221 research outputs found

    Prompt and accurate diagnosis of ventricular arrhythmias with a novel index based on phase space reconstruction of ECG

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Aim To develop a statistical index based on the phase space reconstruction (PSR) of the electrocardiogram (ECG) for the accurate and timely diagnosis of ventricular tachycardia (VT) and ventricular fibrillation (VF). Methods Thirty-two ECGs with sinus rhythm (SR) and 32 ECGs with VT/VF were analyzed using the PSR technique. Firstly, the method of time delay embedding were employed with the insertion of delay “τ” in the original time-series X(t), which produces the Y(t) = X(t − τ). Afterwards, a PSR diagram was reconstructed by plotting Y(t) against X(t). The method of box counting was applied to analyze the behavior of the PSR trajectories. Measures as mean (ÎŒ), standard deviation (σ) and coefficient of variation (CV = σ/ÎŒ), kurtosis (ÎČ) for the box counting of PSR diagrams were reported. Results During SR, CV was always 0.05. A similar pattern was observed with ÎČ, where < 6 was considered as the cut-off point between SR and VT/VF. Therefore, the upper threshold for SR was considered CVth = 0.05 and ÎČth < 6. For optimisation of the accuracy, a new index (J) was proposed: J=wCVCVth+1−wÎČÎČth. During SR the upper limit of J was the value of 1. Furthermore CV, ÎČ and J crossed the cut-off point timely before the onset of arrhythmia (average time: 4 min 31 s; SD: 2 min 30 s); allowing sufficient time for preventive therapy. Conclusion The J index improved ECG utility for arrhythmia monitoring and detection utility, allowing the prompt and accurate diagnosis of ventricular arrhythmias

    A statistical index for early diagnosis of ventricular arrhythmia from the trend analysis of ECG phase-portraits

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.In this paper, we propose a novel statistical index for the early diagnosis of ventricular arrhythmia (VA) using the time delay phase-space reconstruction (PSR) technique, from the electrocardiogram (ECG) signal. Patients with two classes of fatal VA-with preceding ventricular premature beats (VPBs) and with no VPBs-have been analysed using extensive simulations. Three subclasses of VA with VPBs viz. ventricular tachycardia (VT), ventricular fibrillation (VF) and VT followed by VF are analyzed using the proposed technique. Measures of descriptive statistics like mean (”), standard deviation (σ), coefficient of variation (CV = σ/”), skewness (Îł) and kurtosis (ÎČ) in phase-space diagrams are studied for a sliding window of 10 beats of the ECG signal using the box-counting technique. Subsequently, a hybrid prediction index which is composed of a weighted sum of CV and kurtosis has been proposed for predicting the impending arrhythmia before its actual occurrence. The early diagnosis involves crossing the upper bound of a hybrid index which is capable of predicting an impending arrhythmia 356 ECG beats, on average (with 192 beats standard deviation) before its onset when tested with 32 VA patients (both with and without VPBs). The early diagnosis result is also verified using a leave one out cross-validation (LOOCV) scheme with 96.88% sensitivity, 100% specificity and 98.44% accuracy.This work was supported by the E.U. ARTEMIS Joint Undertaking under the Cyclic and person-centric Health management: Integrated appRoach for hOme, mobile and clinical eNvironments—(CHIRON) Project, Grant Agreement # 2009-1-100228

    Phase Space Reconstruction Based CVD Classifier Using Localized Features

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData Availability: The datasets analysed during the current study are available in the ‘PhysioNet’; the web address is [https://physionet.org/cgi-bin/atm/ATM].This paper proposes a generalized Phase Space Reconstruction (PSR) based Cardiovascular Diseases (CVD) classification methodology by exploiting the localized features of the ECG. The proposed methodology first extracts the ECG localized features including PR interval, QRS complex, and QT interval from the continuous ECG waveform using features extraction logic, then the PSR technique is applied to get the phase portraits of all the localized features. Based on the cleanliness and contour of the phase portraits CVD classification will be done. This is first of its kind approach where the localized features of ECG are being taken into considerations unlike the state-of-art approaches, where the entire ECG beats have been considered. The proposed methodology is generic and can be extended to most of the CVD cases. It is verified on the PTBDB and IAFDB databases by taking the CVD including Atrial Fibrillation, Myocardial Infarction, Bundle Branch Block, Cardiomyopathy, Dysrhythmia, and Hypertrophy. The methodology has been tested on 65 patients’ data for the classification of abnormalities in PR interval, QRS complex, and QT interval. Based on the obtained statistical results, to detect the abnormality in PR interval, QRS complex and QT interval the Coefficient Variation (CV) should be greater than or equal to 0.1012, 0.083, 0.082 respectively with individual accuracy levels of 95.3%, 96.9%, and 98.5% respectively. To justify the clinical significance of the proposed methodology, the Confidence Interval (CI), the p-value using ANOVA have been computed. The p-value obtained is less than 0.05, and greater F-statistic values reveal the robust classification of CVD using localized features.Department of Science & Technology (DST

