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Early Detection Of Dementia Using The Human Electroencephalogram
Geoffrey T Henderson

Abstract

Improved life expectancy has led-to a significant increase in the number of people in the high-
risk age groups that will develop Alzheimer’s disease and other dementia. Efforts are being made
to develop treatments that slow the progress of these diseases. However, unless a sufferer is
diagnosed in the early-stages the treatments cannot give the maximum benefit. Therefore, there is
an urgent need for a practical, decision support tool that will enable the earliest possible detection

of dementia within the large at-risk population.

Current techniques such as Magnetic Resonance Imaging (MRI) that are used to diagnose and

assess neurological disorders require specialist equipment and expert clinicians to interpret

results. Such techniques are inappropriate as a method of detecting individual subjects with early

dementia within the large at-risk population, because everyone within the at-risk group would

need to be tested regularly and this would carry a very high cost. Therefore, it is desirable to

develop a low cost method of assessment.

This thesis describes research into the use of automated EEG analysis to provide the required
testing for dementia. The research begins with a review of previous automated EEG analysis,

particularly fractal dimension measures. Initial investigation into the nature of the fractal

~ dimension of the EEG are conducted, including problems encountered when applying fractal

measures in affine space. More appropriate fractal methods were evaluated and the most
promising of these methods was blind tested using an independent clinical data set. This method
was estimated to achieve 67% sensitivity to probable early Alzheimer's disease and 17%
sensilivity to vascular dementia (as confirmed by a clinical neurophysiologist from the EEG)

with a specificity of 99.9%.



The thesis also describes a fundamental study of the assumed fractal nature of the EEG. It is
shown that the fractal nature of the EEG (should it exist at all) is not contributory to the success
of fractal dimension measures. From this, it is concluded that the EEG is unlikely to be a fractal.
However, the previous success of the fractal methods ts important and is likely to be because
they detected a related characteristic of the EEG. Two novel methods, which build upon this
conclusion and the initial investigations, are reported. The first novel method, applying Allan
Variance analysis to the EEG, was unsuccessful but the second method, based on the Probability
Density Function of the Zero Crossing Intervals, was more promising. This second methed was
estimated to achieve 78% sensitivity to probable early Alzheimer’s disease and 35% sensilivity to
vascular dementia (as confirmed by a clinical neurophysiologist from the EEG) with a specificity
of 99.9%. This compares well with a more ‘conventional Alpha/Theta power spectral ratio
measure, which was estimated to achieve 50% sensitivity to probable early Alzheimer’s disease

and 11% sensitivity to vascular dementia with the same data.

The EEG recordings used to assess the methods included artefacts and had no & priori
selection of elements ‘suitable for analysis’: This approach gives a good prediction of the
usefulness of the techniques, as it would be used in practice. It is noteworthy that the probable
Alzheimer’s subjects were not previously diagnosed and were therefore in the early stages of

exhibiting symptoms.

This thesis also discusses and reports on investigations into subject specific EEG analysis,
which may be used as an adjunct to most methods. This analysis moves away from group
comparisons that separate individuals into groups (Normal, Alzheimer’s, Parkinson’s etc.) using
indices derived from isolated (snapshot) EEGs and instead compares an EEG to those taken
previously from the same subject. It 1s shown that by looking for trends in indices that arise over
time rather than comparing an EEG to what is generally normal within the population the
efficacy of a method is improved. In the near future, strategies such as this will become

increasingly practical as information technology enabled e-medicine improves.




This research provides a basis for the development of a practical, affordable method, which
will detect dementia before there is significant mental decline. Such a method, administered by
GPs, for example, as part of a normal check-up, in conjunction with new therapies to slow the

progression of dementia could provide many people with years of higher quality life.
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Chapter 1. Introduction

1.1 Motivations

1.1.1 Early Detection of Dementia

Improved life expectancy [1] has led to a significant increase in the number of people in the
high-risk age groups that will develop Alzheimer’s disease and other dementia [2]. Some drugs
already exist that slow the progression of Cerebrovascular diseases (such as Multi-Infarct) and
efforts are being made to develop treatments (such as the Acetylcholinesterase inhibitors;
Tacrine, Donepezil and Exelon} which may slow the progress of the Alzheimer’s Disease [3],
[4]). However, unless a sufferer is diagnosed in the early stages, the treatments, which only slow
the development of dementia, cannot give the maximum benefit by extending the time before
significant mental decline occurs [5]. A study of Alzheimer’s Disease related Cortical Atrophy in
the Lancet [6] showed the period between the onset of Alzheimer’s disease and meeting the
current clinical criteria was between 3 and 5 years. Therefore, there is an urgent need for a
practical decision support tool that will enable the earliest detection of dementia within the large

population of people at risk.

A further constraint is cost. To illustrate this one may consider current techniques such as
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) that are used to
diagnose and assess neurological disorders. These require specialist equipment and expert
clinicians to interpret results and are inappropriate as a method of detecting individual subjects
with early dementia within the large at-risk population. This is because everyone within the at-

risk group would need to be lested regularly and this would carry a high cost.



In summary, it is desirable to develop a low cost method of assessment, which can be carried
out quickly by a non-specialist clinician. Such a method, in concert with drugs that slow the
progression of Alzheimer’s Disease and Cerebrovascular disease, could prolong the symptom

free state and give patients an additional number of years of higher quality life.

1.1.2 Other Implications

Success in this area of research could have implications beyond early detection of dementia
and provide further clinical benefits for patients, GPs, researchers and clinicians. Some examples

are given below:

1.1.2.1  Clinical Care Of Patients with Dementia

An automated method for detecting and quantifying changes that occur as a result of brain

dysfunction would allow clinicians to:

e quantify the progression of brain disease; allowing carers, patients and their families to

understand the situation and address it appropriately
e assess suitability for specific treatment options
o assess the effectiveness of prescribed treatment

Periodic-analysis-of the same subject would allow the clinician to understand how a particular
patient is progressing relative to previous results (improving, declining, etc.) rather than placing
them in an absolute categonisation of level relative to typical normal subjects or typical subjects

with dementia.



1.1.2.2 A Test For Safe Driving

Every year many older drivers in the UK are required by their motor insurance company to
have a medical examination. Normally, the General Practitioner is asked to certify that they are
physically able to drive safely. However, the neurological aspects are difficult because the GP
has no effective test for early dementia without referring the patient for further checks. In this
situation the GP has to come to a decision based on his subjective opinion whilst recognising the
danger presented to the public by a dementing driver and also recognising the negative effect on
an older person if their independent mobility is reduced. In these situations a straight forward
automated method for detecting and quantifying changes that occur as a result of brain

dysfunction would be a welcome aid.

1.1.2.3  Standardisation Of Clinical Results

Human interpretation of the EEG 1s recognised to have brought benefit to patients but there
are benefits to providing a standardised measure that would come from automated analysis. Such

a measure would be useful to aid communication between-clinicians.

1.1.2.4  Provide A Measure Of General Brain Damage

If it is possible that the use of an automated method for detecting and quantifying changes,
which occur as a result of brain dysfunction, it may be extended to quantify the damage done to
the brain under some conditions such as microwave irradiation from mobile phone usage or

damage from highly physical sports such as boxing.

1.2 Statement of Problem

Analysis of the electrical activity of the brain (the Electroencephalogram or EEG) is seen as a
possible way to provide an acceptable and affordable method for early-detection of dementia. It is
well known that disorders of the brain are accompanied by changes in the EEG and the EEG has
long been used in diagnosis of neurological disorders but this generally requires subjective

interpretation.
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The problem, addressed in this research, is to automate EEG analysis such that early changes
due to dementia can be reliably detected before the development of clinically significant mental

decline.

Whilst stating this problem, it is necessary to recognise that a great deal of effort has
previously been expended in the pursuit of automated EEG analysis and there are few, if any

successful automated methods in routine clinical practice.

1.3 Aim and objectives

The aim of this PhD is to contribute to the development an automated EEG analysis method
that could be used by non-specialist clinicians (i.e. General Practitioners) to detect the early
stages of dementia during routine health checks of older patients. One can envisage in the

Doctor’s surgery, a hardware module that provides the interface between electrodes on the

subjects scalp and desktop PC running some specialist software. To do this, it is necessary to

develop an objective, reliable, robust, automated method for detecting and quantifying changes in
the EEG that occur as a result of dementia. This is a challenge because the EEG is a complex,
non-stationary signal that varies between subjects and is affected by the subjects condition (age,
wakefulness, disease, etc.) as well as being affected by stimuli such as light in the eye, sounds

applied to the ear or the sensation of pain.
The objectives of this PhD are:

o Critically review published research into automated EEG analysis, particularly in the area

of fractal dimension, which appeared to show most promise.

¢ Develop a mathematically sound fractal dimension method and test it against a given,

small sample data set.

o Conduct a blind test of the fractal dimension method on an independent, larger set of data
and determine whether the new method is likely to detect dementia in the target, older

population before the development of clinically significant mental decline.
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If it is not possible to use the fractal dimension then develop one or more novel method of

analysis, which could clearly distinguish between normal and subjects with dementia.

Examine the subject specific nature of the EEG and determine whether this could help in

the detection of dementia and in patient-care.

Contributions of thesis

This thesis makes the following contributions to knowledge:

This research demonstrates that previously published methods using the fractal dimension

of the EEG are not wholly appropriate because the EEG exists within affine space.

The performance of a number of fractal dimension methods, which had not previously
been applied to the EEG but were appropriate for use with signals that lie in affine space,
are investigated, tested and reported in the literature. These methods were developed
using a small, pre-existing data set and then blind tested with a new, larger set of

independently collected data.

This research questions the fractal nature of the EEG and demonstrates that the fractal
nature of the EEG (should any exists) does not contribute to the success of fractal
dimension measures. From this, it is concluded that the EEG is very unlikely to be a
fractal. The previous success of fractal methods is due to the detail of the EEG power

spectral density and a natural robustness to artefacts.

A novel method is developed (using the initial small data set) which builds on the
previous work during this research using the Allan Variance of the EEG. Results are
presented which quantify the capabilities of the new method using the initial small data
set. Results are also presented from a larger, blind trial that used data from a hospital EEG
database. These results demonstrate that this is not a viable method although the initial

indications were good.



e A second novel method is developed using the probability density function of the zero
crossing intervals. Results are presented which quantify the capabilities of the new
method using the initial small data set. Results are also presented from a larger, blind triai
that used data from a hospital EEG database which show that the estimated sensitivity to
early probable Alzheimer’s disease is 78% and estimated sensitivity to early probable
Cerebrovascular disease (confirmed by a clinical neurophysiologist from the EEG) is 35%

with a specificity of 99.9%

The: majority of the work reported in this Thesis has been published in peer-reviewed
conference and journal papers [7], [8], [9] and [10]. A final paper summarising the whole body

of work has been submitted to the IEEE transactions journal.

Aside from these contributions to knowledge, the research has led to:

o The production of a large body of software (in Borland Turbo C++ and Microsoft Visual
C++) which can access 3 different EEG data formats, display the raw or processed EEG
in an easy to use application without the need for en expensive reader station and

performs all of the analyses used in this research.

e The collation of a significant database of EEG records that may be used in future work.

1.5 OQutline of thesis

This Thesis begins with an introduction (this Chapter) and a background chapter {Chapter 2)
which discusses; the current state of knowledge of the Human EEG (section 2.2), fractal theory

(in brief, section 2.3), diagnostic performance measures (section 2.4} and the staté of the art in

| Automated EEG analysis (section-0).



Chapter 3 describes detailed investigations into the nature of fractal dimension measures.
Fractal dimension measures were chosen because it was felt that these were most likely to
contribute to the development of a means of detecting Dementia from the EEG. This Chapter
discusses; previously published fractal dimension methods, fractal dimension methods suitable
for affine space, subject specific measures, Alpha/Theta ratio determined from the fractal
dimension, the time progression of the fractal dimension and the variability of the fractal
dimension over the scalp. Section 3.8 records work that questions whether it was right to

compute the fractal dimension of the Auto-correlation of the EEG.

Chapter 4 describes a clinical evaluation that tested whether the selected method could
provide adequate sensitivity and specificity to be useful in practice. The Chapter begins by
describing the preparatory work where method parameters were fixed (otherwise, it could be said
that the assessment of the method was not a fair test and that retrospectively applied
parameterisation favourably skewed the results). Following this, the main trial is described. Other

previously discussed methods and issues are revisited (e.g. subject specific measures).

Following on from the trial, Chapter 5 questions whether the EEG is in-fact a fractal. Based
on this conclusion Chapter 6 suggests further methods that may be more appropriate. The results

from testing these novel methods are also discussed.

Finally, this Thesis ends with a conclusion and suggestions for future work (Chapler 7) and a

list of references (Chapter 8). There are also appendices to describe the software.that was written.



Chapter 2. Background

2.1 Introduction

This chapter describes the background to the research and provides references to other

published work.

This thesis is concerned with the early detection of dementia using the Human EEG because
the EEG provides a low-cost, practical method of studying brain function and has been used by
clinicians for many years to diagnose dementia. This chapter begins, in section 2.2, with a
description of the Human EEG; how it is measured, the problems associated with the EEG (such

as artefacts), and how clinicians have interpreted the EEG.

The chapter continues, in section 2.3, by describing fractals, chaos and complexity. These
subjects, and particularly their application to the Human EEG, are important because concepts
adopted from these areas of knowledge have recently been shown to indicate the presence of

dementia.
The chapter also.discusses diagnostic performance measures in section 2.4.

Finally, section 2.5, provides a brief review of the state of the art in automated EEG analysis

(including fractal, chaos and complexity measures).



2.2 The Human Electroencephalogram

2.2.1 Introduction

The Electroencephalogram (EEG) is a record of the electrical activity of the brain. This is
normally measured from electrodes on the surface of the scalp, although surgically implanted
electrodes are sometimes used to provide improved signal strength and localisation. In this
research, only recordings taken from the scalp are considered because implanted electrodes

would be unacceptably invasive for the early detection of dementia.

Since the EEG was first recorded in 1924, it has become an important clinical tool providing
information about the activity of the brain, its condition and possible disease. Research into the
nature of the EEG has revealed that it is a complex, non-stationary electrical potential that varies
over the surface of the scalp (and throughout the brain). Furthermore, the EEG is affected by the
subjects condition (age, wakefulness, disease, etc.) as well as being affected by stimuli such as

light in the eye, sounds applied to the ear or the sensation of pain.

