23 research outputs found

    Matlab Solutions of Chaotic Fractional Order Circuits

    Get PDF

    18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems: Proceedings

    Get PDF
    Proceedings of the 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems, which took place in Dresden, Germany, 26 – 28 May 2010.:Welcome Address ........................ Page I Table of Contents ........................ Page III Symposium Committees .............. Page IV Special Thanks ............................. Page V Conference program (incl. page numbers of papers) ................... Page VI Conference papers Invited talks ................................ Page 1 Regular Papers ........................... Page 14 Wednesday, May 26th, 2010 ......... Page 15 Thursday, May 27th, 2010 .......... Page 110 Friday, May 28th, 2010 ............... Page 210 Author index ............................... Page XII

    Design and implementation of a multi-modal sensor with on-chip security

    Get PDF
    With the advancement of technology, wearable devices for fitness tracking, patient monitoring, diagnosis, and disease prevention are finding ways to be woven into modern world reality. CMOS sensors are known to be compact, with low power consumption, making them an inseparable part of wireless medical applications and Internet of Things (IoT). Digital/semi-digital output, by the translation of transmitting data into the frequency domain, takes advantages of both the analog and digital world. However, one of the most critical measures of communication, security, is ignored and not considered for fabrication of an integrated chip. With the advancement of Moore\u27s law and the possibility of having a higher number of transistors and more complex circuits, the feasibility of having on-chip security measures is drawing more attention. One of the fundamental means of secure communication is real-time encryption. Encryption/ciphering occurs when we encode a signal or data, and prevents unauthorized parties from reading or understanding this information. Encryption is the process of transmitting sensitive data securely and with privacy. This measure of security is essential since in biomedical devices, the attacker/hacker can endanger users of IoT or wearable sensors (e.g. attacks at implanted biosensors can cause fatal harm to the user). This work develops 1) A low power and compact multi-modal sensor that can measure temperature and impedance with a quasi-digital output and 2) a low power on-chip signal cipher for real-time data transfer

