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Abstract:

In this paper, we propose a novel statistical infitexthe early diagnosis of ventricular arrhythmia
(VA) using the time delay phase-space reconstrndi®SR) technique, from the electrocardiogram
(ECG) signal. Patients with two classes of fatal VAvith preceding ventricular premature beats
(VPBs) and with no VPBs have been analysed usitgnsie simulations. Three subclasses of VA
with VPBsviz. ventricular tachycardia (VT), ventricular fibritlan (VF) and VT followed by VF are
analyzed using the proposed technique. Measuretesdriptive statistics like meap)( standard
deviation ¢), coefficient of variation @V = o/u), skewnessyj and kurtosis £) in phase-space
diagrams are studied for a sliding window of 10 tbeaf ECG signal using the box-counting
technique. Subsequently, a hybrid prediction indénch is composed of a weighted sum@¥f and
kurtosis has been proposed for predicting the irdpgnarrhythmia before its actual occurrence. The
early diagnosis involves crossing the upper boural loybrid index which is capable of predicting an
impending arrhythmia 356 ECG beats, on averagd (Y82 beats standard deviation) before its onset
when tested with 32 VA patients (both with and with VPBSs). The early diagnosis result is also
verified using a leave out cross-validation (LOOCYg¢heme with 96.88% sensitivity, 100%
specificity and 98.44% accuracy.
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1. Introduction

Early diagnosis or prediction of VA may allow climns sufficient time to intervene for
stopping its escalation causing Sudden Cardiaci)@&D) and thus is an active research area in the
field of cardiology. Over the decades the main emsphhas been put on studying the Heart Rate
Variability (HRV) as a possible marker for the gadiagnosis of VA [1]. Recently it was found that
HRYV increases two hours before the onset of arrhigh?2]. In the same work the authors found the
beat-to-beat oscillations of T-wave amplitudesa@ase before the onset of VA. Despite these findings
it is difficult to derive a temporal relationship these markers unequivocally to the onset of A. |
this paper, we have attempted to approach the gmoldf short-term predictability of VA from a
dynamical system theory perspective and througtsstal analysis of continuous history of ECG
data from 34 patients. The analysis investigatesthdr it is possible to derive a statistical index,
crossing of which above a certain threshold candmsidered as an early diagnosis of impending VA
before its onset. Such an index may help for $giag short-term risk of arrhythmia along with the
other clinical markers mentioned earlier.

From the perspective of dynamical systems thedrg, lteart in healthy condition may be
considered as a system maintaining constant plete@nship between electrical activities occurring
at its different parts leading to an overall symetised operation. During arrhythmia this coherent
phase relationship is disrupted, resulting in aotbhahythm. However, such a chaotic rhythm is very
unlikely to be set suddenly without approaching bifercation point (the onset of arrhythmia here)
over a finite time window. Therefore, it may begeaable to assume that the manifestation of VA in
essence is a cumulative effect of an incrementaptgal drift of phase relationship between eleatric
activities occurring at different parts of the hdaading to a desynchronisation phenomenon over a
finite time frame. Another important point to ndtethat the ECG of a patient with tendency of
arrhythmia often shows the presence of single dtiphel VPBs which can possibly be considered as
a compensatory mechanism that the human body faekesitigating this gradual desynchronisation
process [3]. Once such mechanism fails, the arrhighoccurs which is manifested as random
fluctuations in the ECG traces (mostly polymorp¥ic) instead of its typically well-behaved P-QRS-
T pattern.

Although in principle such a temporal phase dsftexpected to be imprinted in the ECG
time-series as changes in inter-beat intervalatae could be small enough to be detected by Visua
inspection of ECG alone until at the very last ghakhe cumulative effect of increasing inter-beat
desynchronisation pushes the heart more towardgetige of chaos or arrhythmia when the ECG beat
patterns completely changes to VT/VF. Had such nigsynisation process been detected early, it
could serve as predictor of possible impending VA. Phase-space reconson¢fPSR) or time delay
embedding [4], [5] is a technique widely used ie fleld of nonlinear dynamics for detecting such
small desynchronisation phenomena in a time-sela¢s which is often indistinguishable by simple
observation. Therefore such technique when apmiedECG time-series may have potential for
detecting the gradual phase desynchronisationrigadithe arrhythmia. Although several studies like
[6-8] have established that the PSR has bettebddpao transform the ECG time series in the form
of images where such desynchronisation can berhettkerstood, still in standard practice in clitica
cardiology is mostly based on the observation oGHigats along with other time domain parameters
and not the phase portraits which could be a popudg of diagnosis pathological ECGs in future.

In PSR technique a dynamic system’s trajectoryeisomstructed by plotting the original
signal and its delayed versions along mutuallyagtimal axes of the co-ordinate system. This gives a
closed contour for a periodic signal representitignd cycle for the regular oscillations of thestgm
under investigation. This technique is widely usedletection of chaos or deviation from constant
frequency oscillations, if the system is considdrete noise-free. In healthy heart condition, with
small time window, the consecutive ECG beats cardresidered as an almost periodic waveform



and therefore the phase-space analysis of it wpubdluce an almost closed contour [9]. In the
presence of certain desynchronisation processe ttlesed contours or trajectories will start toesjor
depending upon the amount of desynchronisatiohamsystem and therefore counting the number of
trajectories and their statistical variations otiene may give a quantitative metric for temporal
dynamics of the underlying desynchronisation precés this paper, we exploit this philosophy for
investigating formulation of a possible short-tgerediction index of VA.