2.2.2 Electrode Montage

EEG records used in this research are from electrodes mounted on the scalp using the
standard 10/20 system for electrode placement [11] (or the modified Maudsley system, which is
similar to the 10/20 system). The 10/20 sysiem is illustrated in Figures 2-1, 2-2 and 2-3 and it
uses either 19 or 21 electrodes (sometime electrodes Al and A2 are not required). Three

referencing methods are commonly used:
1. Bipolar: Measurements made between selected pairs of electrodes.

2. Common reference: Measurements taken between electrodes and a reference that is

chosen to be least affected by interference, such as the ear tobes (Al and A2).

3. Common average reference: Measurements taken between electrodes and the mean of the

other electrodes used.









2.2.3 Artefacts

Artefacts are those signals present in the measured EEG signal that are not of cerebral origin.
These originate from a number of sources, both internal and external to the body. Internal sources
of artefact are cardiac activity and electrical -activity in the muscles of the head (tongue and eye
movement or blinking). Extemal sources of artefact may be mains interference or poor,
intermittent electrode contact. Artefacts are unhelpful and present significant challenges in EEG

analysis.

2.2.4 Human Interpretation

The EEG is normally presented for human interpretation with little pre-processing other than
simple-band-pass filtering. The EEG is typically drawn on a long strip of paper. This printout and
other patient data are studied by a clinician who, using years of training and experience, comes to

a diagnosis.

According to Dondey [12], the EEGer interprets an EEG using the following four steps. First,
the EEG trace is mentally cut into ‘graphic elements’; where ‘graphic elements’ refer to the
elementary patterns that constitute an EEG. Second, based upon the observation of the temporal
evolution of poteniial differences between different pairs of electrodes, one obtains a mental
representation of the overall variations observed in the EEG. In the third step, differentiation
between artefacts and EEG activity takes place, based-on experience. Finally, the significant EEG

activities are identified.

Ktonas [13] gives a very good introduction to EEG features and there significance. The most

common are:

o activity, found most strongly in awake relaxed subjects with eyes closed, 8 to 12 cycles
Y gty ] y y

per second (cps), quasi-sinusoidal, amplitude 20 to 60UV, strongest in posterior

areas of the brain, tends to wax and wane over 1 to 2 seconds forming a

‘spindle’.
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B activity,

0 activity,

o activity,

o spindles,

found most strongly in awake attentive subjects, may be present but masked
when o activity is present, prominent mainly in central and frontal regions,

quasi-sinusoidal, 18 to 24 cps, up to 20uV.

found in drowsy subjects and in some stages of sleep, occurs as bursts of quasi-

sinusoidal activity or as single waves, 4.to 7 cps, 50°to 200uV.

found in drowsy subjects and in some stages of sleep, occurs as bursts of quasi-

sinusoidal activity or as single waves, 0.5 to 3 cps, 50 to 200uV.

found in onset of sieep (stage 2), bursts of quasi-sinusoidal activity, 12 to 16

Cps.

K complexes, found in onset of sleep (stage 2), single cycle of slow activity, about 1 cps,

amplitude distinctly above background.

Spike or Spike-and-Wave. Characteristic of epileptogenic activity, spike has less than 80

Slowing.

Symmetry.

milli-second duration, average maximum slope approximately 8uV/milli-

second
Disease or injury to the brain causes a slowing of normal activities.

The healthy human EEG is remarkably symmetrical with respect to the mid-

line of the brain in form and spectral content.

[t is noted that the effectiveness of EEG analysis is limited because only about one third of

the cerebrum can be viewed by non-surgical EEG techniques. Thus, slowly developing lesions,

atrophic processes, subdural haematomas, and diseases causing demyelination (loss of

myelinated sheath covering the neurones) may produce little or no EEG abnormality. Also, one

quarter of all deep cerebral tumours exhibit normal EEG. Diseases such as dementia that affect

large areas of the brain are detectable from the EEG. Alzheimer’s disease affects all EEG

channels in a generalised way although the posterior region is more affected whereas

cerebrovascular disease has more defined foci.
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2.3 Fractals, Chaos and Complexity

2.3.1 Introduction

The origins of fractal geometry can be traced back to the nineteenth century, but it was in
1975 that the first unifying treatment was given by Benoit B. Mandelbrot [14], a Polish born
mathematician. Fractal geometry is the most versatile tool so far discovered for describing and

modelling forms that occur in nature; forms that Euclidean geometry cannot describe.

This section introduces the terms "Fractal”, “Chaos” and “Complexity”, which describe

complex, non-linear systems.

2.3.2 Fractals

2.3.2.1 Introduction

‘Euclidean (and similar) geometries have been used historically to describe mathematically
shapes; spheres, quadrilaterals, triangles, hypercubes, etc. However, it was known that shapes
that generally occur in nature (terrain, coastlines, trees, etc) have shapes that cannot be described
using these “simple” shapes. In the mid-1960s Mandelbrot proposed a way to describe these
shapes and named them fractals. The definition of fractal has changed over the years.
Mandelbrot, who coined the term, has retracted and replaced his original definition [15]. Now it

is generally accepted to refer to a shape whose parts are in some way similar to the whole.

2.3.22 An Example

In introducing fractals, it is convenient to begin with an example. This example was
conceived by Helge von Koch [17]. The so-called Koch curve may be constructed by taking an
equilateral triangle and then on each side add another equilateral triangle to cover the middle

third of the line. This is then repeated with smaller and smaller triangles (see Figure 2-5).
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A generally accepted inductive definition of topological dimension is:

If the boundaries of arbitrarily small neighbourhoods of all points in a space are (n-1)
dimensional, then the space is n-dimensional. The empty set, and only the empty set, has

dimension minus one.

This definition is accurate but difficult to understand. Taking a square as an example, any
point within the square has a -boundary that is a closed (circular) line. Therefore, a square has one
more dimension than a line. Furthermore, any point on the line has a boundary that comprises
two points and similarly the boundary to the points is the empty set. Thus, working back to the
square; the empty set has dimension -1, the set of points has dimension 0, the line has dimension

1 and the square has dimension 2.

Many of the definitions of dimension (other than topological dimension), and much of
Mandelbrot’s work on fractals, are based on the Hausdorff dimension, which was first proposed
in 1919. A complete definition of the Hausdorff dimension is given by Addison [15]. An

overview is given below.

A fractal is characterised by a number of dimensions which is greater than the topological
dimension and this dimension need not be integer. To understand the non-integer dimension it is
convenient 10 consider the Koch curve where a single dimension is not sufficient to describe a
point on the outline because the length is infinite and 2 dimensions would be too much because
the .outline does not have an area: Thus the number of dimensions needed to describe it is

between 1 and 2 (in fact the dimension is 1.26).

Consider a smooth curve of length L that has a topological dimension Dy of 1. The length of
the curve may be estimated by covering it with N small line segments of length &, where N would

be a function of &. See Figure 2-7. Now is L would be given by:

L= gm(N(J)J). 2.1)
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Thus, the measured quantity (length, area etc.} may be found by covering the shape with
small objects that have the same topological dimension. If these objects are covered by small
objects of an inappropriate dimension, then the result is either zero or infinite. For example, if we
use vanishingly small squares to.cover a smooth curve then in the limit the ‘area’ will be zero. In
addition, if we cover a circle with small line segments then in the limit the ‘length’ will be

infinite. We may write a generalised expression for the measured quantity M,

0 ,d<D
M, =‘lsi_rg(N(5)5") =1M 4 (j =g. 2.3)
o d>

The value of M4 is not important in this context but the Hausdorff dimension D is of great
significance. For a fractal set this dimension (the fractal dimension) obeys the inequality

D, <D< D, +1 and is not normally an integer.

2.3.24 Computation Of The Fractal Dimension
A coastline 1s an example of a natural approximation to a fractal [18]; if one steps around a
land-sea boundary using N steps of length & (see Figure 2-7) then N would be found to be a

function of the step length, approximately given by:

L(6) = 8N(8) = 1,67 (2.4)

Here L is the apparent length of the coast, Ly is a constant and D is the fractal dimension.
Using a range of values for & and measuring the corresponding values for length L(5) it is
possible to use a least squares (or similar) method to estimate D (which for Norway is about 1.5).
This technique of using line segments to cover a fractal with topological dimension of one is

known as the Divider Dimension.

An altemmative to the Divider Dimension is to cover the coastline with squares (see Figure
2-8); this is the box dimension where the total area A is found to be related to the length of the

squares side o by:

A(B) =8 N(8) = A8" 2. (2.5)
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Using a range of values for é and measuring the corresponding values for area A(S) it is

possible to use a least squares (or similar) method to estimate D.

2.3.3 An Aside Concerning the Geometry of Spaces Containing Fractals

In the preceding discussion of fractals, the implicit assumption has been made that they exist
in Euclidean space. A Euclidean space is what most people visualise in their minds eye; where
one direction has the same properties as any other direction and there is a defined origin.
However, there are a number of alternatives; affine, projective, spherical, inverse, hyperbolic and
conformal. The EEG for, example lies in affine space where there is a defined origin but different

directions have different units, meanings and properties.

The EEG has 2 dimensions; voltage, which is normally plotted on the y-axis and time, which
is normally plotted on the x-axis. Voltage has units of volts, it 1s an expression of a potential
difference (in the electrical sense) between 2 points and the same voltage may be repeated many
times within a recording. Time, in contrast, has units of seconds, represents the interval since a
reference to the measurement point and there may only be one instance of any value of time
within the record. This may seem to be labouring a point but there are important implications for
.measuring the fractal dimension of an object, such as the EEG, which exist in affine space. For
example, the concept of length is meaningless for a diagonal line (which 1s neither parallel to the
voltage axis nor time axis) because voltage and time have different units. These issues are

discussed in detail in Chapter 3.

2.3.4 Chaos

23.41 Linearity And Time-Invariance

To describe Chaos it is convenient to begin by introducing a type of system that is not chaotic
- a Linear, Time-Invariance, Dynamical System. The term dynamical means that the system
changes with time in a predictable way: An example would be a damped mass on a spring that

oscillates when an impulse s applied (see Figure 2-9).
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It may be seen that for higher values of ‘r’ the system is chaotic. This chaotic system, in
common with all chaotic systems, is a predictable system that is non-linear (however not all non-
linear systems are chaotic). It is possible to analyse the attractors for chaotic systems and this

reveals that the attractors are fractal.

2.3.5 Complexity

To complete this introduction to the terminology of chaos and fractals it is necessary to
introduce the term “complex”. In this context, the term complex is taken to mean fractal when it
is applied to a shape and it is taken to mean chaotic when referring to a time varying signal. The
measure of "Dimensional Complexity" is the fractal dimension of the attractor of a chaotic

system.

2.4 Diagnostic Performance Measures

2.4.1 General

This thesis is concerned with the development and testing of a novel, EEG-based diagnostic
method to detect the early signs of dementia. [t is therefore important to measure the quality of
the diagnostic decision. This section defines how the performance of a method is measured and
defines the terms; Accuracy, Sensitivity, Specificity and Receiver Operating Characteristic. A
comprehensive tutorial is given by Metz [19]. This section also discusses the use of statistical

extrapolation (i.e. assuming a Gaussian distribution of the results).

The terms positive, negative, true and false are defined in a conventional way. A subject is
“positive” if they have the disease in question and “negative” if they do not. Furthermore, a

“true” diagnosis is a correct diagnosis and a “false” diagnosis is incorrect.

24.2 Accuracy

Any assessment of diagnostic performance requires some comparison with “truth”. Perhaps
the simplest measure of diagnostic decision quality is the fraction of cases where a correct

decision is made. This is accuracy.
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There are two main weaknesses of this measure. Firstly, in screening for a relatively rare
disease one can be very accurate by simply ignoring all evidence and calling all cases negative. If
only 5% of subjects have a disease, a method that simply labelled all cases as negative would
have an accuracy of 95%. One might suppose that though this is true, accuracy should be
meaningful at least as an index for comparison of diagnostic methods applied to a given
population in which disease prevalence is known and fixed. However, this is the second
weakness. Two diagnostic modalities can yield equal accuracies but perform differently with
respect to the types of correct and incorrect decisions they provide; the incorrect diagnoses from
one might be almost all false negative decisions (misses), while those from the other might be
nearly all false positives (false alarms), and clearly, the usefulness of these two methods for

patient management would be quite different.

2.4.3 Sensitivity and Specificity

To overcome the problems with using a simple accuracy measurement, it 1s possible to use

two terms to describe the performance of a diagnostic method; sensitivity and specificity.

Sensitivity = [Number of True Positive (TP) decisions]
[Number of actual positive cases]

Specificity = [Number of True Negative (TN) decisions]
[Number of actual negative cases]

In effect, sensitivity and specificity represent two kinds of -accuracy: the first for actual
positive cases and the second for actual negative cases. This separation is particularly important
because the effects of a false positive and false negative diagnosis may have very different
implications in different situations. For example, a false positive may lead to unnecessary
surgery. Similarly, a false negative may cause an important drug, which has little detrimental

effect on a patient without the disease, not being administered.
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Sensitivity and specificity are related to accuracy:

Accuracy = [Number of True decisions]
[Number of cases]

= Sensitivity x [Fraction of the study population actually positive]

+ Specificity x [Fraction of the study population actually negative]

It should also be noted that sensitivity is sometimes described as the True Positive Fraction
(TPF) or “hit rate” and specificity is sometimes described as the True Negative Fraction (TNF).
Two other useful terms are the False Positive Fraction (FPF), which is also know as “false alarm

rate”, and the False Negative Fraction (FNF). To summarise;
FNF=1-TPF
TPF = “sensitivity” = “hit rate”
FPF = | - TNF
FPF = “false alarm rate”

TNF = “specificity”

2.4.4 Receiver Operating Characteristic

With most methods of analysis, we obtain a metric, such as EEG rms voltage, that must be
compared to some threshold to decide if it is normal or abnormal. See Figure 2-20. Ciearly, by
changing the decision threshold we may alter the proportions of true to false negatives and of true

to false positives.
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In this thesis, a decision has been made to choose thresholds such that a specificity of 99.9%
is achieved. This is because the diagnostic method would be used as a regular screening for
dementia within a large at-risk population and a lack of specificity would cause too many false
alarms. The consequence of a false alarm is that a patient would be sent for unnecessary and
resource consuming follow up tests. It is felt that 1 in 1000 false alarms would be acceptable.
With the threshold set, the sensitivity of the diagnostic method gives a good measure of its
practical value and what proportion of sufferers may be helped. The consequence of a false
negative (lack of sensitivity) would be that a patient would not receive follow-up and would

receive no benefit from the screening.