    A new generation of ultrafast oscillators for mid-infrared applications

    Get PDF

    A new generation of ultrafast oscillators for mid-infrared applications

    Get PDF
    The mid-infrared (MIR) spectral range with wavelengths between 2 µm and 20 µm holds tremendous potential for the study of complex biological systems, given the abundance of intense and unique molecular absorption lines that can be detected. Consequently, spectroscopic applications of mid-infrared radiation have garnered enormous attention in recent years. A particularly striking example is the combination of multi-MHz-repetition-rate, few-cycle MIR light sources with electric-field-resolved techniques, enabling the recording of amplitude- and phase-resolved molecular signals with unparalleled specificity and shot noise limited sensitivity. Despite the ever-growing research demand, their widespread use is severely hampered by the lack of low-noise, compact, and ultrafast laser systems. In this dissertation, a new generation of table-top mid-infrared laser sources is presented, bringing cutting-edge laser diode technology and few-cycle Cr2+:ZnS/ZnSe solid-state oscillators together for the first time. Not only have these laser systems proven to reliably provide coherent radiation in the 2 µm to 3 µm region, the simultaneous reduction in size and complexity, accompanied by an improved overall efficiency and – most importantly – noise performance, renders this approach as pioneering for future MIR applications. In total, three laser systems are developed, each of them pushing the frontiers of directly diode-pumped laser technology. The first one is driven by a single-emitter indium phosphide laser diode and delivers more than 500 mW of output power combined with pulse durations as short as 45 fs. With this first ever directly diode-pumped Kerr-lens mode-locked (KLM) Cr2+:ZnS/ZnSe oscillator, experimental results confirm a highly stable operation. In addition, amplitude noise measurements reveal an excellent low-noise performance of the mode-locked laser output. Driven by the desire to match and exceed the performance of more mature fiber-laser-pumped counterparts and also to boost the efficiency of the envisaged downstream applications, the output of two single-emitter pump laser diodes is carefully combined and implemented into a second-generation design. The achieved peak powers are almost three-times higher compared to before, while the low-noise performance of the KLM output is maintained. Typically, the design architecture of laser systems used for generating mid-infrared radiation up to several tens of microns includes a sophisticated chain of amplification, pulse compression and parametric conversion stages. Using a powerful few-cycle mid-infrared oscillator as driving laser source instead not only significantly improves the effectiveness of these nonlinear schemes, but could even supersede the need for initial amplification. The presented third-generation system brings the directly diode-pumped Cr2+:ZnS/ZnSe solid-state laser technology to a new level; with output peak powers reaching 1 MW and pulse durations as short as 28 fs, direct generation of CEP-stable mid-infrared pulses in a nonlinear optical crystal (ZGP) becomes feasible and results in a multi-octave-spanning spectrum between 4.5 µm and 14 µm at more than 20 mW of average power. The successful development and realization of the three novel and powerful directly diode-pumped mid-infrared laser systems serves as a foundation for a new generation of few-cycle MIR light sources, capable of performing spectroscopic measurements at unprecedented efficiency and shot noise limited sensitivity, while paving the way towards a more accessible alternative to synchrotron-like infrared radiation.Der mittelinfrarote (MIR) Spektralbereich, der die Wellenlängen zwischen 2 µm und 20 µm umspannt, birgt enormes Potential für die Untersuchung komplexer biologischer Systeme, insbesondere angesichts der großen Anzahl an detektierbaren intensiven und einzigartigen molekularen Absorptionslinien. Spektroskopische Anwendungen, die sich Strahlung im mittleren Infrarot bedienen, sind deshalb in den letzten Jahren in den Fokus der Forschung gerückt. Ein besonders eindrucksvolles Beispiel ist die Kombination von gepulsten Lichtquellen mit Repetitionsraten mehrerer zehn Megahertz und Impulsdauern von wenigen optischen Zyklen mit feldaufgelösten Techniken. Letztere ermöglichen es, molekulare Signale nach Amplitude und Phase aufgelöst mit einer Empfindlichkeit am Quantenrauschen zu detektieren. Trotz des stetig wachsenden Forschungsbedarfs erschwert der Mangel an rauscharmen, kompakten und zugleich gepulsten Lasersystemen deren breite Anwendung. In dieser Dissertation wird eine neue Generation von kompakten Mittelinfrarot-Laserquellen präsentiert. Diese vereint erstmalig modernste Laserdiodentechnologie und Ultrakurzpuls-Festkörperoszillatoren, basierend auf Cr2+:ZnS/ZnSe, eindrucksvoll miteinander. Die im Rahmen dieser Arbeit entwickelten neuartigen Lasersysteme zeigen einerseits, wie durch die Erzeugung kohärenter Strahlung der Bereich zwischen 2 µm und 3 µm abgedeckt werden kann. Andererseits wird durch dieses Konzept eine gleichzeitige Reduktion in Größe und Komplexität erreicht, sowie eine verbesserte Gesamteffizienz und insbesondere Rauschverhalten. All das macht den Ansatz wegweisend für zukünftige Anwendungen im mittelinfraroten Spektralbereich. Im Rahmen der Dissertation wurden drei einzigartige Lasersysteme entwickelt, wobei jedes davon die Grenzen direkt Dioden-gepumpter Lasertechnologie sprengt. Das erste System wird von einer Einzel-Emitter-Diode aus Indiumphosphid gepumpt und liefert bei einer Impulsdauer von nur 45 fs eine Ausgangsleistung von mehr als 500 mW. Insbesondere stellt dies die erstmalige Umsetzung eines Kerr-Linsen modengekoppelten (KLM) Cr2+:ZnS/ZnSe Oszillators dar, der direkt von einer Diode optisch gepumpt wird. Neben einer außerordentlichen Langzeitstabilität ist das Lasersystem durch ein exzellentes Rauschverhalten charakterisiert. Dies zeigt sich in Messungen des Amplitudenrauschens im modengekoppelten Betrieb. Um die Leistungsmerkmale eines typischen Faserlaser-gepumpten Cr2+:ZnS/ZnSe-Systems zu erreichen und zu übertreffen, und damit auch die Effizienz einer dem Lasersystem nachgelagerten Anwendung zu steigern, werden zwei Einzel-Emitter-Dioden in einem Lasersystem der zweiten Generation präzise überlagert. Die dadurch realisierbaren Spitzenleistungen sind knapp einen Faktor drei größer als mit nur einer Diode, während die Rauschcharakteristik unverändert niedrig bleibt. Im Allgemeinen ist ein Lasersystem, welches zur Erzeugung von mittlerer Infrarotstrahlung von bis zu mehreren zehn Mikrometern eingesetzt wird, außerordentlich komplex. Dies liegt in der komplizierten Verkettung von Verstärker-, Pulskompressions- und optisch parametrischen Konversionsstufen dieser Systeme begründet. Wird stattdessen ein leistungsstarker Mittelinfrarot-Ultrakurzpulslaser verwendet, kann nicht nur die Effizienz von nichtlinearen Prozessen signifikant erhöht, sondern unter Umständen sogar eine Verstärkerstufe überflüssig werden. Mit dem im Rahmen der Dissertation entwickelten Lasersystem der dritten Generation kann genau dies erreicht werden. Mit einer Spitzenleistung von 1 MW bei einer Impulsdauer von nur 28 fs wird die direkte Erzeugung phasenstabiler Mittelinfrarotimpulse in einem nichtlinear optischen Kristall (ZGP) möglich. Dieser nichtlineare Konversionsprozess erzeugt ein mehrere Oktaven breites Spektrum zwischen 4.5 µm und 14 µm bei Durchschnittsleistungen von mehr als 20 mW. Die erfolgreiche Entwicklung und Realisierung von drei neuartigen und leistungsstarken direkt Dioden-gepumpten Lasersystemen im mittelinfraroten Spektralbereich legt die Grundlage für eine neue Generation von MIR-Ultrakurzpulslasern. Diese ermöglichen die Durchführung spektroskopischer Messungen mit einer beispiellosen Effizienz und einer Empfindlichkeit am Quantenrauschen. Zugleich ebnen sie den Weg für eine einfacher zugänglichere Alternative zu Synchrotron-ähnlicher Infrarotstrahlung

