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The Role of Synchronization in Digital
Communications Using Chaos—Part III:

Performance Bounds for Correlation Receivers
Géza Kolumbán, Senior Member, IEEE,and Michael Peter Kennedy, Fellow, IEEE

Abstract—In a digital communications system, data is trans-
mitted from one location to another by mapping bit sequences to
symbols, and symbols to sample functions of analog waveforms.
The analog waveform passes through a bandlimited (possibly
time-varying) analog channel, where the signal is distorted and
noise is added. In a typical conventional system, the analog
sample functions sent through the channel are weighted sums
of one or more sinusoids, called basis functions; in a chaotic
communications system, the sample functions are segments of
chaotic waveforms.

At the receiver, the symbols may be recovered by means of co-
herent detection, where all possible sample functions are known,
or by noncoherent detection, where one or more characteristics of
the sample functions are determined based on the received signal.

In a coherent receiver, synchronization is the most commonly
used technique for recovering the sample functions from the re-
ceived waveform. These sample functions are then used as refer-
ence signals for correlators.

Synchronization-based coherent receivers have advantages
over noncoherent receivers in terms of bandwidth efficiency (in
narrow-band systems), data rate (in chaotic systems), and noise
performance (both).

These advantages are lost if carrier synchronization cannot be
maintained, for example, under poor propagation conditions. In
these circumstances, communications without synchronization
may be preferable.

This three-part paper shows in a tutorial manner how the
theory of conventional telecommunications systems can be applied
to chaotic modulation schemes. In addition, it discusses the latest
results in the field of chaotic communications.

In Part I [1], the theory and operation of conventional commu-
nications systems are surveyed and possible fields of application of
chaotic communications are identified.

In Part II [2], the theory of conventional telecommunications
is extended to chaotic communications, chaotic modulation tech-
niques and receiver configurations are surveyed, and chaotic syn-
chronization schemes are described.

In Part III, examples are given of chaotic communications
schemes with and without synchronization, and the performance
of correlator-based systems is evaluated in the context of noisy,
bandlimited channels.

Index Terms—Chaotic communications, chaotic correlation
receivers, chaotic modulation, estimation problem, noise perfor-
mance bounds.
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I. INTRODUCTION

OVER THE past five years, much research effort has been
devoted to the study of digital modulation schemes using

chaotic basis functions [3]–[19].
It is now possible to make definitive statements about the

noise performance of these schemes. The aim of this tutorial
paper is to present theoretical performance bounds for corre-
lator-based chaotic digital communications schemes, to summa-
rize the performance of some representative schemes relative to
these limits, and to highlight the expected best case performance
in real applications.

In Section II, we extend the basis function approach to modu-
lation and demodulation using chaotic basis functions and high-
light the problem associated with estimating statistical proper-
ties of chaotic signals from sample functions of finite length.

The estimation problem, which results from an inherent char-
acteristic of a chaotic communications system, namely that the
basis functions vary from symbol to symbol even if the same
symbol is transmitted repeatedly, potentially degrades the per-
formance of every chaotic digital modulation scheme. We dis-
cuss this problem in Section III and show that it can be solved
by using orthonormal basis functions.

The digital chaotic modulation schemes which we consider in
this work are analyzed in the context of a receiver model, which
is described in Section IV.

In Section V, we show by computer simulation that a chaotic
modulation scheme with one basis function, referred to as
antipodal chaos shift keying (CSK), can theoretically achieve
the noise performance of binary phase-shift keying (BPSK). In
practice, this performance cannot be reached because at least
two problems must be overcome: the estimation problem and
recovery of the basis function independently of the modulation.
Recovery of chaotic basis functions independently of the
modulation is difficult to achieve; failure to solve this problem
to date has impeded the development of coherent demodulators
for chaotic communications.

With no available solution to the problem of basis function re-
covery independently of the modulation, alternative modulation
schemes have been proposed which exploit two basis functions.
In Section VI, we show that CSK with two basis functions and a
coherent receiver, referred to as chaotic switching, can theoreti-
cally achieve the noise performance of coherent frequency-shift
keying (FSK).

This level of performance can be reached only if the estima-
tion problem is solved and the basis functions can be recovered

1057–7122/00$10.00 © 2000 IEEE
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at the demodulator. While the former problem can be readily
solved, implementation difficulties associated with the recovery
of chaotic basis functions cause published results for coherent
CSK receivers to lag far behind their theoretical maximum noise
performance.