2.4.5 Discussion of Statistical Extrapolation

In this research, two data sets are used. One is used to develop the method and the other
independent set to quantify the performance (sensitivity and specificity) of the method. The
population used to quantify performance contains 24 normal subjects, 17 subjects with suspected
Alzheimer’s Disease and 5 subjects with suspected Vascular Dementia. To estimate the
sensitivity of the proposed dementure discriminating metrics the distribution of the metrics from
the normal, Alzheimer’s and Vascular populations were assumed Gaussian. At the end of the
research, this assumption was revisited on the two sets of results for which this thesis makes

important claims on sensitivity. These results are:

. Fractal dimension of the zero-set of the EEG which is claimed to provide discrimination
between normal and abnormal EEG during the blind trial using clinical data (see Section
4.3). In this case, the method was estimated to achieve 67% sensitivity to probable early

Alzheimer's disease and 17% sensitivity to vascular dementia with a specificity of 99.9%.

2. Alpha/Theta ratio measure derived from the Zero Crossing Interval PDF of the EEG
which is claimed to provide discrimination between normal and abnormal EEG during the
blind trial using clinical data {see Section 6.3.10). In this case, the method was estimated
to achieve 78% sensitivity to probable early Alzheimer's disease and 35% sensitivity to

vascular dementia with a specificity of 99.9%.
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2.5 State of the Art in Automated EEG Analysis

2.5.1 General

EEG data have been subject to interpretation by expertenced clinicians for a number of years
and it is accepted that thts has led to successful diagnosis and treatment of a large number of
patients. However, various authors have commented on the disagreement between readers of the
same EEG record, due to subjective aspect of EEG interpretation as well as levels of training and
experience. This has led to-a desire for more precise and universal criteria. Thus, although human
interpretation of electrophysiological signals was a great step forward there are benefits to be

gained by processing the data further to extract more information and to standardise results.

2.5.2 Artefacts

As previously stated, artefacts are those signals present in the measured EEG signal that are
not of cerebral origin. In automated EEG analysis these artefacts present even more of a
challenge than they do to an experienced EEGer, this is because the experienced EEGer can
recognise and disregard them relatively easily whereas this is a significant challenge for an

automated system.

Two approaches to dealing with artefacts in automated EEG are present in the literature. The
first is for an expert to recognise and discard segments that contain artefacts before the automated
method is applied. This may lead to valid conclusions about the nature of artefact free EEGs but
it would not be appropriate for this research as the aim is to introduce a system that does not
require specialist involvement. The second method is to apply automated artefact recognition
strategies (perhaps using Artificial Neural Networks). This is more appropriate for this research.
However, the state of the art in automatic artefact analysis is not suffictently advanced to be
relied upon and therefore, as significant work would be required to validate such a method, it

would provide too much of a distraction from the main thrust of the research.

A third alternative, which is not generally used, is to construct a method that is, by its nature,
robust to the effect of artefacts. This is the approach taken in this research. Thus, for the analysis

pursued in this research the following protocol was generally used:
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“For all records, to avoid the: possibility of inadvertently or unconsciously selecting data
particularly suitable for analysis a predetermined protocol was applied. Data from 60s to
300s from each record was used. This avoids electrical artefacts, which commonly occur at
the beginning of a record, and gives a standard 4 minutes of data to analyse. This segment
of data, including artefacts, was analysed with no d priori selection of elements ‘suitable
for analysis’. This approach leads to a prediction of the usefulness of the technique, as it

would most conveniently be used in practice.”

2.5.3 Modelling Human Interpretation

The first attempts at an automated EEG analysis were those of Grass and Gibbs in 1938 [21]
and Baldock and Walter in 1946 [22]. Those attempts involved Fourier analysis to extract the
frequency content of the human EEG. Work has continued on evaluating the significance of the
frequency content of the human EEG; Barlow [23] reported on a system that used mainly power
spectral distribution to provide a human readable analysis and diagnosis (no figures are given for

the accuracy of this system).

It has been reported [13] that the information taken from a Discrete Fourier Transform differs
subtly from that which an EEGer would report. The way a clinician measures frequency content
of an EEG pattern is by counting the number of peak-to-trough or peak-to-peak transitions that
occur in a unit time. Small irregularities or the existence of sharpness at.the peaks of the waves is
not reflected into the visual assessment of the frequency content. Other important technigues use
amplitude integrators, correlators, period analysis, auto-regression and hybrids of these

techniques.

These attempts to automate electrophysiological signal analysis are based on the premise,
published by Jansen [24], that “methods that are more likely to succeed attempt to mimic the
electroencephalographer”. No evidence has been found in the literature to suggest that systems
mimicking the EEGer are yet sufficiently accurate and mature for normal clinical situations. This

1s reinforced by the fact that there are no such systems in common use.

The most promising current research in modelling human interpretation makes use of Fuzzy

Logic, which is described, in section 2.5.5 (below).
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Some researchers have tried to improve EEG analysis by moving away from modelling
human methods and extracting more information from the electrophysiological signals using
novel techniques. These new techniques, including polyspectral analysis and parameter
extraction based on an analogy with complex systems (dimensional complexity and fractals

dimension), are also described in subsequent sections.

2.5.4 Linear Techniques

Linear techniques such as spectral analysis, auto-regression and statistically based
comparison with known signal shapes [13] were the first computer based techniques applied to
the EEG. This work was successful in that it gave a great insight into the workings of the brain

but its diagnostic capabtlities were limited.

Linear spectral techniques take a Discrete Fourier Transform of a sampled form of the EEG.
This is often mechanised as the Fast Fourier Transform (FFT). In all techniques found in the
literature, except Bispectral Analysis (see section 2.5.9), the phase information is discarded and

only the Power Spectral Density is used.

A broad spectrum of frequencies are detected when a healthy brain is active and the higher
frequencies disappear during certain relaxed states, for example stage | sleep. Reduced frequency

content relative to a ‘healthy normal’ whilst awake is a sign of brain dysfunction.
There are many metrics that have been drawn from the Discrete Fourier Transform:

e Alpha power (8 to 12 Hz). Alpha activity tends to show modulation i.e. waxing and

waning, over period from 1 to 2 sec, thus forming envelopes (spindles) of activity.
¢ Beta power (18 to 24 Hz)
e Theta power (4 to 7 Hz)

e Delta power (0.5 to 3 Hz)
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¢ Weighted ratio of low frequency (a x delta + b x theta} to high frequency (¢ x alpha + d x
beta), where a, b, c and d are constants [25]. It is also worth noting that Gotman [25] uses

a very easy to understand presentation of a Canonogram.
¢ 95% Spectral Edge; Frequency at which 95% of signal power lies below

+ Power Spectral Median; Frequency at which 50% of signal power lies below

Relative Delta Power; Ratio of power in delta band to total signal power

Barlow [23] reported on a system that used mainly linear techniques to provide a human

readable analysis and diagnosis. No figures are given for the accuracy of this system.

These linear spectral techniques have been explored in depth over many years by many

researchers. However, research continues and some success has been reported [26] recently.

2.5.5 Fuzzy Logic

Fuzzy Logic has been developed to describe rules of inference where boundaries are not
crisp. As an example we may use the knowledge that reduced {requencies within the human EEG
may suggest damage to the brain caused by disease or trauma. Using conventional logic one
might propose the rule describing this inference as: If the frequency of o activity in the awake
eyes closed state is less than 8Hz then the clinician should be alerted that the EEG is abnormal.
This clearly does not distinguish between very low and slightly low (e.g. 0.01Hz and 7.99Hz)
whereas it distinguishes greally between just above and just below 8Hz (e.g.7.99Hz and 8.01Hz).
To remain with conventional logic and improve this situation one could propose more complex
rules with several boundaries between very low, low, marginal and normal. This leads to a
problem of logical complexity: when there are three variables (frequency, amplitude and patient
wakefulness) each with four discrete, abstract values there are 64 possible states to map. Fuzzy
Logic is a framework within which terms such as “Degree of Normality” may be described by a
continuous variable. The graph below illustrates the concept of mapping from o-wave frequency

to Degree of Normality:
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The greatest challenge with Neural Networks is training; the lack of an adequate training
algorithm led to a decade of dormancy (1970’s) in Neural Network research. Since then, the most
important learning algorithms (Error Back Propagation Algorithm, Radial Bias Function and
Kohonen Self Organising Map) have been applied to many problems including EEG

interpretation.
Training algorithms fall into two types:

1) Supervised learning. The network is presented with a training data set, which comprises
many typical inputs and predetermined desired outputs. This data is acted upon by one of
a number of leamning algorithms (Error Back Propagation, Radial Bias Function etc.) to
adapt the network synaptic weights so that the network can approximate and generalise

the implied function.

2) Unsupervised leamming. The network is presented with a fraining data set, which
comprises typical inputs; there is no predetermined desired output. This data is acted upon
by one of a number of self learning algorithms (Competitive Learning, Kohonen’s Self
Organising Map etc.) to adapt the network synaptic weights so that the network will give
a vector output describing its similarity to distinct classes which were found in the

training data.

The literature concentrates on the successes, benefits and drawbacks of specific training
methods and the abilities of networks so trained to perform useful functions. Neural Networks
have been shown particularly good at recognising tumours and other abnormalities in images

(Mammograms, Retinal Scans etc.).

Attempts have been made with some success to use Artificial Neural Networks to combine
metrics described elsewhere in this report; Pritchard [30] conducted one such study where Delta
magnitude, Theta magnitude, Alpha magnitude, Beta magnitude, saturation correlation and
dimensional complexity were used to classify Alzheimer’s Disease and normal subjects. A
sensitivity of 85.7% (12 of 14 AD subjects correctly identified) and a specificity of 96% (24 of
25 controls correctly identified) is claimed — however, this was not a blind trial on independent

data.
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Neural Networks have also been employed for automatic artefact identification [31]. This is
important because in most cases artefacts will have a large detrimental effect on the analysis of
the EEG (see section 2.5.2). Note, Kalman Filters [32] and Wavelet transforms [33] have also

been used for this task.

During this research, there was some expertmentation with Artificial Neural Networks to
evaluate the quantity of innovation within the EEG. However, this is not reported, as there was

little success.

2.5.7 Dimensional Complexity

The brain is constructed from synapses, neurones, and the like which have responses that are,
at the macro level, almost deterministic and non-linear. It has been suggested that the brain could
therefore (in a mathematical sense) be chaotic (see section 2.3 for an introduction to fractals,
Chaos and Complexity). A further introduction to Chaotic Complexity in humans is given by
Bisset [34]: Broadly, for the EEG, a healthy brain exhibits high complexity when it is active.
Low complexity, when awake, is a sign of brain dysfunction. Particularly a loss of complexity
has been associated with ageing and a loss of the ability to adapt to physiologic stress [35]. A
tutorial review of non-linear dynamical (chaotic) analysis of EEGs is given by Pritchard and
Duke [36] (the methods discussed involve reconstructing the system attractor and estimating its

fractal dimension).

Research in EEG dimensional complexity has evolved from an carly work which suggests
that human EEG under some conditions may represents deterministic chaos of relatively low
dimension [37], through studies measuring the dimension of the strange attractor [38], through to
a recent works that has questioned whether the EEG represents a chaotic signal. Finally,
Pritchard [39],[40] reported that normal EEG is high dimensional and does not represent low-
dimensional chaos. This latter paper suggests that non-linear behaviour could be confused with
low-dimensional chaos. A similar point of caution was raised by Sugihara who suggested that
one must be very careful to distinguish between chaotic behaviour of a system, sampling errors

and noise [41].
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2.5.8 Fractal Dimension

An alternative measure taken from chaos theory is the fractal dimension of the EEG: It was
suggested [42] that the shape of the occipital EEG, as plotted on paper, could be treated as a fractal
and that the detected fractal dimension might be used in group comparison studies to differentiate
subjects with Alzheimer’s Disease from a group of normal subjects. This and further work on the

fractal dimension is discussed throughout the remainder of this Thesis.

2.5.9 Polyspectral Analysis

In power spectral estimation, the signal under consideration is processed in such a way that
the phase relations between components are lost. The information contained in the power
spectrum is essentially that which is present in the auto-correlation sequence; this is sufficient to
describe a Gaussian signal completely. However, there are practical situations, including EEG
analysis, where it is useful to extract information regarding deviation from Gaussianity and the
presence of phase relations. In these situations polyspectra (also known as higher order spectra),
defined in terms of higher order statistics (“cumulants”) of a signal, are useful. Particular cases of
higher order spectra are the third order spectrum also called the Bispectrum which is by
definition the Fourier transform of the third order statistics, and the Trispectrum (fourth-order
spectrum). A further important statistic is the auto-bicoherence (or simply bicoherence) which

represents a normalised Bispectrum.

Other notable higher order statistics are cross-cumulants, cross-bispectrum and cross-
bicoherence, which may be invoked to determine the higher order statistics, contained in data

where there is more than one signal to:be considered.

Higher order statistics provide a way of describing the EEG without the need for prior
assumptions as to the nature of the signal. Nikias [43] lists the motivations behind the use of

higher order statistics in signal processing as:
1. To suppress additive coloured Gaussian noise

2. To identify non-minimum phase systems or reconstruct non-minimum phase signals
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3. To extract information due to deviations from Gaussianity

4. To detect and characterise non-linear properties in signals as well as identify non-linear

systems.

Given sufficient data, higher order statistics also provide sufficient information for statistical

tests to determine whether a signal is linear and Gaussian.

The subject of Bispectrum Analysis in relation to the human EEG is dominated by Aspect
Medical Systems, Inc. who have registered “Bispectral Index” as a trademark [44], [45]). The
proprietary nature of Bispectral Index makes it difficult to find out about it. Aspect Medical
Systems market an equipment that measures Bispectral Index and this has been used successfully
to estimate the level of hypnosis in patients undergoing surgery with various anaesthetics [46],

[47], (48], [49], [50], [51], [52]), [53] and [54].

