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Early Detection Of Dementia Using The Human Electroencephalogram 

Geoffrey T Henderson 

Abstract 

Improved life expectancy has led to a significant increase in the number of people in the high­

risk age groups that will develop Alzheimer's disease and other dementia. Efforts are being made 

to develop treatments that slow the progress of these diseases. However, unless a sufferer is 

diagnosed in the early stages the treatments cannot give the maximum benefit. Therefore, there is 

an urgent need for a practical, decision support tool that will enable the earliest possible detection 

of dementia within the large at-risk population. 

Cunent techniques such as Magnetic Resonance Imaging (MRI) that are used to diagnose and 

assess neurological disorders require specialist equipment and expert clinicians to interpret 

results. Such techniques are inappropriate as a method of detecting individual subjects with early 

dementia within the large at-risk population, because everyone within the at-risk group would 

need to be tested regularly and this would cany a very high cost. Therefore, it is desirable to 

develop a low cost method of assessment. 

This thesis describes research into the use of automated EEG analysis to provide the required 

testing for dementia. The research begins with a review of previous automated EEG analysis, 

particularly fractal dimension measures. Initial investigation into the nature of the fractal 

dimension of the EEG are conducted, including problems encountered when applying fractal 

measures in affine space. More appropriate fractal methods were evaluated and the most 

promising of these methods was blind tested using an independent clinical data set. llhis method 

was estimated to achieve 67% sensitivity to probable early Alzheimer's disease and 17% 

sensitivity to vascular dementia (as confirmed by a clinical neurophysiologist from the EEG) 

with a specificity of99.9%. 



The thesis also describes a fundamental study of the assumed fractal nature of the EEG. It is 

shown that the fractal nature of the EEG (should it exist at all) is not contributory to the success 

of fractal dimension measures. From this, it is concluded that the EEG is unlikely to be a fractal. 

However, the previous success of the fractal methods is important and is likely to be because 

they detected a related characteristic of the EEG. Two novel methods, which build upon this 

conclusion and the initial investigations, are reported. The first novel method, applying Allan 

Variance analysis to the EEG, was unsuccessful but the second method, based on the Probability 

Density Function of the Zero Crossing Intervals, was more promising. This second method was 

estimated to achieve 78% sensitivity to probable early Alzheimer's disease and 35% sensitivity to 

vascular dementia (as confirmed by a clinical neurophysiologist from the EEG) with a specificity 

of 99.9%. This compares well with a more conventional Alpha/Theta power spectral ratio 

measure, which was estimated to achieve 50% sensitivity to probable early Alzheimer's disease 

and 11% sensitivity to vascular dementia with the same data. 

The EEG recordings used to assess the methods included artefacts and had no a priori 

selection of elements 'suitable for analysis': This approach gives a good prediction of the 

usefulness of the techniques, as it would be used in practice. It is noteworthy that the probable 

Alzheimer's subjects were not previously diagnosed and were therefore in the early stages of 

exhibiting symptoms. 

This thesis also discusses and reports on investigations into subject specific EEG analysis, 

which may be used as an adjunct to most methods. This analysis moves away from group 

comparisons that separate individuals into groups (Normal, Alzheimer's, Parkinson's etc.) using 

indices derived from isolated (snapshot) EEGs and instead compares an EEG to those taken 

previously from the same subject. It is shown that by looking for trends in indices that arise over 

time rather than comparing an EEG to what is generally normal within the population the 

efficacy of a method is improved. In the near future, strategies such as this wi 11 become 

increasingly practical as information technology enabled e-medicine improves. 

11 



This research provides a basis for the development of a practical, affordable method, which 

will detect dementia before there is significant mental decline. Such a method, administered by 

GPs, for example, as part of a normal check-up, in conjunction with new therapies to slow the 

progression of dementia could provide many people with years of higher quality life. 
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Chapter 1. :n:ntroduction 

1.1 Motivations 

1.1.1 Early Detection of Dementia 

Improved life expectancy [l] has led to a significant increase in the number of people in the 

high-risk age groups that will develop Alzheimer's disease and other dementia [2]. Some drugs 

already exist that slow the progression of Cerebrovascular diseases (such as Multi-Infarct) and 

efforts are being made to develop treatments (such as the Acetylcholinesterase inhibitors; 

Tacrine, Donepezil and Exelon) which may slow the progress of the Alzheimer's Disease [3], 

[4]. However, unless a sufferer is diagnosed in the early stages, the treatments, which only slow 

the development of dementia, cannot give the maximum benefit by extending the time before 

significant mental decline occurs [5]. A study of Alzheimer's Disease related Cortical Atrophy in 

the Lancet [6] showed the period between the onset of Alzheimer's disease and meeting the 

current clinical criteria was between 3 and 5 years. Therefore, there is an urgent need for a 

practical decision support tool that will enable the earliest detection of dementia within the large 

population of people at risk. 

A further constraint is cost. To illustrate this one may consider current techniques such as 

Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) that are used to 

diagnose and assess neurological disorders. These require specialist equipment and expe11 

clinicians to interpret results and are inappropriate as a method of detecting individual subjects 

with early dementia within the large at-risk population. This is because everyone within the at­

risk group would need to be Lestedregularly and this would carry a high cost. 
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In summary, it is desirable to develop a low cost method of assessment, which can be carried 

out quickly by a non-specialist clinician. Such a method, in concert with drugs that slow the 

progression of Alzheimer's Disease and Cerebrovascular disease, could prolong the symptom 

free state and give patients an additional number of years of higher quality life. 

1.1.2 Other Implications 

Success in this area of research could have implications beyond early detection of dementia 

and provide further clinical benefits for patients, GPs, researchers and clinicians. Some examples 

are given below: 

1.1.2.1 Clinical Care Of Patients with Dementia 

An automated method for detecting and quantifying changes that occur as a result of brain 

dysfunction would allow clinicians to: 

• quantify the progression of brain disease; allowing carers, patients and their families to 

understand the situation and.address it appropriately 

o assess suitability for specific treatment options 

• assess the effectiveness of prescribed treatment 

Periodic analysis of the same subject would allow the clinician to understand how a particular 

patient is progressing relative to previous results (improving, declining, etc.) rather than placing 

them in an absolute categorisation of level relative to typical normal subjects or typical subjects 

with dementia. 
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1.1.2.2 A Test For Safe Driving 

Every year many older drivers in the UK are required by their motor insurance company to 

have a medical examination. Normally, the General Practitioner is asked to certify that they are 

physically able to drive safely. However, the neurological aspects are difficult because the GP 

has no effective test for early dementia without referring the patient for further checks. In this 

situation the GP has to come to a decision based on his subjective opinion whilst recognising the 

danger presented to the public by a dementing driver and also recognising the negative effect on 

an older person if their independent mobility is reduced. In these situations a straight forward 

automated method for detecting and quantifying changes that occur as a result of brain 

dysfunction would be a welcome aid. 

1.1.2.3 Standardisation Of Clinical Results 

Human interpretation of the EEG is recognised to have brought benefit to patients but there 

are benefits to providing a standardised measure that would come from automated analysis. Such 

a measure would be useful to aid communication between clinicians. 

1.1.2.4 Provide A Measure Of General Brain Damage 

If it is possible that the use of an automated method for detecting and quantifying changes, 

which occur as a result of brain dysfunction, it may be extended to quantify the damage done to 

the brain under some conditions such as microwave irradiation from mobile phone usage or 

damage from highly physical sports such as boxing. 

1.2 Statement of Problem 

Analysis of the electrical activity of the brain (the Electroencephalogram or EEG) is seen as a 

possible way to provide an acceptable and affordable method for early detection of dementia. It is 

well known that disorders of the brain are accompanied by changes in the EEG and the EEG has 

long been used in diagnosis of neurological disorders but this generally requires subjective 

interpretation. 
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The problem, addressed in this research, is to automate EEG analysis such that early changes 

due to dementia can be reliably detected before the development of clinically significant mental 

decline. 

Whilst stating this problem, it is necessary to recogn1se that a great deal of effort has 

previously been expended in the pursuit of automated EEG analysis and there are few, if any 

successful automated methods in routine clinical practice. 

1.3 Aim and objectives 

The aim of this PhD is to contribute to the development an automated EEG analysis method 

that could be used by non-specialist clinicians (i.e. General Practitioners) to detect the early 

stages of dementia during routine health checks of older patients. One can envisage in the 

Doctor's surgery, a hardware module that provides the interface between electrodes on the 

subjects scalp and desktop PC running some specialist software. To do this, it is necessary to 

develop an objective, reliable, robust, automated method for detecting and quantifying changes in 

the EEG that occur as a result of dementia. This is a challenge because the EEG is a complex, 

non-stationary signal that varies between subjects and is affected by the subjects condition (age, 

wakefulness, disease, etc.) as well as being affected by stimuli such as light in the eye, sounds 

applied to the ear or the sensation of pain. 

The objectives of this PhD are: 

o Critically review published research into automated EEG analysis, particularly in the area 

of fractal dimension, which appeared to show most promise, 

o Develop a mathematically sound fractal dimension method and test it against a given, 

small sample data set. 

• Conduct a blind test of the fractal dimension method on an independent, larger set of data 

and determine whether the new method is likely to detect dementia in the target, older 

population before the development of clinically significant mental decline. 
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• ,]fit is not possible to use the fractal dimension then develop one or more novel method of 

analysis, which could clearly distinguish between normal and subjects with dementia. 

• Examine the subject specific nature of the EEG and determine whether this could help in 

the detection of dementia and in patient-care. 

1.4 Contributions of thesis 

This thesis makes the following contributions to knowledge: 

• This research demonstrates that previously published methods using the fractal dimension 

of the EEG are not wholly appropriate because the EEG exists within affine space. 

• The pe1formance of a number of fractal dimension methods, which had not previously 

been applied to the EEG but were appropriate for use with signals that lie in affine space, 

are investigated, tested and reported in the literature. These methods were developed 

using a small, pre-existing data set and then blind tested with a new, larger set of 

independently collected data. 

• This research questions the fractal nature of the EEG and demonstrates that the fractal 

nature of the EEG (should any exists) does not contribute to the success of fractal 

dimension measures. From this, it is concluded that the EEG is very unlikely to be a 

fractal. The previous success of fractal methods is due to the detail of the EEG power 

spectral density and a natural robustness to artefacts. 

• A novel method is developed (using the initial small data set) which builds on the 

previous work during this research using the Allan Variance of the EEG. Results are 

presented which quantify the capabilities of the new method using the initial small data 

set. Results are also presented from a larger, blind trial that used data from a hospital EEG 

database. These results demonstrate that this is not a viable method although the initial 

indications were good. 
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• A second novel method is developed using the probability density function of the zero 

crossing intervals. Results are presented which quantify the capabilities of the new 

method using the initial small data set. Results are also presented from a larger, blind trial 

that used data from a hospital EEG database which show that the estimated sensitivity to 

early probable Alzheimer's disease is 78% and estimated sensitivity to early probable 

Cerebrovascular disease (confirmed by a clinical neurophysiologist from the EEG) is 35% 

with a specificity of 99.9% 

The majority of the work reported in this Thesis has been published in peer-reviewed 

conference and journal papers [7], [8], [9] and [10]. A final paper summarising the whole body 

of work has been submitted to the IEEE transactions journal. 

Aside from these contributions to knowledge, the research has led to: 

o The production of a large body of software (in Borland Turbo C++ and Microsoft Visual 

C++) which can access 3 different EEG data formats, display the raw or processed EEG 

in an easy to use application without the need for en expensive reader station and 

performs all of the analyses used in this research. 

o The collation of a significant database of EEG records that may be used in future work. 

1.5 Outline of thesis 

This Thesis begins with an introduction (this Chapter) and a background chapter (Chapter 2) 

which discusses; the current state of knowledge of the Human EEG (section 2.2), fractal theory 

(in brief, section 2.3), diagnostic performance measures (section 2.4) and the state of the art in 

Automated EEG analysis (section·O). 
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Chapter 3 describes detailed investigations into the nature of fractal dimension measures. 

Fractal dimension measures were chosen because it was felt that these were most likely to 

contribute to the development of a means of detecting Dementia from the EEG. This Chapter 

discusses; previously published fractal dimension methods, fractal dimension methods suitable 

for affine space, subject specific measures, Alpha!fheta ratio determined from the fractal 

dimension, the time progression of the fractal dimension and the variability of the fractal 

dimension over the scalp. Section 3,8 records work that questions whether it was right to 

compute the fractal dimension of the Auto-correlation of the EEG. 

Chapter 4 describes a clinical evaluation that tested whether the selected method could 

provide adequate sensitivity and specificity to be useful in practice. The Chapter begins by 

describing the preparatory work where method parameters were fixed (otherwise, it could be said 

that the assessment of the method was not a fair test and that retrospectively applied 

parameterisation favourably skewed the results). Following this, the main trial is described. Other 

previously discussed methods and issues are revisited (e.g, subject specific measures). 

Following on from the trial, Chapter 5 questions whether the EEG is in-fact a fractal. Based 

on this conclusion Chapter 6 suggests further methods that may be more appropriate. The results 

from testing these novel methods are also discussed. 

Finally, this Thesis ends with a conclusion and suggestions for future work (Chapter 7) and a 

list of references (Chapter 8). There are.also appendices to describe the software that was written. 
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Chapter 2. Backgiround 

2.1 Introduction 

This chapter describes the background to the research and provides references to other 

published work. 

This thesis is concerned with the early detection of dementia using the Human EEG because 

the EEG provides a low-cost, practical method of studying brain function and has been used by 

clinicians for many years to diagnose dementia. This chapter begins, in section 2.2, with a 

description of the Human EEG; how it is measured, the problems associated with the EEG (such 

as artefacts), and how clinicians have interpreted the EEG. 

The chapter continues, in section 2.3, by describing fractals, chaos and complexity. These 

subjects, and particularly their application to the Human EEG, are important because concepts 

adopted from these areas of knowledge have recently been shown to indicate the presence of 

dementia. 

The chapter also discusses diagnostic performance measures in section 2.4. 

Finally, section 2.5, provides a brief review of the state of the at1 in automated EEG analysis 

(including fractal, chaos and complexity measures). 
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2.2 The Human Electroencephalogram 

2.2.1 Introduction 

The Electroencephalogram (EEG) is a record of the electrical activity of the brain. This is 

normally measured from electrodes on the surface of the scalp, although surgically implanted 

electrodes are sometimes used to provide improved signal strength and localisation. In this 

research, only recordings taken from the scalp are considered because implanted electrodes 

would be unacceptably invasive for the early detection of dementia. 

Since the EEG was first recorded in 1924, it has become an important clinical tool providing 

information about the activity of the brain, its condition and possible disease. Research into the 

nature of the EEG has revealed that it is a complex, non-stationary electrical potential that varies 

over the surface of the scalp (and throughout the brain). Furthermore, the EEG is affected by the 

subjects condition (age, wakefulness, disease, etc.) as well as being affected by stimuli such as 

light in the eye, sounds applied to the ear or the sensation of pain. 

2.2.2 Electrode Montage 

EEG records used in this research are from electrodes mounted on the scalp using the 

standard 10/20 system for electrode placement [11] (or the modified Maudsley system, which is 

similar to the 10/20 system). The 10/20 system is illustrated in Figures 2-1, 2-2 and 2-3 and it 

uses either 19 or 21 electrodes (sometime electrodes AI and A2 are not required). Three 

referencing methods are commonly used: 

1. Bipolar: Measurements made between selected pairs of electrodes. 

2. Common reference: Measurements taken between electrodes and a reference that ts 

chosen to be least affected by interference, such as the ear lobes (AI and A2). 

3. Common average reference: Measurements taken between electrodes and the mean of the 

other electrodes used. 
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Using electrodes on the scalp is convenient and non-invasive (unlike electrodes implanted in 

the brain), but these electrical potentials are small (in the order of 10 to 300 microVolts). 

Therefore, it is necessary to use accurate, sensitive equipment to measure the EEG signals. These 

data are normally recorded graphically on long strips of paper or electronically on magnetic 

media. 

10% 

Temple 

10% 

Temple 

Figure 2-1 , Frontal view of electrode placement. 

20% 

Figure 2-2, Side view of electrode placement. 
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Figure 2-3 , Schematic plan view of electrode placement. 

A typical display of a 21 electrode common average montage EEG is shown in Figure 2-4. 
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Figure 2-4, Typical EEG display. 
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2.2.3 Artefacts 

Artefacts are those signals present in the measured EEG signal that are not of cerebral origin. 

These originate from a number of sources, both internal and external to the body. Internal sources 

of artefact are cardiac activity and electrical activity in the muscles of the head (tongue and eye 

movement or blinking). External sources of artefact may be mains interference or poor, 

intermittent electrode contact. Artefacts are unhelpful and present significant challenges in EEG 

analysis. 

2.2.4 Human Interpretation 

The EEG is normally presented for human interpretation with little pre-processing other than 

simple band-pass filtering. The EEG is typically drawn on a long strip of paper. 'fhis printout and 

other patient data are studied by a clinician who, using years of training and experience, comes to 

a diagnosis. 

According to Dondey [ 12], the EEGer interprets an EEG using the following four steps. First, 

the EEG trace is mentally cut into 'graphic elements'; where 'graphic elements' refer to the 

elementary patterns that constitute an EEG. Second, based upon the observation of the temporal 

evolution of potential differences between different pairs of electrodes, one obtains a mental 

representation of the overall variations observed in the EEG. In the third step, differentiation 

between artefacts and EEG activity takes place, based on experience. Finally, the significant EEG 

activities are identified. 

Ktonas [13] gives a very good introduction to EEG features and there significance. The most 

common are: 

a activity, found most strongly in awake relaxed subjects with eyes closed, 8 to 12 cycles 

per second (cps), quasi~sinusoidal, amplitude 20 to 60f..tV, strongest in posterior 

areas of the brain, tends to wax and wane over 1 to 2 seconds forming a 

'spindle'. 

12 



13 activity, found most strongly in awake attentive subjects, may be present but masked 

when a activity is present, prominent mainly in central and frontal regions, 

quasi-sinusoidal, 18 to 24 cps, up to 20J.lV. 

e activity, found in drowsy subjects and in some stages of sleep, occurs as bursts of quasi­

sinusoidal activity or as single waves, 4to 7 cps, 50 to 200J.lV. 

ii activity, found in drowsy subjects and in some stages of sleep, occurs as bursts of quasi­

sinusoidal activity or as single waves, 0.5 to 3 cps, 50 to 200J.lV. 

cr spindles, found in onset of sleep (stage 2), bursts of quasi-sinusoidal activity, 12 to 16 

cps. 

K complexes, found in onset of sleep (stage 2), single cycle of slow activity, about 1 cps, 

amplitude distinctly above background. 

Spike or Spike-and-Wave. Characteristic of epileptogenic activity, spike has less than 80 

milli-second duration, average maximum slope approximately 8J.lV/milli­

second 

Slowing. Disease or injury to the brain causes a slowing of normal activities. 

Symmetry. The healthy human EEG is remarkably symmetrical with respect to the mid­

line of the brain in form and spectral content. 

It is noted that the effectiveness of EEG analysis is limited because only about one third of 

the cerebrum can be viewed by non-surgical EEG techniques. Thus, slowly developing lesions, 

atrophic processes, subdural haematomas, and diseases causing demyelination (loss of 

myelinated sheath covering the neurones) may produce little or no EEG abnormality. Also, one 

quarter of all deep cerebral tumours exhibit normal EEG. Diseases such as dementia that affect 

large areas of the brain are detectable from the EEG. Alzheimer's disease affects all EEG 

channels in a generalised way although the posterior region is more affected whereas 

cerebrovascular disease has more defined foci. 
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2.3 Fractals, Chaos and Complexity 

2.3.1 Introduction 

llhe origins of fractal geometry can be traced back to the nineteenth century, but it was in 

1975 that the first unifying treatment was given by Benoit B. Mandelbrot [14], a Polish born 

mathematician, Fractal geometry is the most versatile tool so far discovered for describing and 

modelling forms that occur in nature; forms that Euclidean geometry cannot describe. 

This section introduces the terms "Fractal", "Chaos" and "Complexity", which describe 

complex, non-linear systems. 

2.3.2 Fractals 

2.3.2.1 Introduction 

Euclidean (and similar) geometries have been used historically to describe mathematically 

shapes; spheres, quadrilaterals, ttiangles, hypercubes, etc. However, it was known that shapes 

that generally occur in nature (terrain, coastlines, trees, etc) have shapes that cannot be described 

using these "simple" shapes. In the mid-1960s Mandelbrot proposed a way to describe these 

shapes and named them fractals. The definition of fractal has changed over the years. 

Mandelbrot, who coined the term, has retracted and replaced his original definition [15]. Now it 

is generally accepted to refer to a shape whose parts are in some way similar to the whole. 

2.3.2.2 An Example 

In introducing fractals, it is convenient to begin with an example. This example was 

conceived by Helge von Koch [ 17]. The so-called Koch curve may be constructed by taking an 

equilateral triangle and then on each side add another equilateral triangle to cover the middle 

third of the line. This is then repeated with smaller and smaller triangles (see Figure 2-5). 
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Figure 2-5, Construction of a fractal -the Koch Curve. 

Figure 2-6, Image of one side of the Koch Curve. 

The Koch curve reveals an interesting paradox; each time new triangles are added the total 

length of the outline becomes larger by a factor of 4/3 and therefore the total length of the outline 

tends to infinity even though the area of the curve remains less than the area of a circle drawn 

around the original triangle and is therefore finite. Fractal geometry, which was invented to 

describe shapes such as the Koch curve, it assigns a non-integer (or fractal) dimension. For the 

Koch curve, the fractal dimension is 1.26. 

2.3.2.3 Definition of Fractal Dimension 

There are at least 10 definitions of dimension [16], although most are similar. Of these the 

topological dimension is perhaps the most familiar. Defined in terms of homeomorphisms 

(permitted topological transfmmations), it is an integral measure such that finite arcs have a 

topological dimension of 1, surfaces, 2 and solid bodies 3. 
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A generally accepted inductive definition of topological dimension is: 

If the boundaries of arbitrarily small neighbourhoods of all points in a space are (n-1) 

dimensional, then the space is n-dimensional. The empty set, and only the empty set, has 

dimension minus one. 

This definition is accurate but difficult to understand. Taking a square as an example, any 

point within the square has a boundary that is a closed (circular) line. Therefore, a square has one 

more dimension than a line. Furthermore, any point on the line has a boundary that comprises 

two points and similarly the boundary to the points is the empty set. Thus, working back to the 

square; the empty set has dimension -I, the set of points has dimension 0, the line has dimension 

I and the square has dimension 2. 

Many of the definitions of dimension (other than topological dimension), and much of 

Mandelbrot's work on fractals, are based on the Hausdorff dimension, which was first proposed 

in 1919. A complete definition of the Hausdorff dimension is given by Addison [15]. An 

overview is given below. 

A fractal is characterised by a number of dimensions which is greater than the topological 

dimension and this dimension need not be integer. To understand the non-integer dimension it is 

convenient to consider the Koch curve where a single dimension is not sufficient to describe a 

point on the outline because the length is infinite and 2 dimensions would be too much because 

the outline does not have an area: Thus the number of dimensions needed to describe it is 

between I and 2 (in fact the dimension is 1.26). 

Consider a smooth curve of length L that has a topological dimension Dr of l. The length of 

the curve may be estimated by covering it with N small line segments of length 8, where N would 

be a function of r5. See Figure 2-7. Now is L would be given by: 

L = lim(N(o)o) . 
.~ ... o 

(2.1) 

16 



Figure 2-7, Sketch of the divider dimension 

Similarly, consider a shape with a topological dimension of two, such as a circle or square, 

where the area may be estimated by covering it with small squares of side 8 See Figure 2-8. 

A = lim(N(t5)82
) 

6-+0 
(2.2) 

_C 1\ J' r'\. 
~ u 2 

lr \. ) \ I) I\ .__... ~ ........, 

8 
~ 

I 

fY 
u / 

r -
Figure 2-8, Sketch of the Box Dimension. 
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Thus, the measured quantity (length, area etc.) may be found by covering the shape with 

small objects that have the same topological dimension. If these objects are covered by small 

objects of an inappropriate dimension, then the result is either zero or infinite. For example, if we 

use vanishingly small squares to. cover a smooth curve then in the limit the 'area' will be zero. In 

addition, if we cover a circle with small line segments then in the limit the 'length' will be 

infinite. We may write a generalised expression for the measured quantity Md: 

(2.3) 

The value of M do is not important in this context but the Hausdorff dimension D is of great 

significance. For a fractal set this dimension (the fractal dimension) obeys the inequality 

DT < D:;:; DT +I and is not normally an integer. 

2.3.2.4 Computation Of The Fractal Dimension 

A coastline is an example of a natural approximation to a fractal [18]; if one steps around a 

land-sea boundary using N steps of length t5 (see Figure 2-7) then N would be found to be a 

function of the step length, approximately given by: 

L(8) = JN(8) = L,8D-I 0 (2.4) 

Here L is the apparent length of the coast, La is a constant and D is the fractal dimension. 

Using a range of values for t5 and measuring the COJTesponding values for length L(8) it is 

possible to use a least squares (or similar) method to estimate D (which for Norway is about 1.5). 

This technique of using line segments to cover a fractal with topological dimension of one is 

known as the Divider Dimension. 

An alternative to the Divider Dimension is to cover the coastline with squares (see Figure 

2-8); this is the box dimension where the total area A is found to be related to the length of the 

squares side oby: 

A(8) = 8 2 N(8) = 11,8°-2 
• (2.5) 
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Using a range of values for 8 and measuring the corresponding values for area A(J) it is 

possible to use a least squares (or similar) method to estimate D. 

2.3.3 An Aside Concerning the Geometry of Spaces Containing Fractals 

In the preceding discussion of fractals, the implicit assumption has been made that they exist 

in Euclidean space. A Euclidean space is what most people visualise in their minds eye; where 

one direction has the same properties as any other direction and there is a defined origin. 

However, there are a number of alternatives; affine, projective, spherical, inverse, hyperbolic and 

conformal. The EEG for, example lies in affine space where there is a defined origin but different 

directions have different units, meanings and properties. 

The EEG has 2 dimensions; voltage, which is normally plotted on the y-axis and time, which 

is normally plotted on the x-axis. Voltage has units of volts, it is an expression of a potential 

difference (in the electrical sense) between 2 points and the same voltage may be repeated many 

times within a recording. Time, in contrast, has units of seconds, represents the interval since a 

reference to the measurement point and there may only be one instance of any value of time 

within the record. This may seem to be labouring a point but there are important implications for 

measuring the fractal dimension of an object, such as the EEG, which exist in affine space. For 

example, the concept of length is meaningless for a diagonal line (which is neither parallel to the 

voltage axis nor time axis) because voltage and time have different units. These issues are 

discussed in detail in Chapter 3. 

2.3.4 Chaos 

2.3.4.1 Linearity And Time-Invariance 

To describe Chaos it is convenient to begin by introducing a type of system that is not chaotic 

- a Linear, Time-Invariance, Dynamical System. The term dynamical means that the system 

changes with time in a predictable way: An example would be a damped mass on a spring that 

oscillates when an impulse is applied (see Figure 2-9). 
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Time 

Figure 2-9, A linear, time-invariant system. 

The term time-invariant means that the system with the same initial conditions and with the 

same stimuli will always respond in the same way - in the example this would imply that the 

mass remains constant and the characteristics of the spring do not change over time. The final 

term "linear" means that if the input of the system is the sum of several signals then the output 

will be the sum of the outputs that would be expected from each of the indi vidual input signals. 

This description of a linear, time-invariant, dynamical system may be made more 

mathematically rigorous by noting that the complete condition the system can, at any instant, be 

described by n real numbers or states that form a vector x(t). In the mass-sp1ing example, the 

state vector would have two elements that might be the position of the mass and the velocity of 

the mass. In the general case, the rate of change of these states is a function of the states 

themselves and external signals (stimulus) that form a vector u(t). 

The function of the states that gives their rate of change is linear and time-invariant and 

therefore may be expressed as a constant matrix F (this is known as the state transition matrix). 

Furthermore, the observable outputs from the system that form a vector y(t) will be a linear 

function (described by the constant matrix H - known as the observation matrix) of the states 

plus some observation noise that is described by a p-vector of noise sources w(t). Summarising 

this definition in mathematical notation and graphically we have: 

x(t) = F · x(t) + u(t) (2.6) 
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y (t ) = H · x(t) + w(t ) (2.7) 

11(1) dx(t)Klt x(t) 
H -() 

y(t ) 

F-() 

Figure 2-10, Block diagram of a linear time-invariant system. 

2.3.4.2 The System Attractor 

One way to visualise the dynamics of a system is to consider the behaviour from an initial 

state x(t=O) with no stimuli applied. The subsequent states x(t) will be a function of the state 

transition matrix F and x(t=O). It is possible to represent the dynamics of x(t) as a vector field in 

n-dimensional space (where n is the number of elements in the vector x). The integral curves of 

the vector field are called trajectories and for the damped mass-spring example the trajectory is a 

spiral in two-dimensional space: 

Position 

Velocily 

Figure 2-11 , Parametric trajectory of the time history of a dynamical system. 
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In the mass-spring example, the steady state point is at equilibrium but some systems do not 

come to rest; they have a set of trajectories that describe the steady-state behaviour and these are 

called the attractor of the system. In the mass-spring example, the attractor is the steady state 

point. Consider the mass-spring system again, but this time with a motor which causes a steady 

state oscillation (see Figure 2-12). 

