz, and R. Brown, “Robust synchronization of
chaotic systems,” Phys. Rev. E, vol. 61, pp. 3716–3720, 2000.

[8] A. J. Lawrance and G. Ohama, “Exact calculation of bit error rates in
communication systems with chaotic modulation,” IEEE Trans. Circuits
Syst. I, vol. 50, pp. 1391–1400, 2003.

[9] F. C. M. Lau and C. K. Tse, “Performance of chaos-based communica-
tion systems under the influence of coexisting conventional spread-spec-
trum systems,” IEEE Trans. Circuits Syst. I, vol. 50, pp. 1475–1481,
2003.

[10] G. Millerioux and J. Daafouz, “An observer-based approach for input-
independent global chaos synchronization of discrete-time switched sys-
tems,” IEEE Trans. Circuits Syst. I, vol. 50, pp. 1270–1279, 2003.

[11] G. Setti, R. Rovatti, and G. Mazzini, “Control of chaos statistics for op-
timization of ds-cdma systems,” Lecture Notes on Control Information
Science, vol. 292, pp. 295–319, 2003.

[12] M. Feki, B. Robert, G. Gelle, and M. Colas, “Secure digital communi-
cation using discrete-time chaos synchronization,” Chaos Solitons Frac-
tals, vol. 18, pp. 881–890, 2003.

[13] M. Hasler and T. Schimming, “Chaos communication over noisy chan-
nels,” Int. J. Bifurc. Chaos, vol. 10, pp. 719–735, 2000.

[14] J. L. McCauley, Chaos, Dynamics and Fractals: An Algorithmic Ap-
proach to Deterministic Chaos. Cambridge, U.K.: Cambridge Univ.
Press, 1993.

[15] J. H. B. Deane, P. Ashwin, D. C. Hamill, and D. J. Jefferies, “Calcula-
tion of the periodic spectral components in a chaotic DC-DC converter,”
IEEE Trans Circuits Systems I, vol. 46, pp. 1313–1319, 1999.

[16] G. R. Grimmett and D. Welsh, Probability an Introduction. Oxford,
U.K.: Clarendon, 1990.

[17] J. G. Proakis, Digital Communications. Boston, MA: McGraw-Hill,
2001.

[18] G. Millerioux and C. Mira, “Finite-time global chaos synchronization
for piecewise linear maps,” IEEE Trans. Circuits Syst. I, vol. 48, pp.
111–116, 2001.

[19] S. Banerjee, J. A. Yorke, and C. Grebogi, “Robust chaos,” Phys. Rev.
Lett., vol. 80, pp. 3049–3052, 1998.

[20] M. di Bernardo, M. I. Feigin, S. J. Hogan, and M. Homer, “Local anal-
ysis of C-bifurcations in n-dimensional piecewise-smooth dynamical
systems,” Chaos Solitons Fractals, vol. 10, pp. 1881–1908, 1999.

[21] M. Homer, “Bit error rate for the optimal estimator,” IEEE Trans. Cir-
cuits Syst. I, submitted for publication.


	toc
	The Importance of Choosing Attractors for Optimizing Chaotic Com
	Martin E. Homer, S. John Hogan, Mario di Bernardo, and Chris Wil
	I. I NTRODUCTION
	II. D EFINITIONS
	III. S YNTHESIS OF THE O PTIMAL E STIMATOR
	IV. C HOICE OF T RANSMITTER M AP

	Fig. 1. Bifurcation structure of the piecewise-linear map (25) .
	Fig. 2. Bifurcation diagrams for the piecewise-linear map (25) .
	Fig. 3. BER for 2-iterate, 2-symbol optimal estimator with trans
	V. BER P ERFORMANCE

	TABLE I V ALUES OF THE P ARAMETERS $\alpha_{0}$, $\beta_{0}$ AN
	Fig. 4. BER for 2-iterate $(\times)$ 8-iterate $(+)$, and 16-ite
	Fig. 5. Sketch plots of received probability density functions. 
	VI. E XPLANATION OF THE V ARIATION IN BER

	Fig. 6. Transmitted attractors (bits 0 and 1) for: (a) the piece
	VII. C ONCLUSION
	L. M. Pecora and T. L. Carroll, Synchronization in chaotic syste
	C. Grebogi, Y. C. Lai, and S. Hayes, Control and applications of
	P. M. Kennedy, R. Rovatti, and G. Setti, Chaotic Electronics in 
	G. Chen and M. J. Ogorzalec, Theme issue on the control and sync
	M. Hasler, G. Mazzini, M. Ogorzalek, R. Rovatti, and G. Setti, S
	M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K.
	L. Kocarev, U. Parlitz, and R. Brown, Robust synchronization of 
	A. J. Lawrance and G. Ohama, Exact calculation of bit error rate
	F. C. M. Lau and C. K. Tse, Performance of chaos-based communica
	G. Millerioux and J. Daafouz, An observer-based approach for inp
	G. Setti, R. Rovatti, and G. Mazzini, Control of chaos statistic
	M. Feki, B. Robert, G. Gelle, and M. Colas, Secure digital commu
	M. Hasler and T. Schimming, Chaos communication over noisy chann
	J. L. McCauley, Chaos, Dynamics and Fractals: An Algorithmic App
	J. H. B. Deane, P. Ashwin, D. C. Hamill, and D. J. Jefferies, Ca
	G. R. Grimmett and D. Welsh, Probability an Introduction . Oxfor
	J. G. Proakis, Digital Communications . Boston, MA: McGraw-Hill,
	G. Millerioux and C. Mira, Finite-time global chaos synchronizat
	S. Banerjee, J. A. Yorke, and C. Grebogi, Robust chaos, Phys. Re
	M. di Bernardo, M. I. Feigin, S. J. Hogan, and M. Homer, Local a
	M. Homer, Bit error rate for the optimal estimator, IEEE Trans. 



