826 research outputs found

    Analog Circuits in Ultra-Deep-Submicron CMOS

    Get PDF
    Modern and future ultra-deep-submicron (UDSM) technologies introduce several new problems in analog design. Nonlinear output conductance in combination with reduced voltage gain pose limits in linearity of (feedback) circuits. Gate-leakage mismatch exceeds conventional matching tolerances. Increasing area does not improve matching any more, except if higher power consumption is accepted or if active cancellation techniques are used. Another issue is the drop in supply voltages. Operating critical parts at higher supply voltages by exploiting combinations of thin- and thick-oxide transistors can solve this problem. Composite transistors are presented to solve this problem in a practical way. Practical rules of thumb based on measurements are derived for the above phenomena

    High-Performance Deep SubMicron CMOS Technologies with Polycrystalline-SiGe Gates

    Get PDF
    The use of polycrystalline SiGe as the gate material for deep submicron CMOS has been investigated. A complete compatibility to standard CMOS processing is demonstrated when polycrystalline Si is substituted with SiGe (for Ge fractions below 0.5) to form the gate electrode of the transistors. Performance improvements are achieved for PMOS transistors by careful optimization of both transistor channel profile and p-type gate workfunction, the latter by changing Ge mole fraction in the gate. For the 0.18 ¿m CMOS generation we record up to 20% increase in the current drive, a 10% increase in the channel transconductance and subthreshold swing improvement from 82 mV/dec to 75 mV/dec resulting in excellent ¿on¿/¿off¿ currents ratio. At the same time, NMOS transistor performance is not affected by gate material substitutio

    Advanced CMOS Process for Submicron Silicon Carbide (SiC) Device

    Get PDF
    Silicon carbide (SiC) is a wide semiconductor material with superior material properties compared to other rival materials. Due to its fewer dislocation defects than gallium nitride and its ability to form native oxides, this material possesses an advantage among wide band gap materials. Despite having several superior properties its low voltage application is less explored. CMOS is extremely important in low voltage areas and silicon is the dominant player in it for the last 50 years where scaling has contributed a major role in this flourishment. The channel length of silicon devices has reached 3 nm whereas SiC is still in the micrometer (2 μm/ 1.2 μm) range. So, SiC technology is still in its infancy which can be compared with silicon technology in the mid-1980s range. When the SiC devices would enter into the sub-micron and deep submicron range, proper device design in those ranges is necessary to rip the benefit of scaling. In this thesis, the SiC CMOS process available from different institutes and foundries is discussed first to understand the current state of the art. Later, low-voltage conventional SiC NMOS devices in the submicron range (2 μm to 600 nm) are simulated and their key parameters and performances are analyzed. In the submicron range, one major issue in MOSFET scaling is hot carrier effects. Thus to minimize this effect, a low-doped drain (LDD) region is introduced in the conventional SiC design having a channel length of 800 nm and 600 nm. In comparison with conventional designs, LDD designs have shown better saturation current behavior, reduced threshold roll-off, reduced hot electron current density, minimized gate leakage, reduced body hole current, enhanced voltage handling capability, reduced electric field, and improved subthreshold behavior in SiC. In the end, spacer technology, dopants, doping methods, and LDD realization technique in SiC are discussed

    Advanced CMOS Process for Submicron Silicon Carbide (SiC) Device

    Get PDF
    Silicon carbide (SiC) is a wide semiconductor material with superior material properties compared to other rival materials. Due to its fewer dislocation defects than gallium nitride and its ability to form native oxides, this material possesses an advantage among wide band gap materials. Despite having several superior properties its low voltage application is less explored. CMOS is extremely important in low voltage areas and silicon is the dominant player in it for the last 50 years where scaling has contributed a major role in this flourishment. The channel length of silicon devices has reached 3 nm whereas SiC is still in the micrometer (2 μm/ 1.2 μm) range. So, SiC technology is still in its infancy which can be compared with silicon technology in the mid-1980s range. When the SiC devices would enter into the sub-micron and deep submicron range, proper device design in those ranges is necessary to rip the benefit of scaling. In this thesis, the SiC CMOS process available from different institutes and foundries is discussed first to understand the current state of the art. Later, low-voltage conventional SiC NMOS devices in the submicron range (2 μm to 600 nm) are simulated and their key parameters and performances are analyzed. In the submicron range, one major issue in MOSFET scaling is hot carrier effects. Thus to minimize this effect, a low-doped drain (LDD) region is introduced in the conventional SiC design having a channel length of 800 nm and 600 nm. In comparison with conventional designs, LDD designs have shown better saturation current behavior, reduced threshold roll-off, reduced hot electron current density, minimized gate leakage, reduced body hole current, enhanced voltage handling capability, reduced electric field, and improved subthreshold behavior in SiC. In the end, spacer technology, dopants, doping methods, and LDD realization technique in SiC are discussed

