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ABSTRACT 
The main contribution of our work is the further exploration of 
some novel and counter-intuitive results on nonlinear behaviors 
of digital filters and provides some analytical analysis for the 
account of our partial results. The main implications of our 
results is: (1) one can select initial conditions and design the 
filter parameters so that chaotic behaviors can be avoided; (2) 
one can also select the parameters to generate chaos for certain 
applications, such as chaotic communications, encryption and 
decryption, fractal coding, etc; (3) we can find out the filter 
parameters when random-like chaotic patterns exhibited in some 
local regions on the phase plane by the Shannon entropies. 

Keywords 
Chaos, digital filter, two’s complement arithmetic. 

1. INTRODUCTION 
The second-order digital filter is a fundamental building block of 
the cascade and parallel realizations of digital filters, which have 
found many applications in industry. The simplest configuration 
for realizing the second-order filter is the direct form realization 
which uses the least number of multipliers and adders. It is 
commonly implemented in hardware using a two’s complement 
arithmetic for the addition operation. When overflow occurs, a 
flag is set and error messages may be prompted. If we neglect the 
flag or warnings and continue the process, chaotic phenomena 
occurs [1]-[10]. 

Some papers have explored the chaotic behaviors of digital filters 
when they are operating at the unstable region [8], [9]. In section 
III-V, we will provide some new results in the form of counter-
intuitive phenomena, such as the linear and periodic behaviors of 
digital filters when they are operating at the unstable region, as 
well as the chaotic behaviors of digital filters when they are 
operating at the stable region. 

In section VI, the statistical property of the symbolic sequences 
and state variables are investigated, and some interesting results 
are reported. 

Most of the existing literature on the analysis of second-order 

digital filters with two’s complement arithmetic study only the 
autonomous response and assume that the filters are operating at 
the marginally stable region [1], [4], [6], [7], [10]. In section VII 
and VIII, we will extend some of their results to the forced 
response cases, such as the step response case and the sinusoidal 
response case. 

The existing literature covers the analysis of a direct form third-
order digital filter with two’s complement arithmetic [3]. In 
section IX, some of our results on the cascade and parallel forms 
will be covered. 

Some papers study the effects of other nonlinearities, such as 
saturation type nonlinearity [2] and quantization type 
nonlinearity [5]. For these nonlinearities, we will also provide 
further insight on the behaviors of the filters in section IX. 

Besides the discovery of some novel and counter-intuitive results 
on the behaviors of digital filters discussed in the abstract, 
another main contribution of our work is to provide some 
analytical results on the behaviors of digital filters. In section III, 
we provide a relationship between the properties of symbolic 
sequences and the behaviors of various types of trajectories 
(including the case when the trajectory converges to some fixed 
points not locating at the origin, and the cases when limit cycle 
and chaotic fractal patterns occur) when the digital filter is 
operating at the stable region. The initial conditions for the 
corresponding trajectories are also given. In section IV, when the 
digital filter is operating at the unstable region, we provide the 
condition for which overflow does not occur and the trajectory 
converges to some fixed points or periodic orbits. The stability of 
the trajectories with respect to the initial conditions and filter 
parameters are also discussed. In section VII and VIII, we also 
extend the analysis of autonomous system to the forced response 
cases. For the step response case, an appropriate affine 
transformation is developed to relate the step response behaviors 
to some corresponding autonomous response behaviors. Based on 
the transformation, a set of necessary and sufficient conditions is 
derived to relate the trajectory equations, symbolic sequences 
and the set of initial conditions for various types of trajectories. 
For the sinusoidal response case, a frequency-domain technique 
is employed to derive the sets of initial conditions and the 
necessary conditions on the filter parameters. The periodicity of 
the symbolic sequences is used for the characterization of the Copyright is held by the authors. 
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overflow, and the set of initial conditions for overflow is figured 
out. 

The main implications of our results is: (1) one can select initial 
conditions and design the filter parameters so that chaotic 
behaviors can be avoided; (2) one can also select the parameters 
to generate chaos for certain applications, such as chaotic 
communications, encryption and decryption, fractal coding, etc. 

