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The Role of Synchronization in Digital
Communications Using Chaos—Part IlI:
Performance Bounds for Correlation Receivers

Géza KolumbanSenior Member, IEEEBNnd Michael Peter Kennedirellow, IEEE

Abstract—In a digital communications system, data is trans- I. INTRODUCTION
mitted from one location to another by mapping bit sequences to .
symbols, and symbols to sample functions of analog waveforms. VER THE past five years, much research effort has been
The analog waveform passes through a bandlimited (possibly devoted to the study of digital modulation schemes using

time-varying) analog channel, where the signal is distorted and chaotic basis functions [3]-[19].

noise is added. In a typical conventional system, the analog |t is now possible to make definitive statements about the

sample functions sent through the channel are weighted sums noise performance of these schemes. The aim of this tutorial
of one or more sinusoids, called basis functions; in a chaotic ISe p : ! IS tutori

communications system, the sample functions are segments ofP@per is to present theoretical performance bounds for corre-
chaotic waveforms. lator-based chaotic digital communications schemes, to summa-
At the receiver, the symbols may be recovered by means of co-rize the performance of some representative schemes relative to

herent detection, where all possible sample functions are known, ypese limits, and to highlight the expected best case performance
or by noncoherent detection, where one or more characteristics of .

the sample functions are determined based on the received signal. in real ap_pllcatlons. . .
In a coherent receiver, synchronization is the most commonly N Section Il, we extend the basis function approach to modu-

used technique for recovering the sample functions from the re- lation and demodulation using chaotic basis functions and high-
ceived waveform. These sample functions are then used as refer-|ight the problem associated with estimating statistical proper-
ence signals for correlators. . ties of chaotic signals from sample functions of finite length.
Synchronization-based coherent receivers have advantages The estimation problem, which results from an inherent char-
over noncoherent receivers in terms of bandwidth efficiency (in o p . ! O
narrow-band systems), data rate (in chaotic systems), and noise acteristic of a chaotic communications system, namely that the
performance (both). basis functions vary from symbol to symbol even if the same
These advantages are lost if carrier synchronization cannot be symbol is transmitted repeatedly, potentially degrades the per-
maintained, for example, under poor propagation conditions. In 4 mance of every chaotic digital modulation scheme. We dis-

these circumstances, communications without synchronization . . - .
may be preferable. cuss this problem in Section IIl and show that it can be solved

This three-part paper shows in a tutorial manner how the DY using Qrthonorma| basis fgnctions. . o
theory of conventional telecommunications systems can be applied  The digital chaotic modulation schemes which we consider in
to chaotic modulation schemes. In addition, it discusses the latest this work are analyzed in the context of a receiver model, which
results in the field of chaotic communications. is described in Section IV.

In Part | [1], the theory and operation of conventional commu- In Section V how b ¢ imulation that a chaoti
nications systems are surveyed and possible fields of application of n e(? lonv, we s OVY y compu .er simu f"‘ lon that a chaouc
chaotic communications are identified. modulation scheme with one basis function, referred to as
In Part Il [2], the theory of conventional telecommunications antipodal chaos shift keying (CSK), can theoretically achieve
is extended to chaotic communications, chaotic modulation tech- the noise performance of binary phase-shift keying (BPSK). In
niques and receiver configurations are surveyed, and chaotic syn- 4 tice, this performance cannot be reached because at least
chronization schemes are described. tw t')l th th timati bl d
In Part Ill, examples are given of chaotic communications 0 problems mus. e ovgrcqme. € esimation pro em.an
schemes with and without synchronization, and the performance recovery of the basis function independently of the modulation.
of correlator-based systems is evaluated in the context of noisy, Recovery of chaotic basis functions independently of the
bandlimited channels. modulation is difficult to achieve; failure to solve this problem
Index Terms—Chaotic communications, chaotic correlation to date has impeded the development of coherent demodulators
receivers, chaotic modulation, estimation problem, noise perfor- for chaotic communications.
mance bounds. With no available solution to the problem of basis function re-
covery independently of the modulation, alternative modulation
Manuscript received December 20, 1999; revised September 5, 2000. T#&hemes have been proposed which exploit two basis functions.
work was supported by the Information Technologies RTD Program of the Etf; Section VI, we show that CSK with two basis functions and a
ropean Commission under Esprit Project 31103 INSPECT. h t ' i dt haoti itchi th ti
G. Kolumban is with the Department of Measurement and Information syQQ erent receiver, referred to as chaotic swiching, can theoret-

tems, Budapest University of Technology and Economics, H-1521 Budapegglly achieve the noise performance of coherent frequency-shift

Hungary. o . o keying (FSK).
M. P. Kennedy is with the Department of Microelectronic Engineering, Uni- This | | of f b hed v if th .
versity College, Cork, Ireland. ~ This level of performance can be reached only i the estima-
Publisher Item Identifier S 1057-7122(00)10638-5. tion problem is solved and the basis functions can be recovered
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at the demodulator. While the former problem can be readily g1(t) o—=
solved, implementation difficulties associated with the recovery
of chaotic basis functions cause published results for coherent St +
CSKreceiversto lag far behind their theoretical maximum noise . ()——» sm ()
performance. . +
Given the difficulty of recovering chaotic basis functions at .
the receiver, one may ask what is the best performance that can an(t) H(?i
be expected without recovering the basis functions. It has been
shown in [20] that the noise performance of CSK with two ap- sy

propriately constructed basis functions and a differentially co-
herent correlation receiver is only 3 dB worse than that of diffegig. 1. Generation of the elements of signal set.
ential phase-shift keying (DPSK) with autocorrelation demod-

ulation [21].