The phase-space analysis technique has been usesksiully over the years for detecting
VT and VF [6-8], as biometric for human identificat [10], coronary occlusion [11], heartbeat
classification [12], detection of ECG fiducial pbifL3], fetal ECG monitoring [14], [15], spatial
analysis using vectorcardiogram [16], analyses REcomplex time series [17], heart rate detection
[18], and for understanding heart rhythm dynamic,[[20]. Apart from the above mentioned works
on application of ECG phase portraits for analysabbgpormal heart conditions, there were attempts
for the prediction of irregular heart conditiong.estudy of VF using multi-parameter analysis [21],
AF prediction from heart rate variability and EC@mals [22], [23], risk of arrhythmia in post
Myocardial infarction [24], [25], prediction of défillation success [26], prediction of VF duration
using angular velocity [27] etc. among many othénsaddition, among other popular nonlinear
dynamical measures, the period-doubling bifurcafit8], correlation dimension [29] and complexity
measure [30] have also been applied to detect dathythmia like VF. However the major emphasis
in all of these works is thdetection(not early diagnosisr prediction) of abnormal heart conditions
after the anomalous behaviour in the heart or #nmrhia has been manifested. Although there are
ECG PSR based methods to detect arrhythmic evers ib is manifested, but there is almost no
literature in similar works on early diagnosis wigending arrhythmia.

The aim of this work is to formulate a regularistatistical index that magredict orgive an
early diagnosisof the impending VA, specifically VT and VF, beoits onset by crossing a certain
threshold. The proposed index has been formulateth fthe statistical trend analysis of the
trajectories of PSR for long ECG time-series histdo capture the underlying temporal
desynchronisation process. The PSR when applid€lGih data up to the onset of arrhythmia, results
in 2-D images, describing the system trajectoridsckv are analysed using the well-known box-
counting technique [4], [5]. To achieve our goak ¥irst study four descriptive statistics as the
moments of order 1 —viz. the meany), variance ¢), skewnessyj and kurtosisf), corresponding to
the temporal evolution of the trajectories in Heaknd VA populations — both cohorts are of size 32
Two main classes of arrhythmic patients were casidl — patients having VA without VPBs and
patients having VA with one or multiple VPBs. Irethatter class; three subclasses were considered,
patients with — VF, VT and VT followed by VF. In dition to the above mentioned statistical
parameters, the coefficient of variatidd\( = o/1) has been introduced as another potential staisti
measure which represents the spread of the tragstoormalised by its mean. The statistical
variation of the number of trajectories resultaghirphase-space reconstruction is computed using the
box-counting technique [4], [5]. The present pajperoughly analyses the first result of such early
diagnosis of VA from the statistical trends of E@Rase portraits [31].

The rest of the paper is organized as follows:i@e@ describes the basics of phase-space
reconstruction, box-counting and adopted signaliaradje processing techniques and in section 3 the
strategy for analysing the healthy and arrhythm@faEsignals is elaborated. Section 4 describes the
statistical analysis of the phase-space diagramghenproposed index is formulated in section & Th
conclusions are drawn in section 6 with a discussio future scopes of research.

2. Theoretical formulation

2.1. Basics of phase-space reconstruction and box-coumd

Study of phase space reconstruction is commonle dorthe field of nonlinear dynamical
(especially chaotic) systems where the system issidered to be deterministic and generally
represented by a set of ordinary differential eiguat The Takens’ theorem proves that a sufficjentl



large time delayed versions of only one measurat st can be used for the reconstruction of the
underlying dynamics of the system in the state-sparc phase-space [5]. In other words, from a
measured discrete time series ditaif the delayd,is sufficiently large, the evolution of

{Xn,xn_l,xH,---,)gw} will be the same as the dynamics of the underlyimgher dimensional

physical system. The time delal is chosen in such a way that the phase spacetboags have the
maximum span [5].

Once the phase space trajectories are construttisdnecessary to analyse their statistical
behaviour, e.g. the number of trajectories andrthpiead etc. The well-known technique of box-
counting [4], [5] can be applied for that purpo#eis in general used for studying the fractal
dimension of a graph. In the present methodoldyy entire phase-space diagram is represented as a
2-D image (typically called phase portraits) dix N pixel, whereN is an integer. The pixels through

which at least one trajectory has passed are cemesidas black boxesn() and the others are
considered as white boxeg,(). The degree of complexity or chaotic dimensionhef phase portrait
is represented using a metric, defined as the mitilhe number of black boxes\() and the total

number of pixels §, + n, = N?) in the portrait. The concept originated from thex-dimension or

Hausdorff index of fractal images which is the gatf the logarithm of number of black pixels and
negative of logarithm of pixel length as the sité¢he boxes approaches zero [5]. But here, we did n
decrease the size of boxes and carry out box-amysince the study is not intended to investigate
fractal behaviour of the problem but to quantifg 8pread of the phase space images of the windowed
ECG. The ECG phase-portrait box-counting has bbews as an efficiendetectiontool for VF and

VT in [6], [7], which has been extended in this paps a possiblpredictionor early diagnosigool

by looking at the different statistical trends b&thumber of black boxes visited. Since arrhythisiia
somewhat similar to the appearance of chaos innardical system, hence it should get reflected in
the phase space box-counting even if with a fixied of the boxes as a quantification of the spiafad
the ECG phase portraits. Therefore the conceptS®t Bf ECG and its box-counting has been used
only to quantify when the desynchronisation excetiis ‘safe levél which can further lead to
impending arrhythmia and not to investigate frab&thaviour. Although the reconstructed ECG phase
portrait is a low dimensional projection of theginial high-dimensional attractor but we here explor
how it serves the purpose of early diagnosis ofinging arrhythmia.

2.2. ECG selection and adopted signal processing technigs

Publicly available ECG databases from Physione} [z&e been used in the present study.
For the analysis of healthy and arrhythmic ECGs,sBBjects were selected both from the PTB
diagnostic database (PTBDB) and Creighton UniwerBdchyarrhythmia database (CUDB). The 32
ECG traces from CUDB (out of total 35 entries ir ttlatabase) could be analysed due to their
unambiguous interpretation (i.e. less corruptech véttefacts) and the severity of arrhythmia. In
addition, the arrhythmic signals are categorizethio major classes - one without VPBs (5 patients)
and the other with single or multiple occurrencE¥BBs (27 patients). Within the class of VA with
VPBs, we have further considered three subclaggefour patients with VF, 13 patients with VT,
and 10 patients with VT which translates to VF oee. Here, most of the patients have sufficiently
long healthy-looking ECG heartbeats (with cleaiistidguishable P-QRS-T waves) with occurrences
of VPBs before the onset of arrhythmia, except\ewith no VPBs class where the signals are
relatively short in length for some patients. Aietselected ECG traces are clinically annotated to
identify the healthy-looking beats, VPBs and theairof arrhythmia.