A logical extension to this work would be to use polyspectral analysis to extract other

information from the human EEG for diagnosis of brain disease.

During this research, there was some experimentation with Higher Order Spectra. However

this is not reported as there was little to arise which was novel.

2.5.10 Independent Component Analysis

In Independent Component Analysis (ICA) [55] and Blind Signal Separation (BSS) are
related analysis problems that have recently received considerable attention in the machine
learning community. In ICA, the EEG is assumed to comprise electrical potentials arising from
several sources. Each source (including separate neural clusters, blink artefact, or pulse artefact)
projects a unique topography onto the scalp giving rise to so called 'scalp maps'. These maps are
mixed according to the principle of linear superposition. ICA attempts to reverse the
superposition by separating the EEG into mutually independent scalp maps, or components using
statistical methods. The nature and distribution of a set of relevant components is used to infer
certain diseases including dementia. [CA has also been used in combination with Artificial

Neural Networks to improve efficacy [56].
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2.5.11 Event Related Potential Analysis

The term “Event Related Potential” refers to electrical potentials (EEGs) that arise as a result
of an event such as photic or audio stimulation of the subject. The response of the subject to such
events, embedded in the EEG, may be used to study the function of the brain. The ERP are
typically analysed and classified using expert systems, Spectral/Bispectral Analysis [59] and
Wavelet Analysis [60] to discover their similarity to a normal subject at rest. The degree of
deviation from the typical normal subject at rest may then be used to imply the effect of activity

or disease.

Interest in Event Related Potential (ERP) analysis has grown recently and these methods are
showing promise for the detection of dementia including Alzheimer’s Disease [57] and

Parkinson’s Disease [58].

2.5.12 Alternatives To Automated EEG Analysis

Research into EEG signal ‘analysis must be assessed against the background of significant
developments in other related areas: Positron Emission Tomography (PET), Magnetic Resonance
Imaging (MRI) and Computerised Axial Tomography (CAT) machines are providing accurate

diagnostic information which is superior to that which is derived from EEGs in many areas.

In neurclogy, PET and MRI provide information for assessing various neurological diseases
such as Alzheimer's disease, cerebrovascular disease, Parkinson's disease, Huntington's disease,
and Down's Syndrome. Additionally, PET localises epileptic foci for qualifying and identifying
the site for surgical intervention. It also allows the characterisation, grading and assessment of

possible brain tumour recurrence.

Although scanners are an important element of medical practice, there are still advantages (o
EEG analysis in some situations. For example it would be impractical to monitor depth of
hypnosis with a large scanner in the operating theatre because it would interfere with the
surgeons range of movement, whereas automated EEG Bispectral Analysis is no more difficult to

accommodate than an Electrocardiogram (ECG) monitor.
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A further important factor is affordability. Current techniques such as Magnetic Resonance
Imaging (MRI) that are used to diagnose and assess neurological disorders require specialist
equipment and expert clinicians to interpret results. Such techniques are inappropriate as a
method of detecting individual subjects with early dementia within the large at-risk popuiation,
because everyone within the at-risk group would need to be tested regularly and this would carry

a very high cost.

2.5.13 Summary Of Automated Analysis Methods

This section has reviewed a number of methods and techniques for EEG analysis; modelling
human interpretation, fuzzy logic, artificial neural networks, dimensional complexity and
polyspectral analysis. The most striking fact is that, even though significant research has taken
place into automatic interpretation of EEGs, none of the techniques, with the exception of
Bispectrum Analysis in anaesthesia, is accurate and mature enough to be a significant
improvement over human interpretation of specific EEGs. The most important consequence is
that there has been little direct benefit to patients, although there is indirect benefit derived from

a better understanding of the brain.

Some of the lack of maturity of these methods is made evident by the lack of parameterisation
of the methods’ efficacies in the literature: Very few of the papers gave estimates of sensitivity

and specificity that could be achieved.

2.6 Summary

This chapter has described the background to the research. It has described the Human EEG;
how it is measured, the problems associated with the EEG (such as artefacts), and how clinicians
have interpreted the EEG especially in diagnosing disease. The chapter also introduced fractals,

chaos, complexity, and particularly their application to.the Human EEG.
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The state of the art in automated EEG analysis was also reviewed. It was shown that (with
one exception), even though significant research has taken place into automatic interpretation of
EEGs, none of the techniques is accurate and mature enough to be a significant improvement
over human interpretation of specific EEGs in clinical practice. The most important consequence
being that there has been little direct benefit to patients, although there is indirect benefit derived

from a better understanding of the brain.
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Chapter 3. Investigation of the Fractal
Dimension of Human EEG

3.1 Introduction

This research began with a study of the background material that is discussed in Chapter 2
and this raised a number of questions, which were felt sufficiently important to address in an
initial set of investigations. This series of investigations into the previous work on the fracial

dimension of the Human EEG and other areas of inierest are described in this Chapter.

3.2 Initial Data Set

The initial data used in this research were obtained using a strict protocol. The sampling rate
was 256Hz. These data were obtained using the traditional 10-20 system in a Common Reference

Montage which was later converted to Common Average and Bipolar Montages in software.

The EEG data were collected from 3 Alzheimer’s patients, 3 mixed type (Alzheimer’s and
multi-infarct dementia) patients, 1 multi-infarct dementia patient and 8 age matched controls
(over 65 years of age). All of the age-matched controls had a normal EEG (confirmed by a
Consultant Clinical Neurophysiologist). One age-matched control (known as ‘voll’)
subsequently developed Alzheimer’s disease; this record is of particular interest because it is

potentially of a subject in transition from ‘normal’ to Alzheimer’s diseased.

Two young volunteers were also used in the study (one male and one female) and their EEGs
were confirmed to be normal by a Consuitant Clinical Neurophysiologist. The young male
(denoted by "X") and the young female (denoted by "Y") had their EEG recorded 3 times at
intervals between 7 and 14 days. These recordings give an indication of the variability of a singie
subject’s fractal dimension, which may be compared with the variability between members of the

set of normals.
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The EEG recordings encompass various states: awake and drowsy with periods of eyes closed

and open.

The analysis described in this paper takes the whole recording including artefacts and has no
a priori selection of elements ‘suitable for analysis’. This approach leads to a prediction of the

usefulness of the techniques, as they would most conveniently be used in practice.

3.3 Evaluation of Published Fractal Dimension Research

3.3.1 Introduction

The two main sources of published work on the fractal dimension of the Human
Electroencephalogram that existed before this research were those by Woyshville and Calabrese
[42], and Wu et al [61]. These papers are reviewed and discussed in this Chapter. Theoretical
consideration and numerical experimentation are used to confirm that both methods have
shortcomings. These issues were reported and corrections suggested in a peer reviewed

publication [7].

3.3.2 Woyshville and Calabrese

In an early, group comparison study by Woyshville and Calabrese [42] the fractal dimension
of the EEG was used to separate subjects with Alzheimer’s Disease from a group of normal
subjects. The method used to measure the fractal dimension was the Divider Dimension, which is

discussed in Section 2.3.2.4,

In this retrospective preliminary investigation from 1994, the occipital EEG changes
associated with Alzheimer’s disease were examined using the then novel fractal dimension
metric. The mean occipital EEG fractal dimension was determined for each of three patient
groups rtepresenting a spectrum of clinical and EEG pathology: controls, probable AD, and
autopsy-confirmed AD. The fractal dimension was significantly reduced in each of the AD
groups with respect to the controls (p<0.001); and within the AD groups, it was significantly
reduced in autopsy-confirmed AD relative to probable AD (p<0.01). The fractal dimension
findings were said to “parallel the manifest EEG abnormalities in a way that suggested that it had

potential clinical utility in metric studies on the EEG, especially when applied to the
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dementias”. Additionally, as the EEG pathology was particularly well described by the fractal
dimension, this was seen as providing further support for a non-linear approach to the
background activity of the EEG (see Section 2.5.7 for a comparison with Dimensional

Complexity).

When this paper was reviewed and the method was considered in detail, there was a concern
that a non-obvicus but critical point had been missed; there are problems associated with
estimating the fractal dimension of shapes, such as the EEG, that exist in affine space. This issue

is introduced in Chapter 2 (Background) at section 2.3.3.

This was confirmed in the literature: as Mandelbrot [62] notes “in the study of isotropic
fractals in Euclidean spaces, dimensionalities enter as exponents in expressions of the form M(R)
< RP ... However, if the space [in which a record is defined] 1s not Euclidean but an affine
space, in which ... distance along the time axis cannot be compared with distance along the
space axis. In such a space, [an interval of length R] cannot be defined, R is meaningless, and D
cannot enter in as exponent.” In the case of an EEG trace, there is no natural scaling between
distance along the time axis and distance along the voltage axis. In such a space, a diagonal
distance between two points is meaningless and therefore the standard fractal dimension
techniques (Divider and Box Dimension) are inappropriate. An exception to this rule would be if
a scaling between voltage and time were defined; which it was for Woyshville and Calabrese by
the way the EEG had been printed. To demonstrate the effect of the arbitrary choice of scaling on
the result, the Divider Dimension method (used by Woyshville and Calabrese) was repeated on

data from a single Alzheimer's subject and a single normal subject.
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Voltage/Time Scaling | Typical normal subject’s | Typical AD subject’s
(nV/s) fractal dimension fractal dimension
0.04 1.006 1.001
0.08 1.032 1.004
0.16 1.143 1.017
0.31 1.505 1.069
0.6 1.658 1.282
1.3 1.450 1.514
2.5 1.210 1.610
5.0 1.114 1.362
10.0 1.071 1.183

Table 3-1, Variability of Fractal Dimension with Scaling

The table shows that if a scaling of 0.6nV/s is chosen then the Normal subject appears to have
a much higher fractal dimension (1.658) than the Alzheimer’s subject (1.282). This is the type of
clear result that had been reported; fractal dimension for controls of 1.41 and confirmed AD
subjects with.a fractal dimension of 1.09. However, an issue arises if a scaling of 2.5nV/s is chosen.
In this case the previously clear results reverse and cease to give the intuitively correct result. That
is the Normal subject appears to have a much lower fractal dimension (1.210) than the AD

subject (1.610).

The problem demonstrated above is a direct result of inappropriately applying the Divider

Dimension to an object that exists in affine space.

3.3.3 Wuetal

3.3.3.1 Introduction

A later study into the use of fractal dimension to analyse the EEG was also published [61].
The method was not published in detail, but fortunately, it was possible to determine the method
by reverse engineering the software that had been used. This original code is shown in Appendix

A.
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This method, as published, was claimed to have achieved 100% separation of normal subjects
and- patients with dementia. Whilst this is true for the sample of 7 normal subjects and 7 patients
with dementia, it would be unlikely to be true on a larger sample. The published results are

reproduced below in Table 3-2.

Age matched controls Subjects with Dementia

vol2 1.23 vol6  1.21 ad | 1.12 Mixl 1.13
vol3  1.23 vol7  1.21 ad2 1.12 Mix2 1.12
vol4  1.20 vol8  1.20 ad3 1.12 Mix3 1.18
vol5  1.22 Imidl 113

Table 3-2, Summary of Published Results.

Although the fractal dimension values are lower for Alzheimer’s subjects, there is insufficient
data to make a statistically significant statement concerning the sensitivity (probability of
correctly identifying subjects with dementia) and specificity (probability of correctly identifying

normal subjects) of the method.

The detailed algorithms given below are followed by a commentary (which discusses the

probable intent of the software) and a discussion of the method.

3.3.3.2 Detailed Algorithm

In this method, where the sampling rate is assumed to be 256Hz, estimates of fractal

dimension £2;, are made for 2<i<6,ie Z:

_In(S;)—In(S,)

D, = .
=1 iln2 ’ G-
where:
256,
2'. . 2 b} . — b} . i
5= é g KRG =R G4 2O] (3.2)
j=0 R’ (0)
k =300, (3.3)
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and R’ (m) is based on the auto-correlation of the EEG sampled (256Hz) time series x(2):

R (@)= "Sx(B)x(a+h), VO<a<255. (3.4)

b=0
Note, k may be expressed in units of sampling interval squared (i.e. k = 1.526x107 ).

Finally, the highest and lowest of the 5 estimates of fractal dimension (D;, 2<i<6,ie Z) are

discarded and average of the remaining three is taken to be the overall fractal dimension, D.

Although it is not shown in the algorithm description above, there is also a code segment that
combines the overall fractal dimension (D) from each |s segment of data, from each channel into
a single fractal dimension for the entire record. A histogram of fractal dimension measures taken
from the data-segments is produced and the mode is taken to be the composite measure of fractal

dimension for the whole record.

3.3.3.3 Comments on Algorithm

This section is a commentary on the algorithm, which discusses the probable intent of the

software.

For this method the step sizes used along the time axis were 4, 8, 16, 32 and 64 samples
(expressed as 2' where 2<i<6,ic Z) and the sampling rate was 256Hz. Therefore, the time steps

were 15.6ms, 31.3ms, 62.5ms, 125ms and 250ms.

It may be seen that equation 3.2 calculales the approximate length of the function
R, (a)/ R (0) by using diagonal distances along the function. That is, using Pythagoras’
theorem; the diagonal length of each segment is the square root of the sum of the square of the
time interval (2° sampling intervals) and the square of the change in normalised autocorrelation

interval R’ (a)/R’, (0) over that time interval.

To understand equation 3.1 it is necessary to return to the Divider Dimension. If one assumes
that the curve is a fractal then the length of the entire curve, S;, is given by the equation below

(see Section 2.3.2.4).
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3.5.3 Conclusion and Implications

Subject specific analysis of the fractal dimension of the EEG was shown to be an exciting,

interesting and useful candidate for early detection of dementia.

It is, however, important to recognise that if this method were adopted then there would be
infrastructure requirements with associated costs. In practice, a simple non-subject specific, EEG
based method would require a PC, interface box, electrodes and straightforward training for the
General Practitioner. Whereas, a subject specific EEG method would require the same plus an
information infrastructure which could recall previous results that may have been taken —
possibly at another facility. Thus, to be useful and reliable a subject specific measure would
require a patients’ previous EEG data to follow them and this is not currently a trivial objective
to achieve. In the near future, this should become somewhat more achievable with eHealth
programs such as Biopattern [65], [66] pressing forward the development of database, internet
and computational technologies in. pursuit of better health care. Biopattern is a particularly good
example to choose, as one of its aims is to develop systems that allow an individual patient’s
medical data (of many types) to be stored remotely whilst being available quickly for detailed

analysis.