    Statistical Models of Reconstructed Phase Spaces for Signal Classification

    Get PDF
    This paper introduces a novel approach to the analysis and classification of time series signals using statistical models of reconstructed phase spaces. With sufficient dimension, such reconstructed phase spaces are, with probability one, guaranteed to be topologically equivalent to the state dynamics of the generating system, and, therefore, may contain information that is absent in analysis and classification methods rooted in linear assumptions. Parametric and nonparametric distributions are introduced as statistical representations over the multidimensional reconstructed phase space, with classification accomplished through methods such as Bayes maximum likelihood and artificial neural networks (ANNs). The technique is demonstrated on heart arrhythmia classification and speech recognition. This new approach is shown to be a viable and effective alternative to traditional signal classification approaches, particularly for signals with strong nonlinear characteristics

    Non-linear dynamical analysis of biosignals

    Get PDF
    Biosignals are physiological signals that are recorded from various parts of the body. Some of the major biosignals are electromyograms (EMG), electroencephalograms (EEG) and electrocardiograms (ECG). These signals are of great clinical and diagnostic importance, and are analysed to understand their behaviour and to extract maximum information from them. However, they tend to be random and unpredictable in nature (non-linear). Conventional linear methods of analysis are insufficient. Hence, analysis using non-linear and dynamical system theory, chaos theory and fractal dimensions, is proving to be very beneficial. In this project, ECG signals are of interest. Changes in the normal rhythm of a human heart may result in different cardiac arrhythmias, which may be fatal or cause irreparable damage to the heart when sustained over long periods of time. Hence the ability to identify arrhythmias from ECG recordings is of importance for clinical diagnosis and treatment and also for understanding the electrophysiological mechanism of arrhythmias. To achieve this aim, algorithms were developed with the help of MATLAB¼ software. The classical logic of correlation was used in the development of algorithms to place signals into the various categories of cardiac arrhythmias. A sample set of 35 known ECG signals were obtained from the Physionet website for testing purposes. Later, 5 unknown ECG signals were used to determine the efficiency of the algorithms. A peak detection algorithm was written to detect the QRS complex. This complex is the most prominent waveform within an ECG signal and its shape, duration and time of occurrence provides valuable information about the current state of the heart. The peak detection algorithm gave excellent results with very good accuracy for all the downloaded ECG signals, and was developed using classical linear techniques. Later, a peak detection algorithm using the discrete wavelet transform (DWT) was implemented. This code was developed using nonlinear techniques and was amenable for implementation. Also, the time required for execution was reduced, making this code ideal for real-time processing. Finally, algorithms were developed to calculate the Kolmogorov complexity and Lyapunov exponent, which are nonlinear descriptors and enable the randomness and chaotic nature of ECG signals to be estimated. These measures of randomness and chaotic nature enable us to apply correct interrogative methods to the signal to extract maximum information. The codes developed gave fair results. It was possible to differentiate between normal ECGs and ECGs with ventricular fibrillation. The results show that the Kolmogorov complexity measure increases with an increase in pathology, approximately 12.90 for normal ECGs and increasing to 13.87 to 14.39 for ECGs with ventricular fibrillation and ventricular tachycardia. Similar results were obtained for Lyapunov exponent measures with a notable difference between normal ECG (0 – 0.0095) and ECG with ventricular fibrillation (0.1114 – 0.1799). However, it was difficult to differentiate between different types of arrhythmias.Biosignals are physiological signals that are recorded from various parts of the body. Some of the major biosignals are electromyograms (EMG), electroencephalograms (EEG) and electrocardiograms (ECG). These signals are of great clinical and diagnostic importance, and are analysed to understand their behaviour and to extract maximum information from them. However, they tend to be random and unpredictable in nature (non-linear). Conventional linear methods of analysis are insufficient. Hence, analysis using non-linear and dynamical system theory, chaos theory and fractal dimensions, is proving to be very beneficial. In this project, ECG signals are of interest. Changes in the normal rhythm of a human heart may result in different cardiac arrhythmias, which may be fatal or cause irreparable damage to the heart when sustained over long periods of time. Hence the ability to identify arrhythmias from ECG recordings is of importance for clinical diagnosis and treatment and also for understanding the electrophysiological mechanism of arrhythmias. To achieve this aim, algorithms were developed with the help of MATLAB¼ software. The classical logic of correlation was used in the development of algorithms to place signals into the various categories of cardiac arrhythmias. A sample set of 35 known ECG signals were obtained from the Physionet website for testing purposes. Later, 5 unknown ECG signals were used to determine the efficiency of the algorithms. A peak detection algorithm was written to detect the QRS complex. This complex is the most prominent waveform within an ECG signal and its shape, duration and time of occurrence provides valuable information about the current state of the heart. The peak detection algorithm gave excellent results with very good accuracy for all the downloaded ECG signals, and was developed using classical linear techniques. Later, a peak detection algorithm using the discrete wavelet transform (DWT) was implemented. This code was developed using nonlinear techniques and was amenable for implementation. Also, the time required for execution was reduced, making this code ideal for real-time processing. Finally, algorithms were developed to calculate the Kolmogorov complexity and Lyapunov exponent, which are nonlinear descriptors and enable the randomness and chaotic nature of ECG signals to be estimated. These measures of randomness and chaotic nature enable us to apply correct interrogative methods to the signal to extract maximum information. The codes developed gave fair results. It was possible to differentiate between normal ECGs and ECGs with ventricular fibrillation. The results show that the Kolmogorov complexity measure increases with an increase in pathology, approximately 12.90 for normal ECGs and increasing to 13.87 to 14.39 for ECGs with ventricular fibrillation and ventricular tachycardia. Similar results were obtained for Lyapunov exponent measures with a notable difference between normal ECG (0 – 0.0095) and ECG with ventricular fibrillation (0.1114 – 0.1799). However, it was difficult to differentiate between different types of arrhythmias