For the PSR, we selected a window of 10 succed38@ beats. Since the PSR yields best
results if the signals are noise-free, all the E€I§hals were filtered using a fourth-order Buttertivo
high-pass digital filter with a cut-off frequency b Hz, to eliminate the drift or baseline wandgtin
followed by a low-pass filter with a cut-off frequey of 30 Hz to eliminate frequencies higher than



that, which mainly consist of measurement noisé. [Bach ECG window of 10 beats was normalized
using (1) in order to ensure that all values athiwi(0, 1) as in [10]:

X(1) = (X(1) = %50 )/ (K = i) (1)

In (1), X, andx..are the minimum and the maximum values of therlleECG datax(t),

while >~<(t) is its normalized form. In Physionet, while the &Gignals from the PTBDB are sampled

at 1 KHz, the CUDB signals are originally sampléd280 Hz [32]. To bring them to a uniform
platform we interpolated the CUDB signals to 1 KN¥e took the approach of oversampling or
interpolating the CUDB signals, instead of down-pang the PTBDB signals, since it is well-known
that interpolation increases the quality of thanalgand reduces the effect of noise, thus improtiieg
signal to noise ratio (SNR). Many ambulatory ECGhkiclv often have low sampling rate is
interpolated to improve the online calculation eflt rate and other clinical features, as repdrted
[34], [35]. Also, for a few patients from CUDB dbatse some artefact corrupted ECG traces were
neglected. Following the exploration reported ip [Z0] for the optimum PSR of ECGs, we added 20
samples or 20 ms of delay for the phase-space stcation of the filtered and normalized ECG
signals, since amongst various other embeddingyslelais particular choice gives good person-
centric characterization. Although there could lbleeo methods to select the optimum time delay
embedding e.g. autocorrelation, mutual informatepproximate period, generalized embedding lags
etc. [4], [5], we base our analysis on the chogported in [10].

A total of 10 trajectories are obtained from a vandof 10 ECG beats in a 2-D phase-space
diagram which is resized and then exported as h-t@golution gray-scale image of pixel size
1024x1024. The box-counting method for analysimgdtatistical properties of this phase portrait was
carried out using Matlab where the black and wipitecls were assigned a “0” and “1" value
respectively. Subsequently the number of blackIpiweas counted as they indicate the measure of
spread of the trajectories and hence the underlgegynchronisation phenomenon. For statistical
analyses of the trajectories 25 such phase parinate used in a sliding window fashion for deriyin

different run-time measuréﬂ,a,y,ﬁ,cv} of the number of black boxes visited. The number of

phase portrait windows was set to a higher val&@, @nce in order to capture the different stiiddt
moments, the histogram of the number of black bossited needs to be constructed in sufficient
detail which needs larger number of data—pointeséhfive statistical measures of the number of
black boxes (i.eu, o, y, f, CV) visited and their combinations are expected taratterise the
underlying desynchronisation phenomenon in sufficéetail yielding an early VA diagnosis tool.

3. Methodology for statistical analysis of ECGs

3.1. Methodology adopted for the healthy subjects

For the analysis of healthy ECG signals from thé&8BPB the boundaries of each heartbeat
have to be detected reliably. For this purposeussd the automated time domain morphology and
gradient (TDMG) algorithm [36], based on a combimaf extrema detection and slope information,
using adaptive thresholding as shown in Fig. ITag vertical lines in Fig. 1(a) shows the start and
end boundaries of the automated ECG segmentatiog T®MG algorithm.
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Fig. 1.(a) The extraction of the beginning andehd instants of each heart beat from an ECG siggiiadju
TDMG algorithm, (b) Sliding window of 10 consecutikieart beats with 9 beats overlap.

Once the beginning and end of each ECG beat anéifidd, a vectoly was constructed as in (2).
y={t(i)}.io[12; (n+ 1] 2)

where, t(i) is the beginning instance &f or end instance ofi —1)" heartbeat. This is done for all

the beats untit(n +l) which is the end instance of th heartbeat. Using a sliding window of 10

consecutive ECG beats with 9 beats overlap at @ sismshown in Fig. 1(b), a sliding-window matrix
(M) was constructed from the vectprdescribed in (3).

t(n)  t(2) - t(1)

M = t(52) t(s3) t(le) 3)
t(n-9) t(n-8) - t(n+J

An example of filtered and normalized delayed asiof the ECG signal (as described in
section 2) have been shown in Fig. 2. Plottingltoais of the discrete samples for 10 consecutive

ECG beats, by considering the normalized sigr{d) and the delayed signa(t-20) in a unit of

millisecond along the two orthogonal axes respedbtivyielded the phase portrait shown in Fig. 2
containing 10 trajectories. It is observed thattladl trajectories in the phase-space are closadb e
other and lie almost within an annular band. Thididates towards the regularity of oscillation in
healthy ECG and also indicates that the numbeogés visited for healthy ECG phase portraits can
be expected to lie within a small range.
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Fig. 2. Phase-space reconstruction of ECG beatsfili@med and normalized delayed signal.

3.2.  Methodology adopted for the patients affected by vericular arrhythmia

Similar analyses have been carried out for theeptgiwith VA as well. Due to the variability
of the heart beat duration and beat morphology diwee in arrhythmic subjects with frequent
occurrences of stretched and squeezed beat-leghgtbeginning and end instances of each heart beat
were annotated and counted manually by the clingiacluding the occurrence of VPBs, due to the
unavailability of any reliable automated beat segpaigon algorithm for arrhythmic ECG, unlike the
same for healthy ECG [36]. The annotated beatgheme transformed in the phase portraits which
may include VPBs or beats with a different morplggler varying duration with elongated/squeezed
beat length. Also, the mean beat duration was bk for the normal ECG beats before the
occurrence of the first VPB and has been useddatdéothe boundaries even in the case of double,
triple and other family of VPBs during clinical astation phase. This creates a sliding window of 10
consecutive heart beats, including VPBs when thmpobesides healthy-looking beats. In order to
investigate the periodic nature of the heart rhytomVA subjects, we considered a window of 10
ECG beats instead of taking fixed time interval fioe analysis. Because a fixed time window may
lead to consideration of half a beat or some extt which may break the desired periodicity legdin
to spurious result. Therefore, our analysis comsid@ beat as the window for PSR and is consistentl
applied on both the groups — healthy and arrhytrsuigects.