The results of this study are summarized in Section VIl and —»()f— f0T~ dt F—— zm1
lead to a number of important conclusions (see Section VIII).

If it is possible to recover the basis functions at the receiver wi(t)
independently of the modulation, then antipodal CSK, where sm(t) o—9
one basis function is used, offers the best noise performance of .
all known chaotic digital modulation schemes. .

As shown analytically in [20], the choice of waveform of the —»%()v f0T~ dt |—= zmn
basis function, even if it differs for every transmitted bit, makes

no difference to the theoretical noise performance, provided that
the energy per bit is constant.

In practice, the primary issue influencing the choice of Big. 2. Determination of the observation vector in a correlation receiver.
chaotic or conventional basis function in coherent communica-
tions is the robustness of the basis function recovery procegs.
The current state of the art is that antipodal CSK has not been
demonstrated. The reported performance of CSK with two basigJUsing the notation introduced in [1], the elements of the CSK
functions lags significantly behind that of coherent FSK, whictignal set are defined by
represents the theoretical upper bound on its performance.

If one considers only the noise performance of the mod- al .
ulation schemes in a bandlimited single-ray additive white sm(t) = Z smigi(t), =12, N
Gaussian noise (AWGN) channel [22] under propagation =t

conditions where the basis functions can be recovered at {igoe the weights,,,; are the elements of the signal vector and

receiver, then higher performance can be achieved by using,a pasis functiong, () are chaotic waveforms. The signals

conventional narrow-band modulation scheme with periodig, (+) may be produced conceptually as shown in Fig. 1.

rather than chaotic, basis functions. _ _ Note that the shape of the basis functions is not fixed in
If .|t is not p'055|bI.e to recover the bqsus functlons at th,@naotic communications. This is why the signal(t) which

receiver then, in a single-ray channel, differential chaos shiftansmitted through the channel has a different shape during

keying (DCSK) with differentially coherent detection can,ery symbol interval of duratiof, even if the same symbol

reach within 3 dB of the noise performance of DPSK with a yransmitted repeatedly. As a result, the transmitted signal is
autocorrelation demodulator; in a multipath channel, wide-bapg, o, periodic.

DCSK can offer significantly better performance.

yn(t)

Modulation

To achieve the best noise performance, basis functions must
be orthonormal [22]. In the general case, chaotic basis functions
are orthonormal only in the mean, i.e.,

Il. CHAOTIC MODULATION AND DEMODULATION

T if 5 = )
o o | | E [/ gj<t>gk<t>dt] ={1’ o=t (1)

Chaotic digital modulation is concerned with mapping sym- 0 0, otherwise
bols to analog chaotic waveforms. In CSK [23], information is
carried in the weights of a combination of basis functions, whiakhere T is the bit duration andz[ -] denotes the expectation
are derived from chaotic signals. Differential chaos shift keyingperator.
is a variant of CSK, where the basis functions have a specialEquation (1) identifies another important characteristic of
structure and the information can be recovered from the corghaotic modulation schemes: the basis functions are not fixed
lation between the two parts of the basis functions. waveforms, but can be modeled only as sample functions of

In this paper, we concentrate on the transmission and recefpchastic processes.
tion of a single isolated symbol; problems arising from the re- Consequently, the cross-correlation and autocorrelation of
ception of symbol streams are not treated here. basis functions evaluated for the bit duration become random

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 25,2010 at 08:33:36 EDT from IEEE Xplore. Restrictions apply.
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numbers which can be characterized by their mean value 129
and variancé. The consequences of this property, called the
estimation probleqwill be discussed in Section L. 10000
B. Demodulation . soor
The message may be recovered at the receiver by g" 6000}
correlating the received signal with reference signals £
yi(t), y2(t), ---, yn(t), and forming the corresponding 4000}
observation signals,,;, zm2, - - -, zman, as shown in Fig. 2.
The reference signal;(¢) can be generated in a number of 2000}
different ways: it can be the received signal itself, or a delayed
version of the received signal, or a basis function recovered from % o5 1 s >
the received signal.
In a coherent correlation receiver, the reference signats (a)
are locally regenerated copies of the basis functigfrs. When
signals,,,(¢) is transmitted ang,(¢) = g;(¢), the jth element 400
zmy Of the observation vector emerging from tfté correlator
is given by ssor
3001
T
g = / sm(t)y;(£) dt _esof
OT N ;f’zoo-
= /0 [; Snlkgk(t)] gj(t) dt 5150.
T N T 1001
sy [ GO+ Y s [ gt ds
0 k=1 0
K] 0

where E[[| g3(t)dt] = 1 and E[[f g;(t)gr(t)dt] = 0 for

k% 5. N (b)
If the bit duratioril” is sufficiently long, thery, gf(t) dt = 1
andfOT Gk (t)gj (t) dt ~ 0. In this case, Fig.3. Samples ofOT g7 (t) dt for (a) periodic and (b) chaotic basis functions
g;().
Zmj B2 Sy (2)

