2,749 research outputs found

    Channel Estimation and Optimal Pilot Signals for Universal Filtered Multi-Carrier (UFMC) Systems

    Get PDF
    We propose channel estimation algorithms and pilot signal optimization for the universal filtered multi-carrier (UFMC) system based on the comb-type pilot pattern. By considering the least square linear interpolation (LSLI), discrete Fourier transform (DFT), minimum mean square error (MMSE) and relaxed MMSE (RMMSE) channel estimators, we formulate the pilot signals optimization problem by minimizing the estimation MSE subject to the power constraint on pilot tones. The closed-form optimal solutions and minimum MSE are derived for LSLI, DFT, MMSE and RMMSE estimators

    Analysis and Design of Channel Estimation in Multicell Multiuser MIMO OFDM Systems

    Get PDF
    This paper investigates the uplink transmission in multicell multiuser multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems. The system model considers imperfect channel estimation, pilot contamination (PC), and multicarrier and multipath channels. Analytical expressions are first presented on the mean square error (MSE) of two classical channel estimation algorithms [i.e., least squares (LS) and minimum mean square error (MMSE)] in the presence of PC. Then, a simple H-infinity (H-inf) channel estimation approach is proposed to have good suppression to PC. This approach exploits the space-alternating generalized expectation–maximization (SAGE) iterative process to decompose the multicell multiuser MIMO (MU-MIMO) problem into a series of single-cell single-user single-input single-output (SISO) problems, which reduces the complexity significantly. According to the analytic results given herein, increasing the number of pilot subcarriers cannot mitigate PC, and a clue for suppressing PC is obtained. It is shown from the results that the H-inf has better suppression capability to PC than classical estimation algorithms. Its performance is close to that of the optimal MMSE as the length of channel impulse response (CIR) is increased. By using the SAGE process, the performance of the H-inf does not degrade when the number of antennas is large at the base station (BS)

    Constrained Phase Noise Estimation in OFDM Using Scattered Pilots Without Decision Feedback

    Full text link
    In this paper, we consider an OFDM radio link corrupted by oscillator phase noise in the receiver, namely the problem of estimating and compensating for the impairment. To lessen the computational burden and delay incurred onto the receiver, we estimate phase noise using only scattered pilot subcarriers, i.e., no tentative symbol decisions are used in obtaining and improving the phase noise estimate. In particular, the phase noise estimation problem is posed as an unconstrained optimization problem whose minimizer suffers from the so-called amplitude and phase estimation error. These errors arise due to receiver noise, estimation from limited scattered pilot subcarriers and estimation using a dimensionality reduction model. It is empirically shown that, at high signal-to-noise-ratios, the phase estimation error is small. To reduce the amplitude estimation error, we restrict the minimizer to be drawn from the so-called phase noise geometry set when minimizing the cost function. The resulting optimization problem is a non-convex program. However, using the S-procedure for quadratic equalities, we show that the optimal solution can be obtained by solving the convex dual problem. We also consider a less complex heuristic scheme that achieves the same objective of restricting the minimizer to the phase noise geometry set. Through simulations, we demonstrate improved coded bit-error-rate and phase noise estimation error performance when enforcing the phase noise geometry. For example, at high signal-to-noise-ratios, the probability density function of the phase noise estimation error exhibits thinner tails which results in lower bit-error-rate

    Preamble-Based Channel Estimation for CP-OFDM and OFDM/OQAM Systems: A Comparative Study

    Full text link
    In this paper, preamble-based least squares (LS) channel estimation in OFDM systems of the QAM and offset QAM (OQAM) types is considered, in both the frequency and the time domains. The construction of optimal (in the mean squared error (MSE) sense) preambles is investigated, for both the cases of full (all tones carrying pilot symbols) and sparse (a subset of pilot tones, surrounded by nulls or data) preambles. The two OFDM systems are compared for the same transmit power, which, for cyclic prefix (CP) based OFDM/QAM, also includes the power spent for CP transmission. OFDM/OQAM, with a sparse preamble consisting of equipowered and equispaced pilots embedded in zeros, turns out to perform at least as well as CP-OFDM. Simulations results are presented that verify the analysis

    Semiblind Channel Estimation and Data Detection for OFDM Systems With Optimal Pilot Design

    Get PDF
    This paper considers semiblind channel estimation and data detection for orthogonal frequency-division multiplexing (OFDM) over frequency-selective fading channels. We show that the samples of an OFDM symbol are jointly complex Gaussian distributed, where the mean and covariance are determined by the locations and values of fixed pilot symbols. We exploit this distribution to derive a novel maximum-likelihood (ML) semiblind gradient-descent channel estimator. By exploiting the channel impulse response (CIR) statistics, we also derive a semiblind data detector for both Rayleigh and Ricean fading channels. Furthermore, we develop an enhanced data detector, which uses the estimator error statistics to mitigate the effect of channel estimation errors. Efficient implementation of both the semiblind and the improved data detectors is provided via sphere decoding and nulling-canceling detection. We also derive the Cramér-Rao bound (CRB) and design optimal pilots by minimizing the CRB. Our proposed channel estimator and data detector exhibit high bandwidth efficiency (requiring only a few pilot symbols), achieve the CRB, and also nearly reach the performance of an ideal reference receiver

    On Optimal Turbo Decoding of Wideband MIMO-OFDM Systems Under Imperfect Channel State Information

    Full text link
    We consider the decoding of bit interleaved coded modulation (BICM) applied to both multiband and MIMO OFDM systems for typical scenarios where only a noisy (possibly very bad) estimate of the channel is provided by sending a limited number of pilot symbols. First, by using a Bayesian framework involving the channel a posteriori density, we adopt a practical decoding metric that is robust to the presence of channel estimation errors. Then this metric is used in the demapping part of BICM multiband and MIMO OFDM receivers. We also compare our results with the performance of a mismatched decoder that replaces the channel by its estimate in the decoding metric. Numerical results over both realistic UWB and theoretical Rayleigh fading channels show that the proposed method provides significant gain in terms of bit error rate compared to the classical mismatched detector, without introducing any additional complexity
    • …
    corecore