    Non-linear dynamics and power systems

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN041284 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Applications of Power Electronics:Volume 2

    Get PDF

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    EARLY DETECTION OF DEMENTIA USING THE HUMAN ELECTROENCEPHALOGRAM

    Get PDF
    Improved life expectancy has led to a significant increase in the number of people in the high-risk age groups that will develop Alzheimer's disease and other dementia. Efforts are being made to develop treatments that slow the progress of these diseases. However, unless a sufferer is diagnosed in the early stages the treatments cannot give the maximum benefit. Therefore, there is an urgent need for a practical, decision support tool that will enable the earliest possible detection of dementia within the large at-risk population. Current techniques such as Magnetic Resonance Imaging (MRI) that are used to diagnose and assess neurological disorders require specialist equipment and expert clinicians to interpret results. Such techniques are inappropriate as a method of detecting individual subjects with early dementia within the large at-risk population, because everyone within the at-risk group would need to be tested regularly and this would carry a very high cost. Therefore, it is desirable to develop a low cost method of assessment. This thesis describes research into the use of automated EEG analysis to provide the required testing for dementia. The research begins with a review of previous automated EEG analysis, particularly fractal dimension measures. Initial investigation into the nature of the fractal dimension of the EEG are conducted, including problems encountered when applying fractal measures in affine space. More appropriate fractal methods were evaluated and the most promising of these methods was blind tested using an independent clinical data set. This method was estimated to achieve 67% sensitivity to probable early Alzheimer's disease and 17% sensitivity to vascular dementia (as confirmed by a clinical neurophysiologist from the EEG) with a specificity of 99.9%.Department of Neurophysiology, Derriford Hospital, Plymout
    corecore