3.6 Alpha/ Theta Ratio Determined from the Fractal Dimension

3.6.1 Discussion

This section describes the derivation of a metric, which is the ratio of the time that the EEG
exhibits Alpha activity to the time that it exhibits Alpha or Theta activity, where classification of
alpha or theta like activity is from the Fractal Dimension. This was inspired by a similar metric

which has previously been derived from the Power Spectral Density.
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To better understand the difference between these histograms the signal segments that
produced the fractal dimension measures were examined. By observation of the signal segments
that produce values of fractal dimension it is possible to show that clearly defined signai types,
defined in section 2.2.4, approximately map to certain ranges of values of fractal dimension.

These. are given in Table 3-12.

Adapted box dimension
of raw data or auto-
correlation function

Zero-set dimension of
raw data or auto-
correlation function

Ocular artefacts Lower than 1.0 Lower than 0.3
Theta 10w 1.2 0.3100.5
Alpha 1.2102.0 051010
Beta Above 2.0 Above 1.0

Table 3-12, Approximate mapping of signal type to fractal dimension

It is necessary to comment on the range of fractal dimension values which are taken to be
representative of Beta waves because an adapted box dimension of should be in the range 1 to 2
and the dimension of the zero set should be in the range 0 to 1. However, with the way that the
fractal dimension is estimated on short (2s) segments of data there is a possibility of values
outside the theoretically valid range occurring. These values occur-when the apparent complexity
increases at greater magnifications and are eliminated when one estimates the fractal dimension

of the whole signal.

Other, less well defined, signals can be classified as having similar fractal dimensions to the
clearly defined types and it is possible to determine the density of observations in the Theta,

Alpha and Beta ranges directly from the histogram.

It was suggested that a new metric could be used. The metric was the ratio of density in the
Alpha range to the sum of the densities in the Alpha and Theta ranges. This metric seems (on the
limited data available) capable of differentiating control subjects from subjects with dementia
with a wide band between the two groups (see results below). It should be remembered that the
entire recording from each subject was used without any pre-selection of segments that we wish
to analyse and that this method is relying on pushing the records from artefacts out of the ranges

specified for Alpha and Theta.
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Zero sel dimension Adapted box
dimension
Raw Auto- Raw Auto-
correlation correlation

Age matched.controls: vol2 0.596 0.858 0.943 0.796

vol3 0.578 0.835 0.813 0.745

vol4 0.441 0.847 0.720 0.753

vol5 0611 0.825 0.920 0.788

vol6 0.603 0.841 0.909 0.785

vol7 0.303 0.879 0.601 0.763

- vol8 0.647 0.872 0:928 0.850

Mean 0.540 0.851 0.834 0.783

Standard Deviation 0.123 0.020 0.130 0.035

Age matched control who went on| voll 0.497 0.776 0.714 0.658
to develop Alzheimer’s Disease

Table 3-13, Alpha-Theta ratio results for normal subjects.

Zero set dimension Adapted box
dimension
Raw Auto- Raw Auto-
correlation correlation
Mixed dementia subjects: mixl 0.576 0.523 0.761 0.441
mix2 0.481 0.316 0.484 0.279
mix3 0.628 0.695 0.882 0.632
Multi-Infarct subjects midl 0.264 0.566 0.331 0.325
Alzheimer’s Disease subjects adl 0.527 0.339 0.771 0.234
ad2 0.442 0.524 0.612 0.360
ad3 0.478 0.246 0.602 0.209
“Most normal’ subject with 0:628 0.695 0.882 0.632
dementia
Difference between “most normal” -0.7 79 -0.4 4.3
demented subject and mean
normal divided by Std Dev of
normal subjects

Table 3-14, Alpha-Theta ratio results for subjects with dementia.

80




For the alpha/theta ratio of the zero set dimension of the auto-correlation function, the
difference between the “most normal” subject with dementia (Mix3) and the mean of the normal
subjects is 0.156, which is 7.9 times the standard deviation among the normal subjects. This
represents (all-be-it on this small data set) a clear differentiation between the normal and subjects

with dementia.

Interestingly Voll who was passed as normal by a clinician and later developed Alzheimer’s

Disease is clearly abnormal by this test with a result of 0.776.

The data previously used to investigate the subject specific analysis concept, from the two
young controls (X and Y), was reanalysed using this method. The results were a surprise (Table
3-15). X has a spread over three measurements of 0.122, which is mere than 6 times the
estimated population standard deviation of the age-matched controls. Y, who had less of a
spread, was none-the-less surprising because the mean of the results (0.734) was 0.118 less than
the mean of the age-matched controls. This difference is just less than 6 times the estimated
population standard deviation of the age-matched controls. It would be easy to ignore these data
but it was recognised that they provide significant counter evidénce to the seemingly strong
evidence (above) for the efficacy of this method. It was hypothisised that this could be an age

related effect but there was insufficient data to support or reject this.

Young volunteer X Xl 0.785
X2 0.907
X3 0.809
Young volunteer Y Yl 0.751
Y2 0.750
Y3 0.702

Table 3-15, Alpha Theta Ratio results for young subjects.

Although the results from X and Y are difficult to explain and the method does not neatly fit
the subject specific methodology, it remains an interesting candidate for early detection of
dementia. Therefore, results for this metric are produced as a supplement to the evaluation of the

other fractal methods using new, independent data described in Chapter 4.
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3.7 Time Evolution of the Fractal Dimension

3.7.1 Discussion and Results

Given the preceding discussions of subjects specific measures and a desire to understand
better'the non-stationary nature of the EEG, it was decided to evaluate how the fractal dimension
varies with time. To this end, each of the EEG records was divided into I-minute intervals and
the zero-set fractal dimension of the auto-correlation function was calculated for each. The
results for the normal subjects are given in Table 3-16 and the results for the subjects with
dementia are given in Table 3-17. These results are also shown graphically in Figure 3-34 and

Figure 3-35.
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Start  |[FRACTAL DIMENSION OF THE ZERO-SET OF THE AUTO-CORRELATION
Time (s} Vol2 vol3 vold vol5 vol6 vol7 vol8
0 0.7531 0.8070 0.8436 0.6300 0.7543 0.7950 0:8103
60 0.8670 09121 0.8894 0.9131 0:8690 0:8320 0:2184
120 0.9060 0.8925 09153 09104 0:8974 0:8511 0.8283
180 09154 0.7413 0:9067 0.9229 0.9042 0.8322 0.8294
240 0.9538 0.9312 0.8889 0:8954 0:8446 0.7791
300 0.8338 0.8739 0.6276 0.7568 0.7909 0.8406
360 0.6906 0.7132 0:6029 0.7839 0.8902
420 0.6316 0.9386 0.9155
480 0:8791 0.9188
540 0.8781 0.9197
600 0.9052 0.9051
660 0.9318 0.9032
720 09186 0.9248
780 0.9305 0.9237
840 09151 09172
900 0.9044

Table 3-16; Time progression of Fractal Dimension in normal subjects.

Start  |FRACTAL DIMENSION OF THE ZERO-SET OF THE AUTO-CORRELATION
Time (s) Adl ad2 ad3 mix|1 mix2 mix3 mid|

0] 0.6112 0.6922 0.2686 0:5591 0.3595 0.7244 0.6384
60 0.4571 0.5431 0.3029 04663 0.3438 0:8459 0.6672
120 0.2575 0.5662 0.3054 0:5642 0.4307 0.7796 0.6122
180 0.2396 0.5166 0.2885 0:5147 0.391 07118 0.5855

240 0.2484 0.5584 0.2837 0.5023 0.3532 0.5537 0.5789

300 0.2497 0.5141 0.2927 0.6114 0.3368 0.6838 0.6031

360 0.2541 0.5286 0.2109 0.532 0.3413 0.757 0.5537

420 0.2653 0.5062 0.2543 0.52 0.273 0.7237 0.5251

480 0.3467 0.4495 0.2286 0:5186 0.2698 0.3844 0.5398

540 0.3197 0.4559 0.2328 05218 0.2855 0.7205 0.5037

600 0.285 0.4631 0.257 0.4643 0.2063 0.4803

660 0.3792 0.5163 0.5729

720 0.5161 0.5721

780 0.4571 0.5861

840 0.4817

900

Table 3-17; Time progression of Fractal Dimension in subjects with dementia.
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3.7.2 Conclusion

It may be seen that the measured fractal dimension (zero-set dimension of the auto-
correlation function) is reasonably stable and high for the normal subjects except where they
become drowsy toward the end of the recording. The subjects with dementia present a generally
lower fractal dimension (as noted previously) and the fractal dimension seems not quite as stable
with time as the normals. It is also interesting to note that the subjects with dementia do not seem

to enter a drowsy phase before the end of the recording.

3.8 Variability of Fractal Dimension Over the Scalp

3.8.1 Introduction

The efficacy of automated EEG analysis is expected to vary over the scalp for two reasons.
Firstly, because the effect of dementia on the EEG varies over the scalp and secondly, because
the masking effects of other signals (cerebral tn origin and artefacts) varies over the scalp. To
investigate the extent of this effect, the fractal dimension was measured independently in all
channels and the performance of the method was evaluated for each channel. Section 3.8.2 below
describes a method for quantifying the performance of the method and section 3.8.3 contains the

results.

3.8.2 Method Evaluation Metric

How well the method works can be quantified by using a “Method Evaluation Metric”; As,
this research is aimed at analysing an EEG recording to derive an index which is significantly
different for normal and subjects with dementia it is important to have a measure that describes
how well the index performs this task. We have chosen to measure the performance of a

candidate index using, what we have termed, a “Method Evaluation Metric”.
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To evaluate this metric we begin by calculating the candidate index for all control subjects
and subjects with dementia, then the mean and estimated population standard deviation (o) of the
index for the control subjects is recorded (excluding Voll who went on to develop Alzheimer’s).
Finally, the difference between the mean of the index from the controls and the closest index

from any of the subjects with dementia (i.e. closest to normal) is divided by o.

Thus calculated, the Method Evaluation Metric describes how many standard deviations the
“most normal” subject with dementia is from the mean of the control subjects. As a guide a 3 is
good and 6 is excellent. A similar figure may be produced for Voll to see whether there was a

significant, previously undetected decline.

An illustrative example is given in Table 3-18, where the index under evaluation is the fractal
dimension of the Zero-set of the autocorrelation function. The example shows that it is unlikely
that the “most normal” of the subjects with dementia could have come from the population of

normals and that Vol1 is hardly distinguishable.
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Comment Subject Index
Measured index from normal subjects. Vol2 0.590
Vol3 0.648
Vol4 0.622
Vol5 0.562
Vol6 0.627
Vol7 0.539
Vol8 0.670
Mean Mean 0.6083
Estimated population Std Dev’n SD 0.0469
Measured index from subjects with dementia. ADI 0.323
AD?2 0.368
AD3 0.331
MID1 0.384
MIX | 0.324
MIX2 0.270
MIX?3 0.438
“Most normal” subject with dementia MIX3 0.438
Difference from mean normal to “most normal” subject with Mean- 0.170
‘dementia MIX3
Method evaluation metric. i.e. the difference of mean normal to Mean- 36o
“most normal” subject with dementia MIX3
SD
‘Control who went on to develop Alzheimer’s Voll 0.516
Difference from mean normal to Voll Mean- 0.092
Voll
Method evaluation metric. i.e. the difference of mean normal to Mean- 200
Voll Voll
SD

Table 3-18, Method evaluation metric.
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3.8.5 Conclusion

Using the revised method, it was shown that the best separation of subjects with dementia
from control subjects was achieved in the central and posterior regions of the scalp. Thus, it has
been confirmed that the efficacy of automated EEG analysis does vary-over the scalp and this is
believed to be for two reasons. Firstly, because the effect of dementia on the EEG varies over the
scalp.and secondly, because the masking effects of other signals {cerebral in origin and artefacts)

varies over the scalp.

Further indications that, in Alzheimer’s Disease, the posterior regions of the scalp should
provide the earliest evidence for dementia was found in a study of early onset Alzheimer’s
Disease related Cortical Atrophy in the Lancet [6]. This shows that the earliest atrophy occurs in

the posterior region and at the base of the brain.

3.9 Questioning the use of Auto-Correlation

3.9.1 The Question

Inspired by the work of other earlier researchers, the fractal dimension of the auto-correlation
function had been used in this research. However, one must ask, “what is the meaning of the
fractal dimension of an auto-correlation function?” This is particularly important because these
measures seemed, during these initial investigations, to give the best results (although the clinical

evaluation in Chapter 4 later showed that this is not the case).

Despite a great deal of thought, the meaning of the fractal dimension of an auto-correlation
function could not be envisaged. An interesting alternative is, though, that it has no meaning, but
instead happens to give a particular resuit because of the spectral content of the EEG. It has been
shown for example [41] that a non-fractal (i.e. with incoherent phase) can appear to have a

measured fractal dimension which is a function of the power spectral density.
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3.9.2 Method and Results, Part 1

Inttially, the assumption was made that signals on different channels would be, to an extent
dependent on the proximity of the electrodes, have similar spectra but different phase/shape.
Therefore, it was decided to measure the fractal dimension of the zero-set of the cross-correlation
function (between channels) and compare this to the fractal dimension of the zero-set of the auto-

correlation.

This analysis was performed on one typical normal subject (vol3) and one typical
Alzheimer’s subject (AD3). The overall fractal dimension of the zero-set of the auto-correlation
for these two subjects were 0.556 and 0.308 respectively. The results below (in Figure 3-44
through Figure 3-47) show these fractal dimensions of cross correlations in graphical form. Note
the on-diagonal terms are the fractal dimensions of auto-correlations. Detailed numerical results

are in Appendix D. for reference in Table 8-1 through Table 8-4.

From these results, it is clear that the cross-correlations have very similar fractal dimension to
the auto-correlation, however it was recognised that this was not a sufficient test because the

signals on different channels could still be phase coherent.
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3.9.3 Method and Results, Part 2

Given the concern that signals on different channels could be phase coherent, it was decided
to repeat the -analysis. This time, instead of correlating the signal from one channel with the
signal from a different channel at the same time, we correlated the signal from one channel with
the signal from a different channel at a random different time. Thus, knowing that the EEG is not
a stationary signal, we could be sure that any potential phase relationship would be broken. This
analysis was again performed on one typical normal subject (vol3) and one typical Alzheimer’s

subject (AD3).