Given the difficulty of recovering chaotic basis functions at
the receiver, one may ask what is the best performance that can
be expected without recovering the basis functions. It has been
shown in [20] that the noise performance of CSK with two ap-
propriately constructed basis functions and a differentially co-
herent correlation receiver is only 3 dB worse than that of differ-
ential phase-shift keying (DPSK) with autocorrelation demod-
ulation [21].

The results of this study are summarized in Section VII and
lead to a number of important conclusions (see Section VIII).

If it is possible to recover the basis functions at the receiver
independently of the modulation, then antipodal CSK, where
one basis function is used, offers the best noise performance of
all known chaotic digital modulation schemes.

As shown analytically in [20], the choice of waveform of the
basis function, even if it differs for every transmitted bit, makes
no difference to the theoretical noise performance, provided that
the energy per bit is constant.

In practice, the primary issue influencing the choice of a
chaotic or conventional basis function in coherent communica-
tions is the robustness of the basis function recovery process.
The current state of the art is that antipodal CSK has not been
demonstrated. The reported performance of CSK with two basis
functions lags significantly behind that of coherent FSK, which
represents the theoretical upper bound on its performance.

If one considers only the noise performance of the mod-
ulation schemes in a bandlimited single-ray additive white
Gaussian noise (AWGN) channel [22] under propagation
conditions where the basis functions can be recovered at the
receiver, then higher performance can be achieved by using a
conventional narrow-band modulation scheme with periodic,
rather than chaotic, basis functions.

If it is not possible to recover the basis functions at the
receiver then, in a single-ray channel, differential chaos shift
keying (DCSK) with differentially coherent detection can
reach within 3 dB of the noise performance of DPSK with an
autocorrelation demodulator; in a multipath channel, wide-band
DCSK can offer significantly better performance.

II. CHAOTIC MODULATION AND DEMODULATION

Chaotic digital modulation is concerned with mapping sym-
bols to analog chaotic waveforms. In CSK [23], information is
carried in the weights of a combination of basis functions, which
are derived from chaotic signals. Differential chaos shift keying
is a variant of CSK, where the basis functions have a special
structure and the information can be recovered from the corre-
lation between the two parts of the basis functions.

In this paper, we concentrate on the transmission and recep-
tion of a single isolated symbol; problems arising from the re-
ception of symbol streams are not treated here.

Fig. 1. Generation of the elements of signal set.

Fig. 2. Determination of the observation vector in a correlation receiver.

A. Modulation

Using the notation introduced in [1], the elements of the CSK
signal set are defined by

where the weights are the elements of the signal vector and
the basis functions are chaotic waveforms. The signals

may be produced conceptually as shown in Fig. 1.
Note that the shape of the basis functions is not fixed in

chaotic communications. This is why the signal which
is transmitted through the channel has a different shape during
every symbol interval of duration , even if the same symbol
is transmitted repeatedly. As a result, the transmitted signal is
never periodic.

To achieve the best noise performance, basis functions must
be orthonormal [22]. In the general case, chaotic basis functions
are orthonormal only in the mean, i.e.,

if

otherwise
(1)

where is the bit duration and denotes the expectation
operator.

Equation (1) identifies another important characteristic of
chaotic modulation schemes: the basis functions are not fixed
waveforms, but can be modeled only as sample functions of
stochastic processes.

Consequently, the cross-correlation and autocorrelation of
basis functions evaluated for the bit duration become random
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numbers which can be characterized by their mean value
and variance.1 The consequences of this property, called the
estimation problem, will be discussed in Section III.

B. Demodulation

The message may be recovered at the receiver by
correlating the received signal with reference signals

, and forming the corresponding
observation signals , as shown in Fig. 2.

The reference signal can be generated in a number of
different ways: it can be the received signal itself, or a delayed
version of the received signal, or a basis function recovered from
the received signal.

In a coherent correlation receiver, the reference signals
are locally regenerated copies of the basis functions. When
signal is transmitted and , the th element

of the observation vector emerging from theth correlator
is given by

where and for
.

If the bit duration is sufficiently long, then

and . In this case,

(2)

Thus, in the case of a distortion- and noise-free channel, and
for a sufficiently long bit duration, the observation and signal
vectors are approximately equal to each other.

In this way, the elements of the signal vector can be re-
covered (approximately) by correlating the received signal with
the reference signals .

