1,771 research outputs found

    Machine Learning and Finance: A Review using Latent Dirichlet Allocation Technique (LDA)

    Get PDF
    The aim of this paper is provide a first comprehensive structuring of the literature applying machine learning to finance. We use a probabilistic topic modelling approach to make sense of this diverse body of research spanning across the disciplines of finance, economics, computer sciences, and decision sciences. Through the topic modelling approach, a Latent Dirichlet Allocation Technique (LDA), we can extract the 14 coherent research topics that are the focus of the 6,148 academic articles during the years 1990-2019 analysed. We first describe and structure these topics, and then further show how the topic focus has evolved over the last two decades. Our study thus provides a structured topography for finance researchers seeking to integrate machine learning research approaches in their exploration of finance phenomena. We also showcase the benefits to finance researchers of the method of probabilistic modelling of topics for deep comprehension of a body of literature, especially when that literature has diverse multi-disciplinary actors

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Photonic reservoir computing with a network of coupled semiconductor optical amplifiers

    Get PDF

    Dynamical Systems in Spiking Neuromorphic Hardware

    Get PDF
    Dynamical systems are universal computers. They can perceive stimuli, remember, learn from feedback, plan sequences of actions, and coordinate complex behavioural responses. The Neural Engineering Framework (NEF) provides a general recipe to formulate models of such systems as coupled sets of nonlinear differential equations and compile them onto recurrently connected spiking neural networks – akin to a programming language for spiking models of computation. The Nengo software ecosystem supports the NEF and compiles such models onto neuromorphic hardware. In this thesis, we analyze the theory driving the success of the NEF, and expose several core principles underpinning its correctness, scalability, completeness, robustness, and extensibility. We also derive novel theoretical extensions to the framework that enable it to far more effectively leverage a wide variety of dynamics in digital hardware, and to exploit the device-level physics in analog hardware. At the same time, we propose a novel set of spiking algorithms that recruit an optimal nonlinear encoding of time, which we call the Delay Network (DN). Backpropagation across stacked layers of DNs dramatically outperforms stacked Long Short-Term Memory (LSTM) networks—a state-of-the-art deep recurrent architecture—in accuracy and training time, on a continuous-time memory task, and a chaotic time-series prediction benchmark. The basic component of this network is shown to function on state-of-the-art spiking neuromorphic hardware including Braindrop and Loihi. This implementation approaches the energy-efficiency of the human brain in the former case, and the precision of conventional computation in the latter case

    Analysis and modeling a distributed co-operative multi agent system for scaling-up business intelligence

    Get PDF
    Modeling A Distributed Co-Operative Multi Agent System in the area of Business Intelligence is the newer topic. During the work carried out a software Integrated Intelligent Advisory Model (IIAM) has been develop, which is a personal finance portfolio ma

    Updating the Lambda modes of a nuclear power reactor

    Full text link
    [EN] Starting from a steady state configuration of a nuclear power reactor some situations arise in which the reactor configuration is perturbed. The Lambda modes are eigenfunctions associated with a given configuration of the reactor, which have successfully been used to describe unstable events in BWRs. To compute several eigenvalues and its corresponding eigenfunctions for a nuclear reactor is quite expensive from the computational point of view. Krylov subspace methods are efficient methods to compute the dominant Lambda modes associated with a given configuration of the reactor, but if the Lambda modes have to be computed for different perturbed configurations of the reactor more efficient methods can be used. In this paper, different methods for the updating Lambda modes problem will be proposed and compared by computing the dominant Lambda modes of different configurations associated with a Boron injection transient in a typical BWR reactor. (C) 2010 Elsevier Ltd. All rights reserved.This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia under projects ENE2008-02669 and MTM2007-64477-AR07, the Generalitat Valenciana under project ACOMP/2009/058, and the Universidad Politecnica de Valencia under project PAID-05-09-4285.González Pintor, S.; Ginestar Peiro, D.; Verdú Martín, GJ. (2011). Updating the Lambda modes of a nuclear power reactor. Mathematical and Computer Modelling. 54(7):1796-1801. https://doi.org/10.1016/j.mcm.2010.12.013S1796180154

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure
    • …
    corecore