    Review and classification of variability analysis techniques with clinical applications

    Get PDF
    Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis

    Ventricular Fibrillation and Tachycardia Detection Using Features Derived from Topological Data Analysis

    Get PDF
    A rapid and accurate detection of ventricular arrhythmias is essential to take appropriate therapeutic actions when cardiac arrhythmias occur. Furthermore, the accurate discrimination between arrhythmias is also important, provided that the required shocking therapy would not be the same. In this work, the main novelty is the use of the mathematical method known as Topological Data Analysis (TDA) to generate new types of features which can contribute to the improvement of the detection and classification performance of cardiac arrhythmias such as Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT). The electrocardiographic (ECG) signals used for this evaluation were obtained from the standard MIT-BIH and AHA databases. Two input data to the classify are evaluated: TDA features, and Persistence Diagram Image (PDI). Using the reduced TDA-obtained features, a high average accuracy near 99% was observed when discriminating four types of rhythms (98.68% to VF; 99.05% to VT; 98.76% to normal sinus; and 99.09% to Other rhythms) with specificity values higher than 97.16% in all cases. In addition, a higher accuracy of 99.51% was obtained when discriminating between shockable (VT/VF) and non-shockable rhythms (99.03% sensitivity and 99.67% specificity). These results show that the use of TDA-derived geometric features, combined in this case this the k-Nearest Neighbor (kNN) classifier, raises the classification performance above results in previous works. Considering that these results have been achieved without preselection of ECG episodes, it can be concluded that these features may be successfully introduced in Automated External Defibrillation (AED) and Implantable Cardioverter Defibrillation (ICD) therapie

    First evidence that intrinsic fetal heart rate variability exists and is affected by hypoxic pregnancy.

    Get PDF
    KEY POINTS: We introduce a technique to test whether intrinsic fetal heart rate variability (iFHRV) exists and we show the utility of the technique by testing the hypothesis that iFHRV is affected by chronic fetal hypoxia, one of the most common adverse outcomes of human pregnancy complicated by fetal growth restriction. Using an established late gestation ovine model of fetal development under chronic hypoxic conditions, we identify iFHRV in isolated fetal hearts and show that it is markedly affected by hypoxic pregnancy. Therefore, the isolated fetal heart has intrinsic variability and carries a memory of adverse intrauterine conditions experienced during the last third of pregnancy. ABSTRACT: Fetal heart rate variability (FHRV) emerges from influences of the autonomic nervous system, fetal body and breathing movements, and from baroreflex and circadian processes. We tested whether intrinsic heart rate variability (iHRV), devoid of any external influences, exists in the fetal period and whether it is affected by chronic fetal hypoxia. Chronically catheterized ewes carrying male singleton fetuses were exposed to normoxia (n = 6) or hypoxia (10% inspired O2 , n = 9) for the last third of gestation (105-138 days of gestation (dG); term ∌145 dG) in isobaric chambers. At 138 dG, isolated hearts were studied using a Langendorff preparation. We calculated basal intrinsic FHRV (iFHRV) indices reflecting iFHRV's variability, predictability, temporal symmetry, fractality and chaotic behaviour, from the systolic peaks within 15 min segments in each heart. Significance was assumed at P < 0.05. Hearts of fetuses isolated from hypoxic pregnancy showed approximately 4-fold increases in the Grid transformation as well as the AND similarity index (sgridAND) and a 4-fold reduction in the scale-dependent Lyapunov exponent slope. We also detected a 2-fold reduction in the Recurrence quantification analysis, percentage of laminarity (pL) and recurrences, maximum and average diagonal line (dlmax, dlmean) and the Multiscale time irreversibility asymmetry index. The iHRV measures dlmax, dlmean, pL and sgridAND correlated with left ventricular end-diastolic pressure across both groups (average R2  = 0.38 ± 0.03). This is the first evidence that iHRV originates in fetal life and that chronic fetal hypoxia significantly alters it. Isolated fetal hearts from hypoxic pregnancy exhibit a time scale-dependent higher complexity in iFHRV.British Heart Foundatio

    A novel approach for the diagnosis of ventricular tachycardia based on phase space reconstruction of ECG

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record
    • 

    corecore