The results below (in Figure 3-48 through Figure 3-51) show these fractal dimensions of
time-incoherent cross-correlations in graphical form. Note the on-diagonal terms are the fractal
dimensions of auto-correlations. Detailed numerical results are in Appendix D. for reference in

Table 8-5 through Table 8-8.

From these results, it is clear that the time-incoherent cross-correlations have very similar
fractal dimension to the auto-correlation (except in the frontal region which is more prone to

artefacts).
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The two main sources of published work on the fractal dimension of the Human
Electroencephalogram that existed before this research were those by Woyshville and Calabrese,
and Wu et al. These papers were reviewed, particularly from a theoretical standpoint, and
numerical experimentation are used to confirm that both methods had shortcomings. In the early,
group comparison study by Woyshville and Calabrese the fractal dimension of the EEG was used
to separate subjects with Alzheimer’s Disease from a group of normal subjects. However, a
critical point had been missed; there are problems associated with estimating the fractal
dimension of shapes, such as the EEG, that exist in affine space. The two most significant points
for Wu’s method were, firstly, the fractal dimension of the auto-correlation is estimated instead
of the fractal dimension of the raw record and secondly a version of the divider dimension is

estimated in affine space, in a similar way to that used previously by Woyshville and Calabrese.

Two methods, which are appropriate in affine space, were selected from the range of
dimension measures found in the literature. The Adapted Box Dimension and Dimension of the
Zero Set were each applied to raw EEG data and to the auto-correlation of the EEG data. The
results seem to show that all these fractal methods provide metrics that tend to decrease when
dementia is present. However, the separation between subjects with dementia and normal subject
was not good. It was found that changing controlling constants in the method, such as the
segment length, affected the results. Better results were produced by tuning parameters, but this
does not represent strong evidence. This is because it is not clear whether the method was
working on a specific set of data because the method is tuned to that set of data or because this
method tuning will work in general. These concerns were the main reason for conducting the

evaluation, with a new, independent set of data, described in Chapter 4.
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This chapter also proposed the concept of subject specific analysis of the fractal dimension,
which was shown to be an exciting, interesting and useful candidate for early detection of
dementia. Subject specific analysis involves comparing an EEG to those taken previously from
the same subject: Looking for trends in indices that arise over time rather than comparing an
EEG to what is generally normal within the population. Subject specific EEG techniques were
shown more sensitive than group comparison based on the same metric. It is noted that if this
method were adopted then there would be infrastructure requirements with associated costs for
storing and retrieving previous EEG results. In the near future this should become more
achievable with eHealth programs which aim is to develop systems that allow an individual
patient’s medical data (of many types) to be stored remotely whilst being available quickly for

detailed analysis.

In these investigations, measurements of fractal dimension over short data segments (2s) were
used to construct a histogram of relative likelihood of a fractal dimension value being discovered
on any segment and the mode was taken as the composite fractal dimension for the complete
record. When the shape of these histograms was studied in more detail, it was observed that that
clearly defined signal types (alpha wave, elc.) map approximately to ranges of values of fractal
dimension. Other, less well defined, signals can be classified as having similar fractal dimensions
to the clearly defined types and it is possible to determine the density of observations in the
Theta, Alpha and Beta ranges from the histogram. It was suggested that a new metric could be
used. The metric was the ratio of density in the Alpha range to the sum of the densities in the
Alpha and Theta ranges. This metric was calculated for all four methods and it was found that the
most promising came from the Zeros-Set Dimension of the Auto-correlation. The difference
between the “most normal” subject with dementia (Mix3) and the mean of the normal subjects
was 30 times the standard deviation among the normal subjects. This represents (all-be-it on this
small data set) a clear differentiation between the normal and subjects with dementia. The data
previously used to investigate the subject specific analysis concept, from the two young controls
was reanalysed using this method and these results provide significant counter evidence to the

seemingly strong evidence {above) for the efficacy of this method.
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This chapter also reports the study of the time evolution of the fractal dimension. Each of the
EEG records was divided into 1-minute intervals and the zero-set fractal dimension of the auto-
correlation function was calculated for each. It was shown that the measured fractal dimension
(zero-set dimension of the auto-correlation function) is stable and high for the normal subjects
except where they become drowsy toward the end of the recording. The subjects with dementia
present a generally lower fractal dimension (as noted previously) and the fractal dimension is less
stable with time as the normals. It was also noted that subjects with dementia do not seem to

enter a drowsy phase before the end of the recording.

The varniability of fractal dimension over the scalp was also considered in this chapter. In
particular, it was shown that the efficacy of the fractal dimension based methods to separate
normal subjects from those with dementia was better in the posterior region of the head. This is
believed to be because the effect of dementia on the EEG varies over the scalp and because the

masking effects of other signals (cerebral in origin and artefacts) vary over the scalp.

Inspired by the work of other earlier researchers, the fractal dimension of the auto-correlation
function had been used in this research. This chapter considered the question “what is the
meaning of the fractal dimension of an auto-correlation function?”’ Despite a great deal of
thought, the meaning of the fractal dimension of an auto-correlation function could not be
envisaged. It was hypothesised that it has no meaning, but instead happens to give a particular
result because of the spectral content of the EEG. It was shown that the separation of a typical
normal subject from a typical Alzheimer’s subject, as measured by the fractal dimension of the
zero set of the auto-correlation function, is largely unaffected by replacing the auto-correlation
function with a time-incoherent cross correlation function or phase randomised function. This
shows that the apparent success of this measure is due to the content of the power spectral
density and not to the time domain shape of the waveform. These results were later taken as
evidence that the auto-correlation function is not a fractal and that the fractal dimension measures
applied to the auto-correlation function only work because of the spectral content of the EEG. At
this stage in the research, the implication that the raw EEG may also not be a Fractal was not

recognised, but this was rectified after the Clinical Evaluation.
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The final investigation reported in this chapter limited the bandwidth of the EEG to be
analysed and demonstrated that all of the required information for the method to work is in the

frequency range 5Hz to 15Hz.
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Chapter 4. Evaluation of the Fractal Based
Methods

4.1 Introduction

The results of the fractal measures investigated in Chapter 3 (and particularly 3.4) provide
weak evidence that these measures may be useful in the early detection of dementia. The
evidence is considered weak because the methods had to be tuned in order to provide reasonable
results. To create strong evidence (or dismiss the weak evidence) it was necessary to conduct a

further evaluation on a new, independent set of data. This evaluation is described in this Chapter.

The description of the method evaluation is in five parts. The first is this introduction. The
second part (4.2) describes the selection of the method to test and the parameterisation of that
method. This is important because post experiment parameterisation will again make the
evidence produced less strong. The third part (4.3) describes the data and results from the
evaluation. The fourth part (4.4) continues by presenting results that are obtained by applying the
other methods considered in the initial investigation (see Chapter 3) to the new data. The final

part (4.5) describes the conclusions that are drawn.

4.2 Preparation

4.2.1 Use of the Initial Data Set

The initial data set described in section 3.2 was also used in preparation for the method
evaluation: It was used for the selection of which method to test and the parameterisation of that

method.
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For all records, to avoid the possibility of inadvertently or unconsciously selecting data
particularly suitable for analysis a predetermined protocol was applied. Data from 60s to 300s
from each record was used. This avoids electrical artefacts, which commonly occur at the
beginning of a record, and gives a standard 4 minutes of data to analyse. The EEG recordings
encompass various states: awake, hyperventilating, drowsy and alert with periods of eyes closed
and open. The analysis described in this paper takes the whole recording including artefacts and
has no a priori selection of elements ‘suitable for analysis’. This approach leads to a prediction of

the usefulness of the techniques, as they would most conveniently be used in practice.

For all data, the recorded sampling rate was downsampled from 256Hz to 128Hz by

averaging sets of two consecutive samples for storage reasons.

4.2.2 Choosing a Preferred Method

4.2.2.1 Introduction

With a range of fractal dimension methods and parameters available to choose, it was
important to settle on a single, fixed set of parameters before a blind trial, using data recorded in
a clinical environment, was conducted. If this had not been done, it could be said that the
assessment of the method was not a fair test and that retrospectively applied parameterisation
favourably skewed the measured Specificity and Sensitivity. The parameters that needed to be
fixed included; the range of lengths used in the Zero Set dimension, the frequency band limiting

applied and montage.
4.2.2.2  Selected Parameters

The methods were honed by numerical experimentation to ensure the best chance of good

performance. This was found to occur under the following conditions:
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1)

2)

3

4)

Montage: Bipolar montage (which exclude the frontal signals); T3-T5, T4-T6, T5-Ol,
T6-02, C3-P3, C4-P4, P3-0O1, P4-0O2 and Cz-Pz, using the minimum fractal dimension
across the channel pairs. The choice to use of the minimum fractal dimension over a
population of channel pairs rather than the average or mode etc. is due to the nature of the
dementia under consideration. Alzheimer’s disease shows a generalised slowing over in
all regions and minimum, mean or mode would all detect the dementia, but
cerebrovascular disease normally has a focus and in the presence of measurement
corruption (noise, artefacts, other unrelated effects) the minimum across the channel pairs
has the best chance of success. See also Section 3.8, which discusses the variability of the

fractal dimension over the scalp.

Band limiting; |Hz to 25Hz. Applied by taking the Fast Fourier Transform and

reconstructing the signal from just the required components.

Segment length: The raw EEG data were divided into 1 second segments and the
estimated fractal dimension from each segment through the entire duration of the
recording is plotted on a histogram. The results obtained are almost invariant for segment
lengths between 0.5s and 2s. Below (.5s the results become erratic because of the number
of samples is becoming too small compared to the sampling rate employed. With segment

lengths greater than 2s the results are affected by the non-stationary nature of the EEG.

Taking the fractal dimension from the histogram: the mode of the histogram was taken as
the composite measure of fractal dimension for that recording. The strict mode was not
used because of a theoretical anomaly if two peaks of equal size occur and because the

mode provides no interpolation if there are two similarly sized peaks. The equation used

was: FD:ZDI."FD,/ED,.". Where D; is the histogram height {density) at fractal

dimension estimate FD; and n is a control constant. When n=1 the estimate becomes the
mean.and when n tends to infinity the estimate tends to the mode. For our experiment n=4

was chosen but using strict mode made very little difference.
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From these results and-assuming a Normal distribution to the results, it is possible to estimate

the efficacy of the method in detecting dementia.

For the fractal dimension of the Zero-Set, if one were to demand a specificity of 99.9% then a
result would be considered abnormal if it were less than 0.6697. This implies a sensitivity to
Alzheimer’s disease of 99.5% and a sensitivity to vascular (or mixed) dementia of 97.2%.
Furthermore, the Normal who went on to develop Alzheimer’s disease (Voll) would have been

flagged as abnormal (before it was detected by a clinician).

Similarly, for the Adapted Box Dimension, if one were to demand a specificity of 99.9% then
a result would be considered abnormal if it were less than 1.2848. This implies a sensitivity to
Alzheimer’s disease of 99.3% and a sensitivity to Vascular {or mixed) of 92.9%. Furthermore, the
Normal who went on to develop Alzheimer’s disease (Voll) would have been flagged as slightly
abnormal (before it was detected by a clinician). It can also be shown that this is a statistically

significant effect; p<0.0001 for both methods.
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4.3 Trial of Preferred Method

4.3.1 Evaluation Data Set

The data used for this evaluation were obtained from Demiford Hospital and had been
collected using normal hospital practices. The EEG recordings encompass various states: awake,
drowsy and alert with periods of eyes closed and open. Within this data set, there were 24 normal
records, 17 probable Alzheimer’s disease and 5 probable Vascular Dementia. This data set did
not reuse any of the development data set. These data were obtained using the modified
Maudsley system, which is similar to the traditional 10-20 system. The classification of the
records between normal and Alzheimer’s disease was taken from the written hospital diagnosis
sheets. It is noteworthy that the probable Alzheimer’s subjects were not previously diagnosed and
were therefore in the early stages of exhibiting symptoms; in fact some of these subjects were not

referred for dementia diagnosis but came in for investigation of seizures et cetera.

For all records, to avoid the possibility of inadvertently or unconsciously selecting data
particularly suitable for analysis a predetermined protocol was. applied. Data from 60s to 300s
from each record was used. This avoids electrical artefacts, which commonly occur at the
beginning of a record, and gives a standard 4 minutes of data to analyse. This segment of data
including artefacts was analysed with no d priori selection of elements ‘suitable for analysis’.
This approach leads to a prediction of the usefulness of the technique, as it would most

.conveniently be-used in practice.

For all data, the recorded sampling rate was 256Hz reduced to 128Hz for analysis by

averaging sets of 2 consecutive samples (for storage reasons).
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4.5 Summary

This evaluation has been valuable because it has demonstrated that the performance of the
fractal dimension based measures is a strong function of the tuning one applies. From this
evaluation it is clear that either of the fractal dimension measures applied to the raw EEG data
could be used to separate subjects with dementia from controls but that this separation would
have low sensitivity. This is a demonstration of the value of a blind test using an independent
data set. It has shown that we were in danger of believing results based on too small a set of data,

which had itself been used to develop the method.
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Chapter 5. Fundamental Study of the
Fractal Nature of the EEG

5.1 The Fundamental Question

It was realised that an implicit assumption was being made duning the preceding research.
The assumption was that, because the Fractal measures appeared to be able to differentiate (to
some extent) between normal subjects and subjects with dementia then the EEG is necessarily

fractal in nature. A decision was made to test and attempt to disprove the following hypothesis:

o The Fractal Nature of the EEG contributes to the apparent success of the Fractal based

methods.

5.2 Method

Building on the research described in Section 3.9, it was decided to use surrogate data testing.
To perform this surrogate data test it is necessary to define a feature which is essential to the
EEG being fractal in nature, then modify the recorded EEG data to remove this feature and
finally reapply the onginal fractal based measure to see whether the method works better,
similarly or worse than before the feature is removed. The evaluation of whether the performance

is better or worse is based on efficacy measured with estimated specificily and sensitivity.