In real applications, the elements of the observation
vector are random numbers because of the estimation problem
and additive channel noise; in addition, their values are influ-
enced by a number of factors, including channel filtering and
distortion. This is why the observation vector can be considered
only as anestimationof the signal vector.

While filtering, distortion, and noise effects are common to
all communication systems, the estimation problem results from
using chaotic basis functions. In the next section, we explain the
two sources of the estimation problem and indicate how to solve
it.

1By contrast, for example, sine and cosine basis functions can be made or-
thonormal by appropriate scaling and by choosing the ratio of the bit duration
and the period of each basis function to be an integer.

Fig. 3. Samples of g (t) dt for (a) periodic and (b) chaotic basis functions
g (t).

III. T HE ESTIMATION PROBLEM

A. Autocorrelation Estimation Problem

In a typical conventional modulation scheme, the basis func-
tions are periodic and the bit duration is an integer mul-
tiple of the period of the basis functions; hence,
is constant. By contrast, chaotic signals are inherently nonpe-
riodic and is different in every interval of length . Con-
sequently, is different for every symbol, even if the
same symbol is transmitted repeatedly.

Fig. 3(a) and (b) shows histograms of samples of
for periodic and chaotic waveforms , respectively. In the
periodic case, all samples lie at . By contrast,

the samples in the chaotic case are centered at
, as before, but have nonzero variance.
This nonzero variance causes the componentsof the ob-

servation vector to differ from the corresponding components
of the signal vector and consequently causes errors in inter-

preting the received signal. The consequence is a considerable
degradation in noise performance, as will be seen in Figs. 10
and 11.
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Fig. 4. Mean and standard deviation of the estimation ofg (t) dt versus
the estimation time.

Fig. 5. Block diagram illustrating the generation of chaotic sample functions
with constant energy per bit by means of a frequency modulator.

Let the equivalent statistical bandwidth2 [25] of the chaotic
signal be defined by

where is the power spectral density associated with the
stationary chaotic stochastic process [24]. Then, the standard
deviation of samples of scales approximately as

, as shown in Fig. 4. Note that the variance of esti-
mation can be reduced by increasing the statistical bandwidth of
the transmitted chaotic signal or by increasing the bit duration

[25]. Alternatively, one may solve the autocorrelation esti-
mation problem directly by modifying the generation of basis
functions such that the transmitted energy for each symbol is
kept constant.

1) Sample Solution:Recall that the instantaneous power of
an FM signal does not depend on the modulation, provided that
the latter is slowly varying compared to the carrier. Therefore,
one way to produce a chaotic sample function with constant
energy per bit is to apply a chaotic signal to a frequency
modulator; this can be achieved as shown in Fig. 5.

2) Conclusion: A necessary condition for chaotic digital
modulation schemes to reach their maximum noise perfor-
mance is that the chaotic sample functions should have constant
energy per bit [20]. Therefore, in the remainder of this paper,
we will assume that the chaotic sample functions have constant

2In a chaotic stochastic process, the ensemble of sample functions is gener-
ated by the same chaotic attractor starting from all possible initial conditions
[24].

Fig. 6. A DCSK basis functiong (t) consists of two segments called the
reference and information-bearing chips.

. In particular, we normalize the basis functions such that,
for all

B. The Cross-Correlation Estimation Problem

The estimation problem also arises when evaluating the
cross-correlation between different chaotic basis functions of
finite length. Although , for suffi-

ciently large , in general, unless
and are orthogonal in .

1) Sample Solution:Consider the basis functions defined by

(3)

where is derived from a chaotic waveform and has the prop-
erty that . Each basis function consists
of two segments, called the reference and information-bearing
chips, respectively. This is shown schematically in Fig. 6.

Because the digital information to be recovered is also
carried in the correlation between the reference and informa-
tion-bearing chips, we call these differential CSK (DCSK)
basis functions.

Although is not periodic, the DCSK basis functions
and are orthogonal, i.e., .

Note that, in addition, (see
Section III-A-2). Therefore, the DCSK basis functions areor-
thonormal.

2) Conclusion: By using orthogonal basis functions, the
cross-correlation estimation problem can be solved.