    Low-Frequency Noise Phenomena in Switched MOSFETs

    Get PDF
    In small-area MOSFETs widely used in analog and RF circuit design, low-frequency (LF) noise behavior is increasingly dominated by single-electron effects. In this paper, the authors review the limitations of current compact noise models which do not model such single-electron effects. The authors present measurement results that illustrate typical LF noise behavior in small-area MOSFETs, and a model based on Shockley-Read-Hall statistics to explain the behavior. Finally, the authors treat practical examples that illustrate the relevance of these effects to analog circuit design. To the analog circuit designer, awareness of these single-electron noise phenomena is crucial if optimal circuits are to be designed, especially since the effects can aid in low-noise circuit design if used properly, while they may be detrimental to performance if inadvertently applie

    Cmos Rf Cituits Sic] Variability And Reliability Resilient Design, Modeling, And Simulation

    Get PDF
    The work presents a novel voltage biasing design that helps the CMOS RF circuits resilient to variability and reliability. The biasing scheme provides resilience through the threshold voltage (VT) adjustment, and at the mean time it does not degrade the PA performance. Analytical equations are established for sensitivity of the resilient biasing under various scenarios. Power Amplifier (PA) and Low Noise Amplifier (LNA) are investigated case by case through modeling and experiment. PTM 65nm technology is adopted in modeling the transistors within these RF blocks. A traditional class-AB PA with resilient design is compared the same PA without such design in PTM 65nm technology. Analytical equations are established for sensitivity of the resilient biasing under various scenarios. A traditional class-AB PA with resilient design is compared the same PA without such design in PTM 65nm technology. The results show that the biasing design helps improve the robustness of the PA in terms of linear gain, P1dB, Psat, and power added efficiency (PAE). Except for post-fabrication calibration capability, the design reduces the majority performance sensitivity of PA by 50% when subjected to threshold voltage (VT) shift and 25% to electron mobility (μn) degradation. The impact of degradation mismatches is also investigated. It is observed that the accelerated aging of MOS transistor in the biasing circuit will further reduce the sensitivity of PA. In the study of LNA, a 24 GHz narrow band cascade LNA with adaptive biasing scheme under various aging rate is compared to LNA without such biasing scheme. The modeling and simulation results show that the adaptive substrate biasing reduces the sensitivity of noise figure and minimum noise figure subject to process variation and iii device aging such as threshold voltage shift and electron mobility degradation. Simulation of different aging rate also shows that the sensitivity of LNA is further reduced with the accelerated aging of the biasing circuit. Thus, for majority RF transceiver circuits, the adaptive body biasing scheme provides overall performance resilience to the device reliability induced degradation. Also the tuning ability designed in RF PA and LNA provides the circuit post-process calibration capability

    Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs

    Get PDF
    Intrinsic parameter fluctuations introduced by discreteness of charge and matter will play an increasingly important role when semiconductor devices are scaled to decananometer and nanometer dimensions in next-generation integrated circuits and systems. In this paper, we review the analytical and the numerical simulation techniques used to study and predict such intrinsic parameters fluctuations. We consider random discrete dopants, trapped charges, atomic-scale interface roughness, and line edge roughness as sources of intrinsic parameter fluctuations. The presented theoretical approach based on Green's functions is restricted to the case of random discrete charges. The numerical simulation approaches based on the drift diffusion approximation with density gradient quantum corrections covers all of the listed sources of fluctuations. The results show that the intrinsic fluctuations in conventional MOSFETs, and later in double gate architectures, will reach levels that will affect the yield and the functionality of the next generation analog and digital circuits unless appropriate changes to the design are made. The future challenges that have to be addressed in order to improve the accuracy and the predictive power of the intrinsic fluctuation simulations are also discussed

    Effect of wearout processes on the critical timing parameters and reliability of CMOS bistable circuits