_ . . _ I1l. THE ESTIMATION PROBLEM
Thus, in the case of a distortion- and noise-free channel, and

for a sufficiently long bit duration, the observation and signa}i Autocorrelation Estimation Problem
vectors are approximately equal to each other. '

In this way, the elements,,; of the signal vector can be re- |, 3 tynical conventional modulation scheme, the basis func-
covered (appro?qmately) by correlating the received signal wiffyhs are periodic and the bit duratih is an integer mul-
the reference ;lgn_a&,g»(t). . tiple of the period of the basis functions; hengng, g3 (t)dt

In real applications, the elements,; of the observation ig cqnstant. By contrast, chaotic signals are inherently nonpe-

vector are random numbers because of the estimation problegy;. andg; (¢) is different in every interval of lengtif’. Con-
and additive channel noise; in addition, their values are infly- 7

T 5 . . .
enced by a number of factors, including channel filtering ans(gquentlyJo 9i (£)dtis _dlﬁerent for every symbol, even if the
. . . ! 2~ same symbol is transmitted repeatedly.
distortion. This is why the observation vector can be considered_ i T, o
only as arestimationof the signal vector. Fig. 3(a_) and (b) shoyvs histograms of sampleﬁjofgj () dt
While filtering, distortion, and noise effects are common t{Pr Periodic and chaotic waveformg(#), respectively. In the

all communication systems, the estimation problem results frd¥griodic case, all samples lie ﬁf g;(t)dt = 1. By contrast,

using chaotic basis functions. In the next section, we explain tiie samples in the chaotic case are centerélﬂﬁ? g:(t)dt] =

two sources of the estimation problem and indicate how to sol¥eas before, but have nonzero variance.

it. This nonzero variance causes the compongpisof the ob-
servation vector to differ from the corresponding components
smj Of the signal vector and consequently causes errors in inter-

) ) ) ) preting the received signal. The consequence is a considerable
1By contrast, for example, sine and cosine basis functions can be madeﬁé—

thonormal by appropriate scaling and by choosing the ratio of the bit durar@€dradation in noise performance, as will be seen in Figs. 10
and the period of each basis function to be an integer. and 11.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 25,2010 at 08:33:36 EDT from IEEE Xplore. Restrictions apply.
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1 e
| | |
Mean value 0 % T
0.8} 1
reference information-
06 1 chip bearing chip
o4l Fig. 6. A DCSK basis functiory;(t) consists of two segments called the

reference and information-bearing chips.

Standard deviation

0.2r
E,. In particular, we normalize the basis functions such that,
) . : . . for all j
GO 1 2 3 4 5 [}
Estimation time [ s ] x107° T
/ g (t)dt = 1.
Fig. 4. Mean and standard deviation of the estimatiogﬁa%fgf(t) dt versus 0
the estimation time.
Low — pass B. The Cross-Correlation Estimation Problem
chaotic signal FM signal The estimation problem also arises when evaluating the
cross-correlation between Tdifferent chaotic basis functions of
Chaos FM . finite length. AlthoughE[[; g¢;(t)gx(t)dt] = 0, for suffi-
generator modulator ciently largeT’, fi g;(t)gr(t) dt # 0 in general, unlesg;(t)

andgy(t) are orthogonal iff0, T7.

Fig. 5. Block diagram illustrating the generation of chaotic sample functions o ; ; ; -
with constant energy per bit by means of a frequency modulator. 1) Sample Solution:Consider the basis functions defined by

( 1
. _ . . 4 0<5t<T/2
Let the equivalent statistical bandwidtf25] of the chaotic +\/Eb ®), st<T/
signalg;(t) be defined by a(t) = 1 (—T/D). T/2<t<T
+——c(t— , <t<
1 o0 \ V Eb
BWer= 5oy | SelDdr 1
1 50(0) S olf) = (), 0<t<T/2
pt) =4 VP ®
whereSq(f) is the power spectral density associated with the 1 <
stationary chaotic stochastic process [24]. Then, the standard [ VE, ot =T1/2), T/2=t<T

deviation of samples oijT gf(t) dt scales approximately as

1/(BW.,T), as shown in Fig. 4. Note that the variance of estiwherec(t) is derived from a chaotic waveform and has the prop-

mation can be reduced by increasing the statistical bandwidthepfy that fOT/ ? c*(t)dt = E,/2. Each basis function consists

the transmitted chaotic signal or by increasing the bit durati@f two segments, called the reference and information-bearing

1" [25]. Alternatively, one may solve the autocorrelation estehips, respectively. This is shown schematically in Fig. 6.