2. SYSTEM DESCRIPTION 
Assume that a second-order digital filter with two’s complement 
arithmetic is realized in direct form, as shown in figure 1. The 
state space model of the overall system can be represented as 
follows: 
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where a  and b  are the filter parameters;  kx1
 and  kx2

 are the 
state variables;  ku  is the input of the digital filter; and f  is the 
nonlinearity due to the use of two’s complement arithmetic. 

The nonlinearity f  can be modeled as: 

  nf  2  such that 1212  nn   and Zn  (2) 

Hence, the state space model of the overall system can be 
represented as: 
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and    mmks ,,1,0,1,,    for 0k  (8) 

in which m  is the minimum integer satisfying 

      1212 21  mkukxakxbm  for 0k  (9) 

3. CHAOTIC BEHAVIORS IN STABLE 
SECOND-ORDER DIGITAL FILTERS 
When the eigenvalues of A  are inside the unit circle, one may 
expect that the state trajectory of the autonomous system will 
converge to the origin of the phase plane. However, this is not 
true. In fact, by defining: 

2rb   (10) 

and 

cos2  ra  (11) 

where 

  (12) 

and 

10  r  (13) 

we have found that there are four types of trajectories. The type I 
trajectory can be defined as the one which corresponds to the ‘no 
overflow’ case, that is,   0ks  for 0k . The trajectory will 
converge to the origin and the set of initial conditions is a 
polygon containing the origin. The type II trajectory can be 
defined as the one which corresponds to the case when the 
symbolic sequences are non-zero constant integers, that 
is,   00  sks  for 0k . The trajectory will converge to the 
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0s  corresponds to different fixed points), and the set of initial 
conditions is a set of polygons with each polygon containing a 
fixed point. The type III trajectory can be defined as the one 
which corresponds to the case when the symbolic sequences are 
periodic, that is,  1\ ZM  such that    Mksks   for 

0kk  . The trajectory will converge to a periodic sequence 
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and the set of initial conditions is sets of polygons. The type IV 
trajectory can be defined as the one which corresponds to the 
case when the symbolic sequences are aperiodic. The trajectory 
exhibits chaotic polygonal fractal patterns, and the set of initial 
conditions are also of polygonal fractal patterns. 

The above result provides relationships between the properties of 
symbolic sequences and the behaviors of various types of 
trajectories including the case when the trajectory converges to 
some fixed points not locating at the origin, and the cases when 
limit cycle and chaotic fractal patterns occurs. The set of initial 
conditions corresponding to those trajectories also provides 
useful information, such as one can determine the behaviors of 
the system precisely for any arbitrary initial conditions and filter 
parameters in the stable region. The mathematical analysis can 
be found in [16], and some simulation results are shown in figure 
2. 



4. PERIODIC BEHAVIORS IN UNSTABLE 
SECOND-ORDER DIGITAL FILTERS 
When 1 ab  or 1 ab  and an eigenvalue of A  is outside 
the unit circle, one may expect that overflow will always occur 
and the state trajectory will be chaotic or aperiodic for the 
autonomous response. However, we have found that overflow 
may not occur and the state trajectories may converge to some 
fixed points or periodic orbits. The results are summarized in the 
following Lemmas: 
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Lemma 2: 

For 1 ab , if  ΖM  such that  
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Lemma 3: 

For 1 ab  and 11 a ,   0ks  for 
0kk   if and only if 

 0Ζ0 k  such that    0201 kxkx  . 

Lemma 4: 
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Lemma 5: 

For 1 ab  and 11 a ,   0ks  for 
0kk   if and only if 

 0Ζ0 k  such that    0201 kxkx  . 

Lemma 6: 

For 1 ab  and a being an odd integer, there does not exist 
Ζ0k  such that   aks   for 

0kk  . 

The proofs of the above Lemmas and the stability analysis can be 
found in [15]. Some simulation results are shown in figure 3. 