Ro tary 
Motor 

Figure 2-12, Driven mass-spring system. 

Now the system trajectories all come to a steady state, which is described by an attractor that 

is elliptical: 

Position 

Velocity 

Figure 2-13, Trajectory of driven mass-spring system. 
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2.3.4.3 Limitations of Linearity and Time-Invariance Assumptions 

The theory of linear, time-invariant, dynamical systems has been explored over many years 

and this has led to very useful tools for systems analysis, state estimation and system control such 

as the Kalman Filter, Laplace Transforms, etc. However, the major weakness in using linear, 

time-invariant system theory is that it does not reflect the real world. There are always limits on 

the assumption of linearity and time-invariance. In the mass-spring example, the spring is only 

linear over a small range of motion and its characteristics will change with usage. More broadly, 

this non-linear nature of the world is clear when one considers the mechanisms that drive the 

atmosphere and the firing of neurones in the brain. 

To explore what happens when a system is non-linear we shall use a well known discrete 

time example [17] which was intended to be a simple description of the evolution of a population 

taking into account limit food supply: 

(2.8) 

Where Pk is a number between 0 and 1 that represents the population and r is a constant 

representing food supply. At low values of r the population becomes extinct (r<1, see Figure 

2-14) and at higher levels (1<r<3, see Figure 2-15) it settles on a steady state value. At levels 

above r=3 the population oscillates initially between 2 levels (see Figure 2-16), then 4 levels (see 

Figure 2-17), and so on. Finally, the system becomes chaotic (see Figure 2-18). 
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Figure 2-14, Extinction in a dynamic population simulation (r = 0.9). 
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Figure 2-15, Steady state in a dynamic population simulation (r = 2.0). 
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Figure 2-16, Two level oscillation in a dynamic population simulation (r = 3.2). 
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Figure 2-17, Four level oscillation in a dynamic population simulation (r = 3.5). 
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Figure 2-18, Chaos in a dynamic population simulation (r = 3.7). 

This complete behaviour is summatised graphically in Figure 2- 19 below: 
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Figure 2-19, Summary of population evolution in a dynamic population simulation. 
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It may be seen that for higher values of 'r' the system is chaotic. This chaotic system, in 

common with all chaotic systems, is a predictable system that is non-linear (however not all non­

linear systems are chaotic). It is possible to analyse the attractors for chaotic systems and this 

reveals that the attractors are fractal. 

2.3.5 Complexity 

To complete this introduction to the te1minology of chaos and fractals it is necessary to 

introduce the te1m "complex". In this context, the term complex is taken to mean fractal when it 

is applied to a shape and it is taken to mean chaotic when refening to a time varying signal. The 

measure of "Dimensional Complexity" is the fractal dimension of the attractor of a chaotic 

system. 

2.4 Diagnostic Performance Measures 

2.4.1 General 

This thesis is concerned with the development and testing of a novel, EEO-based diagnostic 

method to detect the early signs of dementia. It is therefore important to measure the quality of 

the diagnostic decision. This section defines how the performance of a method is measured and 

defines the terms; Accuracy, Sensitivity, Specificity and Receiver Operating Characteristic. A 

comprehensive tutorial is given by Metz [19]. This section also discusses the use of statistical 

extrapolation (i.e. assuming a Oaussian distribution of the results). 

The terms positive, negative, true and false are defined in a conventional way. A subject is 

"positive" if they have the disease in question and "negative" if they do not. Furthermore, a 

"true" diagnosis is a correct diagnosis and a "false" diagnosis is incorrect. 

2.4.2 Accuracy 

Any assessment of diagnostic performance requires some comparison with "truth". Perhaps 

the simplest measure of diagnostic decision quality is the fraction of cases where a correct 

decision is made. This is accuracy. 
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There are two main weaknesses of this measure. Firstly, in screening for a relatively rare 

disease one can be very accurate by simply ignoring all evidence and calling all cases negative. If 

only 5% of subjects have a disease, a method that simply labelled all cases as negative would 

have an accuracy of 95%. One might suppose that though this is true, accuracy should be 

meaningful at least as an index for comparison of diagnostic methods applied to a given 

population in which disease prevalence is known and fixed. However, this is the second 

weakness. Two diagnostic modalities can yield equal accuracies but perform differently with 

respect to the types of correct and incorrect decisions they provide; the incorrect diagnoses from 

one might be almost all false negative decisions (misses), while those from the other might be 

nearly all false positives (false alarms), and clearly, the usefulness of these two methods for 

patient management would be quite different. 

2.4.3 Sensitivity and Specificity 

To overcome the problems with using a simple accuracy measurement, it is possible to use 

two terms to describe the performance of a diagnostic method; sensitivity and specificity. 

Sensitivity= 

Specificity = 

[Number of True Positive (TP) decisions] 
[Number of actual positive Cases] 

[Number of True Negative (TN) decisions] 
[Number of actual negative cases] 

In effect, sensitivity and specificity represent two kinds of accuracy: the first for actual 

positive cases and the second for actual negative cases. This separation is particularly important 

because the effects of a false positive and false negative diagnosis may have very different 

implications in different situations. For example, a false positive may lead to unnecessary 

surgery. Similarly, a false negative may cause an important drug, which has little detrimental 

effect on a patient without the disease, not being administered. 
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Sensitivity and specificity are related to accuracy: 

Accuracy= [Number of True decisions] 
[Number of cases] 

= Sensitivity x [Fraction of the study population actually positive] 

+ Specificity x [Fraction of the study population actually negative] 

It should also be noted that sensitivity is sometimes described as the True Positi.ve Fraction 

(TPF) or "hit rate" and specificity is sometimes described as the True Negative Fraction (TNF). 

Two other useful terms are the False Positive Fraction (FPF), which is also know as "false alarm 

rate", and the.False Negative Fraction (FNF). To summarise; 

FNF= 1-TPF 

TPF ="sensitivity"= "hit rate" 

FPF= 1-TNF 

FPF = "false alarm rate" 

TNF = "specificity" 

2.4.4 Receiver Operating Characteristic 

With most methods of analysis, we obtain a metric, such as EEG rms voltage, that must be 

compared to some threshold to decide if it is normal or abnormal. See Figure 2-20. Clearly, by 

changing the decision threshold we may alter the proportions of true to false negatives and of true 

to false positives. 
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Figure 2-20, Likelihood of positive and negative results against metric. 

To see the effect of this we may produce a parametric plot of True Positive Fraction against 

False Positive Fraction for varying decision thresholds. This plot is called a Receiver Operating 

Characteristic (ROC) for the diagnostic test, since it describes the inherent detection 

characteristics of the test and since the receiver of the test information can operate on any point 

on the curve by using an appropriate decision threshold. A typical plot is shown in Figure 2-21. 
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Figure 2-21, Typical Receiver Operating Characteristic. 
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In this thesis, a decision has been made to choose thresholds such that a specificity of 99.9% 

is achieved. This is because the diagnostic method would be used as a regular screening for 

dementia within a large at-risk population and a lack of specificity would cause too many false 

alarms. The consequence of a false alarm is that a patient would be sent for unnecessary and 

resource consuming follow up tests. It is felt that 1 in 1000 false alarms would be acceptable. 

With the threshold set, the sensitivity of the diagnostic method gives a good measure of its 

practical value and what proportion of sufferers may be helped. The consequence of a false 

negative (lack of sensitivity) would be that a patient would not receive follow-up and would 

receive no benefit from the screening. 

2.4.5 Discussion of Statistical Extrapolation 

In this research, two data sets are used. One is used to develop the method and the other 

independent set to quantify the performance (sensitivity and specificity) of the method. The 

population used to quantify performance contains 24 normal subjects, 17 subjects with suspected 

Alzheimer's Disease and 5 subjects with suspected Vascular Dementia, To estimate the 

sensitivity of the proposed dementure discriminating metrics the distribution of the metrics from 

the normal, Alzheimer's and Vascular populations were assumed Gaussian. At the end of the 

research, this assumption was revisited on the two sets of results for which this thesis makes 

important claims on sensitivity. These results are: 

1. Fractal dimension of the zero-set of the EEG which is claimed to provide discrimination 

between normal and abnormal EEG during the blind trial using clinical data (see Section 

4.3). In this case, the method was estimated to achieve 67% sensitivity to probable early 

Alzheimer's disease and 17% sensitivity to vascular dementia with a specificity of 99.9%. 

2. Alphaffheta ratio measure derived from the Zero Crossing Interval PDF of the EEG 

which is claimed to provide discrimination between normal and abnormal EEG during the 

blind trial using clinical data (see Section 6.3.10). In this case, the method was estimated 

to achieve 78% sensitivity to probable early Alzheimer's disease and 35% sensitivity to 

vascular dementia with a specificity of 99.9%. 
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To evaluate the reasonableness of the assumption that the distributions were Gaussian, a null 

hypothesis was proposed. The null hypothesis was that the results from each population type 

(normal, Alzheimer's and vascular) over each of the two sets of results (Fractal dimension of the 

zero-set and Alpha!Theta ratio derived from the Zero Crossing Interval PDF) are from a Gaussian 

distribution. That is six sets of results. This hypothesis was tested by estimating the skew and 

kurtosis of each of the sets of results and applying a limit such that none of the skew and kurtosis 

measures should be greater than twice the standard error of skewness (ses) or standard error of 

kurtosis (sek). That is the 95% confidence limit. 

The standard en·or of skewness (ses) and standard error of kurtosis (sek) may be estimated 

[20] thus: ses = .J"% and sek = ~2~ where N is the number of samples. 

The statistics from the 6 sets of results and the standard errors are shown in 

Fractal dimension of the zero set Alpha!Theta ratio de1ived from the 
Zero Crossing Interval 

Normal Alzheimer's Vascular Normal Alzheimer's Vascular 
I population !population population I population I population population 

N 24 17 5 24 17 5 
Mean 0.679 0.568 0.621 0.761 0.466 0.604 
SD 0.029 0.046 0.033 0.063 0.130 0.103 
Skew 0.48 -0.07 0.36 0.17 -0.01 -0.28 
ses 0.50 0.59 1.10 0.50 0.59 1.10 
Skew/ses 1.0 -0.1 0.3 0.3 0.0 -0.3 
Kurtosis -0.77 -0.99 -0.40 -0.57 -0.31 1.49 
sek 1.00 1.19 2.19 1.00 1.19 2.19 
Kurtosis/sek -0.8 -0.8 -0.2 -0.6 -0.3 0.7 

Table 2-1, Comparison of Skew and Kurtosis with their standard errors for the six most 
important sets of results in this research. 

Therefore, the null hypothesis, that the results from each population type (normal, 

Alzheimer's and vascular) and each of the two sets of results (Fractal dimension of the zero-set 

and Alpha!Theta ratio derived from the Zero Crossing Interval PDF) are from a Gaussian 

distribution, was not rejected when these 12 tests were applied. From this, it is concluded that 

the distributions are likely to be approximately Gaussian and that the estimates of sensitivity are 

likely to be unbiased. Thus, it is considered a fair test. 
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2.5 State of the Art in Automated EEG Analysis 

2.5.1 General 

EEG data have been subject to interpretation by experienced clinicians for a number of years 

and it is accepted that this has led to successful diagnosis and treatment of a large number of 

patients. However, various authors have commented on the disagreement between readers of the 

same EEG record, due to subjective aspect of EEG interpretation as well as levels of training and 

experience. This has led to a desire for more precise and universal criteria. Thus, although human 

interpretation of electrophysiological signals was a great step forward there are benefits to be 

gained by processing the data further to extract more information and to standardise results. 

2.5.2 ~rtefacts 

As previously stated, artefacts are those signals present in the measured EEG signal that are 

not of cerebral origin. In automated EEG analysis these artefacts present even more of a 

challenge than they do to an experienced EEGer, this is because the experienced EEGer can 

recognise and disregard them relatively easily whereas this is a significant challenge for an 

automated system. 

Two approaches to dealing with artefacts in automated EEG are present in the literature. The 

first is for an expert to recognise and discard segments that contain artefacts before the automated 

method is applied. This may lead to valid conclusions about the nature of m1efact free EEGs but 

it would not be appropriate for this research as the aim is to introduce a system that does not 

require specialist involvement. The second method is to apply automated artefact recognition 

strategies (perhaps using Artificial Neural Networks). This is more appropriate for this research, 

However, the state of the art in automatic artefact analysis is not sufficiently advanced to be 

relied upon and therefore, as significant work would be required to validate such a method, it 

would provide too much of a distraction from the main thrust of the research. 

A third alternative, which is not generally used, is to construct a method that is, by its nature, 

robust to the effect of artefacts. This is the approach taken in this research. Thus, for the analysis 

pursued in this research the following protocol was generally used: 
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"For all records, to avoid the possibility of inadvertently or unconsciously selecting data 

particularly suitable for analysis a predetermined protocol was applied. Data from 60s to 

300s from each record was used. This avoids electrical artefacts, which commonly occur at 

the beginning of a record, and gives a standard 4 minutes of data to analyse. This segment 

of data, including artefacts, was analysed with no a priori selection of elements 'suitable 

for analysis'. This approach leads to a prediction of the usefulness of the technique, as it 

would most conveniently be used in practice." 

2.5.3 Modelling Human Interpretation 

The first attempts at an automated EEG analysis were those of Grass and Gibbs in 1938 [21] 

and Baldock and Waiter in 1946 [22]. Those attempts involved Fourier analysis to extract the 

frequency content of the human EEG. Work has continued on evaluating the significance of the 

frequency content of the human EEG; Barlow [23] reported on a system that used mainly power 

spectral distribution to provide a human readable analysis and diagnosis (no figures are given for 

the accuracy of this system). 

It has been reported [13] that the information taken from a Discrete FourierTransform differs 

subtly from that which an EEGer would report. The way a clinician measures frequency content 

of an EEG pattern is by counting the number of peak-to-trough or peak-to-peak transitions that 

occur in a unit time. Small irregularities or the existence of sharpness atthe peaks of the waves is 

not reflected into the visual assessment of the frequency content. Other important techniques use 

amplitude integrators, cmTelators, period analysis, auto-regression and hybrids of these 

techniques. 

These attempts to automate electrophysiological signal analysis are based on the premise, 

published by Jansen [24], that "methods that are more likely to succeed attempt to mimic the 

electroencephalographer". No evidence has been found in the literature to suggest that systems 

mimicking the EEGer are yet sufficiently accurate and mature for normal clinical situations, This 

is reinforced by the fact that there are no such systems in common use. 

The most promising current research in modelling human interpretation makes use of Fuzzy 

Logic, which is described, in section 2.5.5 (below). 
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Some researchers have tried to improve EEG analysis by moving away from modelling 

human methods and extracting more information from the electrophysiological signals using 

novel techniques. These new techniques, including polyspectral analysis and parameter 

extraction based on an analogy with complex systems (dimensional complexity and fractals 

dimension), are also described in subsequent sections. 

2.5.4 Linear Techniques 

Linear techniques such as spectral analysis, auto-regression and statistically based 

comparison with known signal shapes [ 13] were the first computer based techniques applied to 

the EEG. This work was successful in that it gave a great insight into the workings of the brain 

but its diagnostic capabilities were limited. 

Linear spectral techniques take a Discrete Fourier Transform of a sampled form of the EEG. 

This is often mechanised as the Fast Fourier Transform (FFf). In all techniques found in the 

literature, except Bispectral Analysis (see section 2.5.9), the phase information is discarded and 

only the Power Spectral Density is used. 

A broad spectrum of frequencies are detected when a healthy brain is active and the higher 

frequencies disappear during certain relaxed states, for example stage I sleep. Reduced frequency 

content relative to a 'healthy normal' whilst awake is a sign of brain dysfunction. 

There are many met1ics that have been drawn from the Discrete Fourier Transform: 

• Alpha power (8 to 12 Hz). Alpha activity tends to show modulation i.e. waxing and 

waning, over period from I to 2 sec, thus forming envelopes (spindles) of activity. 

• Beta power (18 to 24Hz) 

• Theta power (4 to 7Hz) 

• Delta power (0.5 to 3 Hz) 
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• Weighted ratio of low frequency (a x delta+ b x theta) to high frequency (c x alpha+ d x 

beta), where a, b, c and d are constants [25]. It is also worth noting that Gotman [25] uses 

a very easy to understand presentation of a Canonogram. 

• 95% Spectral Edge; Frequency at which 95% of signal power lies below 

• Power Spectral Median; Frequency at which 50% of signal power lies below 

• Relative Delta Power; Ratio of power in delta band to total signal power 

Barlow [23] reported on a system that used mainly linear techniques to provide a human 

readable analysis and diagnosis. No figures are given for the accuracy of this system. 

These linear spectral techniques have been explored in depth over many years by many 

researchers. However, research continues and some success has been reported [26] recently. 

2.5.5 Fuzzy Logic 

Fuzzy Logic has been developed to describe rules of inference where boundaries are not 

crisp. As an example we may use the knowledge that reduced frequencies within the human EEG 

may suggest damage to the brain caused by disease or trauma. Using conventional logic one 

might propose the rule describing this inference as: If the frequency of a activity in the awake 

eyes closed state is less than 8Hz then the clinician should be alerted that the EEG is abnormal. 

This clearly does not distinguish between very low and slightly low (e.g. O.OIHz and 7.99Hz) 

whereas it distinguishes greatly between just above and just below 8Hz (e.g.7.99Hz and 8.01Hz). 

To remain with conventional logic and improve this situation one could propose more complex 

rules with several boundaries between very low, low, marginal and normal. This leads to a 

problem of logical complexity: when there are three variables (frequency, amplitude and patient 

wakefulness) each with four discrete, abstract values there are 64 possible states to map. Fuzzy 

Logic is a framework within which terms such as "Degree of Normality" may be described by a 

continuous variable. The graph below illustrates the concept of mapping from a-wave frequency 

to Degree of Normality: 
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Figure 2-22, Fuzzy definition of alpha activity classification. 

To make Fuzzy Logic inference rules, conventional combinational and unitary logic functions 

are required to be continuous functions. For example, a simple choice for AND may be the 

multiplication operator. There are several possible sets of operators described in the literature. 

One study by Riddington et al [27] compares the effectiveness of these possible sets of Fuzzy 

Logic operators for distinguishing EEGs recorded from Alzheimer' s Disease sufferers and 

Normals. 

Fuzzy Logic has been used in knowledge based EEG analysis systems [28] that deal with 

knowledge in a manner akin to human reasoning; that is linguistically (e.g. very normal, 

somewhat normal , extremely abnormal). This work appears to be relatively successful but the 

nature of the results used make it difficult to quantify the accuracy. 

2.5.6 Artificial Neural Networks 

Artificial Neural Networks, commonly refeJTed to simply as Neural Networks, are algorithms 

which simulate an interconnected network of nodes which are combinational (many to one) 

devices. These methods are intended to simulate the activity of the Neurones and Axons of the 

human brain [29]. Their use to simulate human interpretation of the brains output (the EEG) is 

therefore apt and ironic. 
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The greatest challenge with Neural Networks is training; the lack of an adequate training 

algorithm led to a decade of dormancy (1970's) in Neural Network research. Since then, the most 

important learning algorithms (Error Back Propagation Algorithm, Radial Bias Function and 

Kohonen Self Organising Map) have been applied to many problems including EEG 

interpretation. 

Training algorithms fall into two types: 

1) Supervised learning. The network is presented with a training data set, which comprises 

many typical inputs and predetermined desired outputs. This data is acted upon by one of 

a number of learning algorithms (Error Back Propagation, Radial Bias Function etc.) to 

adapt the network synaptic weights so that the network can approximate and generalise 

the implied function. 

2) Unsupervised learning. The network is presented with a training data set, which 

comprises typical inputs; there is no predetermined desired output. This data is acted upon 

by one of a number of self learning algorithms (Competitive Learning, Kohonen's Self 

Organising Map etc.) to adapt the network synaptic weights so that the network will give 

a vector output describing its similarity to distinct classes which were found in the 

training data. 

The literature concentrates on the successes, benefits and drawbacks of specific training 

methods and the abilities of networks so trained to perform useful functions. Neural Networks 

have been shown particularly good at recognising tumours and other abnormalities in images 

(Mammograms, Retinal Scans etc.). 

Attempts have been made with some success to use Artificial Neural Networks to combine 

metrics described elsewhere in this report; Pritchard [30] conducted one such study where Delta 

magnitude, Theta magnitude, Alpha magnitude, Beta magnitude, saturation correlation and 

dimensional complexity were used to classify Alzheimer's Disease and normal subjects. A 

sensitivity of 85.7% (12 of 14 AD subjects correctly identified) and a specificity of 96% (24 of 

25 controls correctly identified) is claimed - however, this was not a blind trial on independent 

data. 

38 



Neural Networks have also been employed for automatic artefact identification [31]. This is 

important because in most cases artefacts will have a large detrimental effect on the analysis of 

the EEG (see section 2.5.2). Note, Kalman Filters [32] and Wavelet transforms [33] have also 

been used for this task. 

During this research, there was some experimentation with Artificial Neural Networks to 

evaluate the quantity of innovation within the EEG. However, this is not reported, as there was 

little success. 

2.5. 7 Dimensional Complexity 

The brain is constructed from synapses, neurones, and the like which have responses that are, 

at the macro level, almost deterministic and non-linear. It has been suggested that the brain could 

therefore (in a mathematical sense) be chaotic (see section 2.3 for an introduction to fractals, 

Chaos and Complexity). A further introduction to Chaotic Complexity in humans is given by 

Bisset [34]: Broadly, for the EEG, a healthy brain exhibits high complexity when it is active. 

Low complexity, when awake, is a sign of brain dysfunction. Pmiicularly a loss of complexity 

has been associated with ageing and a loss of the ability to adapt to physiologic stress [35]. A 

tutorial review of non-linear dynamical (chaotic) analysis of EEGs is given by Pritchard and 

Duke [36] (the methods discussed involve reconstructing the system attractor and estimating its 

fractal dimension). 

Research in EEG dimensional complexity has evolved from an early work which suggests 

that human EEG under some conditions may represents dete1ministic chaos of relatively low 

dimension [37], through studies measuring the dimension of the strange attractor [38], through to 

a recent works that has questioned whether the EEG represents a chaotic signal. Finally, 

Pritchard [39],[40] reported that normal EEG is high dimensional and does not represent low­

dimensional chaos. This latter paper suggests that non-linear behaviour could be confused with 

low-dimensional chaos. A similar point of caution was raised by Sugihara who suggested that 

one must be very careful to distinguish between chaotic behaviour of a system, sampling errors 

and noise [41]. 
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2.5.8 Fractal Dimension 

An alternative measure taken from chaos theory is the fractal dimension of the EEG, It was 

suggested [42] that the shape of the occipital EEG, as plotted on paper, could be treated as a fractal 

and that the detected fractal dimension might be used in group comparison studies to differentiate 

subjects with Alzheimer's Disease from a group of normal subjects. This and further work on the 

fractal dimension is discussed throughout the remainder of this Thesis. 

2.5.9 Polyspectral Analysis 

In power spectral estimation, the signal under consideration is processed in such a way that 

the phase relations between components are lost. The information contained in the power 

spectrum is essentially that which is present in the auto-coiTelation sequence; this is sufficient to 

desc1ibe a Gaussian signal completely. However, there are practical situations, including EEG 

analysis, where it is useful to extract information regarding deviation from Gaussianity and the 

presence of phase relations. In these situations polyspectra (also known as higher order spectra), 

defined in terms of higher order statistics ("cumulants") of a signal, are useful. Particular cases of 

higher order spectra are the third order spectrum also called the Bispectrum which is by 

definition the Fourier transform of the third order statistics, and the Trispectrum (fourth-order 

spectrum). A further impo11ant statistic is the auto-bicoherence (or simply bicoherence) which 

represents a normalised Bispectrum. 

Other notable higher order statistics are cross-cumulants, cross-bispectrum and cross­

bicoherence, which may be invoked to determine the higher order statistics, contained in data 

where there is more than one signal to,be considered. 

Higher order statistics provide a way of describing the EEG without the need for prior 

assumptions as to the nature of the signal. Nikias [43] lists the motivations behind the use of 

higher order statistics in signal processing as: 

I. To suppress additive coloured Gaussian noise 

2. To identify non-minimum phase systems or reconstruct non-minimum phase signals 

40 



3. To extract information due to deviations from Gaussianity 

4. To detect and characterise non-linear properties in signals as well as identify non-linear 

systems. 

Given sufficient data, higher order statistics also provide sufficient information for statistical 

tests to determine whether a signal is linear and Gaussian. 

The subject of Bispectmm Analysis in relation to the human EEG is dominated by Aspect 

Medical Systems, Inc. who have registered "Bispectral Index" as a trademark [44], [45]. The 

proprietary nature of Bispectral Index makes it difficult to find out about it. Aspect Medical 

Systems market an equipment that measures Bispectrallndex and this has been used successfully 

to estimate the level of hypnosis in patients undergoing surgery with various anaesthetics [46], 

[47], [48], [49], [50], [51], [52], [53] and [54]. 

A logical extension to this work would be to use polyspectral analysis to extract other 

information from the human EEG for diagnosis of brain disease. 

During this research, there was some experimentation with Higher Order Spectra. However 

this is not rep011ed as there was little to arise which was novel. 

2.5.10 Independent Component Analysis 

In Independent Component Analysis (ICA) [55] and Blind Signal Separation (BSS) are 

related analysis problems that have recently received considerable attention in the machine 

learning community. In ICA, the EEG is assumed to comprise electrical potentials arising from 

several sources. Each source (including separate neural clusters, blink artefact, or pulse artefact) 

projects a unique topography onto the scalp giving rise to so called 'scalp maps'. These maps are 

mixed according to the principle of linear superposition. ICA attempts to reverse the 

superposition by separating the EEG into mutually independent scalp maps, or components using 

statistical methods. The nature and distribution of a set of relevant components is used to infer 

certain diseases including dementia. ICA has also been used in combination with Artificial 

Neural Networks to improve efficacy [56]. 
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2.5.11 Event Related Potential Analysis 

The term "Event Related Potential" refers to electrical potentials (:EEGs) that arise as a result 

of an event such as photic or audio stimulation of the subject. The response of the subject to such 

events, embedded in the EEG, may be used to study the function of the brain. The ERP are 

typically analysed and classified using expert systems, Spectral/Bispectral Analysis [59] and 

Wavelet Analysis [60] to discover their similarity to a normal subject at rest. The degree of 

deviation from the typical normal subject at rest may then be used to imply the effect of activity 

or disease. 

Interest in Event Related Potential (ERP) analysis has grown recently and these methods are 

showing promise for the detection of dementia including Alzheimer's Disease [57] and 

Parkinson's Disease [58]. 

2.5.12 Alternatives To Automated EEG Analysis 

Research into EEG signal analysis must be assessed against the background of significant 

developments in other related areas: Positron Emission Tomography (PET), Magnetic Resonance 

Imaging (MRI) and Computerised Axial Tomography (CAT) machines are providing accurate 

diagnostic information which is superior to that which is derived from EEGs in many areas. 

In neurology, PET and MRI provide information for assessing various neurological diseases 

such as Alzheimer's disease, cerebrovascular disease, Parkinson's disease, Huntington's disease, 

and Down's Syndrome. Additionally, PET localises epileptic foci for qualifying and identifying 

the site for surgical intervention. It also allows the characterisation, grading and assessment of 

possible brain tumour recurrence. 

Although scanners are an important element of medical practice, there are still advantages to 

EEG analysis in some situations. For example it would be impractical to monitor depth of 

hypnosis with a large scanner in the operating theatre because it would interfere with the 

surgeons range of movement, whereas automated EEG Bispectral Analysis is no more difficult to 

accommodate than an Electrocardiogram (ECG) monitor. 
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A further important factor is affordability. Current techniques such as Magnetic Resonance 

lmaging (MRI) that are used to diagnose and assess neurological disorders require specialist 

equipment and expert clinicians to interpret results. Such techniques are inappropriate as a 

method of detecting individual subjects with early dementia within the large at-risk population, 

because everyone within the at-risk group would need to be tested regularly and this would carry 

a very high cost. 

2.5.13 Summary Of Automated Analysis Methods 

This section has reviewed a number of methods and techniques for EEG analysis; modelling 

human interpretation, fuzzy logic, artificial neural networks, dimensional complexity and 

polyspectral analysis. The most striking fact is that, even though significant research has taken 

place into automatic interpretation of EEGs, none of the techniques, with the exception of 

Bispectrum Analysis in anaesthesia, is accurate and mature enough to be a significant 

improvement over human interpretation of specific EEGs. The most important consequence is 

that there has been little direct benefit to patients, although there is indirect benefit derived from 

a better understanding of the brain. 

Some of the lack of maturity of these methods is made evident by the lack of parameterisation 

of the methods' efficacies in the literature: Very few of the papers gave estimates of sensitivity 

and specificity that could be achieved. 