mation problem directly by modifying the generation of basis Because the digital information to be recovered is also

functions such that the transmitted energy for each symboldarried in the correlation between the reference and informa-

kept constant. tion-bearing chips, we call these differential CSK (DCSK)
1) Sample Solution:Recall that the instantaneous power obasis functions.

an FM signal does not depend on the modulation, provided thatAlthoughc(t) is not periodic, the DCSK basis functiongt)

the latter is slowly varying compared to the c_arrier.. ThereforgndQQ(t) are orthogonal, i.eJOT g1(t)ge(t) dt = 0.

one way to produce a chaotic sample function with constantyote that, in additionJOT gi(t) dt = foT g3(t)dt = 1 (see

energy per bitE; is to apply a chaotic signal to a frequencysection 111-A-2). Therefore, the DCSK basis functions are
modulator; this can be achieved as shown in Fig. 5. thonormal

2) Co_nclusion:A necessary conplition f_or chaoti_c digital 2) Conclusion: By using orthogonal basis functions, the
modulation schemes to reach their maximum noise perfQiross-correlation estimation problem can be solved.
mance is that the chaotic sample functions should have constant

energy per bit [20]. Therefore, in the remainder of this paper,
we will assume that the chaotic sample functions have constant
Noise performance is the most important characteristic of a

modulation scheme and receiver configuration. In Part 11 [2], we
have shown that all of the chaotic modulation techniques dis-
2In a chaotic stochastic process, the ensemble of sample functions is gegerssed in this work can be considered under the unifying um-

ated by the same chaotic attractor starting from all possible initial conditionﬁe”a of the basis function approach Here. we consider their
[24]. . )

IV. RECEIVER MODEL

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 25,2010 at 08:33:36 EDT from IEEE Xplore. Restrictions apply.
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Noisy received Noisy filtered Observation
signal stgnal signal
rm(t) = sm(t) + n(t) Sm(t) + 7(t) Zm

: A @ fo 5, e

!

Reference signal

y(t)

Fig. 7. General block diagram of a digital chaotic communications receiver.
noise performance, assuming the receiver block diagram shown The"f'e‘tml
in Fig. 7, wherer,,,(t) = s (t) +n(t) ands,,(t) +7(t) denote decision
the noisy received signal before and after filtering, respectively. b"“"‘f‘"y
Note that the channel (selection) filter, which is an ideal band- 0 '\ R
pass filter with a total RF bandwidth @i, is included explic- - ! . ° 91(t)
itly in this figure. _ Message : Message

This model can be used to characterize the performance of point 707 point "1”

noncoherent, differentially coherent, and coherent correlation
receivers. The difference between these schemes is primarity 8. Signal-space diagram for binary COOK.
due to the way in which the reference signé) is generated at

the receiver. Theoretical
In the following sections, we use this model to develop per- dectsion
formance limits for CSK with one and two basis functions. bounldary
|
V. CSKwITH ONE BASIS FUNCTION ‘V‘Eb ! Vf‘:b o)
A. Modulation Message : Message
In the simplest case of binary CSK, a single chaotic basis point 707 point ”1”

funCtlongl (t) is used, i.e., Fig. 9. Signal-space diagram for binary antipodal CSK.

Srn,(t) = Sm1d1 (t) 10°

At least two types of CSK based on a single basis function
can be imagined: chaotic on—off keying (COOK) and antipodal
CSK. 0

In COOK, symbol “1” is represented by (t) = v/2E,g1(t)
and symbol “0” is given by, (¢) = 0. Equivalently,

511 = v/ 2Ey; §01 =0

Bit Error Rate
=

where E, denotes the average energy per bit and we have as- 107k
sumed that the probabilities of symbols “1” and “0” are equal.

The upper limit on the noise performance of a modulation
scheme is determined by the separation of the message points in 1075 T B R S T e e
the signal space; the greater the separation, the better the noise Eb/No{dB]

performance. Fig. 8 shows the signal-space diagram for COOK.

. . . - Fig. 10. Simulated optimum noise performance of COOK and antipodal CSK
The distance between the message points in COQ’}@' with a coherent correlation receiver: antipodal CSK with constant bit energy

In antipodal CSK, symbol “1” is represented By(t) = E, (solid curve); COOK with equiprobable symbols and constant bit energies 0
) /Ebgl(t) and symbol “0” is given b)sg(t) — —*/Ebgl(t)- and2E, (dashed curve); antipodal CSK with nonconstant bit energy (dash-dot

Fig. 9 shows the signal-space diagram for antipodal CSK. curve). Coherent BPSK is shown (dotted) for comparison.