In addition, some artefact corrupted parts of tEEvere neglected and the analysable parts
have been extracted by concatenating the cleangbatie signals before and after the artefact,
otherwise it may drastically increase the numbervigited boxes. Even in standard practice in
cardiology, the diagnosis of arrhythmia is dondiime domain, after removing all artefacts from the
raw ECG data. Before and after the artefact coedig@CG beats, the pre-processed ECG looks like
normal periodic pacing or sinus rhythm. Severatligtsl like [37], [38] has suggested to neglect the
artefact corrupted parts of the ECG time series asel the processed data for investigation of
arrhythmia. In fact, the presence of artefacts ealtmy ECG signal cannot be removed using any
standard filtering since the frequency spectrurthefECG and artefact is mostly overlapped [39] and
while removing artefacts by filtering, it may reneessential information of the ECG as well. For
this reason, removal of the corrupted portion ofdstas been verified manually by the clinicians,
involved in the study, where the ECG beats are Inosasked by excessive artefacts. Moreover, the
number of boxes does not increase by removingaatiefind concatenating the beats segments since
the artefact free data contains healthy looking B§&@ts. The artefact corrupted beats are chopped
off in such a way that it has minimal discontinestin the ECG time series.
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Now, using the same method of phase-space recotistrufrom pure visual inspection, even
for arrhythmic cases before the onset of arrhythffig. 3(a)), it is apparent that some parts of the
ECG beats have resemblance with healthy ECGs kmgir2(b), whereas the other parts (particularly
involving presence of VPB) are markedly differelitg( 3(b)). This motivates us for studying various
statistical parameters of the entire ECG time sdoneterms of the number of black boxes visited in
the ECG phase portraits to distinguish betweentineahnd ‘going to be abnormal’ (although
morphologically healthy-looking) ECG beats befohe tonset of arrhythmia. Once the arrhythmia
occurs, e.g. in the case of VT and VF as depiateHig. 3(c) and Fig. 3(d) respectively, the phase
portraits constructed using an equivalent lengtthefECG heart beats as done for initial healthyspa
before arrhythmia, show large chaotic motions Irtrajectories indicating towards a higher number
of black boxes visited compared to the previouggas

() (b)

() (d)

Fig. 3. Black and white image of a window of teratsefor (a) normal looking ECG before arrhythmig, wiith
VPB before arrhythmia, (c) VT, (d) VF.

4. Statistical analyses of ECG phase portraits

The number of the black boxes visiteq, \ by 10 consecutive ECG beats in the phase-space

diagram, obtained by the method described in se&im essence gives a measure of regularity of the
oscillation in ECG waves. To characterise the degferegularity of such oscillations and hence for
identifying any underlying desynchronisation pheeon, four first-order statistics related moments

of order 1-4 i.e{.,u,a,y,,B} of the number of black boxes visited by the trajges in each image



were studied. Here, th{e,u,a} are given by the first and second central momenthefnumber of
black boxes, whereas ttﬁqy,,B} represent the third and fourth standardized mosneint, as in (4).

peelnl.o=Jeln-i =B 4] p=dnt]

The statistical moments have been computed indingliwindow fashion (i.e. the run-time
statistics) considering 25 phase-portrait imageghaswindow which is moved stepwise with an
overlap of 24 images, thus taking a new image el séep and leaving the oldest one. The choice of
the window for the phase portraits was made seifity long (in our case 25) so that it allows to
captures all intricate details of the box-countimgtograms in order to account for the higher order
statistical moments. In general for a window caritaj W, number of ECG beats, th#" phase

portrait represents the phase-space behaviour ffbmo (n +V\{—1)th number of consecutive ECG

beats. Therefore ¥, such phase portraits is used for obtaining thessts for{,u,a,y,ﬁ} , then it
results into then™ data point (typically termed as" image) that captures the statistical trends fer th
above parameters between th8 and(m+\/\4 —1)th number of phase portraits. Considergy=10
and W, =25 in the present case, tind” data point in the trends of the above mentionatissical

measures would contain the informatiomdfto (m+W -1+ W -1)" =( m+ 33" consecutive ECG

beats. In our analysis we have plotted the run-sitagéstics of the four parameters stated abovie wit
respect to the phase portrait window numipgrt6 show the temporal variations of these pararaete
Considering the nominal heart rate (HR) in beats/thie relationship betweem and the absolute
timet in sec can be computed as (5).

t=60(m+W+ W - 2)/ HR (5)

The calculation of the mean HR of the arrhythmibjsat was done by averaging the number
of ECG beats per minute over the whole length efdiignal for that particular arrhythmic subject. We
used the manual annotations of the clinician inidgddifferent abnormalities like VPBs, different
morphology or varying duration with elongated/sqezk beat length. The calculation of the mean
beat duration was particularly necessary to ddtectboundaries of the ECG beats in the cases of
single, double, triple VPBs or short episode of \aleng with healthy beats. This way it was possible
to generate the phase portraits with an approxitesitgth of 10 healthy-looking ECG beats for that
particular arrhythmic subject.

In Fig. 4, the phase portrait box-counting meanand standard deviatiow)(trends for one
representative example from a healthy (PTBDB) am@rmhythmic (CUDB) patient are shown. It is
evident that for the healthy subject, the&ndos trends are almost uniform throughout the timedrac
On contrary, the arrhythmic subject shows sudderease in botlu ands at the last stage of the
trend values indicating the onset of arrhythmia.isltevident that the already started gradual
desynchronisation, ultimately manifested as theebogarrhythmia [40], can be detected fronand
o trends by observing the sudden jump in the boxating. However before the arrhythmic region,
the trends ofu and s do not differ considerably from those of the healsubjects. Therefore it
appears that although these two parameters couldisbd fordetecting arrhythmia once it is
manifested, theipredictivevalue for early diagnosis of impending arrhythmighe main target of
this work — is rather low.
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4.1. Analysis of healthy subjects in PTBDB
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Fig. 5. Trends of four statistical measurgsd, y, f} of box-counting for healthy subjects.