2.6 Summary 

This chapter has described the background to the research. It has described the Human EEG; 

how it is measured, the problems associated with the EEG (such as artefacts), and how clinicians 

have interpreted the EEG especially in diagnosing disease. The chapter also introduced fractals, 

chaos, complexity, and particularly their application to the Human EEG. 
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The state of the art in automated EEG analysis was also reviewed. It was shown that (with 

one exception), even though significant research has taken place into automatic interpretation of 

EEGs, none of the techniques is accurate and mature enough to be a significant improvement 

over human interpretation of specific EEGs in clinical practice. The most important consequence 

being that there has been little direct benefit to patients, although there is indirect benefit derived 

from a better understanding of the brain. 
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Chapter 3o Investigation of 
Dimension of Human EEG 

3.1 Introduction 

the lFractal 

This research began with a study of the background material that is discussed in Chapter 2 

and this raised a number of questions, which were felt sufficiently important to address in an 

initial set of investigations. This series of investigations into the previous work on the fractal 

dimension of the Human EEG and other areas of interest are described in this Chapter. 

3.2 Initial Data Set 

The initial data used in this research were obtained using a strict protocol. The sampling rate 

was 256Hz. These data were obtained using the traditional 10-20 system in a Common Reference 

Montage which was later converted to Common Average and Bipolar Montages in software. 

The EEG data were collected from 3 Alzheimer's patients, 3 mixed type (Alzheimer's and 

multi-infarct dementia) patients, I multi-infarct dementia patient and 8 age matched controls 

(over 65 years of age). All of the age-matched controls had a normal EEG (confirmed by a 

Consultant Clinical Neurophysiologist). One age-matched control (known as 'voll') 

subsequently developed Alzheimer's disease; this record is of particular interest because it is 

potentially of a subject in transition from 'normal' to Alzheimer's diseased. 

Two young volunteers were also used in the study (one male and one female) and their EEGs 

were confirmed to be normal by a Consultant Clinical Neurophysiologist. The young male 

(denoted by "X") and the young female (denoted by "Y") had their EEG recorded 3 times at 

intervals between 7 and 14 days. These recordings give an indication of the variability of a single 

subject's fractal dimension, which may be compared with the variability between members of the 

set of normals. 
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The EEG recordings encompass various states: awake and drowsy with periods of eyes closed 

and open. 

The analysis described in this paper takes the whole recording including artefacts and has no 

a priori selection of elements 'suitable for analysis'. This approach leads to a prediction of the 

usefulness of the techniques, as they would most conveniently be used in practice. 

3.3 Evaluation of Published Fractal Dimension Research 

3.3.1 Introduction 

The two main sources of published work on the fractal dimension of the Human 

Electroencephalogram that existed before this research were those by Woyshville and Calabrese 

[42], and Wu et al [61]. These papers are reviewed and discussed in this Chapter. Theoretical 

consideration and numerical experimentation are used to confirm that both methods have 

shortcomings. These issues were reported and corrections suggested in a peer reviewed 

publication [7]. 

3.3.2 Woyshville and Calabrese 

In an early, group comparison study by Woyshville and Calabrese [42] the fractal dimension 

of the EEG was used to separate subjects with Alzheimer's Disease from a group of normal 

subjects. llhe method used to measure the fractal dimension was the Divider Dimension, which is 

discussed in Section 2.3.2.4. 

In this retrospective preliminary investigation from 1994, the occipital EEG changes 

associated with Alzheimer's disease were examined using the then novel fractal dimension 

metric. The mean occipital EEG fractal dimension was determined for each of three patient 

groups representing a spectrum of clinical and EEG pathology: controls, probable AD, and 

autopsy-confirmed AD. The fractal dimension was significantly reduced in each of the AD 

groups with respect to the controls (p<0.001); and within the AD groups, it was significantly 

reduced in autopsy-confirmed AD relative to probable AD (p<O.Ol). The fractal dimension 

findings were said to "parallel the manifest EEG abnormalities in a way that suggested that it had 

potential clinical utility in metric studies on the EEG, especially when applied to the 
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dementias". Additionally, as the EEG pathology was particularly well described by the fractal 

dimension, this was seen as providing further support for a non-linear approach to the 

background activity of the EEG (see Section 2.5.7 for a comparison with Dimensional 

Complexity). 

When this paper was reviewed and the method was considered in detail, there was a concern 

that a non-obvious but critical point had been missed; there are problems associated with 

estimating the fractal dimension of shapes, such as the EEG, that exist in affine space. This issue 

is introduced in Chapter 2 (Background) at section 2,3.3. 

This was confirmed in the literature: as Mandelbrot [62] notes "in the study of isotropic 

fractals in Euclidean spaces, dimensionalities enter as exponents in expressions of the form M(R) 

ex: R0 
... However, if the space [in which a record is defined] is not Euclidean but an affine 

space, in which ... distance along the time axis cannot be compared with distance along the 

space axis. In such a space, [an interval of length R] cannot be defined, R is meaningless, and D 

cannot enter in as exponent." In the case of an EEG trace, there is no natural scaling between 

distance along the time axis and distance along the voltage axis. In such a space, a diagonal 

distance between two points is meaningless and therefore the standard fractal dimension 

techniques (Divider and Box Dimension) are inappropriate. An exception to this rule would be if 

a scaling between voltage and time were defined; which it was for Woyshville and Calabrese by 

the way the EEG had been printed. To demonstrate the effect of the arbitrary choice of scaling on 

the result, the Divider Dimension method (used by Woyshville and Calabrese) was repeated on 

data from a single Alzheimer's subject and a single normal subject. 
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Voltage!fime Scaling Typical normal subject's Typical AD subject's 
(nV/s) fractal dimension fractal dimension 

0.04 1.006 1.001 

0.08 1.032 1.004 

0.16 1.143 1.017 

0.3'1 1.505 1.069 

0.6 1.658 1.282 

1.3 1.450 1.514 

2.5 1.210 1.610 

5.0 l.l14 •1.362 

10.0 1.071 1.183 

Table 3-1, Variability ofFractal Dimension with Scaling 

The table shows that if a scaling of 0.6n V /s is chosen then the Normal subject appears to have 

a much higher fractal dimension (1.658) than the Alzheimer's subject (1.282). This is the type of 

clear result that had been reported; fractal dimension for controls of 1.4'1 and confirmed AD 

subjects with a fractal dimension of 1.09. However, an issue arises if a scaling of 2.5nV/s is chosen. 

In this·case the previously clear results reverse and cease to give the intuitively con·ect result. That 

is the Normal subject appears to have a much lower fractal dimension ( 1.210) than the AD 

subject (L610). 

The problem demonstrated above is a direct result of inappropriately applying the Divider 

Dimension to an object that exists in affine space. 

3.3.3 Wu et al 

3.3.3.1 Introduction 

A later study into the use of fractal dimension to analyse the EEG was also published [61]. 

The method was not published in detail, but fortunately, it was possible to determine the method 

by reverse engineering the software that had.been used. This original code is shown in Appendix 

A. 
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This method; as published, was claimed to have achieved 100% separation of normal subjects 

and patients with dementia. Whilst this is true for the sample of 7 normal subjects and 7 patients 

with dementia, it would be unlikely to be true on a larger sample. The published results are 

reproduced below in Table 3-2. 

Age matched controls Subjects with Dementia 

vol2 1.23 vol6 1.21 adl l.l2 ~ixl l.l3 

vol3 1.23 vol7 1.21 ad2 l.l2 Mix2 1.12 

vol4 1.20 vol8 1.20 ad3 l.l2 IMix3 1.1-8 

voiS 1.22 midi l.l3 

Table 3-2, Summary of Published Results. 

Although the fractal dimension values are lower for Alzheimer's subjects; there is insufficient 

data to make a statistically significant statement concerning the sensitivity (probability of 

correctly identifying subjects with dementia) and specificity (probability of corTectly identifying 

normal subjects) of the method. 

The detailed algorithms given below are followed by a commentary (which discusses the 

probable intent of the software) and a discussion of the method. 

3.3.3.2 Detailed Algorithm 

In this method, where the sampling rate rs assumed to be 256Hz, estimates of fractal 

dimension D;, are made for 2 .:; ; .:; 6.; E z : 

D = 
1
_ ln(S,) -In( 50 ) 

' iln2 ' 
(3.1) 

where: 

25~·· 2' 
S;= 

j=O 
4

; + e(R'.«(j)-R',Jj+i)L 
R'xx (0)2 ' 

(3.2) 

k = 300' (3.3) 
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and R'~ (m) is based on the auto-correlation of the EEG sampled (256Hz) time series x(t): 

255-11 

R'., (a)= ~ x(b)x(a +b), 'v'O :5 a :5 255 . (3.4) 
b=O 

Note, k may be expressed in units of sampling interval squared (i.e. k = 1.526xl0-5 s2
). 

Finally, the highest and lowest of the 5 estimates of fractal dimension (D;, 2:5; :5 6,iE z) are 

discarded and average of the remaining three is taken to be the overall fractal dimension, D. 

Although it is not shown in the algorithm description above, there is also a code segment that 

combines the overall fractal dimension (D) from each ls segment of data, from each channel into 

a single fractal dimension for the entire record. A histogram of fractal dimension measures taken 

from the data-segments is produced and the mode is taken to be the composite measure of fractal 

dimension for the whole record. 

3.3.3.3 Comments on Algorithm 

This section is a commentary on the algorithm, which discusses the probable intent of the 

software. 

For this method the step sizes used along the time axis were 4, 8, 16, 32 and 64 samples 

(expressed as i where 2:5; :5 6,iE z) and the sampling rate was 256Hz. Therefore, the time steps 

were l5.6ms, 3l.3ms, 62.5ms, l25ms and 250ms. 

It may be seen that equation 3.2 calculates the approximate length of the function 

R'"' (a) I R'x, (0) by using diagonal distances along the function. That is, using Pythagoras' 

theorem; the diagonal length of each segment is the square root of the sum of the square of the 

time interval (i sampling intervals) and the square of the change in normalised autocorrelation 

interval R'~ (a) I R',.. (0) over that time interval. 

To understand equation 3.1 it is necessary to return to the Divider Dimension. If one assumes 

that the curve is a fractal then the length of the entire curve, S;, is given by the equation below 

(see Section 2.3.2.4). 
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L(o) = s, = &vcO> = ~-ooD-I , (3.5) 

where the step size is given by: 

(3.6) 

Therefore, 

S, = f-oT,v-1 21(D-Il . (3 .7) 

Now, So may be used to estimate the constants: 

(3.8) 

Now, if we divideS; by So we obtain an equation that may be solved forD: 

(3.9) 

Taking the natural logarithm of both sides, we obtain: 

Ln(S1) = Ln(S0 ) + i(D -l)Ln(2), (3.10) 

ln(S;) - ln(S0 ) 
D1 = 1 (3.11) iln 2 

Thus, an estimate of the fractal dimension of the auto-correlation function has been derived. 

3.3.3.4 Discussion of the Method 

There are three points to note about this method. F irstly, the fractal dimension of the auto­

correlation is estimated instead of the fractal dimension of the raw record; the reason for this is 

not clear but the option of using the fractal dimension of the auto-correlation in place of the raw 

data is considered throughout the remainder of this research. 
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Secondly, the auto-correlation has not been corrected for the number of samples included 

giving a scaled auto-correlation. It is believed that this is probably an error and results below are 

reported with and without a correction for tllis. 

Thirdly, it was found that the use of a histogram to form the estimated fractal dimension for 

the entire record reduced the effects of artefacts and unusual activity on the result. Tllis is thought 

to be because the number of contaminated segments was small in comparison with the number 

that were normal and those contaminated segments in general had a highly atypical fractal 

dimension. 

We return to the issue of measuring the fractal dimension in affine space. A version of the 

Divider Dimension is being estimated in affine space, in a similar way to that used previously (by 

Woyshville and Calabrese [42]). The problems with this approach have been partially addressed 

in this method by having fixed step length along the time axis ( o = 2;T.), as opposed to fixed 

diagonal step length over the shape in 2 dimensions, which is normal for the Divider Dimension. 

The problems with this approach have also been partially addressed by nmmalising the auto­

correlation with respect to the variance ( R':r.r (0)) and using a fixed (but still arbitrary) constant k. 

By adjusting tllis constant, we can see the effect on the results: 

Arbitrary scaling Fractal Dimension 

Constant, k Normal Subject Alzheimer's Subject 

Original Corrected auto Original COJTected 
method rorrelation method auto-

correlation 

37.5 1.11 1.18 1.04 1.05 

75.0 1.15 1.20 1.07 1.09 

150 1.21 1.23 1.10 1.12 

300 1.23 1.24 1.11 1.11 

600 1.23 1.26 1.12 1.12 

1200 1.24 1.25 1.12 1.12 

2400 1.24 1.25 1.12 1.12 

4800 1.24 1.25 1.13 1.12 

106 1.24 1.25 1.13 1.12 

Table 3-3, The Effect Of Scaling Constant On The Results. 
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With this method, the Dimension measure for the normal subject is greater than that for the 

Alzheimer's subject, at any reasonable scaling. This is more satisfactory than the ambiguous 

results produced in the earlier study. It is though interesting to note that the choice of k=300 for 

the scale factor is where the result becomes almost saturated with little further change as the 

scale factor tends to very large numbers. Interestingly, if we allow the scaling value to tend to 

infinity then this would give an estimator for fractal dimension: 

(3.12) 

It may be seen that this is the equation one would expect if only the vertical distances were 

considered. This is illustrated in Figure 3-1 where L(o) = Lhl· 

a 

Figure 3-1 , A sketch of the fractal dimension ask tends to infinity. 
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3.4 Fractal Dimension Methods Appropriate to Affme Space 

3.4.1 Methods 

As both of the published measurements of the fractal dimension of the EEG were not 

appropriate in affine space, the literature was searched for methods that are more appropriate. A 

number of methods were discovered in the literature [63] that are suitable for estimating the 

fractal dimension of shapes in affine space. Two of these methods were selected for use; they are 

an adapted box dimension and the dimension of the 'zero-set' . 

To compute the adapted box dimension we divide the record of duration T into slices of 

length L1t and note the difference between the maximum and minimum amplitude during each 

slice (the extent). The mean extent t(L1t) is computed for a range of L1t (which are exponentially 

spaced) and the dimension is computed by finding a least squares best fit to the equation below. 

This is illustrated in Figure 3-2. 

Signal 

A(6t) = Tc(ill) = Ao6t2-o 

' ' ' ' : 
l 
' : 
' : 
: 
' :.---.. 
! LJr ! 
' ' ' ' : : 
' ' ' ' ' ' 

Time ( s) 

Figure 3-2, A sketch of the adapted box dimension. 

(3.13) 

This is very similar to Wu's method when it was modified to allow constant k to tend to 

infinity. The only difference is that the extent (max to min amplitude) is used instead of the 

difference between the measurement at the beginning and end of the time step. 
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To compute the climension of the zero-set we form the set of instances when the record of 

length T intersects with the time axis. The topological dimension of this set is zero (see Section 

2.3.2.3). The length, L , of line necessary to cover all zero-crossings is computed by covering the 

zero-set with N line segments of length Lit. To compute the fractal climension of the zero set the 

length, L, is computed for a range of Lit (which are exponentially spaced) and the dimension is 

computed by finding a least squares best fit to the equation below. This method is illustrated in 

Figure 3-3. 

Signal 

Zero-set 

I 

: 
I 
I 
I 
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i 
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~ .. 
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I I I 

j41 ::.. .. .. 
: Lit! : Lft 
I I I 

Figure 3-3, A sketch of the dimension of the zero-set. 

(3.14) 

It was decided to use a histogram of fractal dimension measures from short segments of data 

as Wu had done, with one change. The change was to use a Gaussian spreading function on the 

histogram (cr = 0.05) to avoid noise on the histogram from unduly affecting the result. A typical 

histogram without Gaussian spreading is shown in Figure 3-4. 
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Fractal dimension of the zero set 

Figure 3-4, Typical histogram of segment fractal dimensions. 

3.4.2 Initial Results 

The Adapted Box Dimension and Dimension of the Zero Set were each applied to raw EEG 

data and to the auto-correlation of the EEG data. The results from this work were published in a 

peer-reviewed paper at the third international Neural Networks and Expe11 Systems in Medicine 

conference in Pisa [7]. The data presented below is the fractal dimension for all channels 

together. The results from the age matched controls (including Voll who went on to develop 

Alzheimer's disease) and the subjects with dementia are shown in Table 3-4 and Table 3-5, 

respectively. 

Record Raw EEG Data Auto-correlation of EEG data 
Adapted Box Zero-set Adapted Box Zero-set 

Voll 1.547 0.564 1.325 0.516 
Vol2 1.596 0.562 1.434 0.590 
Vol3 1.572 0.560 1.452 0.648 
Vol4 1.551 0.561 1.496 0.662 
Vol5 1.592 0.562 1.587 0.562 
Vol6 1.591 0.561 1.638 0.627 
Vol7 1.538 0.564 1.391 0.539 
Vol8 1.596 0.616 1.500 0.670 
Mean 1.573 0.569 1.478 0.602 

Standard Dev'n 0.024 0.019 0.101 0.059 

Table 3-4, Results from Age Matched Controls using methods suitable for affine space. 
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Record Raw EEG Data Auto-correlation of EEG data 
Adapted Box Zero-set Adapted Box Zero-set 

AD J 1.560 0.565 1.134 0.323 
AD2 1.520 0.560 1.181 0.368 
AD3 1.512 0.554 1.183 0.331 

MID! 1.483 0.496 1.219 0.384 
MIX! 1.533 0.562 1.148 0.324 
MIX2 1.442 0.497 1.118 0.270 
MIX3 1.608 0.669 1.265 0.438 

Table 3-5, Results from subjects with dementia using methods suitable for affine space. 

The above data does seem to show that all four frac tal methods provide metrics that tend to 

decrease when dementia is present. However, the separation is not significant in all cases. 

Specifically, 'MIX3' has a higher fractal dimension than the mean of the normals for both of the 

metrics based on the raw EEG data. The adapted box dimension and the dimension of the zero­

set for the auto-correlation function appear to give a more reliable separation. 

It is instructive to plot the distribution of metrics from normal subject (excluding voll) and 

then to plot the metrics from subjects with dementia (along with voll) to illustrate the separation 

of the 2 groups. Figure 3-5, below, shows such a plot for the zero-set dimension of the auto­

correlation function. 

Figure 3-6 shows a similar plot for the zero-set dimension of the raw data. In this plot, the 

normal subjects do not form a cluster that is separated from the subjects with dementia. Thus, 

these results are clearly worse than the comparable results above, which used the auto-correlation 

of the EEG. This is disappointing because one has to be suspicious about the use of the auto­

correlation function. This suspicion is dealt with in section 3.9. 
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Figure 3-5, Typical histogram of zero set dimension of auto-conelation. 
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Figure 3-6, Histogram of zero set dimension of raw EEG. 

58 



Now we consider the results from the age matched control 'voll' who was at the time of 

recording confirmed by a clinician to be 'normal' but went on to develop Alzheimer's Disease. 

This shows that that the adapted box dimension of the auto-correlation function and the 

dimension of the zero-set for the auto-correlation function are suspiciously low but not outside 

the range for normal subjects. 

The results from the two young subjects are discussed in section 3.5. 

3.4.3 Revised Results 

Given these disappointing results, the methods were checked and it was found that changing 

controlling constants, such as the segment length, affected the results. These effects are dealt 

with more fully later in this thesis and better results were produced (see below). These better 

results, produced by tuning parameters, do not represent strong evidence. This is because it is not 

clear whether the method was working on a specific set of data because the method is tuned to 

that set of data or because this method tuning will work in general. These concerns were the main 

reason for conducting the evaluation, with a new, independent set of data, described in Chapter 4. 

Record Raw EEG Data Auto-correlation of EEG data 
Adapted Box Zero-set Adapted Box Zero-set 

Voll 1.262 0.639 1.216 0.639 
Vol2 1.337 0.703 1.269 0.679 
Vol3 1.292 0.676 1.185 0.635 
Vol4 1.304 0.688 1.244 0.675 
Vol5 1.331 0.703 1.270 0.691 
Vol6 1.31 8 0.693 1.224 0.650 
Vol7 1.293 0.678 1.226 0.668 
Vol8 1.317 0.678 1.237 0.654 

Mean 1.307 0.682 1.234 0.661 
Standard Dev'n 0.024 0.020 0.028 0.020 

Table 3-6, Revised results from age matched controls. 
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Record Raw EEG Data Auto-correlation of EEG data 
Adapted Box Zero-set Adapted Box Zero-set 

ADl 1.188 0 .541 1.043 0.395 
AD2 1.237 0.599 1.100 0.528 
AD3 1.178 0.523 1.113 0.504 

MID1 1.216 0.595 1.133 0.546 
MIX1 1.206 0.549 1.040 0.098 
MIX2 1.190 0.546 1.072 0.459 
MIX3 1.262 0.632 1.096 0.518 

Table 3-7, Revised results from subjects with dementia. 

Plots of the distribution of results are given in Figure 3-7 (zero set dimension of the auto­

correlation) and Figure 3-8 (zero-set dimension of the raw EEG). 
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Figure 3-7, Revised histogram of zero set dimension of auto-cotTelation. 
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Figure 3-8, Revised histogram of zero set djmension of raw EEG. 

It is encouraging to note that, Voll (a control who went on to develop Alzheimer's disease) is 

the lowest of the controls for both of the methods which analysed the raw EEG data. 

Unfortunately, there is insufficient data to estimate the skew and kurtosis of the set of fractal 

dimensions from normal subjects. 

3.4.4 Conclusion 

This section has described two methods of computing the fractal djmension that are 

appropriate in affine space and has given results that were achieved when these measures were 

applied to the EEG (and the auto-correlation of the EEG). 

The results provide some weak evidence that these measures may be useful in the early 

detection of dementia, but because the methods had to be tuned to provide reasonable results it 

was necessary to conduct a further evaluation on a new, independent set of data. This is 

described in Chapter 4 . 
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3.5 Subject Specific EEG Analysis 

3.5.1 Discussion 

H successful, automated EEG analysis has the potential to provide significant benefits but to 

date, despite significant effort, there has been a general lack of success. It is suggested that this is 

because research has concentrated on group comparisons, that is, attempting to separate 

individuals into groups (Normal, Alzheimer's, Parkinson's etc.) using indices derived from 

isolated (snapshot) EEGs. Improvements in automatic EEG analysis may lie in making the 

analysis subject specific [64]. That is, comparing an EEG to those taken previously from the 

same subject: Looking for trends in indices that arise over time rather than comparing an EEG to 

what is generally nOimal within the population. In this way, subject specific EEG techniques 

should be more sensitive. It is hoped consequent improvements in sensitivity will cause 

automated EEG analysis to fulfil the identified potential. 

This concept and some early results have been published in a paper at the Neural Networks 

and Expert Systems in Medicine conference (NNESMED '98) in Pisa [7]. 

As an illustration, the figure below shows a hypothetical index measured on a subject who 

initially falls into a normal population spread. It can be seen that although the subject enters a 

decline at the onset of disease, it would only be detected by group comparison methods some 

time later after it falls outside the normal spread. 

Onset of 
disease 

Time 

lndex is 
abnormal 

Figure 3-9, Variation of a hypothetical index with time. 
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The figure above illustrates a fictitious, easily interpreted single index. It is clear from the 

illustration that population spread plays no prut in subject specific EEG analysis, whereas the 

relative magnitudes and characteristics of measurement noise, normal va1iation of indices and 

variations due to disease are of central importance. 

When an EEG is analysed and an index (or more than one index) is estimated, the index will 

be subject to "measurement noise" which is due to short-term variations in the index. For normal 

subjects the indices will vary over the medium and long term in a characteristic way. What we 

are looking for is a distinguishable change that implies the onset of disease and a continuing 

change that gives a measure of disease progression or effect of treatment. 

3.5.2 Results and Conclusion 

To establish whether this concept merited further investigation the EEG data from the 2 

young control subjects (X and Y), which had been recorded 3 times for each subject at 7 to 14 

day intervals, was used. The adapted box dimension and the zero-set dimension of the raw EEG 

data and of the auto-correlation of EEG data were taken, giving a total of 4 measures of fractal 

dimension. The data presented below is the fractal dimension for all channels together. Table 

3-8, below, shows the results from three recordings of each of the two young subjects (known as 

X and Y). 

Record Raw EEG Data Auto-correlation of EEG data 
Adapted Box Zero-set Adapted Box Zero-set 

X 1 1.564 0.563 1.350 0.536 
X2 1.574 0.608 1.385 0.559 
X3 1.559 0.564 1.223 0.555 
Y1 1.521 0.577 1.273 0.411 
Y2 1.519 0.561 1.284 0.425 
Y3 1.513 0.558 1.269 0.423 

Table 3-8, Results from young subjects. 

If one considers the variation from sample to sample from the same subject to be equivalent 

to measurement noise (or short term variability) on the fractal dimension then one may estimate 

(all-be-it on a very limited set of data) the population standard deviation for a single subject for 

each measure (Table 3-9). 

63 



Estimated Raw EEG Data Auto-correlation of EEG data 
Population Adapted Box Zero-set Adapted Box Zero-set 

Standard Dev" 0.006 0.020 0.060 0.010 

Table 3-9, Variability of results from young subjects. 

Table 3-10 presents the data for the age matched controls (repeated from section 3.4.2 for 

convenience) and the first recording for each of the young normals. For all of the measures, 

except the zero-set dimension of raw data, the standard deviation among the group of normals is, 

as expected, larger than the variation for a single subject (Table 3-9). In the case of zero-set 

dimension of raw data, the standard deviation among the group of norrnals is not significantly 

different from the variation for a single subject. 

Record Raw EEG Data Auto-correlation of EEG data 
Adapted Box Zero-set Adapted Box Zero-set 

vol2 1.596 0.562 1.434 0.590 
vol3 1.572 0.560 1.452 0.648 
vol4 1.551 0.561 1.496 0.662 
vol5 1.592 0.562 1.587 0.562 
vol6 1.591 0.561 1.638 0.627 
vol7 1.538 0.564 1.391 0.539 
vol8 1.596 0.616 1.500 0.670 
X1 1.564 0.563 1.350 0.536 
Y1 1.521 0.577 1.273 0.411 

Mean 1.569 0.570 1.458 0.583 
Std Deviation 0.027 0.018 0.114 0.082 

Table 3-10, Variability of the population of normal subjects. 

It may be noted that young subject 'Y' has a lower than expected fractal dimension on all 

methods (approximately 2-sigma below the average). Whilst, this is surprising and no reason was 

found for this, it is still valid to use these data to estimate the magnitude of "measurement noise" 

within the normal population. 

The fractal dimension has also been calculated for the subjects with dementia (Table 3-11): 
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Record Raw EEG Data Auto-correlation of EEG data 
Adapted Box Zero-set Adapted Box Zero-set 

AD1 1.560 0.565 1.134 0.323 
AD2 1.520 0.560 1.181 0.368 
AD3 1.512 0.554 1.183 0.331 

MIDI 1.483 0.496 1.219 0.384 
MIXI 1.533 0.562 1.148 0.324 
MIX2 1.442 0.497 1.118 0.270 
MIX3 1.608 0.669 1.265 0.438 

Table 3-11, Results from subjects with dementia. 

The graph below (Figure 3-10) summarises the results which were obtained using the zero-set 

dimension of the auto-correlation function and the measured normal variability of the fractal 

dimension for a single subject as measured on the two young normals (X and Y). 

Highest normal 
0.67 

Subject t 
variability t~---~d 
0.010 (la) 44 

----
Zero set Lowest nor 
dimension OAI 
of Auto 
Correlation 

Time 

Lowest demented 
0.27 

Figure 3-10, Summary of subject specific results showing that this concept could improve early 
diagnostic efficacy. 

The graph demonstrates that the fractal dimension (zero-set) of the auto-correlation function, 

at this stage of the research, appeared to be a good candidate for use in subject specific detection 

of dementia. This is because the measured fractal dimension of the EEG is generally lower for a 

subject with dementia than for normal subject and the variability of a single normal subject's 

fractal dimension is small in comparison to the variability between members of the set of 

normals. 
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3.5.3 Conclusion and Implications 

Subject specific analysis of the fractal dimension of the EEG was shown to be an exciting, 

interesting and useful candidate for early detection of dementia. 

It is, however, important to recognise that if this method were adopted then there would be 

infrastructure requirements with associated costs. In practice, a simple non-subject specific, EEG 

based method would require a PC, interface box, electrodes and straightforward training for the 

General Practitioner. Whereas, a subject specific EEG method would require the same plus an 

information infrastructure which could recall previous results that may have been taken -

possibly at another facility. Thus, to be useful and reliable a subject specific measure would 

require a patients' previous EEG data to follow them and this is not currently a trivial objective 

to achieve. In the near future, this should become somewhat more achievable with eHealth 

programs such as Biopattem [65], [66] pressing forward the development of database, intemet 

and computational technologies in pursuit of better health care. Biopattem is a particularly good 

example to choose, as one of its aims is to develop systems that allow an individual patient's 

medical data (of many types) to be stored remotely whilst being available quickly for detailed 

analysis. 