Since one of the eigenvalues is unstable, one may expect that a 
very small deviation from the initial condition or filter parameter 
will produce a very different trajectory pattern. However, a 
counter-intuitive result is found that fixed points or periodic 

orbits exists and are stable if a is an odd integer and 1 ab  or 
1 ab  for all the initial conditions in 2I . That is, an arbitrary 

initial condition will still converge either to a fixed point or a 
periodic orbit. However, it is not true for the filter parameters. 
When a  deviates from an odd integer a little bit, the state does 
not converge neither to a fixed point nor a periodic orbit. 

5. NEW TRAJECTORY PATTERN IN 
UNSTABLE SECOND-ORDER DIGITAL 
FILTERS 
We have reported in section IV that the trajectory is periodic for 
some special initial conditions when 1 ab  or 1 ab  and an 
eigenvalue of A  is outside the unit circle. Are these results valid 
for any arbitrary initial conditions and other filter parameters on 
the extended boundaries of the stability triangle, such as 1b ? 
If yes, what are the trajectory patterns exhibited on the phase 
plane for those filter parameters? The answers are summarized in 
the following observations: 

Observation 1. 

If: 

(i) 1b  and 
n
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2
12   where  0\Zn , or 

(ii) 1 ab  and 1b  and a  is an odd number, or 

(iii) 1 ab  and 1b  and a  is an odd number, 

then  00  Zk  and  ZM  such that    kMk xx   for 

0kk   and   20 Ix . 

Observation 2. 
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2
12   where  4,3,2,1,1,2,3 n , then a new 

trajectory pattern, which looks like a rotated letter ‘X’, is 
exhibited on the phase plane, no matter what the values of the 
initial conditions are. The center of the rotated letter is located at 
the origin, and the slopes of the ‘straight lines’ of the rotated 
letter ‘X’ are equal to the values of the pole locations. 

More discussions can be found in [12] and some simulation 
results are shown in figure 4 and figure 5, respectively. 

6. DETECTION OF SPECIAL 
TRAJECTORY PATTERNS 
Since there are some special trajectory patterns exhibited on the 
phase plane when the eigenvalues of A  are outside the unit 
circle, are there any methods to detect those special trajectory 
patterns on the phase plane? We have found that when both the 
eigenvalues of A  are outside the unit circle, the Shannon 
entropies of the state variables are independent of the initial 
conditions and the filter parameters, except for some special 
values of filter parameters, as shown in figure 6. At those special 
values of the filter parameters, the Shannon entropies of the state 
variables are relatively small. The state trajectories 
corresponding to those filter parameters either exhibit random-
like chaotic behaviors in some local regions or converge to fixed 



points on the phase plane, as shown in figure 7. Hence, by 
measuring the Shannon entropies of the state variables, those 
special state trajectory patterns can be detected. 

For completeness, we extend the investigation to the case when 
the eigenvalues of A  are complex and not outside the unit circle 
(stable one or the marginally stable one). We have found that the 
Shannon entropies of the symbolic sequences for the type II 
trajectories may be higher than that for the type III trajectories, 
even though the symbolic sequences of the type II trajectories are 
periodic and correspond to limit cycle behaviors, while that of 
the type III trajectories are aperiodic and correspond to chaotic 
behaviors. Some simulation results are shown in figure 8. For 
more information, the readers may refer to [13]. 

7. STEP RESPONSE OF SECOND-ORDER 
DIGITAL FILTERS 
Up to now, the discussions are based on the autonomous 
response case. What are the results for the forced response cases, 
such as the step response case? Do they still exhibit the same 
types of trajectories similar to those of the autonomous response 
case? If so, what are the differences between the step response 
and the autonomous response? Does overflow occur for the type I 
trajectory? Do there always exist some initial conditions such 
that the digital filters exhibit the type I trajectory for small step 
input? Can we say that when the input step size is large, there 
does not exist any initial conditions for the system to exhibit the 
type I trajectory? Moreover, can the step response behaviors be 
related to some corresponding autonomous response behaviors by 
means of an appropriate affine transformation in the presence of 
the overflow nonlinearity? To address the above problems, let: 
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Then we have the following Lemmas: 
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The proof of Lemma 7 can be found in [18]. 