IV. RECEIVER MODEL

Noise performance is the most important characteristic of a
modulation scheme and receiver configuration. In Part II [2], we
have shown that all of the chaotic modulation techniques dis-
cussed in this work can be considered under the unifying um-
brella of the basis function approach. Here, we consider their
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Fig. 7. General block diagram of a digital chaotic communications receiver.

noise performance, assuming the receiver block diagram shown
in Fig. 7, where and denote
the noisy received signal before and after filtering, respectively.
Note that the channel (selection) filter, which is an ideal band-
pass filter with a total RF bandwidth of , is included explic-
itly in this figure.

This model can be used to characterize the performance of
noncoherent, differentially coherent, and coherent correlation
receivers. The difference between these schemes is primarily
due to the way in which the reference signal is generated at
the receiver.

In the following sections, we use this model to develop per-
formance limits for CSK with one and two basis functions.

V. CSK WITH ONE BASIS FUNCTION

A. Modulation

In the simplest case of binary CSK, a single chaotic basis
function is used, i.e.,

At least two types of CSK based on a single basis function
can be imagined: chaotic on–off keying (COOK) and antipodal
CSK.

In COOK, symbol “1” is represented by
and symbol “0” is given by . Equivalently,

where denotes the average energy per bit and we have as-
sumed that the probabilities of symbols “1” and “0” are equal.

The upper limit on the noise performance of a modulation
scheme is determined by the separation of the message points in
the signal space; the greater the separation, the better the noise
performance. Fig. 8 shows the signal-space diagram for COOK.

The distance between the message points in COOK is .
In antipodal CSK, symbol “1” is represented by

and symbol “0” is given by .
Fig. 9 shows the signal-space diagram for antipodal CSK.

The distance between the message points is . Conse-
quently, the noise performance of antipodal CSK is potentially
superior to that of COOK.

While the modulator determines the distance between the
message points, the noise performance of the system depends
on the efficiency with which the demodulator exploits this sep-
aration.

In principle, the best noise performance in an AWGN channel
can be achieved by using a coherent receiver. In practice, the

Fig. 8. Signal-space diagram for binary COOK.

Fig. 9. Signal-space diagram for binary antipodal CSK.

Fig. 10. Simulated optimum noise performance of COOK and antipodal CSK
with a coherent correlation receiver: antipodal CSK with constant bit energy
E (solid curve); COOK with equiprobable symbols and constant bit energies 0
and2E (dashed curve); antipodal CSK with nonconstant bit energy (dash-dot
curve). Coherent BPSK is shown (dotted) for comparison.

propagation conditions may be so poor that it is difficult, if
not impossible, to regenerate the basis functions at the receiver.
Under these conditions, a noncoherent or differentially coherent
receiver may offer better performance.

B. Demodulation

1) Coherent Correlation Receiver:In a coherent correlation
receiver, the reference signal at the receiver is the basis
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function which has been recovered from the noisy filtered re-
ceived signal. The observation signal is given by

(4)

where we assume that the synchronization transient lasts at most
seconds per symbol period. In the best case, where synchro-

nization of with is maintained throughout the trans-
mission .

Note that is a random variable, whose mean value de-
pends on the energy per bit of the chaotic signal and the “good-
ness” with which the basis function has been recovered [see the
first term in (4)].

In a noise-free channel with exact recovery of the basis func-
tion, a sufficiently wide-band channel filter, and permanent syn-
chronization, , , and . The
observation variable in this case is

Therefore, this receiver can be used to demodulate both
COOK and antipodal CSK, provided that the basis function

can be recovered from the received signal .
Figure 10 shows, by simulation, the theoretical upper bounds

on the noise performance of coherent COOK and coherent an-
tipodal CSK with one basis function. Note that the noise perfor-
mance of antipodal CSK (solid) exceeds that of COOK (dashed)
by 3 dB; this is a consequence of the greater separation of the
message points (by a factor of ) at the modulator.

Figure 10 also highlights the autocorrelation estimation
problem in the case of antipodal CSK when the bit energy
has nonzero variance. In this case, the effective noise level at
high is dominated by the variance of the energy per bit

. If is kept constant, the problem
disappears.

2) Conclusion: The noise performance of an antipodal CSK
modulator and coherent correlation receiver can theoretically
match that of BPSK. This performance can be achieved only
if the following necessary conditions are satisfied:

• energy per bit is kept constant;
• basis function is recovered exactly at the receiver,

independently of the modulation.
The first condition can be satisfied in the case of chaotic basis

functions by using FM, for example, as described in Section III.
Although several strategies for recovering the basis function

have been proposed in the literature under the title “chaotic
synchronization” [3], we are not aware of any chaotic synchro-
nization technique which can regenerate the basis function ex-
actly, independently of the modulation. If the basis function
cannot be recovered exactly, the noise performance of antipodal
modulation is degraded significantly.