3.6 Alpha I Theta Ratio Determined from the Fractal IDimension 

3.6.1 Discussion 

This section describes the derivation of a metric, which is the ratio of the time that the EEG 

exhibits Alpha activity to the time that it exhibits Alpha or Theta activity, where classification of 

alpha or theta like activity is from the Fractal Dimension. J:his was inspired by a similar metric 

which has previously been derived from the Power Spectral Density. 
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Section 3.4.1 describes the measurement of the fractal dimension over short data segments 

(2s) and constructing a histogram of such results. Then the mode is taken as the composite fractal 

dimension for the complete record. It is interesting to examjne these histograms in more detail. In 

some cases, the difference between a normal subject and a subject with dementia is very clear. A 

histogram of the zero-set fractal dimension of the autocorrelation function from a normal and an 

Alzheimer's subject are shown in Figure 3-12 and Figure 3-11 . 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Fractal dimension of the zero set 

Figure 3-11 , Histogram of zero-set dimension of the auto-correlation from Vol2. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0. 7 0.8 0.9 1.0 
Fractal dimension of the zero set 

Figure 3-12, Histogram of zero-set dimension of the auto-correlation from AD 1. 
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To better understand the difference between these histograms the signal segments that 

produced the fractal dimension measures were examined. By observation of the signal segments 

that produce values of fractal dimension it is possible to show that clearly defined signal types, 

defined in section 2.2.4, approximately map to certain ranges of values of fractal dimension. 

These.are given in Table 3-12. 

Adapted box dimension Zero-set dimension of 
of raw data or auto- raw data or auto-
correlation function correlation function 

Ocular artefacts Lower than 1.0 Lower than 0.3 
Theta 1.0 to 1.2 0.3 to 0.5 
Alpha 1.2 to 2.0 0.5 to 1.0 
Beta Above 2.0 Above 1.0 

Table 3-12, Approximate mapping of signal type to fractal dimension 

It is necessary to comment on the range of fractal dimension values which are taken to be 

representative of Beta waves because an adapted box dimension of should be in the range I to 2 

and the dimension of the zero set should be in the range 0 to 1. However, with the way that the 

fractal dimension is estimated on short (2s) segments of data there is a possibility of values 

outside the theoretically valid range occurring. These values occurwhen the apparent complexity 

increases at greater magnifications and are eliminated when one estimates the fractal dimension 

of the whole signal. 

Other, less well defined, signals can be classified as having similar fractal dimensions to the 

clearly defined types and it is possible to determine the density of observations in the Theta, 

Alpha and Beta ranges directly from the histogram. 

It was suggested that a new metric could be used. The metric was the ratio of density in the 

Alpha range to the sum of the densities in the Alpha and Theta ranges. This metric seems (on the 

limited data available) capable of differentiating control subjects from subjects with dementia 

with a wide band between the two groups (see results below). It should be remembered that the 

entire recording from each subject was used without any pre-selection of segments that we wish 

to analyse and that this method is relying on pushing the records from artefacts out of the ranges 

specified for Alpha and Theta. 
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3.6.2 Results and Discussion 

The histograms for all of the initial data set and all four methods are given in Figure 3-13 

through Figure 3-33. 

~ll G:\PHD\DATA\SUBJECT\Xl -All Meth 

ZeroRawFD = 0.509291 BoxRawFD = 0.851291 

ZeroRxxFD = 0. 734196 BoxRxxFD = 0.582157 

Figure 3-13, Histograms of four frac tal measures applied to the EEG of subject Xl. 

t~ G:\PHD\DATA\SUBJECT\X2- All Methods ~liJf3 

ZeroRawFD = 0.473223 BoxRawFD = 0.868054 

ZeroRxxFD = 0.861932 BoxRxxFD = 0.761819 

Figure 3-14, Histograms of four fractal measures applied to the EEG of subject X2. 
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~.., li:\PHD\DATA\SUBJECT\X3 - All Melhods I!!I~EJ 
- - - - ~- - --- - - -

ZeroRawFD = 0.4611 85 BoxRawFD = 0.816627 

ZeroRxxFD = 0.703656 BoxRxxFD = 0.547506 

Figure 3-15, Histograms of four fractal measures applied to the EEG of subject X3. 

~l)J li: \PHD\DATA\SUBJECT\Yl -All Melhods l!!lliJEJ 
------ - ------------ --

ZeroRawFD = 0.394971 BoxRawFD = 0.537524 

ZeroRxxFD = 0. 756599 Box RxxFD = 0.635925 

Figure 3-16, Histograms of four fractal measures applied to the EEG of subject Y l. 
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~~" G:\PHD\DATA\SUBJECT\Y2- All Methods j8~EJ 
ZeroRawFD = 0.391866 BoxRawFD = 0.526530 

ZeroRxxFD = 0. 768757 BoxRxxFD = 0.599185 

Figure 3-17, Histograms of four fractal measures applied to the EEG of subject Y2. 

ll~ G:\PHD\DATA\SUBJECT\Y3 -_All Methods _ ~~EJ 
ZeroRawFD = 0.353943 BoxRawFD = 0.505334 

ZeroRxxFD = 0.729211 BoxRxxFD = 0.564542 

Figure 3-18, Histograms of four fractal measures applied to the EEG of subject Y3. 

71 



~~., G:\PHD\DATA\DEMENTIA\VOLl - All Methods S~EJ 
ZeroRawFD = 0.497338 BoxRawFD = 0. 714419 

ZeroRxxFD = 0.776338 BoxRxxFD = 0.657899 
r-~~~~~--r-~~~-, 

Figure 3-19, Histograms of four fractal measures applied to the EEG of subject V oil. 

\NORMAL\VOL2 ·All Methods ~~EJ 

ZeroRawFD = 0.595756 

ZeroRxxFD = 0.857567 BoxRxxFD = 0.795959 

Figure 3-20, Histograms of four fractal measures applied to the EEG of subject Vol2. 
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r ~~ -G~\PHD\DAT A\NO!lMAL \VOL3 - All Methods 

ZeroRawFD = 0.577500 BoxRawFD = 0.813317 

ZeroRxxFD = 0.834558 

Figure 3-21, Histograms of four fractal measures applied to the EEG of subject Vol3 . 

~~ G: \PHD \DATA \N 0 R MAL WO L4 - All M et hods ~(j] EJ 
ZeroRawFD = 0.441498 

ZeroRxxFD = 0.846664 BoxRxxFD = 0.753016 

Figure 3-22, Histograms of four fractal measures applied to the EEG of subject Vol4. 
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~~ G:\PHD\DATA\NORMAL\VOL5 - All Methods I!!I~EJ 

ZeroRawFD = 0.611389 BoxRawFD = 0.920394 

ZeroRxxFD = 0.824857 BoxRxxFD = 0.788067 

Figure 3-23, Histograms of four fractal measures applied to the EEG of subject Vol5 . 

li~ G:\PHD\DATA\NORMAL\VOL6 - All Methods _ _ ~~EJ 
ZeroRawFD = 0.603384 BoxRawFD = 0.909391 

ZeroRxxFD = 0.840697 

Figure 3-24, Histograms of four fractal measures applied to the EEG of subject Vol6. 
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~~~ G :\PHO\DATA\No~RMAL\VOL7 - All Methods ~~EJ 
ZeroRawFO = 0.303340 BoxRawFD = 0.601340 

ZeroRxxFD = 0.878690 BoxRxxFO = 0. 763209 

Figure 3-25, Histograms of four fractal measures applied to the EEG of subject Vol7. 

1Lf'1 G :\PHO\OATA\NO~MAL\VOLB - All Methods --~I@D 
ZeroRawFD = 0.646569 BoxRawFD = 0.928000 

ZeroRxxFD = 0.872331 BoxRxxFD = 0.850345 

Figure 3-26, Histograms of four fractal measures applied to the EEG of subject Vol8. 
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~fl G:\PHO\OATA\OEMENTIA\MID1 - All Methods ~~13 
- -----

ZeroRawFD = 0.264092 BoxRawFD = 0.330673 

ZeroRxxFD = 0.566494 BoxRxxFO = 0.324714 
r-~~-r~~--~~~~-, 

Figure 3-27, Histograms of four fractal measures applied to the EEG of subject MID 1. 