Lemma (7i) implies that there is a single ellipse exhibited on the 
phase plane. This result is the same as that of the autonomous 
response case. Hence, this result corresponds to the type I 
trajectory. However, the center of the ellipse is located at 
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response. It is interesting to note that when 00 s , overflow 
occurs. Hence, overflow may occur even for the type I trajectory. 

According to Lemma (7iii), the set of initial conditions for the 
type I trajectory is elliptic in shape, with the center being the 
same as that of the trajectory. The size of the elliptical region of 
the set of initial conditions depend on the value of 
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which should of course be greater than zero. This implies that 

022 sca  . For a given 
0s , the possible values of a  and c  

are in a translated triangle. Hence, the parameter space also 
includes the points with large values of c . It means that the 
system will also give the type I trajectory even if the input step 
size is so large that overflow always occurs. On the other hand, 
there are some values of a  and c  which are not in the parameter 
space. This region includes the case for very small values of c . 
This implies that the corresponding system can never give the 
type I trajectory even though the input step size tends to a value 
very close to zero, no matter what the initial conditions are. 

Suppose   is not an integer multiple of  . Then 
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      ii iMkk xxTx 1  for 0k  and 1,,1,0  Mi   (27) 

Lemma 8: 

The following three statements are equivalents: 

(i)    kk i
M

i xAx  1  for 0k  and 1,,1,0  Mi  . 

(ii) M  such that    isikMs   for 0k  and 1,,1,0  Mi  . 

(iii)        


  iii xxxTxx 1:00 1  for 1,,1,0  Mi  . 

The proof of Lemma 8 can be found in [18]. 

Lemma (8i) implies that there are M  ellipses exhibited on the 
phase plane. This result is the same as that of the autonomous 



response. Hence, this result corresponds to the type II trajectory. 
The center of these ellipses are located at 

ix , for 1,,1,0  Mi  . 
It is interesting to note that even the digital filters are nonlinear, 
the step response behaviors can still be related to some 
corresponding autonomous response behaviors by means of an 
appropriate affine transformation. This is in general not true for 
arbitrary nonlinear functions. 

Lemma 8 implies that the set of initial conditions corresponding 
to the type II trajectory are some rotated and translated elliptical 
regions. For each periodic symbolic sequence    isikMs  , for 

1,,0  Mi  , we have a corresponding single rotated and 
translated ellipse with center at 

ix . The centers are the same as 
that of the trajectory described in Lemma 7. Hence, comparing to 
that of the autonomous response case, the centers are shifted to 
different positions, and the shifts depend on the filter parameter 
a , input step size, and the periodicity of the symbolic sequences. 
By transforming these ellipses to circles, the radii of these circles 
are 



 ix1 . 

Based on extensive simulations, we observe that the system may 
give an elliptical fractal pattern of trajectory if the system does 
not give the type I or type II trajectories. Let: 

           0\Zfor   and 1:0 1   MMisisiD iiM xxxTx

 (28) 

and 


M

MDID


 \2  (29) 

Then the set of initial conditions that may give the type III 
trajectory is D. 

One main contribution of our results is to extend the necessary 
condition relating the symbolic sequences and trajectory 
behaviors in [1] to the necessary and sufficient conditions. We 
also explore the necessary and sufficient conditions of relating 
the trajectory behaviors and the set of initial conditions. The 
detail analysis and description can be found in [18]. Some 
simulation result is shown in figure 9. 

8. SINUSOIDAL RESPONSE OF SECOND-
ORDER DIGITAL FILTERS 
The step response case is discussed in section VII. How about the 
sinusoidal response case? It is found that the visual appearance 
of the trajectory for the sinusoidal response case is much richer 
than that of the autonomous and step response cases, as shown in 
figure 10. When overflow does not occur, several ellipses may be 
exhibited on the phase plane (as shown in figure 10a), which 
corresponds to the overflow case in the autonomous and step 
response cases. Hence, the occurrence of overflow cannot be 
studied by examining the visual appearances of the trajectories. 
Instead, the periodicity of the symbolic sequences is employed 
for the characterization of the overflow. The results are 
summarized as the following Lemmas: 