3) Noncoherent Correlation Receiver:Although antipodal
CSK cannot be demodulated without recovering the basis func-
tion, COOK can still be demodulated by means of a noncoherent
receiver.

In a noncoherent correlation receiver, the reference signal
is equal to the noisy filtered signal , and the

observation signal can be expressed as

(5)

In the noise-free case, if the signal emerges unchanged
from the channel [ ], the observation signal is equal
to the energy of the transmitted symbol, i.e.,

Since in antipodal CSK, the symbols cannot
be distinguished at the receiver. By contrast, the observation sig-
nals and of the two COOK symbols differ by , where

is the average bit energy. Figure 11 shows the noise perfor-
mance for noncoherent COOK.

Figure 11 shows that the autocorrelation estimation problem
manifests itself if is not constant but disappears, as
expected, when is constant.

The noise performance of noncoherent COOK is worse than
that of coherent COOK, due to the second and third terms in
(5). Although , .
Hence, is a biased estimator of and the decision
threshold must be adjusted depending on the signal to noise
ratio (SNR) at the demodulator input.

4) Conclusion: For a given energy per bit, a single basis
function, and a noncoherent correlation receiver, the best noise
performance can be achieved by COOK. However, COOK suf-
fers two significant drawbacks:

• transmitted energy per bit varies between zero for symbol
“0” and for symbol “1”;

• optimum decision threshold at the receiver depends on the
SNR.

The design of a digital communications receiver can be sim-
plified considerably if the decision threshold at the demodulator
is independent of the SNR. By using two basis functions, this
condition can be satisfied.

VI. CSK WITH TWO BASIS FUNCTIONS

A. Modulation

In CSK with two basis functions, the elements of the signal
set are given by

where the basis functions and are derived from
chaotic sources.
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Fig. 11. Simulated noise performance of noncoherent COOK with constant
(solid) and varying (dashed) energy per symbol. Coherent COOK is shown
(dotted) for comparison.

In a special case of binary CSK, also called “chaotic
switching” [19], the two elements of the signal set are simply
weighted basis functions; the transmitted sample functions
are and , representing
symbols “1” and “0”, respectively. The corresponding signal
vectors are and ,
where denotes the average energy per bit.

The signal-space diagram for chaotic switching is shown in
Fig. 12. Note that the Euclidean distance between the two mes-
sage points is , which is the same as for COOK but is less
than that of antipodal CSK with one basis function. This implies
that the noise performance of chaotic switching is at best 3 dB
worse than that of the antipodal modulation scheme described
in Section V.

B. Demodulation

1) Coherent Correlation Receiver:A coherent correlation
receiver, as shown in Fig. 13, may be used to estimate the el-
ements of the signal vector. In the noise-free case, with
perfect regeneration of the basis functions, and

, giving

(6)

(7)

In the case of chaotic switching with constant, and as-
suming that the basis functions and are orthonormal
in the interval , the outputs of the correlators become

Fig. 12. Signal-space diagram of chaotic switching.

Fig. 13. Idealized coherent correlation receiver for CSK with two basis
functions. The effect of the channel filter is neglected.

when symbol “1” is transmitted, and

when symbol “0” is transmitted.
Thus, the correlation receiver structure may be used to iden-

tify which element of the signal set is more likely to have pro-
duced the received signal [1]. In particular, if , then
the decision circuit decides in favor of symbol “1”; if

, then the decision circuit decides in favor of symbol “0”.
Consider now the noise performance of chaotic switching

with orthonormal basis functions and a coherent correlation re-
ceiver which also includes the channel filter. In this case, the
reference signal in each arm is a regenerated basis function

which is derived from the filtered noisy received signal
.

The observation signals are given by

(8)

where we assume that the synchronization transient lasts at most
seconds per symbol period.
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Note that is a random variable, whose mean value de-
pends on the energy per bit of the chaotic signal and the “good-
ness” with which the basis functions have been recovered [see
the first two terms in (8)].