~., G:\PHO\OATA\OEMENTIA\AOl - All Methods 8~13 

ZeroRawFD = 0.526694 BoxRawFD = 0.771020 
~~~~~~~~r-~~~ 

ZeroRxxFD = 0.338702 BoxRxxFD = 0.234039 

Figure 3-28, Histograms of four fractal measures applied to the EEG of subject AD 1. 
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·-
~~ G:\PHD\DATA\DEMENTIA\AD2 - All Methods fi~EJ 

- -- -

ZeroRawFD = 0.442005 BoxRawFD = 0.612086 

ZeroRxxFD = 0.524243 BoxRxxFD = 0.359925 

Figure 3-29, Histograms of four fractal measures applied to the EEG of subject AD2. 

~~ G:\PHD\DATA\DEMENTIA\AD3 - All Methods 80013 
- -

ZeroRawFD = 0.478280 BoxRawFD = 0.602353 

ZeroRxxFD = 0.246313 

Figure 3-30, Histograms of four fractal measures applied to the EEG of subject AD3. 
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~~ G:\PHD\DATA\DEMENTIA\MIXl - All Methods HOO£J 
ZeroRawFD = 0.575759 

ZeroRxxFD = 0.523284 BoxRxxFD = 0.441106 

Figure 3-31, Histograms of four fractal measures applied to the EEG of subject Mixl. 

~~ G:\PHD\DATA\DEMENTIA\MIX2 - All Methods S~EJ 

ZeroRawFD = 0.481393 BoxRawFD = 0.484456 

ZeroRxxFD = 0.316373 

Figure 3-32, Histograms of four fractal measures applied to the EEG of subject Mix2. 
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ZeroRawFD = 0.627750 BoxRawFD = 0.882442 

ZeroRxxFD = 0.694898 BoxRxxFD = 0.631639 

Figure 3-33, Histograms of four fractal measures applied to the EEG of subject Mix3. 

The metric (the ratio of density in the Alpha range to the sum of the densities in the Alpha 

and Theta ranges) was calculated for all four methods and it was found that the most promising 

came from the Zeros-Set Dimension of the Auto-correlation. This is demonstrated in Table 3-13 

and Table 3-14. 
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Zero set dimension Adapted box 
dimension 

Raw Auto- Raw Auto-
correlation correlation 

Age matched.controls: vo12 0.596 0.858 0:943 0.796 
vol3 0.578 0.835 0.813 0.745 
vol4 0.441 0.847 0.720 0.753 
vol5 0:611 0.825 0.920 0.788 
vol6 0.603 0.841 0.909 0.785 
vol7 0.303 0.879 0:601 0.763 
vol8 0.647 0.872 0:928 0.850 

Mean 0.540 0.851 0.834 0.783 
Standard Deviation 0.123 0.020 0.130 0.035 
Age matched control who went on voll 0.497 0.776 0.714 0.658 
to develop Alzheimer's Disease 

Table 3-13, Alpha-Theta ratio results for normal subjects. 

,I Zero set dimension Adapted box 
dimension 

Raw Auto- Raw Auto-
correlation correlation 

Mixed dementia subjects: mix1 0.576 0.523 0.761 0.441 
mix2 0.481 0.316 0.484 0.279 
mix3 0,628 0.695 0.882 0.632 

Multi-Infarct subjects midi 0.264 0.566 0.331 0.325 
Alzheimer's Disease subjects ad! 0.527 0.339 0.771 0.234 

ad2 0.442 0.524 0.612 0.360 
ad3 0.478 0.246 0.602 0.209 

"Most normal" subject with 0:628 0.695 0.882 0.632 
dementia 
Difference between "most normal" -0.7 7.9 -0.4 4.3 
demented subject and mean 
normal divided by Std Dev of 
normal subjects 

Table 3-14, Alpha-Theta ratio results for subjects with dementia. 
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For the alpha/theta ratio of the zero set dimension of the auto-correlation function, the 

difference between the "most normal" subject with dementia (Mix3) and the mean of the normal 

subjects is 0.1 56, which is 7.9 times the standard deviation among the normal subjects. This 

represents (all-be-it on this small data set) a clear differentiation between the normal and subjects 

with dementia. 

Interestingly Voll who was passed as normal by a clinician and later developed Alzheimer's 

Disease is clearly abnormal by this test with a result of 0.776. 

The data previously used to investigate the subject specific analysis concept, from the two 

young controls (X and Y), was reanalysed using this method. The results were a surprise (Table 

3-15). X has a spread over three measurements of 0.122, which is more than 6 times the 

estimated population standard deviation of the age-matched controls. Y, who had less of a 

spread, was none-the-less surprising because the mean of the results (0.734) was 0.118 less than 

the mean of the age-matched controls. This difference is just less than 6 times the estimated 

population standard deviation of the age-matched controls. It would be easy to ignore these data 

but it was recognised that they provide significant counter evidence to the seemingly strong 

evidence (above) for the efficacy of this method. It was hypothisised that this could be an age 

related effect but there was insufficient data to support or reject this. 

Young volunteer X X1 0.785 
X2 0.907 
X3 0.809 

Young volunteer Y Y1 0.751 
Y2 0.750 
Y3 0.702 

Table 3-15, Alpha Theta Ratio results for young subjects. 

Although the results from X and Y are difficult to explain and the method does not neatly fit 

the subject specific methodology, it remains an interesting candidate for early detection of 

dementia. 'fherefore, results for this metric are produced as a supplement to the evaluation of the 

other fractal methods using new, independent data· described in Chapter 4. 
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3. 7 Time Evolution of the Fractal Dimension 

3.7.1 Discussion and Results 

Given the preceding discussions of subjects specific measures and a desire to understand 

betterthe non-stationary nature of the EEG, it was decided to evaluate how the fractal dimension 

varies with time. To this end, each of the EEG records was divided into 1-minute intervals and 

the zero-set fractal dimension of the auto-correlation function was calculated for each. The 

results for the normal subjects are given in Table 3-16 and the results for the subjects with 

dementia are given in Table 3-17. These results are also shown graphically in Figure 3-34 and 

Figure 3~35. 
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Start FRACT AL DIMENSION OF THE ZERO-SET OF THE AUTO-CORRELATION 
Tiine (s) Vol2 vol3 vol4 vol5 vol6 vol7 vo18 

0 0.7531 0.8070 0.8436 0.6300 0.7543 0.7950 0:8103 
60 0.8670 0.9121 0.8894 0.9131 0,8690 0:8320 0:8184 
120 0.9060 0.8925 0.9153 0.9104 0,8974 0:8511 0.8283 
180 0.9154 0.7413 0.9067 0.9229 0.9042 0:8322 0.8294 
240 0.9538 0.9312 0:8889 0:8954 0,8446 0.7791 
300 0.8338 0.8739 0.6276 0.7568 0.7909 0.8406 
360 0.6906 0.7132 0,6029 0,7839 0.8902 
420 0.6316 0.9386 0.9155 
480 0:8791 0.9188 
540 0.8781 0.9197 
600 0.9052 0.9051 
660 0.9318 0.9032 
720 0.9186 0.9248 
780 0.9305 0.9237 
840 0.9151 0.9172 
900 0.9044 

Table 3-16; Time progression of Fractal Dimension in normal subjects. 

Start FRACT AL DIMENSION 0F THE ZERO-SET OF THE AUTO-CORRELATION 
Time (s) Ad I ad2 ad3 mix! mix2 mix3 midi 

0 0.6112 0.6922 0.2686 0.5591 0.3595 0.7244 0.6384 
60 0.4571 0.5431 0.3029 0.4663 0.3438 0:8459 0.6672 
120 0:2575 0.5662 0.3054 0:5642 0.4307 0.7796 0.6122 
180 0.2396 0.5166 0.2885 0:5147 0.391 0.7118 0.5855 
240 0.2484 0.5584 0.2837 0.5023 0.3532 0.5537 0.5789 
300 0.2497 0.5141 0.2927 0.6114 0.3368 0.6838 0.6031 
360 0.2541 0.5286 0.2109 0.532 0.3413 0.757 0.5537 
420 0.2653 0.5062 0.2543 0.52 0.273 0.7237 0.5251 
480 0.3467 0.4495 0.2286 0.5186 0.2698 0.5844 0.5398 
540 0.3197 0.4559 0.2328 0!5218 0.2855 0.7205 0.5037 
600 0.285 0.4631 0.257 0.4643 0.2063 0.4803 
660 0.3792 0.5163 0:5729 
720 0.5161 0.5721 
780 0.4571 0.5861 
840 0.4817 
900 

Table 3-17; Time progression ofFractal Dimension in subjects with dementia. 
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Figure 3-34, Time progression of fractal dimension in normal subjects. 
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Figure 3-35, Time progression of fractal dimension in subjects with dementia. 
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3.7.2 Conclusion 

It may be seen that the measured fractal dimension (zero-set dimension of the auto­

correlation function) is reasonably stable and high for the normal subjects except where they 

become drowsy toward the end of the recording. The subjects with dementia present a generally 

lower fractal dimension (as noted previously) and the fractal dimension seems not quite as stable 

with time as the normals. It is also interesting to note that the subjects with dementia do not seem 

to enter a· drowsy phase before the end of the recording. 

3.8 Variability ofFractal Dimension Over the Scalp 

3.8.1 Introduction 

The efficacy of automated EEG analysis is expected to vary over the scalp for two reasons. 

Firstly, because the effect of dementia on the EEG varies over the scalp and secondly, because 

the masking effects of other signals (cerebral in origin and artefacts) varies over the scalp. To 

investigate the extent of this effect, the fractal dimension was measured independently in all 

channels and the performance of the method was evaluated for each channel. Section 3.8.2 below 

describes a method for quantifying the performance of the method and section 3.8.3 contains the 

results. 

3.8.2 Method Evaluation Metric 

How well the method works can be quantified by using a "Method Evaluation Metric": As, 

this research is aimed at analysing an EEG recording to derive an index which is significantly 

different for nmmal and subjects with dementia it is important to have a measure that describes 

how well the index performs this task. We have chosen to measure the performance of a 

candidate index using, what we have termed, a "Method Evaluation Metric". 
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To evaluate this metric we begin by calculating the candidate index for all control subjects 

and subjects with dementia, then the mean and estimated population standard deviation ( cr) of the 

index for the control subjects is recorded (excluding V oil who went on to develop Alzheimer's). 

Finally, the difference between the mean of the index from the controls and the closest index 

from any of the subjects with dementia (i.e. closest to normal) is divided by cr. 

Thus calculated, the Method Evaluation Metric describes how many standard deviations the 

"most normal" subject with dementia is from the mean of the control subjects. As a guide a 3 is 

good and 6 is excellent. A similar figure may be produced for Voll to see whether there was a 

significant, previously undetected decline. 

An illustrative example is given in Table 3-1'8, where the index under evaluation is the fractal 

dimension of the Zero-set of the autocorrelation function. The example shows that it is unlikely 

that the "most normal" of the subjects with dementia could have come from the population of 

normals and that V oil is hardly distinguishable. 
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Comment Subject Index 
Measured index from normal subjects. Vol2 0.590 

Vol3 0.648 
Vol4 0.622 
Vol5 0.562 
Vol6 0.627 
Vol7 0.539 
Vol8 0.670 

Mean Mean 0.6083 
Estimated population Std Dev'n SD 0.0469 

Measured index from subjects with dementia. AD! 0.323 
AD2 0.368 
AD3 0331 

MIDI 0.384 
MIXl 0.324 
MIX2 0.270 
MIX3 0.438 

"Most normal" subject with dementia MIX3 0.438 
Difference from mean normal to "most normal" subject with Mean- 0.170 
dementia MIX3 
Method evaluation metric. i.e. the difference of mean normal to Mean- 3.6 o-
"most normal" subject with dementia MIX3 

SD 
Control who went on to develop Alzheimer's Voll 0.516 

Difference from mean normal to V oil Mean- 0.092 
V oil 

Method evaluation metric. i.e. the difference of mean normal to Mean- 2.0 o-
V oil V oil 

SD 

Table 3-18, Method evaluation metric. 
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3.8.3 ltes~ts 

The results, using the method evaluation metric applied to the four Fractal Dimension 

methods as they vary over the scalp, are presented graphically below. 
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Figure 3-36, Method evaluation metric using the zero-set dimension of the raw data. 
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Figure 3-37, Method evaluation metric using the zero-set dimension of the auto-correlation 
function. 
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Figure 3-38, Method evaluation metric using the adapted box dimension of the raw data. 
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Figure 3-39, Method evaluation metric using the adapted box dimension of the auto-correlation 
function. 

These results are inconclusive, and it was decided to repeat this analysis using the revised 

methods described in Section 3.4.3. 
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3.8.4 Revised Results 

Given the disappointing results the methods were checked and it was found that changing 

controlling constants, such as the segment length, affected the results. These effects are dealt 

with more fully later in this thesis and better results were produced. These tuned methods were 

used to give the revised results below. 

-+---

----'--

~' -
0.2 3.8 

1.2 4.1 0.1 
2.2 

r-- 5.4 -1 

Nasion 
.0.2 4.1 3.4 

.0.5 2.8 --1.7 4.1 0.0 

.0.1 0.2 
-1.1 

-t 
Figure 3-40, Method evaluation metric using the zero-set dimension of the raw data . 

.0.6 7.8 3.2 
2.0 - 7.8 

Nasion lnnion 
0.7 2.4 2.7 

0.2 10.3 
-1.6 4.9 3.0 

-·- .0.4 
-1.2 

t- ' 

~ 
____, 

---r- .. .. 

Figure 3-41 , Method evaluation metric using the zero-set dimension of the auto-correlation 
function . 
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Figure 3-42, Method evaluation metric using the adapted box dimension of the raw data . 
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Figure 3-43, Method evaluation metric using the adapted box dimension of the auto-correlation 
function . 
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3.8.5 Conclusion 

Using the revised method, it was shown that the best separation of subjects with dementia 

from control subjects was achieved in the central and posterior regions of the scalp. 'fhus, it has 

been confirmed that the efficacy of automated EEG analysis does vary over the scalp and this is 

believed to be for two reasons. Firstly, because the effect of dementia on the EEG varies over the 

scalp and secondly, because the masking effects of other signals (cerebral in origin and artefacts) 

varies over the scalp. 

Further indications that, in Alzheimer's Disease, the posterior regions of the scalp should 

provide the earliest evidence .for dementia was found in a study of early onset Alzheimer's 

Disease related Cortical Atrophy in the Lancet [6]. This shows that the earliest atrophy occurs in 

the posterior region and at the base of the brain. 

3.9 Questioning the use of Auto-Correlation 

3.9.1 The Question 

Inspired by the work of other earlier researchers, the fractal dimension of the auto-correlation 

function had been used in this research. However, one must ask, "what is the meaning of the 

fractal dimension of an auto-correlation function?" This is pmticularly impottant because these 

measures seemed, during these initial investigations, to give the best results (although the clinical 

evaluation in Chapter 4 later showed that this is not the case). 

Despite a great deal of thought, the meaning of the fractal dimension of an auto-correlation 

function could not be envisaged. An interesting alternative is, though, that it has no meaning, but 

instead happens to give a particular result because of the spectral content of the EEG. It has been 

shown for example [41] that a non-fractal (i.e. with incoherent phase) can appear to have a 

measured fractal dimension which is a function of the power spectral density. 
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3.9.2 Method and Results, Part 1 

Initially, the assumption was made that signals on different channels would be, to an extent 

dependent on the proximity of the electrodes, have. similar spectra but different phase/shape. 

Therefore, it was·decided to measure the fractal dimension of the zero-set of the cross-correlation 

function (between channels) and compare this to the fractal dimension of the zero-set of the auto­

correlation. 

This analysis was performed on one typical normal subject (vol3) and one typical 

Alzheimer's subject (AD3). The overall fractal dimension of the zero-set of the auto-correlation 

for these two subjects were 0.556 and 0.308 respectively. The results below (in Figure 3-44 

through Figure 3-47) show these fractal dimensions of cross correlations in graphical form. Note 

the on-diagonal terms are the fractal dimensions of auto-correlations. Detailed numerical results 

are in Appendix D. for reference in Table 8-l through Table 8-4. 

From these results, it is clear that the cross-correlations have very similar fractal dimension to 

the auto-correlation, however it was recognised that this was not a sufficient test because the 

signals on different channels could still be phase coherent. 
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Fractal Dlmen51on of Cross­
Correlation 

Figure 3-44, 3D representation of the cross-correlation from Vol3. 
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Figure 3-45, Contour map representation of the cross-correlation from Vol3. 
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Figure 3-46, 3D representation of the cross-conelation from AD3. 
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Figure 3-47, Contour map representation of the cross-conelation from AD3. 
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3.9.3 Method and Results, Part 2 

Given the concern that signals on different channels could be phase coherent, it was decided 

to repeat the analysis. This time, instead of correlating the signal from one channel with the 

signal from a different channel at the same time, we correlated the signal from one channel with 

the signal from a different channel at arandom different time. Thus, knowing that the EEG is not 

a stationary signal, we could be sure that any potential phase relationship would be broken. This 

analysis was again performed on one typical normal subject (vol3) and one typical Alzheimer's 

subject (AD3). 

The results below (in Figure 3-48 through Figure 3-51) show these fractal dimensions of 

time-incoherent cross-correlations in graphical form. Note the on-diagonal terms are the fractal 

dimensions of auto-correlations. Detailed numerical results are in Appendix D. for reference in 

Table 8-5 through Table 8-8. 

From these results, it is clear that the time-incoherent cross-correlations have very similar 

fractal dimension to the auto-correlation (except in the frontal region which is more prone to 

artefacts). 
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Figure 3-48, 3D representation of the time-incoherent cross-con·elation from Yol3. 
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Figure 3-49, Contour map representation of the time-incoherent cross-correlation from Yol3. 
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Figure 3-50, 3D representation of the time-incoherent cross-correlation from AD3. 
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Figure 3-51, Contour map representation of the time-incoherent cross-correlation from AD3. 
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3.9.4 Method and Results, Part 3 

After the expetimentation above, it was decided to perform additional analysis on a typical 

Alzheimer's subject (AD3) and a typical control (Vol3). In this analysis, we varied what 

correlation was taken and whether phase randomisation was applied. The steps, going further 

from auto-correlation, are set out in Table 3-19. 

Method Vo13 AD3 Separa-
tion 

Originally quoted results (up to MEDSIP 2000) 0.648 0.331 0 .317 
Revised results - new settings 0.557 0.305 0.252 
Using cross correlation between all combinations of channels 0.556 0 .308 0 .248 
Using cross correlation with random time intervals 0.558 0.310 0.248 
Using auto-con·elation with the same phase randomisation in 0.540 0.294 0.246 
both of the signals. i.e. Ryy where y is a phase randomised x 
Using auto-correlation with phase randornisation appbed to 0.543 0.301 0.242 
one signal. i.e. Rxy where y =phase randomised x 
Using auto-correlation with different phase randomisation in 0.536 0.299 0.237 
the signal. i.e. Ryz where y and z = differently phase 
randomised x 

Table 3-19; Zero-Set Dimension of various correlation functions for Vol3 and AD3. 

3.9.5 Conclusion 

It has been shown that the separation of a typical normal subject from a typical Alzheimer's 

subject, as measured by the fractal dimension of the zero set of the auto-correlation function, is 

largely unaffected by replacing the auto-correlation function with a time-incoherent cross 

con·elation function or phase randornised function. This shows that the apparent success of this 

measure is due to the content of the power spectral density and not to the time domain shape of 

the waveform. 

These results were later taken as evidence that the auto-con·elation function is not a fractal 

and that the fractal dimension measures applied to the auto-correlation function only work 

because of the spectral content of the EEG. At this stage in the research, the implication that the 

raw EEG may also not be a Fractal was not recognised, but this was rectified after the Clinical 

Evaluation by work that is described in Chapter 4. 
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3.9.6 Frequency Dependence 

As an aside, we also briefly investigated whether removing or including specific ranges of 

frequencies affected the separation. 

Method Vol3 AD3 Separa-
tion 

Originally quoted results (up to MEDSIP 2000) 0.648 0.331 0.317 
Revised results - new settings 0.557 0.305 0 .252 
ZeroRxx with 0-30Hz components excluded 0.950 0.940 0.010 
ZeroRxx with 0-30Hz components only 0.557 0.295 0.262 
ZeroRxx with 0-20Hz components only 0 .558 0.296 0 .262 
ZeroRxx with 0-15Hz components only 0.546 0.297 0.249 
ZeroRxx with 5-15Hz components only 0.570 0.302 0 .268 

Table 3-20; Zero-Set Dimension of va1ious the Auto-Con·elation functions for Vol3 and AD3. 

This appears to show that all of the required infmmation for the method to work is in the 

frequency range 5Hz to 15Hz. This is consistent with the normal c)jnical practice of human 

interpretation of the EEG, where alpha and theta wave intensity is linked to the diagnosis of 

probably dementia. 

3.10 Summary 

This research began with a study of the background material, which raised a number of 

questions. These questions were addressed in an initial set of investigations, which are reported 

in this chapter. 
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The two main sources of published work on the fractal dimension of the Human 

Electroencephalogram that existed before .this research were those by Woyshville and Calabrese, 

and Wu et al. These papers were reviewed, particularly from a theoretical standpoint, and 

numerical experimentation are used to confirm that both methods had shortcomings. In the early, 

group· comparison study by Woyshville and Calabrese the fractal dimension of the EEG was used 

to separate subjects with Alzheimer's Disease from a group of normal subjects. However, a 

c1itical point had been missed; there are problems associated with estimating the fractal 

dimension of shapes, such as the EEG, that exist in affine space. The two most significant points 

for Wu's method were, firstly, the fractal dimension of the auto-correlation is estimated instead 

of the fractal dimension of the raw record and secondly a version of the divider dimension is 

estimated in affine space, in a similar way to that used previously by Woyshville and Calabrese. 

Two methods, which are appropriate in affine space, were selected from the range of 

dimension measures found in the literature. The Adapted Box Dimension and Dimension of the 

Zero Set were each applied to raw EEG data and to the auto-correlation of the EEG data. The 

results seem to show that all these fractal methods provide metrics that tend to decrease when 

dementia is present. However, the separation between subjects with dementia and normal subject 

was not good. It was found that changing controlling constants in the method, such as the 

segment length, affected the results. Better results were produced by tuning parameters, but this 

does not represent strong evidence. This is because it is not clear whether the method was 

working on a specific set of data because the method is tuned to that set of data or because this 

method tuning will work in general. These concerns were the main reason for conducting the 

evaluation, with a new, independent set of data, described in Chapter 4. 
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This chapter also proposed the concept of subject specific analysis of the fractal dimension, 

which was shown to be an exciting, interesting and useful candidate for early detection of 

dementia. Subject specific analysis involves comparing an EEG to those taken previously from 

the same subject: Looking for trends in indices that arise over time rather than comparing an 

EEG to what is generally normal within the population. Subject specific EEG techniques were 

shown more sensitive than group comparison based on the same metric. It is noted that if this 

method were adopted then there would be infrastructure requirements with associated costs for 

storing and retrieving previous EEG results. In the near future this should become more 

achievable with eHealth programs which aim is to develop systems that allow an individual 

patient's medical data (of many types) to be stored remotely whilst being available quickly for 

detailed analysis. 

In these investigations, measurements of fractal dimension over short data segments (2s) were 

used to construct a histogram of relative likelihood of a fractal dimension value being discovered 

on any segment and the mode was taken as the composite fractal dimension for the complete 

record. When the shape of these histograms was studied in more detail, it was observed that that 

clearly defined signal types (alpha wave, etc.) map approximately to ranges of values of fractal 

dimension. Other, less well defined, signals can be classified as having similar fractal dimensions 

to the clearly defined types and it is possible to determine the density of observations in the 

Theta, Alpha and Beta ranges from the histogram. It was suggested that a new metric could be 

used. The meuic was the ratio of density in the Alpha range to the sum of the densities in the 

Alpha and Theta ranges. This metric was calculated for all four methods and it was found that the 

most promising came from the Zeros-Set Dimension of the Auto-correlation. The difference 

between the "most normal" subject with dementia (Mix3) and the mean of the normal subjects 

was 30 times the standard deviation among the normal subjects. This represents (all-be-it on this 

small data set) a clear differentiation between the normal and subjects with dementia. The data 

previously used to investigate the subject specific analysis concept, from the two young controls 

was reanalysed using this method and these results provide significant counter evidence to the 

seemingly strong evidence (above) for the efficacy of this method. 
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This chapter also reports the study of the time evolution of the fractal dimension. Each of the 

EEG records was divided into !-minute intervals and the zero-set fractal dimension of the auto­

correlation function was calculated for each. It was shown that the measured fractal dimension 

(zero-set dimension of the auto-correlation function) is stable and high for the normal subjects 

except where they become drowsy toward the end of the recording. The subjects with dementia 

present a generally lower fractal dimension (as noted previously) and the fractal dimension is less 

stable with time as the normals. It was also noted that subjects with dementia do not seem to 

enter a drowsy phase before the end of the recording. 

The variability of fractal dimension over the scalp was also considered in this chapter. In 

particular, it was shown that the efficacy of the fractal dimension based methods to separate 

n01mal subjects from those with dementia was better in the posterior region of the head. This is 

believed to be because the effect of dementia on the EEG varies over the scalp and because the 

masking effects of other signals (cerebral in origin and artefacts) vary over the scalp. 

Inspired by the work of other earlier researchers, the fractal dimension of the auto-correlation 

function had been used in this research. This chapter considered the question "what is the 

meaning of the fractal dimension of an auto-coJTelation function?" Despite a great deal of 

thought, the meaning of the fractal dimension of an auto-correlation function could not be 

envisaged. It was hypothesised that it has no meaning, but instead happens to give a particular 

result because of the spectral content of the EEG. It was shown that the separation of a typical 

normal subject from a typical Alzheimer's subject, as measured by the fractal dimension of the 

zero set of the auto-correlation function, is largely unaffected by replacing the auto-correlation 

function with a time-incoherent cross correlation function or phase randomised function. This 

shows that the apparent success of this measure is due to the content of the power spectral 

density and not to the time domain shape of the waveform. These results were later taken as 

evidence that the auto-correlation function is not a fractal and that the fractal dimension measures 

applied to the auto-correlation function only work because of the spectral content of the EEG, At 

this stage in the research, the implication that the raw EEG may also not be a Fractal was not 

recognised, but this was rectified after the Clinical Evaluation. 
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The final investigation reported in this chapter limited the bandwidth of the EEG to be 

analysed and demonstrated that all of the required information for the method to work is in the 

frequency range 5Hz.to 15Hz. 
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Chapter 4. 
Methods 

Evaluation of the Fractal Based 

4.1 Introduction 

The results of the fractal measures investigated in Chapter 3 (and particularly 3.4) provide 

weak evidence that these measures may be useful in the early detection of dementia. The 

evidence is considered weak because the methods had to be tuned in order to provide reasonable 

results. To create strong evidence (or dismiss the weak evidence) it was necessary to conduct a 

further evaluation on a new, independent set of data. 'Jihis evaluation is described in this Chapter. 

The description of the method evaluation is in five parts. The first is this introduction. The 

second part (4.2) describes the selection of the method to test and the parameterisation of that 

method. This is important because post experiment parameterisation will again make the 

evidence produced less strong. The third part (4.3) describes the data and results from the 

evaluation. The fourth part (4.4) continues by presenting results that are obtained by applying the 

other methods considered in the initial investigation (see Chapter 3) to the new data. The final 

part (4.5) describes the conclusions that are drawn. 

4.2 Preparation 

4.2.1 Use of the Initial Data Set 

The initial data set described in section 3.2 was also used in preparation for the method 

evaluation, It was used for the selection of which method to test and the parameterisation of that 

method. 
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For all records, to avoid the possibility of inadvertently or unconsciously selecting data 

particularly suitable for analysis a predetermined protocol was applied. Data from 60s to 300s 

from each record was used. This avoids electrical artefacts, which commonly occur at the 

beginning of a record, and gives a standard 4 minutes of data to analyse. The EEG recordings 

encompass various states: awake, hyperventilating, drowsy and alert with periods of eyes closed 

and open. The analysis described in this paper takes the whole recording including artefacts and 

has no a priori selection of elements 'suitable for analysis'. This approach leads to a prediction of 

the usefulness of the techniques, as they would most conveniently be used in practice. 

For all data, the recorded sampling rate was downsampled from 256Hz to 128Hz by 

averaging sets of two consecutive samples for storage reasons. 

4.2.2 Choosing a Preferred Method 

4.2.2.1 Introduction 

With a range of fractal dimension methods and parameters available to choose, it was 

important to settle on a single, fixed set of parameters before a blind trial, using data recorded in 

a clinical environment, was conducted. If this had not been done, it could be said that the 

assessment of the method was not a fair test and that retrospectively applied parameterisation 

favourably skewed the measured Specificity and Sensitivity. The parameters that needed to be 

fixed included; the range of lengths used in the Zero Set dimension, the frequency band limiting 

applied and montage. 

4,2.2.2 Selected Parameters 

The methods were honed by numerical experimentation to ensure the best chance of good 

performance. This was found to occur under the following conditions: 
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1) Montage: Bipolar montage (which exclude the frontal signals); T3-T5, T4-T6, TS-01, 

T6-02, C3-P3, C4-P4, P3-0l, P4-02 and Cz-Pz, using the minimum fractal dimension 

across the channel pairs. The choice to use of the minimum fractal dimension over a 

population of channel pairs rather than the average or mode etc. is due to the nature of the 

dementia under consideration. Alzheimer's disease shows a generalised slowing over in 

all regions and minimum, mean or mode would all detect the dementia, but 

cerebrovascular disease normally has a focus and in the presence of measurement 

corruption (noise, artefacts, other unrelated effects) the minimum across the channel pairs 

has the best chance of success. See also Section 3.8, which discusses the variability of the 

fractal dimension over the scalp. 

2) Band limiting; lHz to 25Hz. Applied by taking the Fast Fourier Transform and 

reconstructing the signal from just the required components. 

3) Segment length: The raw EEG data were divided into 1 second segments and the 

estimated fractal dimension from each segment through the entire duration of the 

recording is plotted on a histogram. The results obtained are almost invariant for segment 

lengths between O.Ss and 2s. Below 0.5s the results become erratic because of the number 

of samples is becoming too small compared to the sampling rate employed. With segment 

lengths greater than 2s the results are affected by the non-stationary nature of the EEG. 

4) Taking the fractal dimension from the histogram: the mode of the histogram was taken as 

the composite measure of fractal dimension for that recording. The strict mode was not 

used because of a theoretical anomaly if two peaks of equal size occur and because the 

mode provides no interpolation ifthere are two similarly sized peaks. The equation used 

was: FD = L v; FDJ'f v;· . Where D; is the histogram height (density) at fractal 

dimension estimate FD; and n is a control constant. When n=1 the estimate becomes the 

mean.and when n tends to infinity the estimate tends to the mode. For our experiment n=4 

was. chosen but using strict mode made very little difference. 
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5) The minimum value for the time interval (denoted by L1t in section 3.4.1) was two 128Hz 

sampling intervals. The values used for L1t were constrained to be integer numbers of 

sampling intervals and an approximately exponential distribution was preferred. The 

intervals used were; 2, 3, 4, 5, 6, 7, 8, 10, 12 15, 18, 22, 27, 33,41, 51 and 63 intervals of 

11128s each. 

4.2.2.3 Method Selection 

The results under the conditions described above, for the two potential fractal dimension 

methods applied to the raw EEG record, are shown below in Table 4-1 and Table 4-2. Graphical 

representations of the separation of the normal group from the subjects with dementia are given 

in Figure 4-1 and Figure 4-2. 