When the feature is removed there are two possible conclusions that will be reached based on

how the Method Evaluation Metric changes:

e If the metric geis worse then it is likely that this feature is necessary for both the metric to
work and for the hypothesis to be true. Hence, this is weak evidence that the hypothesis is
true. It is only weak evidence because the feature removed may be necessary but not

sufficient to conclude a fractal nature,
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¢ If the metric is the same or better then there is reasonable evidence that the hypothesis is
untrue. That is that the fractal nature of the EEG (should it exist at all) does not contribute

to the success of the method.

It was only necessary to remove one feature from the EEG in order to obtain evidence of the

hypothesis being untrue. This feature was the structured phase relationships within the data.

The Fourier Transform was applied to obtain phase and magnitude data for ail spectral
components then the signal was reconstructed with the original magnitude but with the phase

data randomised. The resultant signal is non-fractal.

5.3 Results

The fractal dimension measures and Alpha/Theta ratio methods were applied to:the EEG data
with and without phase randomisation. The results are summarised in Table 5-1 through Table

5-4.
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54 Summary

Comparing the results in Table 5-1 with those in Table 5-2 and comparing the results in Table
5-3 with those in Table 5-4, it may be seen that phase randomisation does not cause a significant
loss of performance for any of the methods considered. Therefore, it is concluded that the fractal
nature of the EEG (should it exist at all) does not contribute to the performance of the fractal
dimension methods. From this, it is concluded that the EEG is very unlikely to be a fractal.
However, the previous success of the fractal methods is important and is likely to be because

they detected a related characteristic of the EEG.
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Chapter 6. Development of Two Novel
Methods

6.1 Search for an Alternative Metric

The conclusion from the Surrogate Data Testing had a profound effect on the direction of the
research. It was recognised that all of the information, which was able to give the (partial)
success with fractal dimension measures, was contained within the Power Spectral Density. It
was also known from the background research that, despite significant effort over a long period;

no spectral based measure had been good enough to use in general clinical practice.

It was decided to tackle this from a different angle and propose methods that shared an
important similarity with the fractal measures; we decided to use measures based in the time
domain. These were the Allan Vanance (which shares features with the adapted box dimension)

and the zero-crossing interval distribution (which shares features with the zero-set dimension).

This search for new metheds was conducted using just the development data set so that the

evaluation data set could be kept in reserve to test any proposed methods.

6.2 Allan Variance

6.2.1 Concept and History

The Allan Variance method [67] of analysing and visualising time domain characteristics of
stochastic processes in Gyro theory was investigated. Allan variance is a time-domain analysis
technique originally developed to study the frequency stability of oscillators [68]. It can be used

to determine the character of the underlying processes that can give rise to data features.
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If we apply these limits then for the minimum metric the sensitivity to Alzheimer’s and the
sensitivity to vascular dementia are both estimated to be 0.0%. The rms metric fairs only
marginally better with the estimated sensitivity to Alzheimer’s of 0.8% and the sensitivity to
vascular dementia of 0.2%. These are clearly disappointing results and the Allan variance metrics
were discarded. However, it remains true that the Allan variance may provide a new and

interesting method to visualise the spectral content of the EEG.

6.3 Zero Crossing Interval Distribution

6.3.1 Introduction

A further novel method that shared some features with the zero-set dimension was proposed.
This was the zero-crossing interval distribution (or probability density function). Initially, the
research concentrated on the strict zero crossing interval distribution as reported at Como [10].
This was superseded by work, which is reported in this thesis, that deals with the interval
between double zero crossings. That 1s, the interval between a positive to negative transition to

the next positive to negative transition.

6.3.2 Mathematical Interpretation of the Fractal Dimension of the Zero Set

This analysis considers the zero-set dimension discussed in Section 3.4.1. Consider a single
gap, length g, between two consecutive zero crossings where the second crossing is at the
beginning of a line being used to ‘cover’ the zero-set as illustrated in Figure 6-24. The distance,
d, is the interval between the end of one line being used to cover the zero-set and the start of the

next.
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6.3.4 Zero Crossing Interval Plots from Normal and Alzheimer’s Subjects

As this was believed to be the first time that the zero-crossing interval of the EEG had been
investigated in detail, we decided to plot the probability density function (PDF) of bipolar
channel pairs over the scalp and as it varies from normal to subjects with dementia. The
development data was used. Each of the following sheets contains two graphs; the first is the
zero-crossing interval PDF from a specific area of the scalp for 7 controls and the second is the

sume for 7 subjects with dementia.
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The plots obtained from normal subjects are most characteristically different from subjects
with dementia in the temporal, perietal and occipital regions. This mirrors the findings with
fractal dimension (see Section 3.8). In the frontal region, the results are less ordered and this is

probably because this area is prone to ocular and other muscular artefacts.

6.3.5 Cumulative Based Metric of Zero Crossing Interval

The first metrics to suggest themselves when looking at the zero crossing interval distribution
were cumulative based metrics. If we plot the cumulative density distributton, for bipolar
channels at the rear of the scalp, for normals (Figure 6-43) and subjects with dementia (Figure
6-44) then it is clear that the normals have a higher density at lower time intervals. Hence, we
evaluated the 75%, 80% and 85% points of the cumulative distribution as a metric. These results

are shown in Table 6-7, Table 6-6 and Table 6-8 respectively.
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The mean zero crossing interval for the development data set is and the estimated sensitivities

are given in Table 6-9.

Normal who went onto develop Alzheimer’s Disease
VOLI1 110
Normal
VOL2 95
VOL3 97
VOlL4 105
VOLS 93
VOL6 99
| VOL7 104
' VOLS 96
|Mean normal 98
IStd Dev’n Normal 4.6
|Limit to achieve 99:9% specificity 112
Probable Alzheimer's Discase
ADI 115
AD2 116
AD3 131
Mean 121
Standard Deviation 9.0
Sensitivity 82.2%
JMulti-Infarct and Mixed Dementia
! MIDI 127
Mix1 95
: Mix2 123
Mix3 110
Mean 114
Standard Deviation 14.6
Sensitivity 53.4%

Table 6-9, Mean zero-crossing interval over rear of scalp (ms).
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Table 6-10, below, shows the results of this comparison and they are encouraging. However,
their significance is compromised because they are self-referential. That is, it is not surprising
that the normals used to create the standard curve are closest to it. For this reason it is important
to repeat this test on the evaluation data, whilst using the standard normal curve from the
development data as the reference. This runs contrary to the general rule of reserving the
evaluation data set for testing the best of these novel methods and hence avoiding the charge of
simply testing enough methods that one was bound 1o be successful eventually. However, in this

instance it was felt that nothing else would provide a sensible measure of the methods’ efficacy.
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From these results, it may be seen that the sensitivities to Alzheimer's disease and
(particularly) vascular dementia using the evaluation data (51% and 9.6% respectively) are
significantly lower than similar results using the development data (96.8% and 95.8%
respectively). This is because the difference of the evaluation data set normals to the
development data set normals is large — but not as large as the difference to any of the groups of
subjects with dementia. It is felt that this method is unlikely to provide a reliable, sensitive metric
to detect dementia. However, it may be worth repeating this experiment in the future with a

larger set of development and evaluation data taken with the same recording protocol.

6.3.8 Alpha/ Theta Ratio from Zero Crossing Interval

The Alpha/Theta ratio derived from the fractal dimension measures gave some of the better
results (see Sections 3.6 and 4.4.3). It was decided to create a similar metric based on the zero
crossing interval PDF. The boundaries for each band of activity were chosen after numerical
experimentation on the development data set and the boundaries that gave the best results are
shown in Table 6-13, below. These experimentally derived boundaries are acceptable given the

definitions in Section 2.2.4.

T (s) F (Hz)
Beta/Alpha boundary 0:055 18.3
Alpha/Theta boundary 0.125 8.0
Sub Theta boundary 0.234 4.3

Table 6-13, Band boundaries.

The metric used was the ratio of density in the Alpha range to the sum of the densities in the
Alpha and Theta ranges. This metric seems (on the development data) capable of differentiating
control subjects from subjects with dementia with a wide band between the two groups (see
results below, Table 6-14). It should be remembered that the entire recording from each subject
was used without any pre-selection of segments that we wish to analyse and that this method is
relying on pushing the records from artefacts out of the ranges specified for Alpha and Theta.
The estimated sensitivities to Alzheimer’s disease and vascular dementia for a specificity of

99.9% are also given in Table 6-14.
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Figure 6-57, Zero-crossing interval sequence for Vol6.
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6.3.11 Comparison to Alpha / Theta Derived from PSD

Having produced an Alpha/Theta ratio metric based on the zero-crossing interval it was
important to produce a similar method based on the power spectral density and determine

whether similar results could have been produced this way.

For this method, the combined power spectral density was taken from the same electrode
pairs (bipolar) as had been used for the preceding methods. The boundaries for each band of
activity were chosen after numerical experimentation on the development data set and the
boundaries that gave the best results are shown in Table 6-17, below. These experimentally
derived boundaries are acceptable given the definitions in Section 2.2.4 and are very similar to
the boundanes previously used for the Alpha/Theta ratio based on the zero-crossing interval

(Table 6-13).

F (Hz)
Beta/Alpha boundary 18.0
Alpha/Theta boundary 3.0
Sub Theta boundary 4.0

Table 6-17, Band boundaries:

As before, the metric used was the ratio of density in the Alpha range 1o the sum of the
densities in the Alpha and Theta ranges. The results from the development data set are shown in

Table 6-18.
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It is interesting to consider whether this, the best method achieved in this research, is good
\ enough to be of used in clinical practice. Before we consider this question though, we should
recall that the data used to test the method was realistic, and independent of the method

development:

¢ The trial data set encompassed various states: awake, drowsy and alert, with periods of

eyes closed and open.

e The classification of the records between normal and Alzheimer’s disease was taken from

the written hospital diagnosis sheets.

e The probable Alzheimer’s and vascular subjects were not previously diagnosed and were
therefore in the early stages of exhibiting symptoms; in fact some of these subjects were

not referred for dementia diagnosis but came in for investigation of seizures et cetera.

e For all records, to avoid the possibility of inadvertently or unconsciously selecting data
particularly suitable for analysis a predetermined protocol was applied. Data from 60s to
300s from each record was used. This avoids electrical artefacts, which commonly occur
at the beginning of a record, and gives a standard 4 minutes of data to analyse. This
segment of data including artefacts was analysed with no d priori selection of elements
‘suitable for analysis’. This approach leads 10 a prediction of the usefulness of the

technique, as it would most conveniently be used in practice.
The benefits of introducing this method (subject to a larger scale trial) would be:

¢ One third of vascular dementia sufferers could be detected earlier and offered the benefit
of existing drugs and therapies to extend the symptom free state. Cost of care would also

be delayed or reduced.

* Three-quarters of early Alzheimer’s disease sufferers could be detected earlier and-offered
the benefit of new drugs to slow the progression of their disease and extend the symptom

free state. Cost of care would also be delayed or reduced.
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The costs of introducing the method would be mainly felt be GPs who would have to be

convinced of the value of the new method. The costs would be:

e The cost of the computer systems deployed in GPs surgeries (PC, software, interface box

and electrodes)
e Training for the GPs and some extra time with each patient

e | in 1000 normal subjects will be troubled with an unnecessary visit to a hospital

Neurophysiology department.

It is not possible to directly equate financial cost and medical resources to relieving patient
suffering. However, there is a point at which a technique/therapy/practice becomes viable. I

believe, subject to a larger scale trial, that this method provides benefits that cutweigh the cost.

6.4 Summary

The surrogate data testing in the preceding chapter showed that all of the information, which
was able to give the (partial) success with fractal dimension measures, was contained within the
power spectral density. However, it was also known from the background research that, despite
significant effort over a long period; no spectral based measure had been good enough to use in
general clinical practice. Thus, it was decided to take a different approach and propose methods
that were determined by the power spectral density but were in the time domain. These novel
methods were the Allan Variance (which shares features with the adapted box dimension) and
the zero-crossing interval distribution (which shares features with the zero-set dimension). This
search for novel methods was conducted using just the development data set so that the

evaluation data set could be kept in reserve totest any proposed methods.
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Allan variance is a time-domain analysis technique originally developed to study the
frequency stability of oscillators and it can be used to determine the character of the underlying
processes that can give rise to data features. After some study of the Allan Variance of the EEG
for normal subjects to subjects with dementia, a metric derived from the Allan Variance was
jproposed. This metric tested on the evaluation data set, the results were very disappointing and
the Allan variance metrics were discarded. However, it remains true that the Allan variance may

provide a new and interesting method to visualise the spectral content of the EEG.

A novel method that shared some features with the zero-set dimension was proposed. This
was the zero-crossing interval distribution (or probability density function). Initially, the research
concentrated on the strict zero crossing interval distribution but this was superseded by using the
interval between double zero crossings (that is, the interval between a positive to negative
transition to the next positive to negative transition). After some mathematical investigation of
this concept several metrics were tested on the development data set; the 75%, 80% and 85%
points of the cumulative density function, the mean zero crossing interval, the correlation of the
zero crossing interval probability function to the mean zero crossing interval probability function
for normal subjects, the Alpha/Theta ratio derived from the zero crossing interval PDF and the

zero crossing interval sequence.

The best results were obtained with the Alpha/Theta ratio derived from the zero crossing
interval PDF and this method was tested against the evaluation data set. These results show that,
if one were to demand a specificity of 99.9% the estimated sensitivity to Alzheimer’s disease and'
vascular dementia would be 77.8% and 35.2% respectively. This method was thus shown to be
better at detecting dementia than either fractal measures or a typical standard method. It is also

noted that applying the subject specific methodology would improve this still further.
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The benefits and costs of this method were considered in order to give an opinion on whether
this method is good enough to be of used in clinical practice. The significant benefits were that
one third of vascular dementia sufferers and three quarters of Alzheimer’s disease sufferers could
be detected earlier. This gives the opportunity to prescribe drugs and therapies that could extend
the symptom free state and reduce/delay the cost of care. The costs would be mainly felt in
general practice where new equipment, training and patient contact time would be required.
There would also be a false alarm rate and 1 in 1000 normal subjects will be troubled with an
unnecessary visit to a hospital Neurophysiology department. Considering this, I formed a
personal opinion that, subject to confirmation of the results in a larger scale trial, this method

provides benefits that outweigh the cost.
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Chapter 7. Review, Conclusions and Future
Work

7.1 Review

Improved life expectancy has led to a significant increase in the number of people in the high-
risk age groups that will develop Alzheimer's disease and other dementia. Efforts are being made
to develop treatments that slow the progress of these diseases. However, unless: a sufferer is
diagnosed in the early stages the treatments cannot give the maximum benefit. Therefore, there is
an urgent need for a practical, decision support tool that will enable the earliest possible detection

of dementia within the large at-risk population.