At best, , and synchronization of
with is maintained throughout the transmission, i.e.,
. In this case,

(9)

We have seen that the variance of can be reduced
to zero by choosing appropriate basis functions. The cross-cor-
relations , can be zeroed by selecting
orthogonal basis functions.

By choosing orthonormal basis functions, such as the DCSK
functions described in Section III-B-1,

provides an unbiased estimate of .
Fig. 14 shows the simulated upper bound on the noise perfor-

mance of chaotic switching with two basis functions. The noise
performance curve of coherent FSK is shown for comparison.

2) Conclusion: The noise performance of chaotic switching
can be maximized by choosing orthonormal basis functions. In
the limit, chaotic switching can match the performance of co-
herent FSK.

3) Differentially Coherent Correlation Receiver for
DCSK: Although chaotic switching can, in principle, achieve
the noise performance of coherent FSK, this level of perfor-
mance can be achieved only if the two basis functions
and can be regenerated exactly at the receiver and if they
are orthonormal. We have already noted in Section V-B-2 that
regeneration of chaotic basis functions is difficult.

However, the structure of the DCSK basis functions—each
consists of a piece of chaotic waveform followed by a nonin-
verted or inverted copy of itself—makes it possible to perform
the demodulation by evaluating the correlation between the ref-
erence and information-bearing chips.

In a binary differentially coherent DCSK receiver, the refer-
ence signal is the filtered noisy received signal, delayed by
half a bit period. Note that different sample functions of filtered
noise corrupt the inputs of the correlator.

The observation signal is defined by

(10)

If the time-varying channel varies slowly compared to the
symbol rate, then the filtered DCSK signal is given by

(11)

where is the filtered version of .

Fig. 14. Simulated optimum noise performance of chaotic switching with two
orthonormal basis functions (solid curve). The noise performance of coherent
FSK (dashed) is shown for comparison.

Substituting (11) into (10), the observation signal becomes

(12)

where and denote the sample functions of fil-
tered noise that corrupt the reference and information-bearing
parts of the received signal, respectively.

At best, , giving

(13)

Since , the first term in (13) is
equal to . The second, third, and fourth terms, which
represent the contributions of the filtered channel noise, are
zero-mean random processes. Therefore, the receiver is an
unbiased estimatorin this case; the threshold level of the
decision circuit is zero and is independent of the SNR.

Although the fourth term in (13) has zero mean, it has a
non-Gaussian distribution. Its variance increases with the bit du-
ration andthebandwidthofthechannelfilter .Consequently,
the noise performanceof chaotic switching with twoDCSK basis
functions and a differentially coherent receiver decreases with
either increasingbitdurationor filterbandwidth; this is illustrated
inFig.15. If , then thenoiseperformanceof thismodula-
tionscheme is as goodas thatofnoncoherent binary FSK[20].Of

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 25,2010 at 08:33:36 EDT from IEEE Xplore.  Restrictions apply. 



KOLUMBÁN AND KENNEDY: THE ROLE OF SYNCHRONIZATION IN DIGITAL COMMUNICATIONS—III 1681

Fig. 15. Simulated noise performance of binary chaotic switching with DCSK
basis functions and a differentially coherent receiver with short (BT = 1, solid
curve) and long (BT = 17, dashed curve) bit durations.

Fig. 16. Simulated optimum noise performance of antipodal CSK modulation
with coherent demodulation (solid curve with “+” marks [left]), COOK with
noncoherent demodulation (dashed curve with “+” marks [right]), chaotic
switching with orthonormal basis functions and coherent demodulation
(dash-dot curve with “+” marks [center]), and chaotic switching with DCSK
basis functions and a differentially coherent receiver (dotted curve with “+”
marks [right]). The noise performance curves for BPSK (dashed curve with
“�” marks [left]) and coherent FSK (dotted curve with “�” marks [center])
are also shown, for comparison.

course,inthiscasetheDCSKsignalbecomesanarrow-bandsignal
and the superior multipath performance of DCSK [26] cannot be
exploited.Anexplicitexpressionfor thenoiseperformanceofthis
systemhasbeenderived in [20].

4) Conclusion: Given two basis functions and a nonco-
herent correlation receiver, the best noise performance can be
achieved by chaotic switching with orthonormal DCSK basis
functions and a differentially coherent receiver.

VII. SUMMARY

In this paper, we have considered the noise performance of
CSK with one and two basis functions.