Lemma 9: 

Let: 

     kvkcku  sin  (30) 

where 

 0\c  (31) 

 Z kk :\   (32) 

and 

 


 


otherwise0

01 k
kv  (33) 

Define: 

2
cos a

  (34) 











 sincos
01

T  (35) 











 sincos
01

T  (36) 












 cossin
sincos

A
  (37) 















 cossin
sincos

A
  (38) 

and 
















0
1

cos2
sin

1 a
c


x  (39) 

If   0ks  for Zk  , then: 

(i)      
  1

1
1

1 0 xTATxxTATx 
kkk

  for 1k . 

(ii)      
  1

1
1

1 10:0 xTxxTx 
. 

(iii) coscos
2


c . 

The proof of Lemma 9 can be found in [19]. 

Since  kx  is the superposition of two signals with different 
frequencies, this gives a rich set of trajectory patterns on the 
phase portrait. According to Lemma (9ii), the set of initial 
conditions can be represented as an elliptical region in the phase 
portrait diagram. The center of the ellipse is located at  1x  and 
the size of the ellipse depends on   1

11 xT
. If Lemma (9iii) is 

not satisfied, overflow has to occur no matter what the initial 
conditions are. For example, if  m 2 , then c  has to be 
zero. Therefore, overflow will occur no matter what the initial 
conditions are, even when a very small signal ( 0c , where 

0c ) is applied to the system. This phenomenon can be 

understood by considering the resonance behavior. 

Lemma 10: 



If  0\ZM   such that    Mksks   for Zk  , then: 

 pp ba ,  for 1,,1,0  Mp   such that 

     





1

0
cossin

M

p
pp kpbkpaks   for 0k  (40) 

where 

M
 


2  (41) 

Let: 

 
  















0
1

coscos
sin

,1 


p
pa p

px  (42) 

 
 








 





1
cos

coscos,2




p
p

bp
px  (43) 

   








  ppp sincos
01

T  (44) 

   
   









 


 pp
pp

p cossin
sincos

A
  (45) 














1
1

cos1
0

2
bx  (46) 

and 














1
1

cos1
2

3

Mb
x  (47) 

If M  is odd, then we have: 

     

  
































2

1

1
,1,2

1
1

1

1

1
,2,121

1 0

xxxTATxTAT

xxxxxTATx

M

p
ppp

k
pp

k

M

p
pp

kk






 

for 1k . 

If M  is even, then we have: 

     

 

  


















































3
1

2

1

2

1
,1,2

1
1

1

1

2

1
,2,1321

1

1

0

x

xxxTATxTAT

xxxxxxTATx

k

M

Mp
p

ppp
k

pp
k

M

Mp
p

pp
kk







 

for 1k . 

Let: 

 
 








 ppp

p

p
p ,1,2

1

,2

,1ξ xxT 
  (48) 

Define the following discrete-time signals: 

   


 

 

otherwise0
11, nM

n ni
i


  for 1,0i  (49) 

   nknq k  cos,1
 (50) 

and 

   nknq k  sin,2
 (51) 

Let  kQ ,1
,  kQ ,2

,  1  and  2  be the Fourier transforms 

of  nq k,1
,  nq k,2

,  n1  and  n2 , respectively. 

If M  is odd, then we have: 

     

 

       















































 

cos122
max

1

0:0

02211

1,,1,0

1
1

1

1
,2,121

1

b
j

kkkk
Mk

M

p
pp







xT

xxxxxTx

. 

If M  is even, then we have: 

     

 

       
 















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














































 

cos1

1

cos122
max

1

0:0

2

1

02211

1,,1,0

1
1

1

2

1
,2,1321

1

M
k

Mk

M

Mp

p
pp

b
b

j
kkkk 





xT

xxxxxxTx

The proof of Lemma 10 can be found in [19]. 

