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Analysis and Design of Channel Estimation in
Multicell Multiuser MIMO OFDM Systems
Peng Xu, Jiangzhou Wang, Senior Member, IEEE, Jinkuan Wang, Member, IEEE, and Feng Qi

Abstract—This paper investigates the uplink transmission in
multicell multiuser multiple-input multiple-output (MIMO) or-
thogonal frequency-division multiplexing (OFDM) systems. The
system model considers imperfect channel estimation, pilot con-
tamination (PC), and multicarrier and multipath channels. An-
alytical expressions are first presented on the mean square
error (MSE) of two classical channel estimation algorithms [i.e.,
least squares (LS) and minimum mean square error (MMSE)]
in the presence of PC. Then, a simple H-infinity (H-inf) chan-
nel estimation approach is proposed to have good suppression
to PC. This approach exploits the space-alternating generalized
expectation–maximization (SAGE) iterative process to decompose
the multicell multiuser MIMO (MU-MIMO) problem into a series
of single-cell single-user single-input single-output (SISO) prob-
lems, which reduces the complexity significantly. According to
the analytic results given herein, increasing the number of pilot
subcarriers cannot mitigate PC, and a clue for suppressing PC is
obtained. It is shown from the results that the H-inf has better
suppression capability to PC than classical estimation algorithms.
Its performance is close to that of the optimal MMSE as the
length of channel impulse response (CIR) is increased. By using
the SAGE process, the performance of the H-inf does not degrade
when the number of antennas is large at the base station (BS).

Index Terms—Channel estimation, H-inf, multiple-input
multiple-output (MIMO), multicell, multiuser, orthogonal
frequency-division multiplex (OFDM), pilot contamination (PC).

I. INTRODUCTION

FUTURE wireless communications require the outstand-
ing capability to combat multipath fading and to offer

high spectral efficiency. Multiple-input multiple-output (MIMO)
combined with orthogonal frequency-division multiplexing
(OFDM) has been widely considered to be a promising can-
didate [1], [2]. Unlike the point-to-point MIMO, a multiuser
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MIMO (MU-MIMO) system that has low cost in terminals
and better tolerance to wireless propagation environment has
been considered for future wireless communications [3]. In a
multicell scenario, it is well known that accurate channel state
information (CSI) is critical for achieving high system perfor-
mance. Since the mobility of users and the limited bandwidth,
it is not possible to allocate dedicated pilots for the users in
each cell, and therefore, the reuse of pilots is a must for users
in different cells.

One of the main consequences of pilot reuse is pilot contam-
ination (PC), which is caused by using nonorthogonal pilots to
the users in different cells. PC has a more severe impact on
the system performance than channel noise. When the system
is deployed with an increasing number of antennas at the base
station (BS) and serves a multiplicity of single-antenna termi-
nals, the effects of fast fading and uncorrelated interference will
vanish [4]–[13]. However, PC due to the reuse of nonorthogonal
pilots in other cells does not vanish. In such a multicell MU-
MIMO system, it has been shown in [4] that, with perfect CSI
at the BS, the potential benefits in throughput, reliability, and
power efficiency will be obtained. These benefits are analyzed
mainly based on single-carrier and flat-fading system model;
however, a more realistic performance analysis that considers
multicarrier and frequency-selective fading channels for future
cellular mobile systems is important [14]–[18]. Since the BS
cannot have perfect CSI in practice, it is crucial to consider
the effect of PC on channel estimation based on a multicarrier
multipath system model.

A. Related Work and the Contribution of This Paper

There are few researches specifically focused on channel
estimation algorithms in the presence of PC in multicell MU-
MIMO systems, although single-carrier and flat-fading trans-
mission scenario has been considered [6]–[8]. In [6], a blind
channel estimation algorithm based on eigenvalue decompo-
sition was proposed; however, it requires a long-data record
and employs the prior knowledge of stochastic information and
high computational complexity. In [7], a coordinated channel
estimation approach with correlated pilot sequences was de-
veloped to tackle the problem of PC; however, the complexity
due to applying second-order statistical information is high. In
[8], the asymptotic analysis on the impact of channel aging on
both the uplink and the downlink achievable rates was provided,
and a finite-impulse-response Wiener predictor was proposed to
overcome channel aging effects.