Notmal who went onto develop Alzheimer's Disease 
VOLl 0.64663 

Notmal 
VOL2 0.70223 
VOL3 0.70111 
VOL4 0.68458 
VOL5 0.70651 
VOL6 0.68980 
VOL7 0.68876 
VOL8 0.69225 

Mean normal 0.69503 
Std Dev'n Normal 0.00821 
Probable Alzheimer's Disease 

ADl 0.54797 
AD2 0.60737 
AD3 0.52622 

Mean 0.56052 
Std Dev'n 0.04201 

Vascular and Mixed Dementia 
MIDI 0.58508 
Mixl 0.61497 
MIX2 0.54087 
MIX3 0.63189 

Mean 0.59320 
Std Dev'n 0.03989 

Table 4-1 , Fractal Dimension of the Zero Set. 
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Normal who went onto develop Alzheimer's Disease 
VOL1 1.28265 

Normal 
VOL2 1.33609 
VOL3 1.31205 
VOlA 1.30633 
VOL5 1.33281 
VOL6 1.32010 
VOL7 1.31023 
VOL8 1.32127 

Mean normal 1.31984 
Std Dev'n Normal 0.0 1133 

Probable Alzheimer's Disease 
ADl 1.18772 
AD2 1.24294 
AD3 1.18569 

Mean 1.20545 
Std Dev 'n 0.03248 

Vascular and Mixed Dementia 
MID1 1.20300 
Mix1 1.23986 
MIX2 1.16180 
MIX3 1.26674 

Mean 1.21785 
Std Dev'n 0.04560 

Table 4-2, Adapted Box Dimension. 
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Figure 4-1, Distribution of the zero set dimension of raw EEG. 

2.5 40 

35 

2 

\ 30 

25 
1.5 -- -- DNorm Dist 

1:' 
• Normal 

Oi 20 
D AD 

t: .. ElM ID c 
151 Mix 

1 - Clvol1 
jl 15 

I I· 
\ 

10 

0.5 

) 
f~ 

~\ 5 
' •·· 

0 0 

"' M ... "' <D ..... ., Ol "! ;;; "' M ... "' <D ..... ., Ol ~ ~ ~ M ~ l!l <D ..... ., 
~ "! "! "! "! "! "! "! "! ~ ~ ~ ~ 

~ ~ ~ ~ ~ ~ ~ 

Fractal Dimension 

Figure 4-2, Distribution of the adapted box dimension of raw EEG. 
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From these results and assuming a Normal distribution to the results, it is possible to estimate 

the efficacy of the method in detecting dementia. 

For the fractal dimension of the Zero-Set, if one were to demand a specificity of 99.9% then a 

result would be considered abnormal if it were less than 0.6697. This implies a sensitivity to 

Alzheimer's disease of 99.5% and a sensitivity to vascular (or mixed) dementia of 97.2%. 

Furthermore, the Normal who went on to develop Alzheimer's disease (VoH) would have been 

flagged as abnormal (before it was detected by a clinician). 

Similarly, for the Adapted Box Dimension, if one were to demand a specificity of 99.9% then 

a result would be considered abnormal if it were less than 1.2848. This implies a sensitivity to 

Alzheimer's disease of 99.3% and a sensitivity to Vascular (or mixed) of 92.9%. Furthermore, the 

Normal who went on to develop Alzheimer's disease (V oil) would have been flagged as slightly 

abnormal (before it was detected by a clinician). It can also be shown that this is a statistically 

significant effect; p<O.OOO I for both methods. 
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Turning to the fractal dimension methods as applied to the auto-correlation function: 

Normal who went onto develop Alzheimer's Disease 
VOL1 0.64272 

Normal 
VOL2 0.69940 
VOL3 0.68227 
VOL4 0.67962 
VOL5 0.69564 
VOL6 0.65165 
VOL7 0.67992 
VOL8 0.66044 

Mean normal 0.67842 
Std Dev'n Normal 0.01730 
Probable Alzheimer's Disease 

ADl 0.41161 
AD2 0.53139 
AD3 0 .50340 

Mean 0.48213 
Std Dev'n 0.06266 
Vascular and Mixed Dementia 

MIDI 0.57662 
Mix l 0.15324 
MIX2 0.44142 
MIX3 0.55128 

Mean 0.43064 
Std Dev'n 0.19402 

Table 4-3, Fractal Dimension of the Zero Set applied to the Auto-Correlation Function . 
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Normal who went onto develop Alzheimer's Disease 
VOL1 1.24411 

Normal 
VOL2 1.27393 
VOL3 1,23458 
VOL4 1.24752 
VOL5 1.27693 
VOL6 1.25552 
VOL7 1.25311 
VOL8 1.24804 

Mean normal 1.25566 
Std Dev'n Normal 0.01506 
Probable Alzheimer's Disease 

AD1 1.05558 
AD2 1.10981 
AD3 1.12675 

Mean 1.09738 
Std Dev'n 0.03718 
Vascular and Mixed Dementia 

MIDI 1.12465 
Mixl 1.03798 
MIX2 1.06776 
MIX3 1.12030 

Mean 1.08767 
Std Dev'n 0.04202 

Table 4-4, Adapted Box Dimension applied to the Auto-CoJTelation Function. 

From these results and again assuming a Normal distribution to the results, it is possible to 

estimate the efficacy of the method in detecting dementia. 

For the fractal dimension of the Zero-Set apphed to the auto-correlation function ; if one were 

to demand a specificity of 99.9% then a result would be considered abnormal if it were less than 

0.62497. This implies a sensitivity to Alzheimer's disease of 98.9% and a sensitivity to Vascular 

(or mixed) of 84.2%. Furthermore, the Normal who went on to develop Alzheimer's disease 

(Voll) would not have been flagged as abnormal. 
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Similarly, for the Adapted Box Dimension applied to the auto-con·elation function ; if one 

were to demand a specificity of 99.9% then a result would be considered abnormal if it were less 

than 1.2091. This implies a sensitivity to Alzheimer's disease of 99.9% and a sensitivity to 

Vascular (or mixed) of 99.8%. Furthermore, the Normal who went on to develop Alzheimer's 

disease (Voll) would not have been flagged as abnormal. 

Table 4-5 summarises the four methods detailed above (with 99.9% specificity): 

Method Zero Set Adapted Box Zero Set of Adapted Box of 
Auto-correlation Auto-correlation 

Mean Normal 0.6950 1.3198 0.6784 1.2557 
SD Normal 0.0082 0.0113 0.0173 0.0151 
Limit of what is 0.6697 1.2848 0.6250 1.209 
considered normal 
Mean AD 0.5605 1.2055 0.4821 1.0974 
SDAD 0.0420 0.0325 0.0627 0.0372 
Sensitivity to AD 99.5% 99.3% 98.9% 99.9% 
Mean vascular 0.5932 1.2 179 0.4306 1.0877 
SD vascu lar 0.0399 0.0456 0.1940 0.0420 
Sensitivity to 97.2% 92.9% 84.2% 99.8% 
vascular 

Table 4-5, Summary of results using development data set. 

These results suggest that the Adapted Box Dimension applied to the auto-correlation 

function was the best of the four methods. However, because of the concern over the use of the 

fractal dimension of the auto-correlation function, it was decided to select the fractal dimension 

of the zero-set of the raw EEG data as the preferred method. The main concern was that 

constructing the auto-correlation function removes phase information from the signal and a 

fractal with the phase information removed is no longer a fractal (see also Section 3.8). Thus, 

measuring the fractal dimension of a non-fractal was incongruous. It is noted, however, that 

fractal measures may be applied to a non-fractals and useful results extracted. This concern lead, 

in time, to an investigation into whether the EEG was a frac tal (reported in Chapter 5). 

Notwithstanding the previous argument, results from all methods are reported in Section 4.4.1. 
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4.3 Trial of Preferred Method 

4.3.1 Evaluation Data Set 

The data used for this evaluation were obtained from Deniford Hospital and had been 

collected using normal hospital practices. The EEG recordings encompass various states: awake, 

drowsy and alert with periods of eyes closed and open. Within this data set, there were 24 normal 

records, 17 probable Alzheimer's disease and 5 probable Vascular Dementia. This data set did 

not reuse any of the development data set. These data were obtained using the modified 

Maudsley system, which is similar to the traditional 10-20 system. The classification of the 

records between normal and Alzheimer's disease was taken from the written hospital diagnosis 

sheets. It is noteworthy that the probable Alzheimer's subjects were not previously diagnosed and 

were therefore in the early stages of exhibiting symptoms; in fact some of these subjects were not 

referred for dementia diagnosis but came in for investigation of seizures et cetera. 

For all records, to avoid the possibility of inadvertently or unconsciously selecting data 

particularly suitable for analysis a predetermined protocol was applied. Data from 60s to 300s 

from each record was used. This avoids electrical artefacts, which commonly occur at the 

beginning of a record, and gives a standard 4 minutes of data to analyse. This segment of data 

including artefacts was analysed with no a priori selection of elements 'suitable for analysis'. 

This approach leads to a prediction of the usefulness of the technique, as it would most 

conveniently be used in practice. 

For all data, the recorded sampling rate was 256Hz reduced to 128Hz for analysis by 

averaging sets of 2 consecutive samples (for storage reasons). 
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4.3.2 Results from the Preferred Method 

The results obtained by applying the prefen·ed method to the evaluation data set are presented 

in Table 4-6. A graphical representation of the distribution of results is given in Figure 4-3. The 

results are summarised in Table 4-7. Finally, detailed results over aJI channels of all subjects are 

given in Table 8-9 through Table 8-12. 

NormaJ Alzheimer' s Vascular 

Results 0.6436 0.5737 0.6203 
0.6461 0.5725 0.6357 
0.7173 0.6186 0.5810 
0.6799 0.5540 0.6673 
0.6662 0.5796 0.5993 
0.6428 0.5216 
0.6714 0.5799 
0.6443 0.5587 
0.6581 0.6088 
0.6706 0.4969 
0.6904 0.5162 
0.6963 0.6336 
0.7028 0.5921 
0.7076 0.5072 
0.6527 0.5973 
0.6794 0.5042 
0.7147 0.6472 
0.6547 
0.7112 
0.7443 
0.6473 
0.7201 
0.6611 
0.6812 

Number of samples 24 17 5 
Mean 0.6793 0.5684 0.6207 
SD 0.0293 0.0464 0.0333 

Table 4-6, Detail of results (by subject) from preferred method applied to evaluation data set. 
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Figure 4-3 , Distribution of results from prefered method. 

Mean Normal 0.6793 
SD Normal 0.0293 
Limit of what is considered normal to achieve 99.9% 0.5888 
specificity (assuming a Gaussian distribution) 
Mean AD 0.5684 
SDAD 0.0464 
Sensitivity to AD (assuming a Gaussian distribution) 67.0% 
Mean vascular 0.6207 
SD vascular 0.0333 
Sensitivity to vascular (assuming a Gaussian distribution) 16.9% 

Table 4-7, Summary of results from preferred method applied to evaluation data set. 

These results are not as good as had been achieved using the development data and are 

probably not good enough to form the basis of the required method for detecting early dementia. 

To understand the difference between the two data sets we need only look at the salient points 

given in Table 4-8. These show that the tuned method applied to the development data gives a 

significantly lower estimated standard deviation of results for the normal subjects: by a factor of 

3.6. 
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Development Evaluation 
data set data set 

Mean Normal 0 .695 0.679 
SD Normal 0.008 0.029 
Mean AD 0.561 0.568 
SDAD 0.042 0.046 
Mean vascular 0 .593 0.621 
SD vascular 0.040 0.033 

Table 4-8, Comparison of results from preferred method applied to development and evaluation 
data sets. 

4.3.3 Conclusion 

This evaluation has demonstrated the value of a blind test using an independent data set. It 

has shown that we were in danger of believing results based on too small a set of data, which had 

itself been used to develop the method. 

4.4 Other Methods 

4.4.1 Other Fractal Dimension Methods 

After the method evaluation, which used the fractal dimension of the zero set of the raw EEG 

data, the other three alternative fractal measures were applied to the evaluation data set. These 

results are given in Table 4-9, Table 4-10 and Table 4-11 , with a summary of all 4 methods in 

Table 4-12. 
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Normal Alzheimer's Vascular 

Results 1.2754 1.2152 1.2528 
1.2646 1.2015 1.2663 
1.3447 1.2470 1.2061 
1.3045 1.1921 1.2863 
1.2961 1.2250 1.2238 
1.2875 1.1606 
1.3012 1.2135 
1.2705 1.1893 
1.2942 1.2495 
1.3190 1.1361 
1.3154 1.1508 
1.3106 1.2695 
1.3318 1.2275 
1.3356 1.1660 
1.2829 1.2225 
1.3011 1.1538 
1.3591 1.2805 
1.3052 
1.3500 
1.3593 
1.2713 
1.3444 
1.2845 
1.3189 

Number of samples 24 17 5 
Mean 1.3095 1.2059 1.2470 
SD 0.0288 0.0427 0.0323 

Table 4-9, Adapted Box method applied to assessment data set. 
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Normal Alzheimer's Vascular 

Results 0.6436 0.3281 0.6027 
0.5976 0.5267 0.6007 
0.4148 0.5177 0.4987 
0.3494 0.4104 0.5296 
0.5043 0.5181 0.5365 
0.0982 0.1513 
0.3595 0.5723 
0.5806 0.4266 
0.6274 0.4830 
0.0897 0.0626 
0.6831 0.4682 
0.2599 0.2524 
0.3276 0.4684 
0.5425 0.3309 
0.5973 0.5556 
0.4779 0.4330 
0.7157 0.5000 
0.6429 
0.6606 
0.6938 
0.6408 
0.6609 
0.6436 
0.3530 

Number of samples 24 17 5 
Mean 0.5069 0.4121 0.5536 
SD 0.1844 0.1438 0.0461 

Table 4-10, Zero Set of the auto-correlation function method applied to assessment data set. 
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Normal Alzheimer's Vascular 

Results 1.2510 1.0518 1.1902 
1.1659 1.1171 1.1694 
1.1013 1.1289 1.1026 
1.0647 1.0590 1.1423 
1.1350 1.0884 1.1047 
1.0317 1.0400 
1.0849 1.1211 
1.1573 1.0619 
1.2333 1.0984 
1.0316 1.0435 
1.2889 1.0602 
1.0362 1.0368 
1.0576 1.0805 
1.1936 1.0406 
1.1742 1.1355 
1.0533 1.0825 
1.3410 1.1125 
1.2577 
1.2364 
1.2843 
1.2153 
1.2450 
1.2328 
1.0514 

Number of samples 24 17 5 
Mean 1.1635 1.0799 1.1419 
SD 0.0958 0.0338 0.0388 

Table 4-11 , Adapted Box of the auto-cotTelation function method applied to assessment data set. 
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Method Zero Set Adapted Box Zero Set of Adapted Box of 
Auto-correlation Auto-correlation 

Mean Normal 0.6793 1.3095 0.5069 1.1635 
SD Normal 0.0293 0.0288 0.1844 0.0958 
Limit of what is 0.5888 1.2206 -0.0630 0.8674 
considered normal 
to achieve 99.9% 
specificity 
Mean AD 0.5684 1.2059 0.4121 1.0799 
SDAD 0.0464 0.0427 0.1438 0.0338 
Sensitivity to AD 67.0% 63.5% 0.0% 0.0% 
Mean vascular 0.6207 1.2470 0.5536 1.1419 
SD vascular 0.0333 0.0323 0.0461 0.0388 
Sensitivity to 16.9% 20.7% 0.0% 0.0% 
vascular 

Table 4-12, Summary of assessment results from all methods. 

It is clear that these results are incongruous with the previous success of auto con·elation 

based methods. No reason for this could be found and it seems that it may simply have been 

"good luck". Again, we were in danger of believing results based on too smaJI a set of data, 

which had itself been used to develop the method. 

4.4.2 Subject Specific Measures 

Following on from the discussion of subject specific measures and how they may help in the 

early detection of dementia (see section 3.5), it was decided to extend the analysis by using the 

evaluation data to better characterise the results from normal/subjects with dementia and to 

include results from 2 new repeat recordings found in the Deriford data set. V and W are both 

older normal subjects (time separation 20 days and 42 days respectively). 
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Record Raw EEG Data Auto-correlation of EEG data 
Zero-set Adapted Box Zero-set Adapted Box 

X1 0.690 1.315 0.568 1.041 
X2 0.692 1.326 0.684 1.076 
X3 0.679 1.313 0.583 1.034 
Y1 0.620 1.245 0.608 1.201 
Y2 0.604 1.299 0.609 1.082 
Y3 0.596 1.218 0.554 1.104 
V1 0.635 1.269 0.551 1.131 
V2 0.613 1.241 0.528 1.113 
W1 0.644 1.275 0.644 1.251 
W2 0.653 1.283 0.597 1.174 

Table 4-13, Results from young subjects using methods suitable for affine space. 

If one considers the variation from sample to sample from the same subject to be equivalent 

to measurement noise (or sh01t term variability) on the fractal dimension then one may estimate 

the population standard deviation for a single subject for each measure. 

Estimated Raw EEG Data Auto-correlation of EEG data 
Population Zero-set Adapted Box Zero-set Adapted Box 

Standard Dev" 0.016 0.01 5 0.064 0.064 

Table 4-14, Vatiability of results from young subjects using methods suitable for affine space. 

Taking the statistics for the age matched controls and the first recording for each of the young 

normals (Table 4-15) it may be seen that for all the measures the standard deviation among the 

group of normals is, as expected, larger than the variation for a single subject (Table 4-14). 

Record Raw EEG Data Auto-correlation of EEG data 
Zero-set Adapted Box Zero-set Adapted Box 

Mean 0.679 1.310 0.507 1.164 
Std Deviation 0.029 0.029 0.184 0.096 

Table 4-15, Variability of the Population of Normal Subjects. 
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The fractal dimension has also been calculated for the subjects with dementia (Table 4-16): 

Record Raw EEG Data Auto-correlation of EEG data 
Adapted Box Zero-set Adapted Box Zero-set 

Mean AD 1.206 0.568 1.080 0.412 
St'd Dev'n AD 0.043 0.046 0.034 0.144 
Mean Vascular 1.247 0.621 1.142 0.554 

St' d Dev'n 0.032 0.033 0.039 0.046 
Vascular 

Table 4-16, Results from Subjects with dementia. 

The graph below (Figure 3-10) summruises the resul ts which were obtained using the zero-set 

dimension of the raw EEG data and the measured normal variability of the fractal dimension for 

a single subject as measured on the normals (V, W, X and Y). 

Highest normal 
0.74 

Subject + Highest demented 
variability t ~!!!!!!!!!!!!!!---..~67 
0.029 ( l cr) 

Lowest norma 

Zero set 
dimension 

0.64 Lowest demented 
0.50 

Time 

Figure 4-4, Summary of subject specific results showing that this concept could improve early 
diagnostic efficacy. 

The graph demonstrates that the fractaJ dimension, in this instance, is a good candidate for 

use in subject specific detection of dementia. This is because the measured fractal dimension of 

the EEG is generally lower for a subject with dementia than for normal subjects and the 

vatiability of a single normal subject's fractal dimension is small in comparison to the variability 

between members of the set of normals. 
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4.4.3 Alpha/Theta Ratio 

4.4.3.1 Revisiting Results from Development Data 

Following on from the discussion of the alpha/theta ratio deri ved from the fractaJ dimension 

(see section 3.6), it was decided to repeat the analysis on the evaluation data set. 

To recapi tulate: By observation of the signa] segments that produce values of fractal 

dimension it is possible to show that clearly defined signal types, defi ned in section 2.2.4, 

transform to certain ranges of values of frac tal dimension. Other, less well defined, signals can be 

classified as having similar fractal dimensions to the clearly defined types and it is possible to 

determine the density of observations in the Theta, Alpha and Beta type ranges directl y from the 

hi stogram. These are given, approximately, in Table 4-17. 

Adapted box di men si on Zero-set dimension of 
of raw data or auto- raw data or auto-
correlation function corre lation function 

Ocul ar artefacts Lower than 1.0 Lower than 0.3 
Theta 1.0 to 1.2 0 .3 to 0.5 
Alpha 1.2 to 2.0 0 .5 to 1.0 
Beta Above 2.0 Above 1.0 

Table 4- 17, Approximate mapping of signal type to fractal dimension. 

Before analysing the new data using the Alpha/Theta ratio, it was necessary to reanalyse the 

development data using the new parameterisation. These results are shown below in Table 4-1 8 

through Table 4-21 and summarised in Table 4-22. 
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Normal who went on to develop Alzheimer's Disease 
VOL1 0.945 

Normal 
VOL2 1.000 
VOL3 1.000 
VOL4 0.996 
VOL5 0.992 
VOL6 1.000 
VOL7 0.992 
VOL8 0.987 

Mean normal 0.995 
Std Dev'n Normal 0.005 
Limit to achieve 99.9% specificity 0.979 
Probable Alzheimer's Disease 

ADl 0.736 
AD2 0.924 
AD3 0.734 

Mean 0.798 
Standard Deviation 0.109 
Sensi ti vi ty 95.1 % 
Multi-Infarct and Mixed Dementia 

MIDI 0.821 
Mix1 0.748 
MIX2 0.682 
MIX3 0.971 

Mean 0.805 
Standard Deviation 0.124 
Sensitivity 92.0% 

Table 4-18, Alpha/theta results from the Zero-Set method applied to the Raw EEG. 
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Normal who went on to develop Alzheimer's Disease 
VOL1 0.894 

Normal 
VOL2 0.983 
VOL3 0.915 
VOL4 0.945 
VOL5 0.836 
VOL6 0.971 
VOL7 0.897 
VOL8 0.898 

Mean normal 0.921 
Std Dev'n Normal 0.051 
Limit to achieve 99.9% specificity 0.765 

Probable Alzheimer's Disease 
AD1 0.268 
AD2 0.637 
AD3 0.559 

Mean 0.488 
Standard Deviation 0.195 
Sensitivity 92.2% 

Multi-Infarct and Mixed Dementia 
MIDl 0.677 
Mix1 0.346 
MIX2 0.382 
MIX3 0.667 

Mean 0.5 18 
Standard Deviation 0.178 
Sensitivity 91.7% 

Table 4-19, Alpha/theta results from the Zero-Set method applied to the Auto-cmTelation 
function. 
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Normal who went on to develop Alzheimer's Disease 
VOL1 0.932 

Normal 
VOL2 1.000 
VOL3 0.996 
VOlA 0.987 
VOL5 1.000 
VOL6 1.000 
VOL7 0.996 
VOL8 0.992 

Mean normaJ 0.996 
Std Dev'n NormaJ 0.005 
Limit to achieve 99.9% specificity 0.981 

Probable Alzheimer's Disease 
AD1 0.500 
AD2 0.887 
AD3 0.416 

Mean 0.601 
Standard Deviation 0.251 
Sensi ti vi ty 93.5% 
Multi-Infarct and Mixed Dementia 

MID1 0.622 
Mix I 0.742 
MIX2 0.338 
MIX3 0.945 

Mean 0.662 
Standard Deviation 0.254 
Sensitivity 89.6% 

Table 4-20, Alpha/theta results from the Adapted Box method applied to the Raw EEG. 
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Normal who went on to develop Alzheimer's Disease 
VOLl 0.651 

Normal 
VOL2 0.920 
VOL3 0.703 
VOlA 0.752 
VOL5 0.742 
VOL6 0.916 
VOL7 0.798 
VOL8 0.734 

Mean normal 0.795 
Std Dev'n Normal 0.089 
Limit to achieve 99.9% specificity 0.521 
Probable Alzheimer's Disease 

AD1 0.011 
AD2 0.083 
AD3 0.017 

Mean 0.037 
Standard Deviation 0.040 
Sensitivity 100.0% 
Multi-Infarct and Mixed Dementia 

MID1 0.231 
Mix1 0.033 
MIX2 0.000 
MIX3 0.207 

Mean 0.118 
Standard Deviation 0.118 
Sensi ti vi ty 100.0% 

Table 4-21, Alpha/theta results from the Adapted Box method applied to the Auto-correlation 
function. 
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Method Zero Set Adapted Box Zero Set of Adapted Box of 
Auto-correlation Auto-correlation 

Mean Normal 0.995 0.921 0.996 0.795 
SD Normal 0.005 0.051 0.005 0.089 
Limit of what is 0.979 0.765 0.981 0.521 
considered normal 
to achieve 99.9% 
specificity 
Mean AD 0.798 0.488 0.601 0.037 
SDAD 0.109 0.195 0.251 0.040 
Sensitivity to AD 95.1% 92.2% 93.5% 100.0% 
Mean vascular 0.805 0.518 0.662 0.118 
SD vascular 0.124 0.178 0.254 0.118 
Sensitivity to 92.0% 91.7% 89.6% 100.0% 
vascular 

Table 4-22, Summary of assessment results from all alpha/theta ratio methods. 

As previously noted, this metric (on the limited development data set) seems capable of 

differentiating control subjects and subjects with dementia with a wide band between the two 

groups. 

130 



4.4.3.2 Alpha I Theta Ratio Applied to the Evaluation Data 

The method was repeated on the evaluation data set, which was independent of the tuning of 

the method. These results are shown in Table 8-9 through Table 8-12 (in Appendix D) and 

summarised in Table 4-23. 

Method Zero Set Adapted Box Zero Set of Adapted Box of 
Auto-correlation Auto-correlation 

Mean Normal 0.9705 0.9709 0.6597 0.4283 
SD Normal 0.0286 0.0388 0.2212 0.2951 
Limit of what is 0.8822 0.8510 -0.0239 -0.4835 
considered normal 
to achieve 99.9% 
SQ_ecificity 
Mean AD 0.7848 0.6083 0.4024 0.0562 
SDAD 0.1761 0.3003 0.1747 0.0754 
Sensitivity to AD 71.0% 79.0% 0.0% 0.0% 
Mean vascular 0.9310 0.8731 0.6427 0.2596 
SD vascular 0.0799 0.1751 0.1283 0.1803 
Sensitivity to 27.1% 45.0% 0.0% 0.0% 
vascular 

Table 4-23, Summary of Alpha!Theta results from all methods. 

4.4.3.3 Conclusions Regarding Alphaffheta Ratio 

As with the evaluation of the fractal dimension measures, these results are not as good as had 

been achieved using the development data. They are probably not good enough to form the basis 

of the required method for detecting early dementia. 

This evaluation has demonstrated the value of a blind test using an independent data set. It 

has shown that we were in danger of believing results based on too small a set of data, which had 

itself been used to develop the method. 
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4.5 Summary 

This evaluation has been valuable because it has demonstrated that the performance of the 

fractal dimension based measures is a strong function of the tuning one applies. From this 

evaluation it is clear that either of the fractal dimension measures applied to the raw EEG data 

could be used to separate subjects with dementia from controls but that this .separation would 

have low sensitivity. This is a demonstration of the value of a blind test using an independent 

data set. It has shown that we were in danger of believing results based on too small a set of data, 

which had itself been used·to develop the method. 
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Chapter 5. Fu~nda~meJmtall 

Fractan Nature of the EEG 

5.1 The Fundamental Question 

Study of the 

It was realised that an implicit assumption was being made during the preceding research. 

The assumption was that, because the Fractal measures appeared to be able to differentiate (to 

some extent) between normal subjects and subjects with dementia then the EEG is necessarily 

fractal in nature. A decision was made to test and attempt to disprove the following hypothesis: 

o The Fractal Nature of the EEG contributes to the apparent success of the Fractal based 

methods. 

5.2 Method 

Building on the research described in Section 3.9, it was decided to use surrogate data testing. 

To perform this surrogate data test it is necessary to define a feature which is essential to the 

EEG being fractal in nature, then modify the recorded EEG data to remove this feature and 

finally reapply the original fractal based measure to see whether the method works better, 

similarly or worse than before the feature is removed. The evaluation of whether the performance 

is better or worse is based on efficacy measured with estimated specificity and sensitivity. 

When the feature is removed there are two possible conclusions that will be reached based on 

how the Method Evaluation Metric changes: 

• If the metric gets worse then it is likely that this feature is necessary for both the metric to 

work and for the hypothesis to be true. Hence, this is weak evidence that the hypothesis is 

true. It is only weak evidence because the feature removed may be necessary but not 

sufficient to conclude a fractal nature. 
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• If the metric is the same or better then there is reasonable evidence that the hypothesis is 

untrue. That is that the fractal nature of the EEG (should it exist at all) does not contribute 

to the success of the method. 

It was only necessary to remove one feature from the EEG in order to obtain evidence of the 

hypothesis being untrue. This feature was the structured phase relationships within the data. 

The Fourier Transform was applied to obtain phase and magnitude data for all spectral 

components then the signal was reconstructed with the original magnitude but with the phase 

data randomised. The resultant signal is non-fractal. 

5.3 Results 

The fractal dimension measures and Alphaffheta ratio methods were applied to,the EEG data 

with and without phase randomisation. The results are summarised in Table 5-l through Table 

5-4. 
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Method Zero Set Adapted Box Zero Set of Adapted Box of 
Auto-correlation Auto-correlation 

Mean Normal 0.6793 1.3095 0.5069 1.1635 
SD Normal 0.0293 0.0288 0.1844 0.0958 
Limit of what is 0.5888 1.2206 -0.0630 0.8674 
considered normal 
to achieve 99.9% 
specificity 
Mean AD 0.5684 1.2059 0.4121 1.0799 
SDAD 0.0464 0.0427 0.1438 0.0338 
Sensitivity to AD 67.0% 63.5% 0.0% 0.0% 
Mean vascular 0.6207 1.2470 0.5536 1.1419 
SD vascular 0.0333 0.0323 0.0461 0.0388 
Sensitivity to 16.9% 20.7% 0.0% 0.0% 
vascular 

Table 5-1, Summary of fractal dimension results from all methods (no phase randomisation). 

Method Zero Set Adapted Box Zero Set of Adapted Box of 
Auto-correlation Auto-correlation 

Mean Normal 0.6817 1.3 125 0.5991 1.2403 
SD Normal 0.0277 0.0284 0.0741 0.0575 
Limit of what is 0.5963 1.2248 0.3703 1.0625 
considered normal 
to achieve 99.9% 
specificity 
Mean AD 0.5784 1.2139 0.5334 1.1868 
SDAD 0.0429 0.0388 0.0504 0.0245 
Sensitivity to AD 66.2% 61.2% 0.1% 0.0% 
Mean vascular 0.6268 1.2527 0.5897 1.2178 
SD vascular 0.0322 0.0309 0.0229 0.0203 
Sensitivity to 17.1% 18.4% 0.0% 0.0% 
vascular 

Table 5-2, Summary of fractal dimension results from all methods (with phase randomisation). 
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Method Zero Set Adapted Box Zero Set of Adapted Box of 
Auto-correlation Auto-correlation 

Mean Normal 0.9705 0.9709 0.6597 0.4283 
SD Normal 0.0286 0.0388 0.2212 0.2951 
Limit of what is 0.8822 0.8510 -0.0239 -0.4835 
considered normal 
to achieve 99.9% 
specificity 
Mean AD 0.7848 0.6083 0.4024 0.0562 
SDAD 0.1761 0.3003 0.1747 0.0754 
Sensitivity to AD 71.0% 79.0% NIA NIA 
Mean vascular 0.9310 0.8731 0.6427 0.2596 
SD vascular 0.0799 0.1751 0.1283 0.1803 
Sensitivity to 27. 1% 45.0% 0.0% 0.0% 
vascular 

Table 5-3, Summary of Alpha/Theta results from all methods (no phase randomisation). 

Method Zero Set Adapted Box Zero Set of Adapted Box of 
Auto-con·elation Auto-con·elation 

Mean Normal 0.9650 0.9667 0.7377 0.6717 
SD Normal 0.0326 0.0331 0.1621 0.1994 
Limit of what is 0.8644 0.8644 0.2369 0.0555 
considered normal 
to achieve 99.9% 
specificity 
Mean AD 0.8007 0.6434 0.6335 0.4590 
SDAD 0.1435 0.2443 0.1138 0.1358 
Sensitivity to AD 67.1 % 81.7% 0.0% 0.1% 
Mean vascular 0.9262 0.8723 0.7441 0.6242 
SD vascular 0.0753 0.1464 0.0737 0.1075 
Sensitivity to 20.6% 47.8% 0.0% 0.0% 
vascular 

Table 5-4, Summary of Alpha/Theta results from all methods (with phase randomisation). 
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5.4 Summary 

Comparing the results in Table 5-1 with those in Table 5-2 and comparing the results in Table 

5-3 with those in Table 5-4, it may be seen that phase randomisation does not cause a significant 

loss of performance for any of the methods considered. Therefore, it is concluded that the fractal 

nature of the EEG (should it exist at all) does not contribute to the performance of the fractal 

dimension methods. From this, it is concluded that the EEG is very unlikely to be a fractal. 

However, the previous success of the fractal methods is important and is likely to be because 

they detected a related characteristic of the EEG. 
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Chapter 6o Devellopmellllt 
Methods 

6.1 Search for an Alternative Metric 

of Two Novel 

The conclusion from the Surrogate Data Testing had a profound effect on the direction of the 

research. It was recognised that all of the information, which was able to give the (partial) 

success with fractal dimension measures, was contained within the Power Spectral Density. It 

was also known from the background research that, despite significant effort over a long period; 

no spectral based measure had been good enough to use in general clinical practice. 

It was decided to tackle this from a different angle and propose methods that shared an 

important similarity with the fractal measures; we decided to use measures based in the time 

domain. 11hese were the Allan Variance (which shares features with the adapted box dimension) 

and the zero-crossing interval distribution (which shares features with the zero-set dimension). 

This search for new methods was conducted using just the development data set so that the 

evaluation data set could be kept in reserve to test any proposed methods. 

6.2 Allan Variance 

6.2.1 Concept and History 

The Allan Variance method [67] of analysing and visualising time domain characteristics of 

stochastic processes in Gyro theory was investigated. Allan variance is a time-domain analysis 

technique originally developed to study the frequency stability of oscillators [68]. It can be used 

to determine the character of the underlying processes that can give rise to data features. 

138 



Allan Valiance provides a measure of the stabi lity of a signal and the charactelistic period of 

any instability. It may be used as a stand-alone method of data analysis or to complement any of 

the frequency-domain analysis techniques. The equation describing the measurement of the AlJan 

Variance is given below: 

1 liiQ+T f.I0+2T ] otr) = ~ · RMS m(t)dt- m(t)dt . 
-r-v2 ro ro+r 

(6.1) 

This equation describes the stability of a signal over a time interval, r. The Allan Variance, 

a(r), is the root mean square of the difference between an integral over a peliod, T, and the 

integral over the next interval of the same length. 

w(r) 

First Integral 

to to+r ro+2r 

Time 

Figure 6-1, A sketch illustrating the Allan Variance method. 

Clearly, the Allan Valiance contains the same information as the Power Spectral Density; but 

being in the time domain it emphasises lower frequencies over higher frequencies. This may be 

an advantage in EEG analysis because, from the fractal dimension, we believe that this emphasis 

on the time domain may provide visibility of important features for the detection of dementia. 

The relationship between the Allan Variance and Power Spectral Density is given below: 

(6.2) 

Where S(f) is the power spectral density at frequency fexpressed in Hz. 
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6.2.2 Characteristic Plots 

In the Allan Vatiance method of data analysis, instability in the data is assumed to be 

generated by noise sources of specific types (white, Markov, etc.). The type and size of these 

noise sources is interpreted from a graph of Allan Variance. The Allan Variance is normally 

plotted on a log-log scale. To introduce the interpretation of AJJan Variance charts it is helpful to 

plot the Allan Variance chruts for well-known signal types and comment on their key 

characteristics. Plots for white noise, first order Markov and second order Markov processes are 

given in Figure 6-2, Figure 6-4 and Figure 6-6, respectively. Each has a unity signal power. 

Figure 6-2 shows a segment of typical white noise signal (sampled at 128Hz) and Figure 6-3 

shows the corresponding Allan variance chart. Notable features are that the gradient is -Y2, and 

the right side (corresponding to larger time intervals) has larger measurement noise because less 

samples of longer duration are available from a finite length of record. 

Figure 6-4 shows a segment of a typical first order Markov signal with a time constant of O.ls 

and Figure 6-5 shows the corresponding Allan variance chart. Notable features are that there is a 

peak at 0.1s (the time constant), the gradient above the time constant is -Y2 and the gradient 

below the time constant is positive but less than 112. 

Figure 6-6 shows a segment of a typical resonant second order Markov signal (resonant 

frequency 10Hz and damping factor 0.1) and Figure 6-7 shows the corresponding Allan variance 

chrut. 
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Figure 6-2, White Noise Signal (Uniform Distribution). 
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Figure 6-4, First Order Markov Process Signal (Tau = O.ls). 
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Figure 6-6, Second Order Markov Process (Fn = 10Hz, Zeta = 0.1). 
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It should be noted that the higher time interval (right) side of the graph is subject to 

measurement noise because fewer samples will contribute to the estimate of the rms. 
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It is also important to note that when 2 or more sources of instability are present the largest at 

any particular r dominates because the root sum square is used and the Allan Variance is plotted 

on a log-log scale. 

6.2.3 High Frequency Characteristics 

There was a concern that 50Hz mains induced and white noise artefacts could distort the 

Allan Variance. Therefore, a simple 2-zero z-transform filter was applied to the data before the 

Allan Variance was computed. The two zeros were at 50Hz and 60Hz in order to exclude 

interference rutefacts at UK or USA mains frequencies . 

The effect of this filter on noi sy data (Channel T4 from subject Vol8) is shown in Figure 6-8; 

the upper line is without the filter and the lower line is with the filter. The effect of this filter on a 

record containing 50Hz mains 'hum' (Channel P3 from subject Mix3) is shown in Figure 6-9; 