The distance between the message poins,i%;. Conse-
quently, the noise performance of antipodal CSK is potentialjfopagation conditions may be so poor that it is difficult, if
superior to that of COOK. not impossible, to regenerate the basis functions at the receiver.
While the modulator determines the distance between tH&der these conditions, a noncoherent or differentially coherent
message points, the noise performance of the system depdfg§iver may offer better performance.
on the efficiency with which the demodulator exploits this sep-
aration. B
In principle, the best noise performance in an AWGN channel 1) Coherent Correlation Receivern a coherent correlation
can be achieved by using a coherent receiver. In practice, theeiver, the reference signg(t) at the receiver is the basis

. Demodulation

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 25,2010 at 08:33:36 EDT from IEEE Xplore. Restrictions apply.
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function which has been recovered from the noisy filtered re- 3) Noncoherent Correlation ReceiveAlthough antipodal
ceived signal. The observation signal is given by CSK cannot be demodulated without recovering the basis func-
tion, COOK can still be demodulated by means of a noncoherent

T } receiver.
Zm = /T [5m(t) +n()]y(t) dt In a noncoherent correlation receiver, the reference signal
b y(t) is equal to the noisy filtered signal,,(¢) + n(¢), and the
= / [Sm1d1 (1) + 2(t)]y(t) dt observation signal can be expressed as
Ts

Zm = ' §rn n 2
= 5m1 / ) g1 (t)y(t) dt + / ’ Aty dt (4 /0 [$m(t) +n(t)]" dt
Ts Ts T T T
= / 57, () dt +2 / Sm (D)7 (t) dt + / A3(t) dt

where we assume that the synchronization transient lasts at most

Ts seconds per symbol period. In the best case, where synchro- T, o
nization ofy(t) with g1 () is maintained throughout the trans- ~ ~ °m1 | 91(8) dt + 251 , (#)n(t) dt
missionTs = 0. T )
Note thatz,, is arandom variable whose mean value de- +/ ne(t) dt. %)
0

d th bit of the chaotic signal and the “good-
bends on the energy per b of the Chaofic sighal and the 'goo n the noise-free case, if the signgl (¢) emerges unchanged

ness” with which the basis function has been recovered [see Fhé ) . .
first term in (4)] rom the channeld; (¢) = g1 (¢)], the observation signal is equal

In a noise-free channel with exact recovery of the basis funt(?—the energy of the transmitted symbol, i.e.,

tion, a sufficiently wide-band channel filter, and permanent syn- P /T 2(¢) dt
chronizationy(t) = g1(t), §1(t) = g1(t), andTs = 0. The ool o '
observation variable in this case is Sinces?, = s2, = E, in antipodal CSK, the symbols cannot
- be distinguished at the receiver. By contrast, the observation sig-
2 = St / G(t) dt = 51 nal§z1 andz; of the.two COOK.symboIs differ b £, vyhere
0 L, is the average bit energy. Figure 11 shows the noise perfor-

mance for noncoherent COOK.

Therefore, this receiver can be used to demodulate bothrigyre 11 shows that the autocorrelation estimation problem
COOK and antipodal CSK, provided that the basis functiqfanifests itself iff ¢2(t) dt is not constant but disappears, as

¢1(t) can be recovered from the received signalt). xpected whedTng(t) dt is constant
’ 0 .

Figure 10 shows, by simulation, the theoretical upper boun(aSThe noise performance of noncoherent COOK is worse than
on the noise performance of coherent COOK and coherent an

. . ) . : at of coherent COOK, due to the second and third terms in
tipodal CSK with one basis function. Note that the noise perfoj: Althou hE[fT g1 (£)i(t) df] = 0 E[fT A2(8) df] > 0
mance of antipodal CSK (solid) exceeds that of COOK (dashe(q) 9 o LT o o " i

o ) nce, ~,, is a biased estimator of2, and the decision
by 3 dB; this is a consequence of the greater separation of {he : . : .
. reshold must be adjusted depending on the signal to noise
message points (by a factor ¢f2) at the modulator.

Figure 10 also highlights the autocorrelation estimatiorﬁatlo (SNR) at. thg demodl_JIator Input. . . .
4) Conclusion; For a given energy per bit, a single basis

problem in the case of antipodal CSK when the bit ener Yincii ; . X
X . . . nction, and a noncoherent correlation receiver, the best noise
has nonzero variance. In this case, the effective noise level at

high E, /N, is dominated by the variance of the energy per b erformance can be achieved by COOK. However, COOK suf-

. two significant drawbacks:
E, fOT gi(t)dt. If fOT g3(t) dt is kept constant, the problem ers two significant arawbacks. = -
disappears. « transmitted energy per bit varies between zero for symbol

2) Conclusion: The noise performance of an antipodal CSK 0 t_and 2? f(_)r_ syrtrr]]bol hl Iij tth verd q th
modulator and coherent correlation receiver can theoretically optimum decision threshold at the receiver depends on the

match that of BPSK. This performance can be achieved only SNR'_ o o ) )
if the following necessary conditions are satisfied: The design of a digital communications receiver can be sim-
plified considerably if the decision threshold at the demodulator

e ener er bit is kept constant; D ) . : .
. basisg);u%ctiongl(t) |ps recovered exactly at the receiver' independent of the SNR. By using two basis functions, this

independently of the modulation. condition can be satisfied.
The first condition can be satisfied in the case of chaotic basis
functions by using FM, for example, as described in Section Ill.
Although several strategies for recovering the basis functiédn Modulation
g1(t) have been proposed in the literature under the title “chaotic;, csk with two basis functions, the elements of the signal
synchronization” [3], we are not aware of any chaotic synchr@g; gre given by
nization technique which can regenerate the basis function ex-

VI. CSK wITH TwO BASIS FUNCTIONS

actly, independently of the modulatioif the basis function Sm(t) = $m191(t) + m2ga(?)
cannot be recovered exactly, the noise performance of antipoddlere the basis functiong, (¢) and ¢»(¢) are derived from
modulation is degraded significantly. chaotic sources.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 25,2010 at 08:33:36 EDT from IEEE Xplore. Restrictions apply.