This thesis described the background to the research; the Human EEG, fractals, chaos,
complexity, and particularly their application to detecting dementia. The state of the art in

automated EEG analysts was also reviewed.

The two main sources of published work on the fractal dimension of the Human EEG that
existed before this research were those by Woyshville and Calabrese, and Wu et al. These papers
were reviewed, particularly from a theoretical standpoint, and numerical experimentation are
used to confirm that both methods had shortcomings. There are problems associated with

estimating the fractal dimension of shapes, such as the EEG, that exist in affine space.

Two methods, which are appropriate in affine space, were selected from the range of
dimension measures found in the literature. The Adapted Box Dimension and Dimension of the
Zero Set were each applied to raw EEG data and to the auto-correlation of the EEG data. The
results seem to show that all these fractal methods provide metrics that tend to decrease when
dementia is present. However, the separation between subjects with dementia and normal subject
was not good. It was found that changing controlling constants in the method, such as the
segment length, affected the results. Better results were produced by tuning parameters, but this

does not represent strong evidence as it is not clear whether the better results occur because the
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method is tuned to that set of data or because this method of tuning will work in general.

These concens were the main reason for conducting the evaluation, with a new, independent
set of data, described in Chapter 4. This evaluation, with new data, produced mediocre results but
it was valuable because it demonstrated that the performance of the fractal dimension based
measures is a strong function of the tuning one applies. From the evaluation it was clear fractal
measures could be used to separate subjects with dementia from controls but that this separation
would have low sensitivity. This evaluation was also a clear demonstration of the value of a blind
test using an independent data set and the dangers of taking results from a small a set of data,

which had itself been used to develop the method.

Subject specific analysis:of the fractal dimension was also proposed. This was shown to be an
exciting, interesting and useful candidate for early detection of dementia. Subject specific
analysis involves comparing an EEG to those taken previously from the same subject: Looking
for trends in indices that arise over time rather than comparing an EEG to what is generally
normal within the population. Subject specific EEG techniques were shown more sensitive than

group comparison based on the same metric.

It was observed that measurements of fractal dimension over short data segments (2s)
produced by clearly defined signal types (alpha wave, etc.} fall into bands. Other, less well
defined, signals can be classified as having similar fractal dimensions to the clearly defined types
and it is possible to determine the density of observations in the bands associated with Thela,
Alpha and Beta activity. A metric, the ratio of observations in the Alpha range to the sum of the
total observations in the Alpha and Theta ranges, was tested (on a small data set) and a

differentiation between the normal and subjects with dementia was found.

Time evolution of the fractal dimension was also studied and it was found that the fractal
dimension is stable and high for the normal subjects except where they become drowsy toward
the end of the recording. The subjects with dementia present a generally lower fractal dimension
(as noted previously) and the fractal dimension is less stable with time as the normals. It was also
noted that subjects with dementia do not seem to enter a drowsy phase before the end of the

recording.
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The variability of fractal dimension over the scalp was also considered. In particular, it was
shown that the efficacy of the fractal dimension based methods to separate normal subjects from
those with dementia was better in the posterior region of the head. This is believed to be because
the effect of dementia on the EEG is stronger and artefacts are weaker on the scalp at the back of

the head.

Inspired by the work of other earlier researchers, the fractal dimension of the auto-correlation
function had been used in this research. It was shown that their success was due to the content of
the power spectral density and not to the time domain shape of the waveform. When this was
discovered the implication that the EEG may not be fractal was not recognised, but this was
rectified in later surrogate data testing experiments. These experiments showed that phase
randomisation did not cause a significant loss of performance for any of the methods considered.
Therefore, it was concluded that the fractal nature of the EEG (should it exist at all) does not
contribute to any of the fractal dimension methods and the EEG is very unlikely to be a fractal.
Previous success of the fractal methods is still important because it has clearly picked up on a

significant feature within the EEG.

The surrogate data testing showed that the information necessary for the fractal dimension
measures was contained in the power spectral density. It was also known, however, that despite
significant effort over a long period no spectral based measure had been good enough to use in
general clinical practice. Because of this, it was decided to take a different approach and propose
methods that were determined by the power spectral density but were in the time domain. These

novel methods were the Allan Variance and the zero-crossing interval distribution.

The results from Allan variance were very disappointing and the Allan variance metrics were
discarded. However, the Allan variance may provide a new and interesting method to visualise

the spectral content of the EEG.

Various metrics concerning the zero-crossing interval distribution were tested using the
development data set and the best results were obtained using the Alpha/Theta ratio derived from
the zero crossing interval PDF. This metric was tested against the evaluation data set and the
results show that, if one were to demand a specificity of 99.9% the estimated sensitivity to
Alzheimer’s disease and vascular dementia would be 77.8% and 35.2% respectively. This method

was thus shown to be better at detecting dementia than either fractal measures or a
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typical standard method. It is also noted that applying the subject specific methodology would
improve this still further. The benefits and costs of this method were considered in order to give
an opinion on whether this method is good enough to be of used in clinical practice. The
significant benefits were that one third of vascular dementia sufferers and three quarters of
Alzheimer’s disease sufferers could be detected earlier. This gives the opportunity to prescribe
drugs and therapies that could extend the symptom free state and reduce/delay the cost of care.
The costs would be mainly felt be in general practice where new equipment, new training and
some increased patient contact time would be required. There would also be a false alarm rate
and 1 in 1000 normal subjects will be troubled with an unnecessary visit to a hospital
Neurophysiology department. Considering this, 1 formed a personal opinion that, subject to
confirmation of the results in a targer scale trial, this method provides benefits that outweigh the

cost.

7.2 Future Work

7.2.1 General

This section attempts to answer the question: “Given a further 3 to 5 years what would I do to
further the search for a practical method for the early detection of dementia?” This section is-also
intended to kick-start the process of planning MSc, MPhil and PhD projects that will follow on
from this work. Some of this work has already begun under the European collaborative

BioPattern project [65].

In the following sections, it is suggested that future work should concentrate on reviewing
and drawing together all of the recent parallel strands of investigation into the detection of
dementia from the EEG using, for example, ICA, ERP, subject specific analysis or the novel
methods described in this paper. The drawing together of these strands could be accomplished
using a data fusion method such as Artificial Neural Networks. The future work should also
begin to address the lack of large high quality database of serial EEGs from normal subjects,
subjects who appear to be in decline and subjects with dementia (confirmed post-mortem). These
activities would provide a combined method and a proof of that method’s effectiveness. This

could lead to use in real situations and benefit to people.
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7.2.2 Review and Development

Future research should begin with a review of the current candidate methods for the early

detection of dementia from the EEG. Such as:
¢ Independent Component Analysis;
* Event Related Potentials analysed using Spectral/Bispectral or Wavelet methods;
» Subject specific methods suggested in this Thesis;
e The novel methods suggested in this Thesis;
e Dimensional Complexity;
e Power spectral density ratios.

The next task would be to evaluate whether a data fusion based approach, such as Artificial
Neural Networks or Fuzzy Logic, could provide any benefit and then design it. This would need
to consider whether the methods are measuring different aspects of dementia related artefacts
within the EEG or simply measuring the same thing in different ways. Clearly, if it is the latter
then the data fusion will provide little benefit because the information derived from the methods
is highly correlated. A consideration would be the amount of data required to test and evaluate
several different combinational strategies in a meaningful way. Another concern would be that
there is no simple way to choose a data fusion method and hone it for a particular problem; it

normally requires a deep expert to-derive a method of this class.

7.2.3 Trial and Data Collection

One of the largest barriers to the implementation of an EEG based method for the early
detection of dementia is the availability of data. This is because the creation of a large high
quality database of serial EEGs from normal subjects, subjects who appear to be in decline and
subjects with dementia (confirmed post-mortem} is a significant undertaking in terms of time and
resource. Some of this work has already begun under the European collaborative BioPattern

project [65].
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The main issues are:

e Confirming dementia. Many dementias, such as Alzheimer’s disease, cannot be
confirmed until a post mortem is carried out and this clearly extends the time necessary to

collect a significant database of confirmed dementia cases.

o FEthical approval will be required: The ethical approval will only be given if it can be
shown that issues such as data security and patient consent have been adequately

considered and protected. This is particularly difficult because:

Repeated measures (required for subject specific measures) are not required for
medical purposes and therefore we are justifying additional (minor) procedures,

which are of no direct benefit to the patient concerned.

Some of the patients whose consent is required will have dementia — will we be

able to rely on consent before the onset of dementia?
We will require post-mortems to confirm some types of dementia.

¢ Sharing the database. The EEG records will be valuable to many researchers and sharing
such a large quantify of data on a large (global) scale requires clear planning, security and

infrastructure.

I would suggest that once the data has been collected, it should be divided into a development
data set and a trial data set. The development data set would be available to the researcher(s) who
are developing the combined method. The trial data set would be available to .independent
researcher(s) who would trial the (well-defined) method in order to preserve its value as a blind
trial data set. The number of records required in each data set and the frequency of taking EEGs

from individuals needs to be determined.

210



7.2.4 Implementation

Patient representative groups, general practitioners, clinicians, health care managers, medical

equipment suppliers and other interested parties should be engaged at an appropriate time to

canvas their support for the introduction of EEG methods for the early detection of dementia.

After consultation and having developed a combined method, it will be necessary to engage a

small number of GPs and Hospital facilities in a multi-centre trial. This trial would verify the

estimated efficacies of the proposed method and expose any logistical or procedural issues. The

potential of Information Technology (eMedicine) to facilitate GP to hospital EEG data transfers

in the event of a referral and to facilitate subject specific disease diagnosis would also be

assessed. This trial will be required to argue the case for the wider introduction.of the method.

7.3

Conclusions

This thesis has produced the following conclusions.

Previously published methods using the fractal dimension of the EEG are not wholly
appropriate. This is because the EEG exists within affine space and conventional methods
of estimating fractal dimension cannot be made to work without arbitrary assumptions in

affine space.

There are a number of fractal dimension methods that are appropriate for use with signals
that lie in affine space. The performance of these methods is highly dependent on the
selection of controlling parameters. The performance of these methods in a blind
evaluation was reasonable (if one demands a specificity of 99.9%, the estimated

sensitivity to Alzheimer’s and vascular dementia is 67% and 17% respectively).

Although the fractal measures are useful and successful, this is not due to the fractal
nature of the EEG. The success is due to the detail of the EEG power spectral density and

a natural robustness of the method to artefacts.

Subject specific methods are an important way to improve the efficacy of metric based

methods such as fractal dimension.
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The Allan Variance of the EEG gives an interesting method of visualising the data,
however, it has not been possible to produce a metric to separate normal from subjects

with dementia.

Novel methods based on the zero crossing interval distribution are promising; particularly
the Alpha/Theta ratio. It has been shown (on an independent data set) that, if one were to
demand a specificity of 99.9% the estimated sensitivities to early Alzheimer’s disease and

vascular dementia are 77.8% and 35.2% respectively.

It is possible to summarise an EEG recording into a single index and retain information

pertinent to the detection of dementia. This is important for subject specific measures.
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Appendix A. Source Code from Wu’s Work

This is the original code used by Wu in his research [61].

void complex () {

int a, b;
float temp, correlate[257];
float DCtempl[7];

for{a=0;a<=6;a++)
{
DCtemp(al=0.0;
}

for(a=0;a<=256;a++)

{
correlate(al=0.0;
1
temp=0.0;

for{a=0;a<=255;a++)
: if (temp<tabsix[a]))
temp=fabs{x[a]};
fgr(a=0;a<=255:a++)
I x[(a)=64.0*x[a]/ (temp+0.0000001);

for(a=0;a<s255;a++)
{ correlate(al=0.0;
for (b=0;b<=255-a;b++)
: correlate(al=correlate[a]+x[b]*x{a+b];
X 1

temp=0.0;
for{a=0;a<=255;a++)
{
if (temp<fabs{correlatelal}) temp=fabs(correlate(al):

for{a=0;a<=255%;a++}
{
x[a]=300.0*correlate(a]/(temp+0.0000001);
}

x[256]=x[255]):

for{a=0;a<=255;a++)
{
DCtemp(l]=DCtempll)+sgrblix{al-xla+l])* {x(al-
x[a+1])+1.0);
}
for{a=0;a<=255;a=a+4)
{
DCtemp(2]=DCtemp (2] +sqrt{(x[a)-x[a+d])) *(x[a]-
x[a+4])+16.0);
}
for({a=0;a<=255;a=a+8)
{
DCtemp[3]1=DCtemp{3)+sqrt{ixlal-x[a+8])*(x[al-
x(a+8))+64.0);

}
for{a=0;a<=255;a=a+16)
{
DCtemp[4)=DCtemp (4] +sqrt{({xlal-xl[a+l6])*(x[a]l-
x[a+1l6])+16.0%16.0};

for(a=0;a<=255;a=a+32)
{
DCtemp [5]=DCtemp (5] +sqre{(x[al-x[a+32]})*(x[a]l-
%[a+32])+32.0%32.0);

}
for{a=0;a<=255;a=a+64)
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DCtemp [6]=DCtemp (6] +sqrt({xla]l-x[a+64]1)*(x[al-
x[a+64])+64.0%*64.0};
}

for {a=2;a<=6;a++)
{
DCtemp(a)=1.0-(log(DCtaemplal)-
log(DCtemp(1])}/log{pow(2.a));
}

temp=0.0;
for (a=2:a<=5;a++)

for (b=a+l;b<=6;b++)
{
if (DCtemplaj>DCtemp(b])
{
temp=DCtemp[al;
DCtemp(al=DCtemp(b];
DCtemp [bl=temp;
]
else
{
}

}

DCBand([0) (1]=(DCtemp(3)+DCtemp[4]1+DCemp([5])/3.0;
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Appendix D. Detailed, Supporting Results

This section contains tables of detatled results that have been moved from the main body of

the thesis 10 ease reading.
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