again, the upper line is without the filter and the lower line is with the filter. 
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Figure 6-8, Allan Variance plot from noisy data with and without filtering. 

144 



0001 001 

....... 

_,.... 
V 

-.... V 
~---"-' -

Tlme(sl 

01 

........ 
1---

.... 

j-o-MCO Foher On=O P3 --Moo Fohr On= 1 P3 1 

10 
0001 

00001 

0 <XXXJ1 

"· 

0 <XXXJ01 

Figure 6-9, Allan Variance plot from 50Hz contaminated data with and without filtering. 

6.2.4 Allan Variance plots from normal and Alzheimer's subjects 

As this was believed to be the first time that the Allan Variance of the EEG had been 

investigated, we decided to plot the Allan Variance of bipolar channel pairs as it varies over the 

scalp and as it varies from normal subjects to subjects with dementia. The development data was 

used. Each of the following sheets contains 2 graphs; the first is the Allan Variance from a 

specific area of the scalp for 7 controls and the second is the Allan Variance from the same area 

of the scaJp for 7 subjects with dementia. 
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Figure 6-12, Allan Variance plot from Frontal-Central pair for Normal Subjects. 
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149 



Time fsl 
0.001 0.01 01 1 10 

0.001 

- --+- VOL.2 f'3.0 1 

~ ::;;:r-o ~ V ----VOI.3 f'3.01 

1\ 0.0001 
--<>--VOLA f'3.01 

-----VOl5 f'3.0 1 
-+-V0L6f'3.01 

V A"' 
-+-VOL7f'3.01 AY _), - ~ 

..... ' . ~voLB f'3.01 
"' .. 

-VOL.2P4·02 ~,.. ~ tc 
J:: 
0 

> - VOL3P4·02 
~ 

~ ~ --voLA P4-02 

1'-- 0.00001 
--o-VOL.5 P4·02 

--+-VOL6 P4-02 
-o-VOLl P4-02 
-+-VOLB P4-02 

0.000001 

Figure 6-18, Allan Variance plot from Perietal-Occipital pair for Normal Subjects. 
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Figure 6-19, Allan Variance plot from Perietal-Occipital pair for Alzheimer's Subjects. 
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Figure 6-20, Allan Variance plot from Intra-Temporal pair for Normal Subjects. 
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Figure 6-21, Allan Variance plot from Intra-Temporal pair for Alzheimer's Subjects. 
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Figure 6-22, Allan Valiance plot from Temporal-Occipital pair for Normal Subjects. 
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Figure 6-23, Allan Variance plot from Temporal-Occipital pair for Alzheimer's Subjects. 
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The Allan Variance obtained from normal subjects is most characteristically different from 

subjects with dementia in the temporal, perietal and occipital regions. This mirrors the findings 

with fractal dimension (see Section 3.8). In the frontal region, the Allan Variance is less ordered 

and this is probably because this area is most prone to ocular and other muscular artefacts. 

6.2.5 Possible Metric and Results from the Development Data Set 

The metric which was taken from the Allan Variance chart to evaluate whether such metrics 

could be useful was the ratio of the Allan variance at 0.04s (equivalent to approximately 12.5Hz) 

to the Allan variance at O.ls (equivalent to 5Hz). This was taken from the Allan variances for the 

same set of bipolar channels from the rear of the scalp as had been used to evaluate the Fractal 

measures. Two possibilities present themselves, however. These are to take the minimum across 

these selected channels and to take the rms across these selected channels. The results for the 

development data set are given in Table 6-1 , Table 6-2 and Table 6-3. 

Subject T3-T5 T4-T6 T5-0l T6-02 C3-P3 C4-P4 P3-0l P4-02 Cz-Pz RMS M in 

VOL2 2.040 2.198 2.948 2.898 2.407 2.233 3.034 2.748 2.349 2.563 2.040 
VOL3 1.986 1.627 1.965 1.645 1.960 1.806 1.630 1.720 1.7 19 1.790 1.627 
VOL4 1.9 12 2.108 1.998 2.267 2.289 2.918 1.746 1.902 2.593 2.220 1.746 
VOLS 1.877 1.835 2.236 1.477 2.976 2.787 2. 119 2.326 2.451 2.276 1.477 
VOL6 1.909 1.867 2.010 2.056 2.240 2.275 2.347 2.296 2.203 2. 140 1.867 
VOL7 2.455 2.153 3.246 2.706 2.325 l.996 2. 198 2.077 2. 129 2.394 1.996 
VOL8 1.882 1.727 2.017 1.807 1.643 1.566 1.814 1.796 1.365 1.745 1.365 

Mean 2.161 1.73 1 
Std Dev'n 0.301 0.256 
Limit necessary to achieve 99.9% specificity 1.230 0.940 

Table 6-1, Allan Variance ratio metric for normal subjects. 

Subject T3-T5 T4-T6 T5-0l T6-02 C3-P3 C4-P4 P3-0 l P4-02 Cz-Pz RMS M in 

AD! 0.985 1.039 0.872 1.004 0.770 0.967 0.722 0.9 19 0.92 1 0.916 0.722 
AD2 1.239 1.082 1.172 1.093 1.134 1.281 1.059 1.236 1.498 1.206 1.059 
AD3 1.202 1.090 1.115 l.l20 1.210 1.014 1.260 1.033 0.965 1.116 0.965 
MIDI 1.415 1.1 89 1.264 1.152 1.301 1.280 1.552 1.373 1.292 1.3 18 1.152 
Mix! 1.578 1.281 1.199 1.074 0.8 18 0.806 1.205 1.341 0.707 l.l45 0.707 
MIX2 0.893 0.957 1.118 0.900 0 .992 0 .963 1.048 0.869 0.947 0 .968 0.869 
MIX3 1.270 1.100 1.132 1.107 1.048 1.332 1.008 1.382 1.638 1.239 1.008 
Mean 1.130 0.926 
Std Dev' n 0.144 0. 168 
Sensitivity with limit necessary to achieve 99.9% specificity 76% 53% 

Table 6-2, Allan Variance ratio metric for subjects with dementia. 
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Subject T3-T5 T4-T6 TS-01 T6-02 C3-P3 C4-P4 P3-01 P4-02 Cz-Pz RMS Min 
VOLl 2.190 l.885 2.017 1.992 1.776 0.941 1.745 1.163 1.486 1.733 0.941 

Table 6-3, Allan Variance ratio metric for Voll. 

The sensitivities shown at the bottom of Table 6-2 (76% for Alzheimer's and 53% for 

vascular disease) was encouraging enough to try this same metric on the evaluation data. 

6.2.6 Testing on the Evaluation Data Set 

The Allan vruiance methods (minimum and rms of the ratio from 0.04s to 0.1s) were applied 

to the evaluation data set and the results are shown in Table 6-4 and Table 6-5. 

Normal Alzheimer's Vascular 

Results 1.3927 1.0263 1.5256 
1.2146 1.3100 1.7599 
1.9088 0.9516 1.0101 
1.7759 0.9182 1.5820 
1.6366 0.9765 L. l521 
1.5062 0.7493 
1.3230 0.8215 
2.0261 1.0787 
1.4603 1.4039 
1.4667 1.1662 
0.8085 1.1002 
0.9686 0.7071 
1.8038 0.8364 
1.9783 0.7870 
1.7573 1.1011 
2.2668 1.1343 
1.6094 0.9276 
0.9779 
1.7805 
1.9148 
1.1108 
1.1981 
1.6463 
2.5363 

Number of samples 24 17 5 
Mean 1.5862 0.9998 1.4059 
SD 0.4220 0.1936 0.3130 

Table 6-4, Allan Variance ratio metric for evaluation data (Minimum). 

154 



Normal A1zheimer' s Vascular 

Results 1.6174 1.2439 1.7031 
1.9427 1.7665 1.9348 
2.1359 0.9899 1.1025 
2.3002 1.0242 1.9170 
2.1466 1.2272 1.3448 
1.8305 0.8577 
1.6197 0.8784 
2.3679 1.2152 
1.6277 1.5578 
1.6734 1.3155 
1.7846 1.2880 
1.0893 1.0988 
2.0087 0.9125 
2.7890 0.8500 
2.0470 1.2334 
2.5235 1.2710 
2.1706 0.9975 
1.7065 
2.2306 
2.6503 
1.4106 
1.8367 
1.7781 
3.2619 

Number of samples 24 17 5 
Mean 2.0229 1.1604 1.6005 
SD 0.4756 0.2506 0.3660 

Table 6-5, Allan Variance ratio metric for evaluation data (RMS). 

6.2. 7 Conclusion 

If one assumes that the results from a population of normal subjects would fall into a 

Gaussian distribution then one may estimate the decision-making threshold which determines 

abnormality (to achieve 99.9% specificity). The mean and standard deviation figures for the 

normal subjects using the minimum and rms from the Allan variance ratios imply limits to be 

applied of 0.282 and 0.553 respectively. 
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If we apply these limits then for the minimum met1ic the sensitivity to Alzheimer's and the 

sensitivity to vascular dementia are both estimated to be 0.0%. The rms metric fairs only 

marginally better with the estimated sensitivity to Alzheimer's of 0.8% and the sensitivity to 

vascular dementia of 0.2%. These are clearly disappointing results and the All an variance metrics 

were discarded. However, it remains true that the Allan variance may provide a new and 

interesting method to visualise the spectral content of the EEG. 

6.3 Zero Crossing Interval Distribution 

6.3.1 Introduction 

A further novel method that shared some features with the zero-set dimension was proposed. 

This was the zero-crossing interval distribution (or probability density function). Initially, the 

research concentrated on the strict zero crossing interval distribution as reported at Como [10]. 

This was superseded by work, which is reported in this thesis, that deals with the interval 

between double zero crossings. That is, the interval between a positi.ve to negative transition to 

the next positive to negative transition. 

6.3.2 Mathematical Interpretation of the Fractal Dimension of the Zero Set 

This analysis considers the zero-set dimension discussed in Section 3.4.1. Consider a single 

gap, length g, between two consecutive zero crossings where the second crossing is at the 

beginning of a line being used to 'cover' the zero-set as illustrated in Figure 6-24. The distance, 

d, is the interval between the end of one line being used to cover the zero-set and the start of the 

next. 
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Figure 6-24, A sketch of the Dimension of the Zero-set. 

For the zero-set djmension, as applied to quantised signals, both g and dare integer multiples 

of the sampling period T5 expressed as 8s Ts and ds T5 • Where, 8s and d.r are integers and obey the 

following inequality: 

max(O, g - l:!.t) ~ d < g , (6.3) 

or, 

(6.4) 

The ratio of the length, l:!.t, necessary to cover a line gap pair to the interval covered, l , is 

given by: 

l:!.t 
= 

l d +l:!.t 
(6.5) 
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Thus, the average total length , L, of line segments necessary to cover the zero set for a data 

set of length Lo is given by: 

L(!lt) = 4J iJ P(ds = j) ~~ J, 
)=~ ~] +!::.t 

(6.6) 

where P( d=j) is the probability of d being equal to j. And, 

(6.7) 

If we assume that the distance, d, is equally likely to be in any of the allowable states (and 

this is reasonable given our demonstration that phase randomisation has no effect) then: 

L(!lt) =4J"L P(gs =i)· L. . , 
00 

( ( i-1 !::.t JJ 
i=l } =J(l- J)(I:.J + !::.t) 

(6.8) 

where, 

(6.9) 

Thus, 

L(!::.t) = 4J~( P(~s = i). I( ~t JJ' 
i= l (1- J) }=\ (~; + !::.t) 

(6.10) 

and, 

L( !::.t) = 4 L . s . L ---:- , oo ( !::.t. P(g = i) i-l+ruiTs ( 1 JJ 
i=l Ts(z- 1) }=J+ruiTs ] 

(6.11) 

L(!::.t)-' ~( !::.t. P(gs = i) · (H - H )J 
-'-U~ Ts(i-J) i - l+ruiT5 J - l+ru i T5 • 

(6.12) 
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where Hn is the n1
h Harmonic Number (first order) for n>O and zero for n=O. 

Equation 6.12 may be recognised to be of the form below. Recall, P(g5=i) is the Probability 

Density Function of the zero-crossing interval distribution. 

L(!lt) = ~f_(P(gs = i)K(i,~t)) (6.13) 
i=l 

K may be plotted as a function of the zero crossing interval, i, and the length of the line being 

used to cover the zero set: 
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Figure 6-25, Weighting against zero crossing interval for various line lengths. 
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To illustrate the effect of the nature of this weighting function it is helpful to plot the line 

length (UL0) against the line length (~t) for hypothetical PSDs of zero crossing interval which 

are monotonic. That is P(gs=i) = 1 for i=gso and zero elsewhere . 
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These curves, when compared to the theoretical curves for fractal <limensions (below) show 

that longer zero crossing intervals (lower frequencies) tend to give a lower fracta l dimension. 

Hence, it has been shown that the measured fractal dimension of the zero set is a direct function 

of the zero crossing interval PDF (assuming that phase is random) and that longer zero crossing 

intervals (lower frequencies) tend to give a lower fractal dimension. 
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F igure 6-28, Length of line necessary to cover zero set against line segment length. 

6.3.3 High Frequency Characteristics 

As with the Allan Variance, there was a concern that 50Hz mains induced and white noi se 

artefacts could distort the results. Therefore, the same simple 2-zero z-transform filter was 

applied to the data before the zero crossing interval distribution was computed (see Section 

6.2.3). 
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6.3.4 Zero Crossing Interval Plots from Normal and Alzheimer's Subjects 

As this was believed to be the first time that the zero-crossing interval of the EEG had been 

investigated in detail, we decided to plot the probability density function (PDF) of bipolar 

channel pairs over the scalp and as it varies from normal to subjects with dementia. The 

development data was used. Each of the following sheets contains two graphs; the first is the 

zero-crossing interval PDF from a specific area of the scalp for 7 controls and the second is the 

same for 7 subjects with dementia, 
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Figure 6-29, Zero-Crossing Interval PDF from Centai-Perietal pair for Normal Subjects. 
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Figure 6-30, Zero-Crossing Interval PDF from Cental-Perietal pair for subjects with dementia. 
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Figure 6-31, Zero-Crossing Interval PDF from Frontal-Central pair for Normal Subjects. 
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Figure 6-32, Zero-Crossing Interval PDF from Frontal-Central pair for subjects with dementia. 
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Figure 6-33, Zero-Crossing Interval PDF from Frontal-Temporal pair for Normal Subjects. 
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Figure 6-34, Zero-Crossing Interval PDF from Frontal-Temporal pair for subjects with dementia. 

165 



-+-VOLt Fp1-F3 

-li-VOU Fpi·F3 
-o-vot..3Fpl..f3 

-M-VOl~ Fp1-F3 
-!1-\/0LS Fpi-F3 

-.-vot.B Fpl.f"3 
-+-VOU Fpi-F3 

- VOL8Fp1..f3 

- VOL1Fp1..f7 

--o-VOl2 Fpi-F7 

-o-VOl.3 Fpl.f7 
-6-VOL4 Fpl..f7 

-M-\IOLS Fpi·F7 

];' __._VOl.B Fpl..f7 

ii 15 

~ 
-o-vou Fpi·F7 
-t-VOlS Fpi·F7 
- 1101.1 Fp2-F4 
- vou Fp2.F4 
-+-1101.3 Fp2-F4 
-G-1101.4 Fp2.F4 
...._IIOL5Fp2-F4 
-M-VOlS Fp2-F4 
-VOUFp2-F4 

-<>--VOlS fp2·f4 
-t-VOI.I Fp2-F8 
-VOUFp2-F8 
- 1101.3 Fp2-F8 
-+-VOUFp2-FB 
-li-IIOLS Fp2.F8 

0 --6-VOlS Fp2-F8 

0 0.05 0.1 0.15 

Zero Crossing Interval (s) 

0.2 025 -M-VOU' Fp2-F8 
-ll-1101.8 fp2·F8 

Figure 6-35, Zero-Crossing Interval PDF from Intra-Frontal pair for Normal Subjects. 
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Figure 6-36, Zero-Crossing Interval PDF from Intra-Frontal pair for subjects with dementia. 
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Figure 6-37, Zero-Crossing Interval PDF from Perietai-Occipital pair for Normal Subjects. 
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Figure 6-38, Zero-Crossing Interval PDF from Perietal-Occipital pair for subjects with dementia. 
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Figure 6-39, Zero-Crossing Interval PDF from Intra-Temporal pair for Normal Subjects. 
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Figure 6-40, Zero-Crossing Interval PDF from Intra-Temporal pair for subjects with dementia. 
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Figure 6-41 , Zero-Crossing Interval PDF from Temporal-Occipital pair for Normal Subjects. 
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Figure 6-42, Zero-Crossing Interval PDF from Temporal-Occipital pair for subjects with 
dementia. 
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The plots obtained from normal subjects are most characteristically different from subjects 

with dementia in the temporal, perietal and occipital regions. This mirrors the findings with 

fractal dimension (see Section 3.8). In the frontal region, the results are less ordered and this is 

probably because this area is prone to ocular and other muscular artefacts. 

6.3.5 Cumulative Based Metric of Zero Crossing Interval 

The first metrics to suggest themselves when looking at the zero.crossing interval distribution 

were cumulative based metrics. If we plot the cumulative density distribution, for bipolar 

channels at the rear of the scalp, for normals (Figure 6-43) and subjects with dementia (Figure 

6-44) then it is clear that the normals have a higher density at lower time intervals. Hence, we 

evaluated the 75%, 80% and 85% points of the cumulative distribution as a metric. These results 

are shown in Table 6-7, Table 6-6 and Table 6-8 respectively. 
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Figure 6-43, Zero crossing interval CDF from normal subjects. 
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Figure 6-44, Zero crossing interval CDF from subjects with dementia. 
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Normal who went onto develop Alzheimer's Disease 

VOLl 0.068 

Normal 
VOL2 0.056 
VOL3 0.058 
VOL4 0.061 
VOL5 0.045 
VOL6 0.052 
VOL7 0.061 
VOL8 0.048 

Mean normal 0.055 
Std Dev'n Normal 0.006 
Limit to achieve 99.9% specificity 0.074 

Probable Alzheimer's Disease 
ADl 0.062 
AD2 0.067 
AD3 0.075 

Mean 0.068 
Standard Deviation 0.007 
Sensitivity 16.0% 

Multi-Infarct and Mixed Dementia 
MIDI 0.077 
Mixl 0.055 
MIX2 0.067 
MIX3 0.066 

Mean 0.066 
Standard Deviation 0.009 
Sensitivity 17.5% 

Table 6-6, Minimum 80% point of zero-crossing interval CDF over rear of scalp. 
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Normal who went onto develop Alzheimer's Disease 
VOLl 0.064 

Normal 
VOL2 0.052 
VOL3 0.053 
VOlA 0.059 
VOL5 0.040 
VOL6 0.046 
VOL7 0.058 
VOL8 0.042 

Mean norma] 0.050 
Std Dev' n Normal 0.007 
Limit to acrueve 99.9% specifici ty 0.073 
Probable Alzheimer's Disease 

ADl 0.051 
AD2 0.059 
AD3 0.069 

Mean 0.060 
Standard Deviation 0.009 
Sensitivity 7.8% 

Multi-Infarct and Mixed Dementia 
MIDI 0.072 
Mix l 0.048 
MIX2 0.059 
MIX3 0.057 

Mean 0.059 
Standard Deviation 0.010 
Sensitivity 9.1 % 

Table 6-7, Minimum 75% point of zero-crossing interval CDF over rear of scalp. 
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Normal who went onto develop Alzheimer's Disease 
VOL1 0.072 

Normal 
VOL2 0.061 
VOL3 0.065 
VOlA 0.064 
VOL5 0.051 
VOL6 0.059 
VOL7 0.064 
VOL8 0.059 

Mean normal 0.060 
Std Dev'n Normal 0.005 
Limit to achieve 99.9% specificity 0.076 
Probable Alzheimer's Disease 

ADl 0.072 
AD2 0.074 
AD3 0.081 

Mean 0.076 
Standard Deviation 0.005 
Sensitivity 50.8% 
Multi-Infarct and Mixed Dementia 

MIDI 0.082 
Mix1 0.063 
MIX2 0.075 
MIX3 0.075 

Mean 0.074 
Standard Deviation 0.008 
Sensitivity 39.8% 

Table 6-8, Minimum 85% point of zero-crossing interval CDF over rear of scalp. 

6.3.6 Mean Zero Crossing Interval 

The next metric tried was the mean zero crossing interval . The overall PDF from which the 

mean interval is taken (for bipolar channels at the rear of the scalp) is shown in Figure 6-45 for 

normals and Figure 6-46 for subjects with dementia. 
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Figure 6-45, Combined zero-crossing PDF from selected channels for normal subjects. 
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Figure 6-46, Combined zero-crossing PDF from selected channels for subjects with dementia. 

The use of the average zero crossing gap was inspired from the mathematics below which 

attempted to isolate the important feature of the zero-set fractal dimension. 
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The mean zero.crossing interval for the development data set is and the estimated sensitivities 

are given in Table 6-9. 

Normal who went onto develop Alzheimer's Disease 
VOLl 110 

Normal 
VOL2 95 
VOL3 97 
vou 105 
VOL5 93 
VOL6 99 

I 
VOL7 104 
VOL8 96 

Mean normal 98 
i Std Dev'n Normal 4.6 
' Limit to achieve 99:9% specificity 112 

Probable Alzheimer's Disease 
ADl 115 
AD2 116 
AD3 131 

Mean 121 
Standard Deviation 9.0 
Sensitivity 82.2% 

. Multi-Infarct and Mixed Dementia 
I MIDI 127 I 

I Mixl 95 
I Mix2 123 

Mix3 110 
Mean 114 
Standard Deviation 14.6 
Sensitivity 53.4% 

Table 6-9, Mean zero-crossing interval over rear of scalp (ms). 
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6.3.7 Correlation to Normal Zero Crossing Interval Distribution 

6.3.7.1 Introduction and the Reference Normal PDF 

As the features of the zero crossing interval PDF (Figure 6-45 and Figure 6-46) are complex 

and it appears that the important features are the position and shapes of peaks that are 

characteristic of a normal PDF, it was decided to estimate what is normal (with a tolerance) and 

then compare each signal to it. The mean and standard deviation of the PDF for the set of 

normals, at each interval was assessed and plotted. This is shown graphically in Figure 6-47, 

below. 
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Figure 6-47, Reference zero-crossing PDF for normal subjects. 

6.3.7.2 Results using the Development Data Set 

Each record from the development data set was compared to this reference curve and the 

distance from it, at each point, was expressed in standard deviations. The rrns of these standard 

deviations was taken as the error from the complete record. It is noted that other methods exist to 

compare distributions but these were not applied during this research. 
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Table 6-10, below, shows the results of this comparison and they are encouraging. However, 

their significance is compromised because they are self-referential. That is, it is not surprising 

that the normals used to create the standard curve are closest to it. For this reason it is important 

to repeat this test on the evaluation data, whilst using the standard normal curve from the 

development data as the reference. This runs contrary to the general rule of reserving the 

evaluation data set for testing the best of these novel methods and hence avoiding the charge of 

simply testing enough methods that one was bound to be successful eventually. However, in this 

instance it was felt that nothing else would provide a sensible measure of the methods' efficacy. 
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Nmmal who went onto develop Alzheimer's Disease 
VOL1 2.4 

Normal 
VOL2 1.1 
VOL3 0.9 
VOL4 1.0 
VOL5 1.1 
VOL6 0.8 
VOL7 0.8 
VOL8 0 .8 

Mean normal 0.92 
Std Dev'n Normal 0.14 
Limit to achieve 99.9% specificity 1.36 
Probable Alzheimer's Disease 

AD! 5.2 
AD2 4.3 
AD3 9.2 

Mean 6.23 
Standard Deviation 2.64 
Sensitivity 96.8% 
Multi-Infarct and Mixed Dementia 

MIDI 5.1 
Mixl 2.2 
Mix2 5.7 
Mix3 3.5 

Mean 4 .13 
Standard Deviation 1.60 
Sensi ti vi ty 95.8% 

Table 6-10, Difference from standard normal plot. 

6.3.7.3 Results using the Evaluation Data Set 

Each record from the evaluation data set was compared to the reference curve derived from 

the development data set and the distance from it, at each point, was expressed in standard 

deviations. The rms of these standard deviations was taken as the enor from the complete record. 

Table 6-11, below, shows the results of this comparison and they are contrasted with the 

results from the development data set in Table 6-12. 
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Normal AJzheimer' s Vascular 

Results 1.5 4.4 3.4 
4.0 2.0 4.0 
3.9 3.1 5. 1 
1.7 7.2 2.0 
1.3 3.2 2.8 
1.5 6.6 
1.9 7.6 
2.7 5.4 
2.9 3.9 
2.6 4 .0 
1.5 3.1 
2.4 3.5 
1.7 10.9 
1.6 5.8 
1.1 3.2 
3.9 5.8 
1.0 5.8 
1.7 
2.4 
2.1 
2.6 
1.7 
3.0 
3.0 

Number of samples 24 17 5 
Mean 2.25 5.03 3.44 
SD 0.88 2.23 1.18 

Table 6-11, Results from mettic based on difference from average normal. 

Development Evaluation 
data set data set 

Average results from normal subjects 2.25 2.25 
Standard deviation from normal subjects 0.14 0.88 
Limit to achieve 99.9% specificity 1.36 4.98 
Average result for Alzheimer's subjects 6.23 5.03 
Standard deviation of Alzheimer's subjects 2.64 2.23 
Estimated sensitivity to Alzheimer's disease 96.8% 51.0% 
Average result for vascular dementia subjects 4.13 3.44 
Standard deviation of vascular dementia subjects 1.60 1.18 
Estimated sensitivity to vascular dementia 95.8% 9.6% 

Table 6-12, Comparison of development and evaluation data results. 
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From these results, it may be seen that the sensitivities to Alzheimer's disease and 

(particularly) vascular dementia using the evaluation data (51% and 9.6% respectively) are 

significantly lower than similar results using the development data (96.8% and 95.8% 

respectively). This is because the difference of the evaluation data set norrnals to the 

development data set norrnals is large -but not as large as the difference to any of the groups of 

subjects with dementia. It is felt that this method is unlikely to provide a reliable, sensitive metric 

to detect dementia. However, it may be worth repeating this experiment in the future with a 

larger set of development and evaluation data taken with the same recording protocol. 

6.3.8 Alpha I Theta Ratio from Zero Crossing Interval 

The Alpha!fheta ratio derived from the fractal dimension measures gave some of the better 

results (see Sections 3.6 and 4.4.3). It was decided to create a similar metric based on the zero 

crossing interval PDF. The boundaries for each band of activity were chosen. after numerical 

expe1imentation on the development data set and the boundaries that gave the best results are 

shown in Table 6-13, below. These experimentally derived boundaries are acceptable given the 

definitions in Section 2.2.4. 

T (s) F (Hz) 
Beta/ Alpha boundary 0:055 18.3 
Alpha!fheta boundary OJ25 8.0 
Sub Theta boundary 0.234 4.3 

Table 6-13, Band boundaries. 

The metric used was the ratio of density in the Alpha range to the sum of the densities in the 

Alpha and Theta ranges. This metric seems (on the development data) capable of differentiating 

control subjects from subjects with dementia with a wide band between the two groups (see 

results below, Table 6-14). It should be remembered that the entire recording from each subject 

was used without any pre-selection of segments that we wish to analyse and that this method is 

relying on pushing the records from artefacts out of the ranges specified for Alpha and Theta. 

The estimated sensitivities to Alzheimer's disease and vascular dementia for a specificity of 

99.9% are also given in Table 6-14. 
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Normal who went onto develop Alzheimer's Disease 
VOLl 0.747 

Normal 
VOL2 0.883 
VOL3 0.780 
VOlA 0.811 
VOL5 0.859 
VOL6 0.790 
VOL7 0.814 
VOL8 0.770 

Mean normal 0.815 
Std Dev'n Normal 0.042 
Limit to achieve 99.9% specificity 0.686 
Probable Alzheimer's Disease 

AD1 0.494 
AD2 0.525 
AD3 0.325 

Mean 0.448 
Standard Deviation 0.108 
Sensitivity 98.7% 
Multi-Infarct and Mixed Dementia 

MID1 0.535 
Mix l 0.691 
Mix2 0.465 
Mix3 0.584 

Mean 0.569 
Standard Deviation 0.095 
Sensitivi ty 89.2% 

Table 6-14, Alpha/theta ratio based on zero crossing interval. 

6.3.9 Zero Crossing Interval Sequence 

To complete the investigation of the zero crossing interval distribution, it was decided to 

study the sequence in which the intervals occurred. This would determine, for example, if alpha 

waves occur in bursts and whether such information could be used as the basis for a metric to 

detect dementia. Note this method has similarities to the Markov Chain theory, which is 

exploited in genetics, etc. 
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To illustrate the method used for this study, consider the typical normal subject Vol2. The 

two dimensional probability density function (Figure 6-48) was plotted to show the likelihood of 

a pair of zero-crossing intervals adjacent to one another. The vertical axis in Figure 6-48 is the 

probability and the two horizontal axes are the first interval and the second interval. From the 

illustration, it seems (visually) that there is some structure and that an interval typical of an alpha 

wave (10Hz-12Hz) is more likely to be followed by a similar interval than would be expected 

from random variation alone. To test this we constructed the two dimensional PDF which would 

be expected if the sequence were random and taken from the lD PDF of zero-crossing intervals 

(Figure 6-49). This 'expected' distribution is shown in Figure 6-50 and the difference between 

this expected distribution and the actual distribution is shown in Figure 6-5 1. This difference 

from what would be expected by a random sequence and the actual sequence has a distinct 

structure and it confirms that alpha waves occur in bursts. That is an alpha wave is more likely to 

be followed by another alpha wave than it would be if the sequence of intervals were random . 
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Figure 6-48, Zero-crossing interval sequence for Vol2 (actual). 
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Figure 6-49, Zero-crossing interval sequence for Vol2 (ID). 
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Figure 6-50, Zero-crossing interval sequence for Vol2 (expected). 
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Figure 6-51, Zero-crossing interval sequence for Vol2 (difference). 
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A similar set of graphs has been produced for each of the subjects in the development data 

set Each of the Figures below (Figure 6-52 to Figure 6-66) show the lD PDF in the top left, the 

expected 2D PDF in the top right, the actual 2D PDF in the bottom left and finally the difference 

(actual minus expected) in the bottom right. 
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Figure 6-52, Zero-crossing interval sequence for V oil. 
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Figure 6-55, Zero-crossing interval sequence for Vol4. 
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Figure 6-57, Zero-crossing interval sequence for Vol6. 
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From these figures it is possible to conclude that most of the normal subjects show evidence 

of alpha waves occurring in burst (to a lesser or greater extent), whereas, none of the subjects 

with dementia shows evidence of alpha waves occurring in bursts. Although this is an interesting 

way of identifying coherent bursts of alpha waves it was not possible (despite significant work) 

to convert this into a meaningful metric that could provide differentiation between subjects with 

dementia and normal subjects. 

6.3.10 Testing on the Evaluation Data Set 

All of the prospective methods based on the zero crossing interval were compared (Table 

6-15) to see which should be tested on the evaluation data set. It should be remembered that these 

results are from experiments using parameterisation honed to the same development data set. 

Hence, the need to use independent data (the evaluation data set). 
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Method Estimated Estimated 
sensitivity to sensitivity to 
Alzheimer' s vascular dementia 

80% Cumulative density position 16.0% 17.5% 
75% Cumulative density position 7.8% 9.1 % 
85% Cumulative density position 50.8% 39.8% 
Mean zero crossing interval 82.2% 53.4% 
Difference from reference normal curve 96.8% 95.8% 
Repeat of difference from reference normal curve 51.0% 9.6% 
using evaluation data 
Alpha!fheta ratio based on zero crossing interval 98.7% 89.2% 

Table 6-15, Estimated sensitivities for zero crossing interval methods. 

The Alpha!fheta ratio metric based on the zero-crossing interval was chosen to test as it 

showed the most promise. The results of this method applied to the evaluation data set are shown 

in Table 6-16 and an illustration of the distribution of results is given in Figure 6-67. 
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Figure 6-67, Distribution of results from zero crossing interval derived Alpha!fheta ratio. 
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Normal Alzheimer's Vascular 

Results 0.734 0.490 0.608 
0.788 0.727 0.634 
0.716 0.530 0 .455 
0.849 0.316 0.742 
0.784 0.531 0.584 
0.796 0.395 
0.708 0.331 
0.751 0.440 
0.710 0.537 
0.688 0.496 
0.754 0.621 
0.658 0.580 
0.760 0.243 
0.839 0.269 
0.810 0.565 
0.775 0.404 
0.828 0.445 
0.779 
0.690 
0.825 
0.672 
0.783 
0.672 
0.900 

Number of samples 24 17 5 
Mean 0.761 0.466 0.604 
SD 0.063 0.130 0.103 

Table 6-16, Results from Alphatrheta metric based on zero crossing interval. 

These results show that, if one were to demand a specificity of 99.9%, then a result would be 

considered abnormal if it were less than 0.565. This gives an estimated sensitivity to Alzheimer's 

disease of 77.8% and an estimated sensitivity to vascular (or mixed) dementia of 35.2%. 
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6.3.11 Comparison to Alpha I Theta Derived from PSD 

Having produced an Alpha/Theta ratio metric based on the zero-crossing interval it was 

important to produce a similar method based on the power spectral density and determine 

whether similar results could have been produced this way. 

For this method, the combined power spectral density was taken from the same electrode 

pairs (bipolar) as had been used for the preceding methods. The boundaries for each band of 

activity were chosen after numerical experimentation on the development data set and the 

boundaries that gave the best results are shown in Table 6-17, below. These experimentally 

derived boundaries are acceptable given the definitions in Section 2.2.4 and are very similar to 

the boundaries previously used for the Alpha/Theta ratio based on the zero"crossing interval 

(Table 6-13 ). 

F(Hz) 
Beta/ Alpha boundary 18.0 
Alpha/Theta boundary 8.0 
Sub Theta boundary 4.0 

Table 6-17, Band boundaries, 

As before, the metric used was the ratio of density in the Alpha range to the sum of the 

densities in the Alpha and Theta ranges. The results from the development data set are shown in 

Table 6-18. 
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Normal who went onto develop Alzheimer's Disease 
VOL1 0.635 

Normal 
VOL2 0.767 
VOL3 0.718 
VOlA 0.731 
VOL5 0.791 
VOL6 0.711 
VOL7 0.746 
VOL8 0.714 

Mean normal 0.740 
Std Dev'n Normal 0.030 
Limit to achieve 99.9% specificity 0.646 
Probable Alzheimer's Disease 

AD1 0565 
AD2 0.468 
AD3 0.569 

Mean 0.534 
Standard Deviation 0.057 
Sensitivity 97.5% 

Multi-Infarct and Mixed Dementia 
MID1 0.510 
Mix1 0.669 
Mix2 0.517 
Mix3 0.598 

Mean 0.573 
Standard Deviation 0.075 
Sensitivity 83.2% 

Table 6-18, Alpha/theta ratio based on PSD. 

The results from applying this method to the evaluation are shown in Table 6-19. 
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Normal Alzheimer's Vascular 

Results 0.672 0.533 0.562 
0.7 18 0.673 0.565 
0.615 0.559 0.699 
0.773 0.403 0.589 
0.721 0.482 0.604 
0.722 0.472 
0.660 0.541 
0.650 0.512 
0.730 0.589 
0.635 0.437 
0.642 0.649 
0.799 0.598 
0.741 0.504 
0.774 0.518 
0.769 0.544 
0.665 0.406 
0.754 0.477 
0.793 
0.636 
0.627 
0.721 
0.816 
0.754 
0.693 

Number of samples 24 17 5 
Mean 0.712 0.523 0.604 
SD 0.061 0.076 0.065 

Table 6-19, Alphaffheta metric based on power spectral density. 

These results show that, if one were to demand a specificity of 99.9%, then a result would be 

considered abnormal if it were less than 0.524. This gives an estimated sensitivity to Alzheimer's 

disease of 50.3% (c.f. 77.8% for alpha/theta ration based on zeros crossing interval) and an 

estimated sensitivity to vascular (or mixed) dementia of 10.7% (c.f. 35.2% for alpha/theta ration 

based on zeros crossing interval). Hence, an Alpha/Theta ratio generated from the zero crossing 

intervals has better performance than the same generated from the power spectral density. 
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6.3.12 Revisiting Subject Specificity 

Given that the best method discovered is the Alphaffheta ratio based on zero crossing 

interval distribution, it was decided to check whether the subject specific concept would help 

with this method. This follows from the discussion of subject specific measures and how they 

may help in the early detection of dementia (see section 3.5). 

Record ADAPTED BOX 
X1 0.814 
X2 0.840 
X3 0.856 
Y1 0.551 
Y2 0.581 
Y3 0.513 
V1 0.553 
V2 0.563 
W1 0.716 
W2 0.788 

Table 6-20, Alphaffheta ratio of Zero Crossing Interval applied to subject specific data. 

If one considers the vruiation from sample to sample from the same subject to be equivalent 