KOLUMBAN AND KENNEDY: THE ROLE OF SYNCHRONIZATION IN DIGITAL COMMUNICATIONS—III 1679

10° . - . T : T T T 92() Theoretical
Message decision
vE:. ¢
point 707 b , //boundary
107k ’
7
7
2 Z . g1(t)
@ ’
5102 7 vV Ep
u % Message
E ,/ ; »1»
point ’1
107}
Fig. 12. Signal-space diagram of chaotic switching.
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Fig. 11. Simulated noise performance of noncoherent COOK with constan
(solid) and varying (dashed) energy per symbol. Coherent COOK is showr Decision -
(dotted) for comparison. sm(t) o—9 () - = bm
zme | circuit
In a special case of binary CSK, also called “chaotic - foT‘ dt
switching” [19], the two elements of the signal set are simply
weighted basis functions; the transmitted sample function:

ares;(t) = vE,g1(t) andsa(t) = E,g2(t), representing v2(t)
symbols “1” and “0", respectively. The corresponding Signqﬁlig. 13. Idealized coherent correlation receiver for CSK with two basis
vectors ardsy; s12) = (VE, 0)and(sa; s22) = (0 VE,), functions. The effect of the channel filter is neglected.
whereFE), denotes the average energy per bit.
The signal-space diagram for chaotic switching is shown in T
Fig. 12. Note that the Euclidean distance between the two mes- 712 = S12 / 91(t)g2(t) dt =0
sage points is/2E;, which is the same as for COOK but s less 0

than that of antipodal CSK with one basis function. This impIievélhen symbol "1 is transmitted, and

that the noise performance of chaotic switching is at best 3 dB o — g /T g1(£)ga(t) dt = 0
worse than that of the antipodal modulation scheme described R 0 LR
in Section V. T
Z92 = 822 / g3(t)dt = \/Ey
0

B. Demodulation ) )
when symbol “0” is transmitted.

1). Coherent Cor(elat!on Receiverh coherent cqrrelanon Thus, the correlation receiver structure may be used to iden-
receiver, as shown In Fig. 13, may be use_d to estimate thetﬁb which element of the signal set is more likely to have pro-
ementss,,,; of the_ signal vector. In the_ noise-free case, Witly ;e the received signal [1]. In particularzif; > 22, then
perfect regeneration of the basis functiopsit) = g1(t) and o §ecision circuit decides in favor of symbol “17; 4f,; <

y2(t) = 92(1), Tiving Zma2, then the decision circuit decides in favor of symbol “0”".
2y = / S(t)g1 (£) dt Consider now the noise performance of chaotic switching
" o with orthonormal basis functions and a coherent correlation re-
T T ceiver which also includes the channel filter. In this case, the
=5 () dt +s (t)ga(t) dt ; - ; ; :
ml U m2 f 91\t)92 reference signal in each arm is a regenerated basis function
T y; (t) which is derived from the filtered noisy received signal
s [ gl 6)  smlt) + (1),
0 The observation signals,,;, 7 = 1, 2, are given by
T
T
Zm2 = / Sm(t)QQ (t) dt Zmj = / [gm(t) + ﬁ(t)]yj (t) dt
0 Te
T T ) T
= $m1 /0 91(t)g2(t) dt + sp2 /0 g5(t) dt = / [Sm1d1(t) + Sm2da(t) + A(t)]y; (t) dt
= ) t)g2(t) dt 7 Yo ¥
=sm1 | g1(t)ga(t) dt. @) —— / 310y () dt+ Sma / Go(t)y; (t) dt
In the case of chaotic switching with constaki, and as- TTS Ts
suming that the basis functiops(¢) andg.(¢) are orthonormal + / A(t)y; () dt @8)
in the intervall0, 7], the outputs of the correlators become Ty v
T - . .
B 5 B where we assume that the synchronization transient lasts at most
#11 =811 / g1(t)dt = V Ey Ts seconds per symbol period.
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Note thatz,,; is arandom variable whose mean value de- 10
pends on the energy per bit of the chaotic signal and the “good-
ness” with which the basis functions have been recovered [see
the first two terms in (8)].

At best,y(t) ~ g;(t) ~ g¢;(t), and synchronization af(t)
with g;(¢) is maintained throughout the transmission, I&. =
0. In this case,

_.
oI

Bit Error Rate
8!
&

T T
i = 51 / (D)5 () dt + sz / g2(t)g;(8) dt ol \
0 0

T
+ /0 A(t)g;(t) dt. ©) - X

4 6
Eb/No[dB]

- T
We have seen that the variancefgf ¢7(t) dt can be reduced
to zero by choosing appropriate basis functions. The cross-cBig- 14.  Simulated optimum noise performance of chaotic switching with two
; T . . r s ~~orthonormal basis functions (solid curve). The noise performance of coherent
relations fo gk(.t)g] (t) glt, k # j, can be zeroed by selectmgFSK (dashed) is shown for comparison,
orthogonal basis functions.