The trends of all the four momen{Ws,a,y,,B} for 32 healthy subjects are plotted in Fig. 5

with the respective subject numbers of PTBDB intdiddn the legend. It is clear that althougtiend
varies slowly,c andy trends vary relatively faster and high fluctuaiare observed in thitrends.
However, as observed before,and ¢ trends may not have high predictive value as idda
parameters. This may not be completely surprisivgrgthe possibility of significant inter-person
variability which is also evident from Fig. 5. Teéore a more pragmatic approach would be to
examine the relative spread of the trajectoriecivicean be captured by introducing the coefficidnt o
variationCV = o/u, which in essence computes the trajectory spreaualised by the mean. Ti@V

10



trends for health subjects are shown in Fig. 6t®Qumterestingly from Fig. 6 it is observed ti@Y

has less inter-person variability and is alwaysrot@d by an upper limit ofEV = 0.05. This implies
that in theu—o plane, the bound for time evolution G¥ trends can be represented by a straight line
0 =0.05¢ below which lies the safe regioh for the heart beat synchronisation, indicating th

healthy condition of heart. A similar behaviour caso be observed from Fig. 5 f6r Sinceg in
essence characterises how much peaked the digiritmftthe number of black box visited is and any
change in that distribution is reflected as a sjikigs trend. Although such spikes are eviderfEim

5 for all the subjects, the important point to nbtre is that all the magnitudes of such peaks are
bounded by < 6. Therefore, from the above simulations, twpeamthresholds have been found for
the healthy subjects i.€Vi, = 0.05 andfn = 6, crossing of which may provide an early indimat
towards gradual increase in desynchronisation astdhg ECG beats.

From the available standard 12-lead ECG of PTBD8 have consistently chosen the lead-I
for all the healthy subjects. For the case of dmmja, generally all the leads captures its trace b
may slightly differ in morphology and amplituden8é our work is based on the normalized phase
portrait images, it does not get affected by slighdnge in ECG amplitude but rather depends more
on the inter-beat synchronisation and change iretiyidg dynamics which gets captured in all the
ECG leads during arrhythmia.

CV trend Trajectories of black boxes in p-¢ plane —e—P105
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L I A codpglo ] |T=P180
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O I da o ——P185
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2 2 2
[=

2 G 700k g. i A P244
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—=-P260

400 4 |-~-P263

0.01 : : i s i ; ~+-P264

0 20 40 60 80 2.5 3 35 4 P266

Number of phase portrait windows w of number of black boxes x10° | ——Cv<005

Fig. 6.CV trends of box-counting for healthy subjects.

4.2. Analysis of arrhythmic subjects in CUDB

As mentioned in earlier sections, the analysablar82ythmic subjects from the CUDB has
been categorized in four groups — five patients iAdwvith no VPBs, four patients were affected by
VF, 13 patients by VT, and 10 patients by VT foleshby VF. The {, o, y, §} trends of the number
of black boxes visited by each phase-portraitsHese different subclasses of VA (i.e. with no VPBs
VT, VF, VT followed by VF) are shown in Fig. 7-18gpectively. In each statistical trend and class of
arrhythmia, the respective subject numbers areioreed in the legend of the Figs. 7-10. The onset of
arrhythmia in terms of the number of phase portraitdow have been reported in Table 1 for each
group of patients.
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Fig. 7. Mean () trends of box-counting for arrhythmic subjects.
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Fig. 8. Standard deviatiom)(trends of box-counting for arrhythmic subjects.

As expected the number of black boxes visited ases considerably in tt{e,u, 0’} trends of

the box-counting when arrhythmia occurs and ielated to the irregular behaviour of the trajeesri
in the phase-space diagrams. In fact sudden fltiohgain the{,u,a} trends are observed when the

VPB is encountered, which is different from thatteé healthy subjects in Fig. 5. Thérends in Fig.
9 also show sudden increase in its value comparedat for the healthy subjects in the arrhythmic
region indicating that it may have high arrhythrdietectionpower. However, before the arrhythmic
region its trends are more or less similar to thafsthe healthy subjects. Therefore like the indil
trends ofu andg, its predictivepower is limited. However a marked difference liserved in thes
trends for all arrhythmic subjects compared to tiealthy subjects. Even before the arrhythmic
region, f shows spikes that are much higher in magnitudas those of the healthy subjects. In
general, comparing Fig. 5 with Fig. 10 it may be&ldhat for the healthy subjegfsis bounded by <
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6, whereas for arrhythmic subje¢gs> 6 in all cases, even before the occurrencerbfydrmmia. This
shows thap may have significamredictivevalue for impending arrhythmia.

Skewness (y) trend for No VPBs class Skewness (v) trend for VF class
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Fig. 10. Kurtosisf) trends of box-counting for arrhythmic subjects.

Another interesting observation comes from theyaisiofCV trends as shown in Fig. 11 and
Fig. 12. For the three arrhythmia subclassesVF, VT and VT leading to VF — all with VPBsGV

trends cross the thresho@V,, = 0.05, which is the bound oV for healthy subjects, much earlier
than the actual arrhythmic event indicating towatsipossible predictive property. On the otherchan
for the cases of VA without VPB£V trends show similar nature to those in the headthlyjects
before the onset of arrhythmia. Therefore it appdlaat althouglCV trend could be considered as a
good predictor for some subclasses of arrhythmaigriédictive power for arrhythmia with no VPBs is
limited. The predictive capability of théV trends is explored in its trend form in Fig. 1daiso in
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the p-o plane (as time evolves) in Fig. 12 where the ¢tajges of black box crosses the upper
threshold ofCV = 0.05 (in Fig. 6) much earlier than the actuawoence of arrhythmia.

CV (o/n) trend for No VPBs class CV (o/u) trend for VF class
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Fig. 12. Time evolution o€V trends of box-counting ir-¢ plane for arrhythmic subjects.