According to Lemma 10, the set of initial conditions forms 
elliptical regions. If M  is odd, then the centers are located at 

 




 
1

1
,2,121

M

p
pp xxxx  and the sizes of those ellipses depend 

on 

 

       







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





cos122
max1 02211

1,,1,01
1 b

j
kkkk

Mk
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


xT

. If M  is even, then the centers are located at 

 





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2

1
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M
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






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
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







cos1

1
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



xT

When the symbolic sequences are aperiodic, an elliptical fractal 
pattern or random-like chaotic pattern is found. 



9. FURTHER DISCUSSIONS ON THIRD-
ORDER DIGITAL FILTERS AND OTHER 
NONLINEARITIES 
We have extended our investigations of chaotic behaviors of 
second-order digital filters to the third-order digital filters in 
cascade [17] and in parallel form [14], and we have worked out a 
set of necessary and sufficient conditions relating the trajectory 
equations, symbolic sequences and the set of initial conditions 
for various types of trajectories. 

In most real situations, the computers and digital hardware 
consists of a finite number of bits. Hence, they are finite state 
machines, and the nonlinear function becomes a periodic 
quantization type function. The existing literature [5] reported 
that if there are more than 16 bits for the implementation, then 
the chaotic behaviors of the finite state machine will be visually 
indistinguishable from that of the infinite state machine. 
However, would a finite state machine behave in a near-chaotic 
way even when its corresponding infinite state machine does not 
exhibit chaotic behavior? We have found that a finite state 
machine may behave in a near-chaotic way even when its 
corresponding infinite state machine does not exhibit chaotic 
behavior. For more information, the readers may refer to [11]. 

10. CONCLUSION 
In this paper, we have explored many novel and counter-intuitive 
results for second-order digital filters with two’s complement 
arithmetic, and we have provided some necessary and sufficient 
conditions to relate the trajectory equations, symbolic sequences 
and the set of initial conditions for various types of trajectories. 
These results are useful for selecting initial conditions and 
designing the filter parameters so that chaotic behaviors can be 
avoided or generated for various applications. 
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Figure 1. Insert caption to place caption below figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

Figure 2. The phase plane (a) when the states converge to a 
fixed point not locating at the origin; (b) when the system 
exhibits limit cycle behaviors; (c) when the system exhibits 

chaotic fractal pattern behaviors. The set of initial conditions 
(d) when overflow does not occur; (e) when the symbolic 

sequences are constant; (f) when limit cycle occurs; (g) when 
chaotic fractal pattern occurs. 
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Figure 3. The phase plane of the second order digital filter 
with two’s complement arithmetic. The points  0x ,  1x , 

 2x  are as annotated, and the points with ‘*’ denote the 
‘steady states’ of x . 

 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 
 

 

Figure 4. The phase plane with 1b ,   









2.0
1.0

0x , and 

different values of a . (a) 5.2a , (b) 25.4a , (c) 3a , 
(d) 4a . 

 

 
 
 

 
 

 
 
 

 

 
 

 
 
 

Figure 5. The phase plane and symbolic sequences with 

1 ab ,   









2.0
1.0

0x , and different values of a . (a) phase 

plane with 4a , (b) symbolic sequences with 4a , (c) 
phase plane with 3a , (d) symbolic sequences with 3a , 
(e) phase plane with 5a , and (f) symbolic sequences with 

5a . 

 

 
 
 

 

 
Figure 6. Shannon entropies of the state variables at different 

filter parameters when   










5377.0

9003.0
0x . 
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Figure 7. (a) The phase plane of a second-order digital filter 

with two’s complement arithmetic when   










5377.0

9003.0
0x , 

1.0a  and 6.1b . (b) The state trajectories of a second-
order digital filter with two’s complement arithmetic when 

  










5377.0

9003.0
0x , 4a  and 4b . 

Figure 8. Shannon entropies of symbolic sequences for 
different initial conditions when 1b  and 5.0a . 

 
 
 

 
 
 

 
 

 
 

 
 
 

Figure 9. A phase plane and the corresponding symbolic 
sequence for the type III trajectory. 
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Figure 10. The phase plane of the sinusoidal response when 

1b ,   









0
3.0

0x , and different values of c ,   and  . 

 

 