By choosing orthonormal basis functions, such as the DCSK o _ o
functions described in Section 111-B-1, Substituting (11) into (10), the observation signal becomes

T

Zmi = Smji + n(t)g; () dt T T

! ! /0 ()9;(%) Zm = (—1)m+l/ F(t—T/2)dt +/ A(t)e(t —T/2) dt
) ] ] T/2 /2
provides an unbiased estimatesgf;. T

Fig. 14 shows the simulated upper bound on the noise perfor- + (=)™t /
mance of chaotic switching with two basis functions. The noise .
performance curve of coherent FSK is shown for comparison. / SORE— T/2) dt 12

2) Conclusion: The noise performance of chaotic switching e /2) (12)
can be maximized by choosing orthonormal basis functions. In

the limit, chaotic switching can match the performance of co- R . ) ,
herent FSK. wheren(t — T/2) andn(t) denote the sample functions of fil-

3) Differentially Coherent Correlation Receiver fortered noise that corrupt the reference and information-bearing

DCSK: Although chaotic switching can, in principle, achievd@ts oOf the received signal, respectively.
the noise performance of coherent FSK, this level of perfor- At Pest.é(t) = ¢(t), giving
mance can be achieved only if the two basis functign@)
andg»(t) can be regenerated exactly at the receiver and if they T T
are orthonormal. We have already noted in Section V-B-2 that,, = (—1)"’“/ At —1T/2)dt —|—/ a(t)e(t —T/2)dt
regeneration of chaotic basis functions is difficult. T/2 ’ T/2
However, the structure of the DCSK basis functions—each m+1 -
consists of a piece of chaotic waveform followed by a nonin- +(=1) / ot = T/2)n(t = T/2) dt
verted or inverted copy of itself—makes it possible to perform T
‘),

&t — T/2)i(t — T/2) dt
T/2

T/2

T/2
the demodulation by evaluating the correlation between the ref- n(t)n(t —T/2)dt. (13)
erence and information-bearing chips.

In a binary differentially coherent DCSK receiver, the refer-
ence signay(t) is the filtereq noisy received signgl, delayed by SincefTT , 2t — T/2)dt = E,/2, the first term in (13) is
ha!fablt period. N'ote that different sample functions of fllteregqual to+E, /2. The second, third, and fourth terms, which
noise corrupt th_e mp_uts Of the gorrelator. represent the contributions of the filtered channel noise, are

The observation signal is defined by zero-mean random processes. Therefore, the receiver is an

T unbiased estimatoin this case; the threshold level of the
Zm = / Bm (&) +0(t)] [$m(t—T/2)+n(t—T/2)] dt. (10) decision circuit is zero and is independent of the SNR.
T/2 Although the fourth term in (13) has zero mean, it has a

If the time-varying channel varies slowly compared to thgon-Gaussian distribqtion. Its variance inpreases with the bit du-
symbol rate, then the filtered DCSK signal is given by ratlon_Tandthe bandwidth ofthe_ char.mel_ﬂlrbﬁ?..Consequently, _

the noise performance of chaotic switching with two DCSK basis

R é(t), 0<t<T/2, functions and a differentially coherent receiver decreases with
sm(t) = { (1)t —T/2), T/2<t<T (11) eitherincreasing bitduration orfilter bandwidth; thisisillustrated
’ - inFig.15.1fBT = 1,thenthe noise performance ofthis modula-

wheredc(-) is the filtered version of(-). tion schemeis as good as that of noncoherent binary FSK [20]. Of

T/2
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10 ; ‘ ; ; ; ; ; ; the best possible noise performance which can be achieved by
any digital modulation scheme over an AWGN channel.

In order for this level of performance to be achieved, the
chaotic basis function must be recovered independently of the
modulation; we are not aware of any receiver structure in the
literature that can do this in a sufficiently robust manner.

If the basis function cannot be recovered independently of
the modulation, then COOK offers the best noise performance
for the single basis function case. The disadvantages of COOK
are that the dynamic range of the transmitted power level varies
between zero and twice the average transmitted power level and
» e that the decision threshold at the receiver depends on the SNR.

2 0 2z 4 8 NO[gB] 10 12 14 18 Chaotic switching offers a two-basis function modulation

scheme, where the average power level of the transmitted signal

Fig. 15. Simulated noise performance of binary chaotic switching with DCS&n be kept constant and the decision threshold at the receiver
basis functions and a differentially coherent receiver with st (= 1, solid s independent of the SNR. The noise performance of chaotic
curve) and long BT = 17, dashed curve) bit durations. switching with coherent detection can reach that of coherent
FSK provided that orthonormal basis functions are used. In
particular, chaotic switching with DCSK basis functions can
reach the performance of coherent FSK if the basis functions
can be regenerated at the receiver.