It is to be noted that even though we analysed different database of Physionet, the
gualitative behaviour of the phase portrait boxrdmg trends are similar for the healthy (in PTBDB)
and the recording before the onset of arrhythmiaGUDB). Especially, the mean)( standard
deviation ¢) and skewnesg)trends before the arrhythmia in CUDB subjectscarige similar to that
of the healthy subjects in PTBDB. Indeed this isteength of our analysis that the statistical
behaviour of the two database exhibit similar rafor the healthy and arrhythmic subjects befoee th
onset of arrhythmia, although the behaviour is siatilar for CV and kurtosis £) trends which
indicates towards developing a statistical markerthe early diagnosis of impending arrhythmia.
Therefore, in the following section by combing tD¥ andg trends, we formulate a hybrid statistical
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index with the aim of getting some predictive pndpeto detect almost invisible inter-beat
desynchronisation for the VA subjects comparedhat tof the healthy subjects. Also, previous
literatures like [6—8] mostly addressed the detecproblem of arrhythmia and as such there is no
continuous and online monitoring scenario whichddressed in the present paper. Here, we analysed
the whole CUDB database, except three entwiescu2l, cu33 and cu35. These three signals in
CUDB were mostly masked with artefact and it wasy\difficult to extract any useful information
from the corrupted the ECG traces. These threéesntu2l, cu33 and cu35) are heavily masked by
large and prolonged instances of artefacts befoeeonset of arrhythmia and therefore no useful
information could be extracted for the early diagjso

5. Formulation of a novel prediction index for early dagnosis of arrhythmia

5.1. Deriving the proposed prediction index from PTBDB ad analysing
arrhythmic subjects in CUDB

From the discussions presented in the foregoingiosedt is evident that out of the five
statistical indices for characterising the tempogablution of the underlying desynchronisation
phenomenon in ECG, the trendsand CV have the most potential predictive power wherégs t
trends inu, o andy have moredetectionproperties rather thapredictiveproperties. It is to be noted
that althoughCV trend has little predictive power for the casethaiit VPBs its predictive power in
the other cases is significant and therefore mayadgnored completely in formulating a predictive
index for VA. Based on this logic, we have chogeandCV trends as the main two parameters for
formulating a regularized hybrid prediction ind&x

First we define two threshold3Vi» = 0.05 andiw = 6 which denote the upper bounds of the
trends inCV andp respectively for healthy subjects as shown in Bignd Fig. 5 respectively. It has
also been observed th@V and g cross their respective thresholds at sufficientetibefore the
manifestation of arrhythmia for the analysable satg in CUDB. Therefore by combining them the
hybrid prediction index is formulated as in (6).

CcV N ﬁ
oy, v ©

J=w

where,w is a weighting factor bounded within the intemm[o,]] . The reason for normalisin@V

andf with their respective upper thresholds for heaklbpjects is that in absolute terms, their values
are markedly different and therefore it is moreiday to normalise them to bring them under a
uniform platform and thereby eliminating any biasadphasis on one of these two measures. The
weighting factorw in essence determines the contribution€dfandp towards the final predictive
indexJ. As an examplev = 0.5 allows equal weightage to both the termsneasw=0 andw=1
gives full weightage t@ andCV respectively. The main idea is to find an optimarthat may allow
one to compute & capable of predicting all the VA cases considdrect. It is to be noted that since
the individual indices are normalised, and the Weigf the regularized index is always bounded

inw[0,1], for healthy subjects, included in this studyspective of the value af, J < J, =1.
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Fig. 13. The hybrid arrhythmia prediction inde {rends of box-counting for healthy subjects vatjual
impact forCV andp trends i.ew = 0.5.

Fig. 13 shows the variation df for all the healthy subjects witlw=0.5 as an example,
although the optimum value of is to be determined yet for the VA subjects. Hogrewf any ofCV
or f crosses their respective threshold signifyinggbssibility of impending arrhythmia) > J, =1

condition will result. Therefore it is logical tamusider the aforementioned condition as a sufftcien
condition for predicting arrhythmia. However in liathis is not the case. This can be explained
considering an example. Let us considerwafl, gives full emphasis on tHeV trend. Therefore if
CV > C\, thenJ > J, implies a possible impending arrhythmia. In reailithas been observed that
CV may cross the thresholdV,, in the vicinity of VPBs, even in non-arrhythmicses. As a result
consideringJ > J,, withw=1, certainly leads to a mis-prediction of arrhythnildis leads to the
conclusion that whileJ > J,, is a necessary condition for predicting arrhythntias not sufficient
and in principle depends on the valuewothosen. Therefore the main task here is in olstgiain
optimalw (w,,) — i.e., the optimal balance between the contidmst of the trends o€V andf —
under whichJ > J,, is sufficient for predicting impending arrhythmiath minimum chance of mis-
prediction and maximum time for prediction or eatlggnosis.

As the first step for deriving tha,,, we proceed with patient wise analysis of thedseofJ

for each class of arrhythmia which are plottedifalividual arrhythmic patients (patient number in
CUDB mentioned in the respective titles of the sdat®) by varyingw from 0 to 1 in step of 0.1 as
shown in Fig. 14(a)—(d). From the figures it isdmnt that the trends dfcross the critical threshold
of J,, =1 at different time instants for the same subjegteteling on the value af. One approach

for choosingw,,, may be to select the for whichJ crosses],, earliest. Therefore we first record the

time of crossing od,, =1 for each choice ofv and for each arrhythmic patient from Fig. 14. Tikis

done by first taking the difference between theides of the phase portrait windows at whith
crossed, and at which the onset of arrhythmia is manifested subsequently converting that

difference in the phase portrait window scale to s&ing (5). This time is termed as the prediction
time (T,) or the time for early diagnosis. Subsequeiiilys plotted in Fig. 15 for individual patients

while choosing different values of.
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Fig. 15. Variations in prediction time (sec) witiffeirent choice ofw for the four subclasses of VA.