to measurement noise (or short term variability) on the fractaJ dimension then one may estimate 

the population standard deviation for a single subject for each measure: 0.043. 

Taking the statistics for the evaluation normals (Mean = 0.761, SD = 0.063) it may be seen 

that the standard deviation among the group of normals is, as expected, larger than the variation 

for a single subject (0.043). 

The graph below summru·ises the subject specific results that were obtained using the new 

metric. 
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Figure 6-68, Updated subject specific results (illustration). 

The graph shows that this method benefits from the use of subject specific interpretation. 

6.3.13 Evaluating the Significance of this Novel Method 

The Alpha/Theta ratio based on the zero crossing interval distribution is a promising, novel 

method. It has been shown (on an independent data set) that, if one were to demand a specificity 

of 99.9%, the estimated sensitivities to early Alzheimer's disease and vascular dementia are 

77.8% and 35.2% respectively. 

By compatison, the sensitivities, under similar conditions, with the same data and using the 

best fractal method tested, to early Alzheimer's disease and vascular dementia are 67.0% and 

16.9% respectively. In addition, under similar conditions, with the same data and using a 

standard method (Alpha/Theta ratio based on the power spectral density), the sensitivities to 

early Alzheimer's disease and vascular dementia are 50.3% and 10.7% respectively. 

Therefore, the best novel method (Alpha/Theta ratio based on the zero crossing interval 

distribution) is better at detecting dementia than either fractal measures or a typical standard 

method. It should also be remembered that the application of subject specific methodology would 

improve these results still further. 
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It is interesting to consider whether this, the best method achieved in this research, is good 

enough to be of used in clinical practice. Before we consider this question though, we should 

recall that the data used to test the method was realistic, and independent of the method 

development: 

• The trial data set encompassed various states: awake, drowsy and alert, with periods of 

eyes closed and open. 

• The classification of the records between normal and Alzheimer's disease was taken from 

the written hospital diagnosis sheets. 

• The probable Alzheimer's and vascular subjects were not previously diagnosed and were 

therefore in the early stages of exhibiting symptoms; in fact some of these subjects were 

not referred for dementia diagnosis but came in for investigation of seizures et cetera. 

o For all records, to avoid the possibility of inadvertently or unconsciously selecting data 

particularly suitable for analysis a predetermined protocol was applied. Data from 60s to 

300s from each record was used. This avoids electrical artefacts, which commonly occur 

at the beginning of a record, and gives a standard 4 minutes of data to analyse. This 

segment of data including artefacts was analysed with no a priori selection of elements 

'suitable for analysis'. This approach leads to a prediction of the usefulness of the 

technique, as it would most conveniently be used in practice. 

The benefits of introducing this method (subject to a larger scale trial) would be: 

• One third of vascular dementia sufferers could be detected earlier and offered the benefit 

of existing drugs and therapies to extend the symptom free state. Cost of care would also 

be delayed or reduced. 

• Three-quarters of early Alzheimer's disease sufferers could be detected earlier and.offered 

the benefit of new drugs to slow the progression of their disease and extend the symptom 

free state. Cost of care would also be delayed or reduced. 
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The costs of introducing the method would be mainly felt be GPs who would have to be 

convinced of the value of the new method. The costs would be: 

• The cost of the computer systems deployed in GPs surgeries (PC, software, interface box 

and electrodes) 

• Training for the GPs and some extra time with each patient 

• l in 1000 normal subjects will be troubled with an unnecessary visit to a hospital 

Neurophysiology department. 

It is not possible to directly equate financial cost and medical resources to relieving patient 

suffering. However, there is a point at which a technique/therapy/practice becomes viable. I 

believe, subject to a larger scale trial, ,that this method provides benefits that outweigh the cost. 

6.4 Summary 

The surrogate data testing in the preceding chapter showed that all of the information, which 

was able to give the (partial) success with fractal dimension measures, was contained within the 

power spectral density. However, it was also known from the background research that, despite 

significant effort over a long period; no spectral based measure had been good enough to use in 

general clinical practice. Thus, it was decided to take a different approach and propose methods 

that were determined by the power spectral density but were in the time domain, These novel 

methods were the Allan Variance (which shares features with the adapted box dimension) and 

the zero-crossing interval distribution (which shares features with the zero-set dimension). This 

search for novel methods was conducted using just the development data set so that the 

evaluation data set could be kept in reserve to test any proposed methods. 
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Allan variance is a time-domain analysis technique originally developed to study the 

frequency stability of oscillators and it can be used to determine the character of the underlying 

processes that can· give rise to data features. After some study of the Allan Variance of the EEG 

for normal subjects to subjects with dementia, a metric derived from the Allan Variance was 

,proposed. 'fhis metric tested on the evaluation data set, the results were very disappointing and 

the Allan variance metrics were-discarded. However, it remains true that the Allan variance may 

provide a new and interesting method to visualise the spectral content of the EEG. 

A novel method that shared' some features with the zero-set dimension was proposed. This 

was the zero-crossing interval distribution (or probability density function). Initially, the research 

concentrated on the strict zero crossing interval distribution but this was superseded by using the 

interval between double zero crossings (that is, the interval between a positive to negative 

transition to the next positive to negative transition). After some mathematical investigation of 

this concept several metrics were tested on the development data set; the 75%, 80% and 85% 

points of the cumulative density function, the mean zero crossing interval, the cotTelation of the 

zero crossing interval probability function to the mean zero crossing interval probability function 

for normal subjects, the Alpha/Theta ratio derived from the zero crossing interval PDF and the 

zero crossing interval sequence. 

The best results were obtained with the Alpha/Theta ratio derived from the zero crossing 

interval PDF and this method was tested against the evaluation data set. These results show that, 

if one were to demand a specificity of 99.9% the estimated sensitivity to Alzheimer's disease and1 

vascular dementia would be 77.8% and 35.2% respectively. 17his method was thus shown to be 

better at detecting dementia than either fractal measures or a typical standard method. It is also 

noted that applying the subject specific methodology would improve this still further. 
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The benefits and costs of this method were considered in order to give an opinion on whether 

this method is good enough to be of used in clinical practice. The significant benefits were that 

one third of vascular dementia sufferers and three quarters of Alzheimer's disease sufferers could 

be detected earlier. This gives the opportunity to prescribe drugs and therapies that could extend 

the symptom free state and reduce/delay the cost of care. The costs would be mainly felt in 

general practice where new equipment, training and patient contact time would be required. 

There would also be a false alarm rate and 1 in 1000 normal subjects will be troubled with an 

unnecessary visit to a hospital Neurophysiology department. Considering this, I formed a 

personal opinion that, subject to confirmation of the results in a larger scale trial, this method 

provides benefits that outweigh the cost. 
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Chapter 7. Review, Concllusions and Future 
Work 

7.1 Review 

Improved life expectancy has led to a significant increase in the number of people in the high­

risk age groups that will develop Alzheimer's disease and other dementia. Efforts are being made 

to develop treatments that slow the progress of these diseases. However, unless a sufferer is 

diagnosed in the early stages the treatments cannot give the maximum benefit. Therefore, there is 

an urgent need for a practical, decision support tool that will enable the earliest possible detection 

of dementia within the large at-risk population. 

This thesis described the background to the research; the Human EEG, fractals, chaos, 

complexity, and particularly their application to detecting dementia. The state of the art in 

automated EEG analysis was also reviewed. 

The two main sources of published work on the fractal dimension of the Human EEG that 

existed before this research were those by Woyshville and Calabrese, and Wu et al. These papers 

were reviewed, particularly from a theoretical standpoint, and numerical experimentation are 

used to confirm that both methods had shortcomings. There are problems associated with 

estimating the fractal dimension of shapes, such as the EEG, that exist in affine space. 

Two methods, which are appropriate in affine space, were selected from the range of 

dimension measures found in the literature. The Adapted Box Dimension and Dimension of the 

Zero Set were each applied to raw EEG data and to the auto-correlation of the EEG data. The 

results seem to show that all these fractal methods provide metrics that tend to decrease when 

dementia is present. However, the separation between subjects with dementia and normal subject 

was not good. It was found that changing controlling constants in the method, such as the 

segment length, affected the results, Better results were produced by tuning parameters, but this 

does not represent strong evidence as it is not clear whether the better results occur because the 
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method is tuned to that set of data or because this method of tuning will work in general. 

These concerns were the main reason for conducting the evaluation, with a new, independent 

set of data, described in Chapter 4. This evaluation, with new data, produced mediocre results but 

it was valuable because it demonstrated that the performance of the fractal dimension based 

measures is a strong function of the tuning one applies. From the evaluation it was clear fractal 

measures could be used to separate subjects with dementia from controls but that this separation 

would have low sensitivity. This evaluation was also a clear demonstration of the value of a blind 

test using an independent data set and the dangers of taking results from a small a set of data, 

which had itself been used to develop the method. 

Subject specific analysis of the fractal dimension was also proposed. This was shown to be an 

exciting, interesting and useful candidate for early detection of dementia. Subject specific 

analysis involves compming an EEG to those taken previously from the same subject: Looking 

for trends in indices that arise over time rather than comparing an EEG to what is generally 

nmmal within the population. Subject specific EEG techniques were shown more sensitive than 

group comparison based on the same metric. 

It was observed that measurements of fractal dimension over short data segments (2s) 

produced by clearly defined signal types (alpha wave, etc.) fall into bands. Other, less well 

defined, signals can be classified as having similar fractal dimensions to the clearly defined types 

and it is possible to determine the density of observations in the bands associated with Theta, 

Alpha and Beta activity. A metric, the ratio of observations in the Alpha range to the sum of the 

total observations in the Alpha and Theta ranges, was tested (on a small data set) and a 

differentiation between the normal and subjects with dementia was found. 

Time evolution of the fractal dimension was also studied and it was found that the fractal 

dimension is stable and high for the normal subjects except where they become drowsy toward 

the end of the recording. The subjects with dementia present a generally lower fractal dimension 

(as noted previously) and the fractal dimension is less stable with time as the normals. It was also 

noted that subjects with dementia do not seem to enter a drowsy phase before the end of the 

recording. 
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The variability of fractal dimension over the scalp was also considered. In particular, it was 

shown that the efficacy of the fractal dimension based methods to separate normal subjects from 

those with dementia was better in the posterior region of the head. This is believed to be because 

the effect of dementia on the EEG is stronger and artefacts are weaker on the scalp at the back of 

the head. 

Inspired by the work of other earlier researchers, the fractal dimension of the auto-correlation 

function had been used in this research. It was shown that their success was due to the content of 

the power spectral density and not to the time domain shape of the waveform. When this was 

discovered the implication that the EEG may not be fractal was not recognised, but this was 

rectified in later surrogate data testing experiments. These experiments showed that phase 

randomisation did not cause a significant loss of performance for any of the methods considered. 

Therefore, it was concluded that the fractal nature of the EEG (should it exist at all) does not 

contribute to any of the fractal dimension methods and the EEG is very unlikely to be a fractal. 

Previous success of the fractal methods is still important because it has clearly picked up on a 

significant feature within the EEG. 

The surrogate data testing showed that the information necessary for the fractal dimension 

measures was contained in the power spectral density. It was also known, however, that despite 

significant effort over a long period no spectral based measure had been good enough to use in 

general clinical practice. Because of this, it was decided to take a different approach and propose 

methods that were determined by the power spectral density but were in the time domain. These 

novel methods were the Allan Variance and the zero-crossing interval distribution. 

The results from Allan variance were very disappointing and the Allan variance metrics were 

discarded. However, the Allan variance may provide a new and interesting method to visualise 

the spectral content of the EEG. 

Various metrics concerning the zero-crossing interval distribution were tested using the 

development data.set and the best results were obtained using the Alphaffheta ratio derived from 

the zero crossing interval PDF. This metric was tested against the evaluation data set and the 

results show that, if one were to demand a specificity of 99.9% the estimated sensitivity to 

Alzheimer's disease and vascular dementia would be 77.8% and 35.2% respectively. This method 

was thus shown to be better at detecting dementia than either fractal measures or a 
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typical standard method. It is also noted that applying the subject specific methodology would 

improve this still further. The benefits and costs of this method were considered in order to give 

an opinion on whether this method is good enough to be of used in clinical practice. The 

significant benefits were that one third of vascular dementia sufferers and three quarters of 

Alzheimer's disease sufferers could be detected earlier. This gives the opportunity to prescribe 

drugs and therapies that could extend the symptom free state and reduce/delay the cost of care. 

The costs would be mainly felt be in general practice where new equipment, new training and 

some increased patient contact time would be required. There would also be a false alarm rate 

and 1 in 1000 normal subjects will be troubled with an unnecessary visit to a hospital 

Neurophysiology department. Considering this, I formed a personal opinion that, subject to 

confirmation of the results in a larger scale trial, this method provides benefits that outweigh the 

cost. 

7.2 Future Work 

7 .2.1 General 

This section attempts to answer the question: "Given a further 3 to S years what would I do to 

further the search for a practical method for the early detection of dementia?" This section is also 

intended to kick-start the process of planning MSc, MPhil and PhD projects that will follow on 

from this work. Some of this work has already begun under the European collaborative 

BioPattem project [65]. 

In the following sections, it is suggested that future work should concentrate on reviewing 

and drawing together all of the recent parallel strands of investigation into the detection of 

dementia from the EEG using, for example, ICA, ERP, subject specific analysis or the novel 

methods described in this paper. The drawing together of these strands could be accomplished 

using a data fusion method such as Artificial Neural Networks. The future work should also 

begin to address the lack of large high quality database of serial EEGs from normal subjects, 

subjects who appear to be in decline and subjects with dementia (confirmed post-mortem). These 

activities would provide a combined method and a proof of that method's effectiveness. This 

could lead to use in real situations and benefit to people. 
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7 .2.2 Review and Development 

Future research should begin with a review of the current candidate methods for the early 

detection of dementia from the EEG, Such as: 

• Independent Component Analysis; 

• Event Related Potentials analysed usingSpectral/Bispectral or Wavelet methods; 

• SUbject specific methods suggested in this Thesis; 

• The novel methods suggested in this Thesis; 

• Dimensional Complexity; 

• Power spectral density ratios. 

llhe next task would be to evaluate whether a data fusion based approach, such as Artificial 

Neural Networks or Fuzzy Logic, could provide any benefit and then design it. This would need 

to consider whether the methods are measuring different aspects of dementia related artefacts 

within the EEG or simply measuring the same thing in different ways. Clearly, if it is the latter 

then the data fusion will provide little benefit because the information derived from the methods 

is highly correlated, A consideration would be the amount of data required to test and evaluate 

several different combinational strategies in a meaningful way, Another concern would be that 

there is no simple way to choose a data fusion method and hone it for a particular problem; it 

normally requires a deep expert to derive a method of this class. 

7.2.3 Trial and Data Collection 

One of the largest barriers to the implementation of an EEG based method for the early 

detection of dementia is the availability of data. This is because the creation of a large high 

quality database of serial EEGs from normal subjects, subjects who appear to be in decline and 

subjects with dementia (confirmed post-mortem) is a significant undertaking in terms of time and 

resource. Some of this work has already begun under the European collaborative BioPattem 

project [65]. 
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The·main issues are: 

• Confirming dementia. Many dementias, such as Alzheimer's disease, cannot be 

confirmed until a post mortem is canied out and this clearly extends the time necessary to 

collect a significant database of confirmed dementia cases. 

• Ethical approval will be required; The ethical approval will only be given if it can be 

shown that issues such as data security and patient consent have been adequately 

considered and protected. This is particularly difficult because: 

Repeated measures (required for subject specific measures) are not required for 

medical purposes and therefore we are justifying additional (minor) procedures, 

which are of no direct benefit to the patient concemed. 

Some of the patients whose consent is required will have dementia- will we be 

able to rely on consent before the onset of dementia? 

We will require post-mortems to confirm some types of dementia. 

• Sharing the database. The EEG records will be valuable to many researchers and shating 

such a large quantify of data on a large (global) scale requires clear planning, security and 

infrastructure. 

l would suggest that once the data has been collected, it should be divided into a development 

data set and a trial data set. The development data set would be available to the researcher(s) who 

are developing the combined method. The trial data set would be available to independent 

researcher(s) who would trial the (well-defined) method in order to preserve its value as a blind 

trial data set. The number of records required in each data set and the frequency of taking EEGs 

from individuals needs to be determined. 
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7 .2.4 Implementation 

Patient representative groups, general practitioners, clinicians, health care managers, medical 

equipment suppliers and other interested parties should be engaged at an appropriate time to 

canvas their support for the introduction of EEG methods for the early detection of dementia. 

After consultation and having developed a combined method, it will be necessary to engage a 

small number of GPs and Hospital facilities in a multi-centre trial. This trial would verify the 

estimated efficacies of the proposed method and expose any logistical or procedural issues. The 

potential of Information Technology (eMedicine) to facilitate GP to hospital EEG data transfers 

in the event of a referral and to facilitate subject specific disease diagnosis would also be 

assessed. This trial will be required to argue the case for the wider introduction.of the method. 

7.3 Conclusions 

This thesis has produced the following conclusions. 

o Previously published methods using the fractal dimension of the EEG are not wholly 

appropriate. This is because the EEG exists within affine space and conventional methods 

of estimating fractal dimension cannot be made to work without arbitrary assumptions in 

affine space. 

o There are a number of fractal dimension methods that are appropriate for use with signals 

that lie in affine space. The performance of these methods is highly dependent on the 

selection of controlling parameters. The performance of these methods in a blind 

evaluation was reasonable (if one demands a specificity of 99.9%, the estimated 

sensitivity to Alzheimer's and vascular dementia is 67% and 17% respectively). 

e Although the fractal measures are useful and successful, this is not due to the fractal 

nature of the EEG. The success is due to the detail of the EEG power spectral density and 

a natural robustness of the method to artefacts. 

• Subject specific methods are an important way to improve the efficacy of metric based 

methods such as fractal dimension. 
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• 11he Allan Variance of the EEG gives an interesting method of visualising the data, 

however, it has not been possible to produce a metric to separate normal from subjects 

with dementia. 

• Novel methods based on the zero crossing interval distribution are promising; particularly 

the Alphaffheta ratio. It has been shown (on an independent data set-) that, if one were to 

demand a specificity of 99.9% the estimated sensitivities to early Alzheimer's disease and 

vascular dementia are 77.8% and 35.2% respectively. 

• It is possible to summarise an EEG recording into a single index and retain infmmation 

pertinent to the detection of dementia. This is important for subject specific measures. 
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Appendix A. Source Code from Wu's Work 

This is the original code used by Wu in his research [61]. 

void complex ( J 

int a, b; 
float temp, correlate[257); 
float DCtemp[7]; 

for(a=O;a<=6;a++) 
( 

DCtemp[a]=O.O; 

for(a=O;a<=256;a++J 
{ 

correlate[a]=O.O; 

temp=O.O; 
for(a=O;a<=255;a++) 

( 
if (temp<fabs(x[a])) 

temp=fabs(x[a] ); 

for(a=O;a<=255;a++J 
( 

x[a]=64.0•x[a]/(temp+0.0000001); 

for(a=O;a<=255;a++) 
( 

correlate[a]=O.O; 
for(b=O;b<=255-a;b++) 

( 
correlate[a]=correlate[a]+x[b]•x[a+b]; 

temp=O.O; 
for(a=O;a<=255;a++) 

( 
if ltemp<fabs(correlate[a])) temp=fabs(correlate[a]); 

for(a=O;a<=255;a++} 
( 

x[a]=30Q.Q•correlate[a]/ltemp+0.0000001); 

x[256]=x[255]"; 

for(a=O;a<=255;a++) 
{ 

DCtemp[1]=DCtemp[1]+sqrt( (x[a]-x[a+1] J•(x[a]­
x [a+ 1 J ) + 1 . 0) ; 

) 
for(a=O;a<=255;a=a+4) 

( 
DCtemp[2]=DCtemp[2]+sqrt((x[a]-x[a+4])•(x[a]­

x[a+4])+16.0); 
J 

for(a=O;a<=255;aca+BJ 
( 

DC temp [ 3 J =DCtemp[3 J +sqrt ((x [a] -x [a+BJ) •(x [a]-
x[a+8])+64.0); · 

for(a=O;a<=255;a=a+16) 
( 

DCtemp[4]=DCtemp[4]+sqrt((x[a]-x[a+16])*(x[a]­
x[a+l6])+16.0*16.0); 

) 
for(a=O;a<=255;a=a+32) 

( 
DC temp [ 5 J =DC temp [ 5 J +sqrt (.(x [a J -x [a+32 J) • lx [a]­

x]a+32])+32.0*32.0); 

for(a=O;a<=255;a=a•64) 
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DC temp (6] =DCternp(6) +sqrt ( (x (a) -x (a+64 I I • (x (a)­
x(a+64))+64.0*64.0); 

for (a;2;a<=6;a++) 
{ 

DCternp(a]=l.O-(log(DCternp(a))c 
log (DC temp( lJ'J.J /log (pow ( 2, a) I; 

temp=O.O; 
for (a=2:a<=5;a++) 

{ 
for (b=a+l;b<=6;b++l 

{ 
if (DCtemp(a)>DCtemp(b) I 

{ 

else 
{ 

I 

temp= DC temp (a I; 
DC temp I a I =DC temp (b)-; 
DCternplbl=temp; 

DCBand[O) [l)=(DCtemp(3)+DCtemp[4)+DCtemp[5))/3.0; 
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Appendix B. Early Software Overview 

The early software, described in this appendix, was written in Borland Turbo C++ V4.5 (later 

software is described in Appendix C). The software provides a data visualisation front end, 

spectral analysis and fractal dimension analysis. There are approximately 170,000 source lines of 

code. Several side-builds implement other analysis methods such as Innovation Statistics 

analysis. 

The main user interface for the software is shown below: 

11:1 EE G Dala Ana lymlool liJQEJ 
fie ~Aiot y,.,.. ~ l!ell> 

ll?lm1~11 H·l l=>l»llwi~IIZI~I [!]I:J 
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This interface is written as a dialog client, and is derived from the predefined TDialog class. All 

of the functions available on the tool bar may be accessed from the menu system. 

The following functions are available from the menu and/or the short cut icons in the main build 

of software: 
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Icon Menu selection Effect 

File : 

~ • Load ... Displays a dialog to select and load EEG data 
lb_ 

~ • Change Channel Displays a dialog to select which channels to display and analysis 

~ • Print Prints the currently displayed screen of EEG data 

• Con figure Printer Displays printer setup dialog 

r& • Exit Exits the application 

X Axis: 

~ • Forward Steps forward through the EEG data 

<= • Back Steps back though the EEG data 

>> • Play : Forward Runs forward through tl1e EEG data 

<< • Play : Backward Runs in reverse through the EEG data 

liil • Play: Stop Stops the EEG display running forward or reverse 

w • Zoom Out Expands the time (X) axis scaling 

® • Zoom In Reduces the time (X) axis scaling 

Y Axis: 

% • Zoom Out Expands the voltage (Y) axis scaling 

z • Zoom In Reduces the voltage (Y) axis scaling 

Analysis: 

• Set Analysis Range Di splays a dialog that allows the user to select the EEG data range to analyse 

[M) • Cycle Montage Changes the EEG montage cyclically from "Original recorded montage" to 
"Common average montage" to "Common reference montage" and back to 
"Original recorded montage" agai n 

• Fractal Dimension Calculates and displays the Adapted Box Dimension and Dimension of the 
Zero-Set fo r both raw EEG data and the autocorrelation of EEG data for the 
currently selected data fil e, channels and analysis range 

• All Files FD Calculates and displays the Adapted Box Dimension and Dimension of the 
Zero-Set for both raw EEG data and the autocorrelation of EEG data for al l 
channels of all data files. Results are written to a fi le for manual analysis. This 
is effectively a batch process. 

• Hunt FD As "All Files FD" but used stored Histograms rather than recalculating them 

• Analyse Sequence Of FD Stub ready for Hidden Markov Model analysis for fractal dimension sequence 

• Mean Holo Fn Calculates and displays the cross-bicoherence of the EEG data for the 
currently selected data file, channels and analysis range 

• Spectrum Calculates and displays the spectrum of the EEG data for the currently selected 
data fi le, channels and analysis range 

• Statistics Calculates and displays the mean and standard deviation of the EEG data for 
the currently selected data fi le, channels and analysis range 

• Allan Variance Calculates and displays the Allan Variance Chart of the EEG data for the 
currently selected data fi le, channels and analysis range 

Help: 

[1] • Contents Displays help on using this application (not up to date) 

• Using Help Displays standard help on using windows help 

• About Displays a windows "About" box 
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Channel selection, analysis range selection and analysis are performed in Modal Child Windows 

(based on the TDialog client class), which are displayed for the user to observe results or input 

preferences. The following table describes the files that are included in the build: 

Filename Function 

Allan.h Calculates and displays Allan chart of the raw EEG data 
Channel.cpp Displays TDialog that allows user to select channels for display and analysis 
Channel.h Header file to provide interface to channel.cpp 
EEG.EXE Compiled executable code 
EEG.hpj Compiled windows help fi le 
Eeg_ data.cpp Provides inte1face to eeg data files as EEG class 
Eeg_ data.h Header file to provide interface to EEG class 
fft.cpp Defined functions for the FFT (Fast Fourier Transform) class 
fft.h Header file to provide interface to the FFT class 
Fractal.cpp Calculates and displays Adapted Box Dimension and Dimension of the Zero-

Set for both raw EEG data and the autocorrelation of EEG data. Has the ability 
to store histograms for further analysis. 

Fractal.h Header file to provide interface to fractal.cpp 
Mainhelp.rtf Defines help to be dis£1ayed to user (Not up to date) 
Meanholo.cpp Calculates and displays the cross bicoherence of the EEG 
Meanholo.h Header file to provide interface to meanholo.cpp 
Nlyssabd.cpp Dialog client to display 'About' dialog box (Auto-created by Turbo C++) 
Nlyssabd.h Header file to provide interface to nlyssabd.cpp 
Nlyssapp.cpp Application code (Auto-generated by Turbo C++) 
Nlyssapp.def Windows definition file (Code/Data type, Heap/Stack size etc.) 
Nlyssapp.h Header file to provide intetface to nlyssapp.h 
Nlyssapp.rc Resource code file (menu, bitmaps, etc.) 
Nlyssapp.rh Resource header file provides access to nlyssapp.rc 
Nlytdlgc.cpp Main TDialog client for event response (user interface code) 
Nly!dlgc.h Header fi le to provide intetface to nlytdJgc.cpp 
range.h Displays TDialog that allows user to select data range for display and analysis 
Spectrum.h Calculates and displays the spectrum of the data using the Fast Fourier 

Transform 
stats.h Calculates and displays mean and standard deviation of data 
Toolbar.rtf Defines toolbar help to be displayed to user (Not up to date) 
Wprint.cpp Printer interface 
Wptint.h Header file to provide interface to wprint.cpp 

The code that performs the fractal dimension calculation is available on CDROM. 
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Appendix C. Later Software Overview 

The later software, described in this appendix, was written in Microsoft Visual C++. The change 

of compiler was necessary in order to be compatible with the EEG logging software from 

Biologic. The software provides a data visualisation front end, spectral analysis and fractal 

dimension analysis. 

The main user interface for the software is shown below: 

Re - NvJygs ~ 
~A. 0 .\t "Co *:a: 8++ 

AD2 Originally recorded montage . Notch tiller not selec1ed. 

Fpl 

Fp2 ~___w_LJ_LI 
I I I I I I I I I I I I 

F7 

F3 

FZ 

F• 

F8 

AI 

TJ 

CJ 

cz 

C4 

H 

A2 

T5 

P J 

PZ 

P4 

T6 

01 

0 2 

0.0 
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Appendix D. Detailed, Supporting Results 

This section contains tables of detailed results that have been moved from the main body of 

the thesis to ease reading. 
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The foJlowing four tables (Table 8-9 through Table 8-12) show the alpha/beta ratio derived 

from the fractal dimension measures described in section 4.4.3.2 applied to the evaluation data 

set. 

Normal AJzheirner' s Vascular 

Results 0.9916 0.8233 0.9874 
0.9580 0.8069 0.9916 
0.9916 0.9622 0.8069 
0.9280 0.7542 0.9748 
0.9703 0.9283 0.8945 
0.9068 0.5848 
0.9538 0.9030 
0.9790 0.7342 
1.0000 0.9359 
0.9440 0.4670 
0.9873 0.5551 
0.8918 0.9538 
0.9958 0.9034 
0.9916 0.5516 
0.9872 0.9286 
0.9706 0.5628 
1.0000 0.9874 
0.9706 
0.9580 
0.9916 
0.9748 
0.9916 
0.9790 
0.9790 

Number of samples 24 17 5 
Mean 0.9705 0.7848 0.9310 
SD 0.0286 0.1761 0.0799 

Table 8-9, Alpha/Theta results from the Zero-Set method applied to the Raw EEG. 
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Normal Alzheimer's Vascular 

Results 0.9156 0.2761 0.8113 
0.7422 0.6398 0.6989 
0.5328 0.5979 0.4728 
0.4681 0.3519 0.6591 
0.5652 0.5026 0.5714 
0.1707 0.2065 
0.4167 0.6995 
0.6927 0.3750 
0.9615 0.4516 
0.3393 0.2000 
0.9318 0.3795 
0.4255 0.1875 
0.4063 0.3353 
0.6082 0.1441 
0.6946 0.6631 
0.4956 0.3523 
0.9565 0.4787 
0.8350 
0.7957 
0.9074 
0.7854 
0.7867 
0.8429 
0.5575 

Number of samples 24 17 5 
Mean 0.6597 0.4024 0.6427 
SD 0.2212 0.1747 0.1283 

Table 8-10, Alphaffheta results from the Zero-Set method applied to the Auto-correlation 
function. 
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Normal Alzheimer' s Vascular 

Results 0.9832 0.7059 0.9706 
0.9496 0.5294 0.9790 
0.9958 0.9160 0.5756 
0.9580 0.5294 0.9874 
0.9874 0.8193 0.8529 
0.9496 0.3489 
0.9580 0.8025 
0.9790 0.4958 
1.0000 0.8908 
0.9538 0.1441 
0.9873 0.1429 
0.8067 0.9622 
1.0000 0.8109 
0.9958 0.3008 
0.9622 0.8151 
0.9580 0.1483 
1.0000 0.9790 
0.9790 
0.9832 
0.9916 
0.9706 
0.9916 
0.9748 
0.9874 

Number of samples 24 17 5 
Mean 0.9709 0.6083 0.8731 
SD 0.0388 0.3003 0.1751 

Table 8-11, Alpha/Theta results from the Adapted Box method applied to the Raw EEG. 
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Normal Alzheimer's Vascular 

Results 0.7679 0.0155 0.4515 
0.2979 0.1342 0.3803 
0.2247 0.2712 0.0651 
0.1571 0.0000 0.3305 
0.2183 0.0381 0.0705 
0.0198 0.0054 
0.1556 0.1556 
0.3305 0.0140 
0.8277 0.0448 
0.0744 0.0000 
0.8326 0.0090 
0.0744 0.0286 
0.1076 0.0221 
0.4538 0.0000 
0.3915 0.1135 
0.1717 0.0000 
0.9286 0.1034 
0.6769 
0.6157 
0.8376 
0.5636 
0.7009 
0.6580 
0.1921 

Number of samples 24 17 5 
Mean 0.4283 0.0562 0.2596 
SD 0.2951 0.0754 0.1803 

Table 8-12, Alphaffheta results from the Adapted Box method applied to the Auto-correlation 
function. 
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