Ifthebasisfunctionscannotberecovered,aDCSKtransmission
can be demodulated using a differentially coherent receiver. The
noise performance ofthis chaotic communications systemis 3dB
worsethanthatof DPSKwith autocorrelation demodulation.

The best possible noise performance curves for antipodal
CSK modulation with coherent demodulation, COOK with non-
coherent demodulation, chaotic switching with orthonormal
basis functions and coherent demodulation, and chaotic
switching with DCSK basis functions and a differentially
coherent receiver are summarized in Fig. 16. The noise perfor-

Bit Error Rate
)

10

-1

-
o

Bit Error Rate
=

R 10 12 14 mance curves for BPSK and coherent FSK are also shown, for
(o] .
comparison.
Fig. 16. Simulated optimum noise performance of antipodal CSK modulation
with coherent demodulation (solid curve with “+” marks [left]), COOK with VIIl. CONCLUSIONS

noncoherent demodulation (dashed curve with” “marks [right]), chaotic
Sc‘iNitChhié‘gt C":'lirt\f/‘e %iﬂg:‘?;n;:(sbgﬁtefﬁ)”cﬁgi hgggc ‘;f\:vf;gﬁ?]t a‘iﬁ%’g';gon If the propagation conditions are so good that the basis func-
E)aas?s fu?lctions and a differentially cohérent receiver (dotted %urve with “ tion(s) can be regenerated at the receiver, then digital modu-
marks [right]). The noise performance curves for BPSK (dashed curve wittion schemes using conventional orthonormal (typically peri-
“x" marks [left]) and coherent FSK (dotted curve witlx™ marks [center]) odic?) basis functions, and orthonormal chaotic basis functions
are also shown, for comparison. can achieve similar levels of noise performance [20]. The main
question from an implementation perspective is the ease with
which the basis functions can be regenerated.
course, inthiscasethe DCSK signalbecomesanarrow-bandsignale believe that it is fundamentally easier to regenerate a peri-
and the superior multipath performance of DCSK [26] cannot Iglic basis function than a chaotic one. We conjecture, therefore,
exploited. Anexplicitexpression forthe noise performance ofthigat the noise performance of digital chaotic modulation with
systemhas beenderivedin[20]. coherent correlation receivers will always lag behind that of
4) Conclusion: Given two basis functions and a noncoequivalentmodulationschemes using periodic basisfunctions.
herent correlation receiver, the best noise performance can b# the propagation conditions are such that coherent detection
achieved by chaotic switching with orthonormal DCSK basi§ impossible, then chaotic switching with DCSK basis func-

functions and a differentially coherent receiver. tions and a differentially coherent receiver (DCSK, for short),
offers the best possible performance for a chaotic digital modu-
VII. SUMMARY lation scheme. In the limit, the noise performance of DCSK lags

In thI_S paper, we have c_ons|del’_ed the noise performance afr,e application of noise as a carrier for digital communications system was
CSK with one and two basis functions. proposed in [27]. A system configuration for the qualitatively similar FM-DCSK

In the case of a single basis function, if one can recover trsstem was described in [28]. The novelty of the latter solution over the former
’ is that the estimation problem has been recognized and solved and the chaos

basis TunCtiomxaCtlyat the recgiver, thenthe noise performa.ncﬁenerator provides a more robust and simpler source of nonperiodic basis func-
of antipodal CSK can theoretically reach that of BPSK. This i&ns.
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Fig. 17. Simulated noise performance curves for DPSK and wideband DCSK 9]
in a single-ray channel (solid and dashed, respectively) and a multipath channeﬁ
where coherent detection is impossible (dash-dot and dotted, respectivel;ﬁo]
While DCSK disimproves by about 4 dB, DPSK fails completely.

(11]

only 3 dB behind that of DPSK with autocorrelation demodula-
tion [20].

In this case, the choice of periodic or chaotic basis function
is determined by the propagation conditions. In particular, the
multipath performance of a DCSK system can be improved byl4]
increasing the transmission bandwidth.

We stress that, although we have referenced the performangss)
bounds for chaotic modulation schemes to the limits for con-
ventional narrow-band modulation techniques, the CompariSOHﬁ]
is not fair in the sense that chaotic modulation is intended for use
as aninherently wide-band communications system. The advan-
tage of DCSK is that the fall-off in its performance in a wide- (17
band multipath channel is more gradual than that of an equiva-
lent narrow-band modulation scheme. (18]

Fig. 17 shows the performance degradation in narrow-band
DPSK (BT = 1, classical DPSK with optimum receiver config- [19]
uration [21]) and wide-band DCSKHI" = 17) systems oper-
ating in single-ray and multipath channels. The bit duration wa&’
setto 2us in both cases. Although the single-ray performance of
DCSK is worse than that of DPSK, its multipath performance id21]
significantly better. Therefore, DCSK offers a performance ad-
vantage over DPSK in multipath environments when the propaz2)
gation conditions are so poor that coherent detection is not po£3l
sible; this issue is addressed in detail in [26].

(12]
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