A close look at Fig. 15 reveals thaj, reaches its maxima av=1 which means only

considering theCV, as it was lying abov€Vi, from the very beginning in some cases of Fig.dd a
Fig.14. However, it has already been shown in Figs12 thatCV alone is not a reliable predictor for
no-VPBs class of arrhythmia. As a result considgnirr1 although may give maximum prediction
time; it is also prone to mis-prediction for no VIEBss. Therefore, we introduced another critesisn
the total time of misdetectionT(. .,) given by the sum of the number of phase portsaitdows

after the onset of arrhythmia before crossipg-1, while considering all the four groups of
arrhythmic subjects. Thd ., is basically the sum of all negative predictiomés, indicating

detection of the onset of arrhythmia after its atticcurrence that needs to be minimized for rédiab
prediction. Accordingly, the new criterion for clsdagw,,is to minimizeT, This T, is

pt mis—det * mis—det

intrinsically different from the average predictiome (T,,._ .q.) for all patients ('), corresponding

to each selection af, sinceT,._,.iS computed with only those patients! (' N ) showing a negative
prediction time.
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The T

mis-det1S @ More informative criterion (for minimizatiothan T, .4 (for maximization) as the
patients with larger positive prediction time oveedlms small occurrences of misdetection for

particular choice of weighw. In other words, although the objective of finding, could have been

posed as maximizing th@avg_ predict?

we have taken an approach of minimizing the ttitak of
misdetection, in terms of number of phase porwaidows that we get before the onset of arrhythmia

onceJ crosses the threshold &%, =1. In Fig. 16 the variation ir, and T, have been

mis—det avg- predict

shown with change iw which shows thaT ., attains its minima at=0.6. Using this value as

w_. in (6) and checking the trends of resultihgn Fig. 14(a)-(d), one can see that long befoee th

opt
actual arrhythmic everd shows a sharp rise followed by crossingJgf=1 and it stays significantly
above J, =1 until the arrhythmic event occurs. Physically igrsfies that the spread of the

trajectories in phase-space normalized by theirm{éa CV) and also sudden concentration of box
counting around its mean (fg) both become more dominant over time which indisabwards the
build-up of a desynchronisation process, finalpdieg to arrhythmia.

)

Optimum weight (Wopt) selection corresponding to the minimum total misdetection time (Tmis-det
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To understand the predictive power of the propasddx J, we compute the prediction time
T, for each of the arrhythmic subjects faf, =0.6 as shown in Table 1. It is evident from Table 1

that for the best prediction, the onset of arrhythotcurs after 827 ECG beats (cu03) alterosses
Ji, =1 and for the worst case it is 32 ECG beats (cuBrbm the clinical perspective and also as per

the study reported in [41] a prediction or earlggthosis of life-threatening arrhythmia on an averag
of 356 ECG beats (with standard deviation of 19Z5Hteats) before its onset allows sufficient time
to switch on an alarm and to act for preventive sneas i.e. to have a defibrillator ready. Table 1
shows that the equivalent early diagnosis or ptiedidime (in sec) before the arrhythmia onset can
be obtained from the average heart rate of indalidpatients (calculated from the clinical

annotations), with the best and worst case prediaticcurring for patient number cul7 and cu30
respectively. Also, it can be observed from Tabl&dt for the VA with no VPBs class (cu01, cu06,
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cu30) the prediction time is relatively small tithe other three classes. This is due to the avtitijab
of only a small number of healthy looking ECG bdats. insufficient history for statistical analgi
before arrhythmia in CUDB, as also reported in Eifa) as the number phase portrait windows.

Table 1: Arrhythmia Prediction Results for Patient€UDB

Patient | Onset of arrhythmia | Prediction time T, (as Equivalent Average Heart Equivalent
Class of IDin (the first affected # of phase portrait number of Rate HR prediction time
arrhythmia | CUDB phase portrait) windows) beats (T,+33) (beats/min) (in sec) using (5)

cu0l 170 -1 32 56 34.3

cu06 254 1 34 93 21.9

cuQ7 341 341 374 115 195.1

VA with no cu28 230 163 196 121 97.2
VPBs cu30 29 1 34 140 14.6

cu08 707 338 371 164 135.7

cull 472 470 503 84 359.3

cu22 343 343 376 67 336.7

VF cu23 371 355 388 72 323.3

cu02 312 291 324 113 172.0

cuo4 96 62 95 53 107.5

cu05 517 517 550 92 358.7

cul3 654 545 578 101 343.4

culé 533 441 474 128 222.2

cul7 314 314 347 40 520.5

cu20 148 148 181 55 197.5

cu25 444 418 451 75 360.8

cu26 352 155 188 161 70.1

cu27 561 393 426 120 213.0

cu3l 145 130 163 39 250.8

cu32 703 603 636 100 381.6

VT cu34 25 20 53 26 122.3

cu03 844 794 827 120 413.5

cu09 428 428 461 129 214.4

cul0 443 443 476 97 294.4

cul2 273 237 270 81 200.0

cul4g 365 338 371 92 242.0

culs 204 204 237 44 323.2

cul8 439 439 472 86 329.3

cul9 565 565 598 85 422.1

foIIo://v[:d by cu24 440 417 450 80 337.5

VF cu29 443 423 456 85 321.9

Another interesting point to note is that immediagdter the occurrence of a VPB, the value
of indexJ changes significantly. This is in conformationtwthe fact that the VPB firing may be a
compensatory mechanism for mitigating the graduslding-up of the desynchronisation process.
When the desired synchronisation level is not redatven after firing the first VPB, a series of \&”B
are fired in an attempt to attain the desired syorulation before the arrhythmic event takes pléce.
is to be noted that in the present study, amongshe four subclasses of VA considered, three of
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them exhibit one or more VPBs before the arrhythamiaet. On the other hand the first category of
arrhythmia has no VPBs before its onset. Therefwoen the presented simulation study it may be
argued that in a continuous monitoring scenarie,dlossing of the proposed arrhythmia prediction
index threshold od, =1 withw,, =0.6, predicts a possibly impending arrhythmic evembveihg

sufficient time for the clinicians to intervene J4nd stop any escalation of it.