    Get PDF
    The objective of the research presented in this thesis was to investigate the effects of wearout processes on the performance and reliability of CMOS bistable circuits. The main wearout process affecting reliability of submicron MOS devices was identified as hot-carrier stress (and the resulting degradation in circuit performance). The effect of hot-carrier degradation on the resolving time leading to metastability of the bistable circuits also have been investigated. Hot-carrier degradation was identified as a major reliability concern for CMOS bistable circuits designed using submicron technologies. The major hot-carrier effects are the impact ionisation of hot- carriers in the channel of a MOS device and the resulting substrate current and gate current generation. The substrate current has been used as the monitor for the hot-carrier stress and have developed a substrate current model based on existing models that have been extended to incorporate additional effects for submicron devices. The optimisation of the substrate current model led to the development of degradation and life-time models. These are presented in the thesis. A number of bistable circuits designed using 0.7 micron CMOS technology design rules were selected for the substrate current model analysis. The circuits were simulated using a set of optimised SPICE model parameters and the stress factors on each device was evaluated using the substrate current model implemented as a post processor to the SPICE simulation. Model parameters for each device in the bistable were degraded according to the stress experienced and simulated again to determine the degradation in characteristic timing parameters for a predetermined stress period. A comparative study of the effect of degradation on characteristic timing parameters for a number of latch circuits was carried out. The life-times of the bistables were determined using the life-time model. The bistable circuits were found to enter a metastable state under critical timing conditions. The effect of hot-carrier stress induced degradation on the metastable state operation of the bistables were analysed. Based on the analysis of the hot-carrier degradation effects on the latch circuits, techniques are suggested to reduce hot-carrier stress and to improve circuit life-time. Modifications for improving hot- carrier reliability were incorporated into all the bistable circuits which were re-simulated to determine the improvement in life-time and reliability of the circuits under hot-carrier stress. The improved circuits were degraded based on the new stress factors and the degradation effects on the critical timing parameters evaluated and these were compared with those before the modifications. The improvements in the life-time and the reliability of the selected bistable circuits were quantified. It has been demonstrated that the hot-carrier reliability for all the selected bistable circuits can be improved by design techniques to reduce the stress on identified critically stressed devices

    Development of High-Speed Silicon Devices and Their Design with Advanced Physical Models

    Get PDF
    In the field of high-speed silicon devices, silicon bipolar junction transistors (BJTs) had played a major role from the 1970s to the end of the 1980s. However, in the 1990s complementary metal-oxide-semiconductor (CMOS) .field effect transistors (FETs) have been replacing their position. This dissertation explains the reasons why BJTs were suitable for high-speed operation. This is concluded from the development of technologies for BJTs and the analyses of devices fabricated with these technologies. At the same time it clarifies why they were replaced by CMOS transistors. The BJT's high driving capability and large power dissipation were the both sides of a sword. In the case of high-speed CMOS devices, the driving current of MOSFET should be large enough, and device design must be based on precise comprehension of carrier transport in MOSFETs. Therefore, we need accurate device model as well as rigid device-structure information obtained by experiments. This dissertation describes the device design methodology not only based on inverse modeling to extract device structures consistent with all kinds of experimental results but also based on simulations by generalized hydrodynamic model and full-band Monte Carlo model. The background and concept of the methodology is also discussed, and its necessity in future development is clarified. Moreover, hot carrier modeling is discussed by employing full-band Monte Carlo device simulation. Also, this dissertation clarifies the fact there is no experimental evidence for the difference between the surface and bulk impact ionization mechanism in silicon. The reported difference in the literature was only caused by an unsound application of the local field model and was just an artifact. Finally, by using these sophisticated models, the saturation drain current as well as hot carrier effects of subquarter micron MOSFETs are analyzed. MOSFET design strategy for the 0.1 μ m regime is discussed and the importance of shallow junction for source/drain extension is also clarified.広島大学(Hiroshima University)博士(工学)doctora

    Development of a fully-depleted thin-body FinFET process

    Get PDF
    The goal of this work is to develop the processes needed for the demonstration of a fully-depleted (FD) thin-body fin field effect transistor (FinFET). Recognized by the 2003 International Technology Roadmap for Semiconductors as an emerging non-classical CMOS technology, FinFETs exhibit high drive current, reduced short-channel effects, an extreme scalability to deep submicron regimes. The approach used in this study will build on previous FinFET research, along with new concepts and technologies. The critical aspects of this research are: (1) thin body creation using spacer etchmasks and oxidation/etchback schemes, (2) use of an oxynitride gate dielectric, (3) silicon crystal orientation effect evaluation, and (4) creation of fully-depleted FinFET devices of submicron gate length on Silicon-on-Insulator (SOI) substrates. The developed process yielded functional FinFETs of both thin body and wide body variety. Electrical tests were employed to describe device behaviour, including their subthreshold characteristics, standard operation, effects of gate misalignment on device performance, and impact of crystal orientation on device drive current. The process is shown to have potential for deep submicron regimes of fin width and gate length, and provides a good foundation for further research of FinFETs and similar technologies at RIT
    corecore