In the case of a single basis function, if one can recover this
basis functionexactlyat the receiver, then the noise performance
of antipodal CSK can theoretically reach that of BPSK. This is

the best possible noise performance which can be achieved by
any digital modulation scheme over an AWGN channel.

In order for this level of performance to be achieved, the
chaotic basis function must be recovered independently of the
modulation; we are not aware of any receiver structure in the
literature that can do this in a sufficiently robust manner.

If the basis function cannot be recovered independently of
the modulation, then COOK offers the best noise performance
for the single basis function case. The disadvantages of COOK
are that the dynamic range of the transmitted power level varies
between zero and twice the average transmitted power level and
that the decision threshold at the receiver depends on the SNR.

Chaotic switching offers a two-basis function modulation
scheme, where the average power level of the transmitted signal
can be kept constant and the decision threshold at the receiver
is independent of the SNR. The noise performance of chaotic
switching with coherent detection can reach that of coherent
FSK provided that orthonormal basis functions are used. In
particular, chaotic switching with DCSK basis functions can
reach the performance of coherent FSK if the basis functions
can be regenerated at the receiver.

Ifthebasisfunctionscannotberecovered,aDCSKtransmission
can be demodulated using a differentially coherent receiver. The
noiseperformanceof thischaoticcommunicationssystemis3dB
worsethanthatofDPSKwithautocorrelationdemodulation.

The best possible noise performance curves for antipodal
CSK modulation with coherent demodulation, COOK with non-
coherent demodulation, chaotic switching with orthonormal
basis functions and coherent demodulation, and chaotic
switching with DCSK basis functions and a differentially
coherent receiver are summarized in Fig. 16. The noise perfor-
mance curves for BPSK and coherent FSK are also shown, for
comparison.

VIII. C ONCLUSIONS

If the propagation conditions are so good that the basis func-
tion(s) can be regenerated at the receiver, then digital modu-
lation schemes using conventional orthonormal (typically peri-
odic3 ) basis functions, and orthonormal chaotic basis functions
can achieve similar levels of noise performance [20]. The main
question from an implementation perspective is the ease with
which the basis functions can be regenerated.

We believe that it is fundamentally easier to regenerate a peri-
odic basis function than a chaotic one. We conjecture, therefore,
that the noise performance of digital chaotic modulation with
coherent correlation receivers will always lag behind that of
equivalentmodulationschemesusingperiodicbasisfunctions.

If the propagation conditions are such that coherent detection
is impossible, then chaotic switching with DCSK basis func-
tions and a differentially coherent receiver (DCSK, for short),
offers the best possible performance for a chaotic digital modu-
lation scheme. In the limit, the noise performance of DCSK lags

3The application of noise as a carrier for digital communications system was
proposed in [27]. A system configuration for the qualitatively similar FM-DCSK
system was described in [28]. The novelty of the latter solution over the former
is that the estimation problem has been recognized and solved and the chaos
generator provides a more robust and simpler source of nonperiodic basis func-
tions.
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Fig. 17. Simulated noise performance curves for DPSK and wideband DCSK
in a single-ray channel (solid and dashed, respectively) and a multipath channel
where coherent detection is impossible (dash-dot and dotted, respectively).
While DCSK disimproves by about 4 dB, DPSK fails completely.

only 3 dB behind that of DPSK with autocorrelation demodula-
tion [20].

In this case, the choice of periodic or chaotic basis functions
is determined by the propagation conditions. In particular, the
multipath performance of a DCSK system can be improved by
increasing the transmission bandwidth.

We stress that, although we have referenced the performance
bounds for chaotic modulation schemes to the limits for con-
ventional narrow-band modulation techniques, the comparison
is not fair in the sense that chaotic modulation is intended for use
as an inherently wide-band communications system. The advan-
tage of DCSK is that the fall-off in its performance in a wide-
band multipath channel is more gradual than that of an equiva-
lent narrow-band modulation scheme.

Fig. 17 shows the performance degradation in narrow-band
DPSK ( , classical DPSK with optimum receiver config-
uration [21]) and wide-band DCSK ( ) systems oper-
ating in single-ray and multipath channels. The bit duration was
set to 2 s in both cases. Although the single-ray performance of
DCSK is worse than that of DPSK, its multipath performance is
significantly better. Therefore, DCSK offers a performance ad-
vantage over DPSK in multipath environments when the propa-
gation conditions are so poor that coherent detection is not pos-
sible; this issue is addressed in detail in [26].
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