5.2. Early diagnosis results by theCV, kurtosis and the proposed prediction index

Since the both the components of the hybrid prexfidhdex i.e.CV and kurtosis was below
the respectively threshold for healthy subjectd=ig. 5 and Fig. 6 respectively, hence there is no
scope of optimizing their relative importana®) for the healthy group. Although for the arrhytiemi
subjects different emphasis on these two statlstemsures gives different results (Fig. 14) which
motivated us to optimize for the relative importaraf these two components to find out the best
weight w yielding minimum time of misdetection as shownFig. 16. Also, in order to test the
robustness of statistical analysis, we have peddriine calculation under a leave one out cross
validation (LOOCYV) scenario to derive the uppetetirold of theCV, # and prediction inded from
the healthy subject to test it on the one heldhaalthy subject and all the VA subjects. From Big.
and Fig. 6 it is evident that tl&v and kurtosis trends are both below their respeatjpper thresholds
and therefore their weighted sum or the index wsagt J<1 for all the healthy subjects as shown in
Fig. 13. In statistical sense the false positiveect#on is zero in our analysis of 32 healthy sotgje
Here, we report the early diagnosis results untdet OOCV approach for the two groups (Positive P
to represent VA and Negative N for the healthy sots) to calculate the true positive (TP), false
positive (FP), true negative (TN) and false nega{i?N) values. Considering the cross-validation
scheme we finally derive the early diagnosis messsiike sensitivity (Se) or true positive rate (PR
specificity (Sp) or true negative rate (TNR), a@myr (Acc), precision or positive predictive value
(PPV), negative predictive value (NPV), fall out fatse positive rate (FPR), false discovery rate
(FDR), miss rate or false negative rate (FNR) ansicbre etc. [42] using the formulae in (8).

Se=TPP-TH TR F) Sp NN TJN FP JMcc=( FP )N +P),N
PPV=TH(TP+ FB, NP\= T TN FN FPR FP N FP RP JN (8)
FDR=FP/(FP+TP)=1- PPV, FNR= FN( FN- TP,E score 2T@ 2TP FP BN

Table 2: Early diagnosis results using @ f and proposed regularized arrhythmia predictiomind
Junder a LOOCV scheme

Statistical trends of phase portraits
Diagnosis measures (%)| CV (w=1) | Kurtosis g (w=0) | J(w=0.6)
Sensitivity or TPR 93.75 90.63 96.88
Specificity or TNR 100.00 100.00 100.00
Accuracy 96.88 95.31 98.44
precision or PPV 100.00 100.00 100.00
NPV 94.12 91.43 96.97
FPR 0.00 0.00 0.00
FDR 0.00 0.00 0.00
FNR 6.25 9.38 3.13
F. score 96.77 95.08 98.41

It is to be noted that the main goal of the presemk was not detection or classification but
early diagnosis or prediction. However, in ordercimpare the results with standard methods of
medical statistics we have provided the performameasures in Table 2 for th&V and kurtosis
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trends, along with their combination i.e. the regized statistical index, for both the healthy and
arrhythmic subjects. Table 2 shows with the progctatistical index and also wihV andg alone,
we always get 100% specificity and PPV. Also, thes#tivity, accuracy, NPV andiBcore is best for
indexJ, followed byCV and kurtosis which again shows the advantageleoptoposed regularized
index over its two individual components.

5.3. Discussion

Our exploration shows that the sliding wind@V andg trends of the ECG phase portraits
have high predictive value for impending arrhythn8absequently, we hybridiZ&Vv andg trends for
formulating the final regularized predictive indard show that while it consistently stays below a
certain threshold for healthy subjects, it crogbes threshold for patients with arrhythmic tendenc
long before the actual manifestation of VA, anddiiere has got some early diagnostic or predictive
property for different types of arrhythmic eveniibe proposed statistical prediction index can lemse
as a first step towards having a potential toolrfext-generation tele-monitoring of cardiovascular
diseases (CVD) like VT and VF subcategories ofi fatenythmia.

Although the hybrid index formulated in this paglows good short-term predictive value of
VA, it is to be noted that in this analysis we estricted by the length of ECG data availablenm t
CUDB before the onset of arrhythmia. In severaksabe ECG data before the onset of VA is very
limited rendering the evaluation of actual perfonme of the proposed index difficult. Also, the
available data in CUDB did not provide informaticggarding the long-term clinical status of the
patients (e.qg., the risk-level, medication etc.)alihmay have some implications on the patient-éentr
arrhythmic property and hence the performance efpitoposed index. Also, for a specific choice of
ECG lead, the morphology of the beats remains dlmmssistent during sinus rhythm or at rest for
healthy subjects but even in such cases the hatrtand the nature of ECG phase portraits may
change on mood, anxiety level or physical actiiitpwever, in general it is observed that longer the
ECG data before VA onset better is the predictinagperty of the proposed index, since it derives the
threshold-crossing criteria through statisticallgsia. We believe that prospective analysis witlgéa
cohort is needed with long-term ECG recording talagate the true potential of the proposed index.
The results presented here is the first step tosvérdt direction and although analysed with only
short ECG data its performance seems promising.

6. Conclusion

In this paper, we propose a novel statistical in(@xor the early diagnosis or prediction of
ventricular arrhythmia, in particular four sub-dasviz. no VPBs, VT, VF and VT followed by VF,
using the phase-space reconstruction method of-tleimg ECG time-series. We found that while
CV <0.05, 3<6 and consequently<1 signify healthy condition.J >1 with w, =0.6 predict an

impending arrhythmia and therefore has a potetdidde applied as an effective tool for predicting
fatal arrhythmia. The worst and the best case elialgnosability or predictability of 32 and 827 ECG
beats respectively, with an average prediction wh856 ECG beats (having standard deviation of
192 beats), tested over 32 arrhythmic patientsdesmed as sufficient time for taking preventive
actions in clinical settings [41]. The proposed fiytprediction index is verified with a LOOCV
strategy and has been shown to give better eaatyndsis result over that wiV andg alone, with a
96.88% sensitivity, 100% specificity, and 98.44%wacy. However, a large-scale patient trial is
needed to confirm the predictive power of the pemabarrhythmia prediction index. Further study
can be directed towards quantifying the correlabeiween the time/frequency of occurrence of the
VPBs and first threshold crossing time and thealatunset of arrhythmia.
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