For a multicarrier and multipath scenario, pilot-based chan-
nel estimation techniques in OFDM or MIMO-OFDM systems
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have been studied extensively for many years by focusing on
a single-cell single-user scenario [19]–[23]. Least squares (LS)
channel estimation, by using many pilot subcarriers, is usually
considered an initial estimator without requiring any prior
knowledge [19]. When the transmit symbols are known, the
LS algorithm becomes maximum likelihood (ML) estimation
[20]. To obtain optimal performance, minimum mean square
error (MMSE) estimation, using channel correlation matrix
and transmit data, has been investigated in [21]. However, the
complexity of the MMSE algorithm is high. By avoiding the
drawbacks of conventional algorithms, the H-infinity (H-inf)
method is introduced into MIMO-OFDM systems. It has been
proven that this algorithm has almost the same performance as
MMSE but is much less complex [22], [23].

Different from the existing researches, our system model
considers imperfect channel estimation, PC, multicarrier, and
multipath channels. In this paper, we first discuss the impact of
the PC on two classical LS and MMSE algorithms. Analytical
expressions on the mean square error (MSE) are derived. It is
shown that MMSE is more resistant to the PC than the LS due
to the use of prior information. Increasing the number of pilot
subcarriers in both algorithms does not increase suppression
capability to the PC. From the results given herein, a clue for
mitigating PC can be obtained. The performance of both the al-
gorithms in the presence of PC could be improved as the length
of channel impulse response (CIR) or the number of OFDM
subcarriers increases. Because of the difficulty of capturing
prior information and high computational load, using MMSE
is not realistic in practice. Taking the advantage of the H-inf
into account [22], [23], the H-inf approach is introduced, and
the effect of PC is analyzed. By applying the space-alternating
generalized expectation–maximization (SAGE) iterative pro-
cess, the complexity due to multicell MU-MIMO estimation
problem can be simplified. Moreover, detailed analysis of its
MSE in presence of PC is presented. According to the given
expressions, we can conclude that the H-inf algorithm, by
adjusting the scalar factor, is more resistant to PC than LS and
ML. The performance of the H-inf is close to optimal MMSE
when the length of CIR is large. Meanwhile, when the number
of antennas at the BS is large, no performance degradation for
H-inf is seen during the iterative process of SAGE.

B. Notations

Bold italic font variables denote matrices and vectors; (·)T
and (·)H denote the transpose and the Hermitian transpose,
respectively; and (·)−1 and (·)† stand for the inverse and pseu-
doinverse operations, respectively. CN (Γ, Υ) denotes complex
Gaussian distribution with mean Γ and covariance matrix Υ.
‖ · ‖ and ‖ · ‖∞ denote the two-norm and infinite-norm opera-
tions, respectively. E[·] stands for expectation operation. I is an
identity matrix, and 0 is a matrix or vector in which all elements
are zero.

The remainder of this paper is organized as follows. In
Section II, the system model is discussed. In Section III,
detailed analysis is presented on MSE in the presence of PC
for classical LS and MMSE algorithms in multicell MU-MIMO
systems. Next, an H-inf estimator is introduced in Section IV,

Fig. 1. Uplink transmission in multicell MU-MIMO systems.

and the SAGE iterative process is designed for reducing the
complexity. After the performance analysis of the proposed
H-inf algorithm, the performances of the aforementioned chan-
nel estimation algorithms are evaluated via computer simula-
tions in Section V. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a multicell MU-MIMO system with Q cells, as
shown in Fig. 1. Each cell includes one BS with M antennas
and K single-antenna terminals. OFDM transmission with
N subcarriers is considered. The frequency-selective fading
channel is modeled as a finite-duration CIR with L taps. We
assume that the uplink transmission from all users in the Q
cells are synchronized, which constitutes a worst-case scenario
from the standpoint of PC. Furthermore, the signals received for
each antenna at the BS are assumed to experience independent
fading.

The received N × 1 signal vector on all N subcarriers at the
rth antenna at the jth BS can be expressed as (for notational
simplicity, we will neglect the antenna index r in this paper)

Y j = XHj +Zj (1)

where Y j=[Y j(0), . . . ,Y j(N − 1)]T , X=[X1, . . . ,XQ],
Xq is a diagonal matrix containing the transmit signal from
the qth cell, and Zj = [Zj(0), . . . ,Zj(N − 1)]T is a vector
of independently and identically distributed (i.i.d.) complex
zero-mean Gaussian noise variables with variance σ2. Hj =

[HT
j1, . . . ,H

T
jQ]

T
, Hjq is the frequency response of the chan-

nel between the jth and qth cells, Hjq = [HT
jq1, . . . ,H

T
jqK ]

T
,

Hjqk = FN,LCjqk, FN,L is 1/
√
N times the first L columns

of discrete Fourier transform (DFT) matrix, FH
N,LFN,L = IL,
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and Cjqk is the L× 1 propagation coefficients between the jth
BS and the kth user in the qth cell and is given as follows:

Cjqk = D
1
2

jqkGjqk (2)

where Gjqk denotes the L× 1 fast-fading coefficient vector,
which has an exponentially decaying multipath power-delay
profile. The maximum tap delay is assumed shorter than the
OFDM cyclic prefix (CP). Let gjqkl be the lth element of
Gjqk, and it is normalized to unity, i.e.,

∑L−1
l=0 g2jqkl = 1. Djqk

is an L× L diagonal matrix whose diagonal elements djqkl
denote path loss and shadow fading, which are assumed to
be independent over l and k.1 Since djqkl changes slowly, we
rewrite it as djq for notational simplicity, and djq is assumed to
be less than 1.

Rewrite the received vector at the jth BS as

Y j =

Q∑
q=1

K∑
k=1

XqkHjqk +Zj . (3)

Let Xqk = Sqk +Bqk, where Sqk is an arbitrary N ×N
data diagonal matrix, and Bqk is an N ×N pilot diagonal
matrix. Model (3) could be further rewritten as

Y j =

Q∑
q=1

T qCjq +

Q∑
q=1

AqCjq +Zj (4)

where T q=[Sq1FN,L, . . . ,SqKFN,L], Aq=[Bq1FN,L, . . . ,

BqKFN,L], and Cjq = [CT
jq1, . . . ,C

T
jqK ]

T
.

III. IMPACT OF PILOT CONTAMINATION ON

CLASSICAL LEAST SQUARES AND MINIMUM

MEAN SQUARE ERROR ALGORITHMS IN

MULTICELL MULTIUSER MULTIPLE-INPUT

MULTIPLE-OUTPUT SYSTEMS

Here, we shall derive analytical MSE expressions and inves-
tigate the effect of the PC on LS and MMSE channel estimation
algorithms in multicell MU-MIMO systems.

A. LS Channel Estimation

The following assumptions are made: 1) Each subcarrier has
the same power; 2) for different users in each cell, phase-shift
orthogonal pilot sequences are used [19]; and 3) the same pilot
sequences are reused in other cells. Thus, we can easily get
A†

jAq = ILK(A† = (AHA)
−1
AH) and A†

jT q = 0LK , 1 ≤
j, q ≤ Q, and the channel vector between the jth BS and K
users in the jth cell is obtained by multiplying A†

j in both sides
of (4), as follows:

Ĉ
LS

jj = A†
jY j . (5)

The MSE of the LS is described in the following theorem.

1Here, we assume that the K users in each cell is located uniformly, and they
have almost the same distance to the BS in the jth cell. This assumption can
make the analysis simple. In general, djqkl is a function of k.

Theorem 1: The MSE expression of the LS algorithm for
multicell MU-MIMO systems in the presence of PC is given as
follows:

MSELS =
1
L

Q∑
q �=j

djq +
N

P
σ2. (6)

Proof: See Appendix A.
Remark: In Theorem 1, it can be seen that the MSE for mul-

ticell MU-MIMO systems is composed of two terms, namely,
the term introduced by the PC and the term caused by the
noise. While the first term becomes zero in the case of a single
cell, the second term can be suppressed by employing more
pilot subcarriers. The first term can be improved as the length
L of CIR is large. It can be also seen that the value of the
first term cannot be reduced by using more pilots. However,
this expression also indicates that appropriate pilot reuse or
allocation techniques could be developed to reduce the impact
of cross gains.

B. MMSE Channel Estimation

By employing the channel characteristics, MMSE usually
obtains optimal estimation performance. Due to the high
computational complexity in MMSE for MIMO systems, we
just consider a simplified version by using an expectation–
maximization iterative process proposed in [21]. The channel
frequency vector between the jth BS and the kth user in the jth
cell is given as follows:

Ĥ
MMSE

jjk =RHH

(
RHH+σ2

(
XH

jjkXjjk

)−1
)−1

Ĥ
LS

jjk (7)

where R = E[HjjkH
H
jjk] is the correlation matrix of Hjjk.

Assuming normalized constellation power and equally proba-
ble constellation points and independent data symbols, matrix
(XH

jjkXjjk)
−1 could be replaced by E[(XH

jjkXjjk)
−1
] =

βIN , where β is a constant, depending on the signal constella-
tion (e.g., β equals 1 for quadrature phase shift keying (QPSK).

To avoid the matrix inversion, singular value decomposition
(SVD) is applied; then, one obtains

RHH = U ∧UH (8)

where U is a unitary matrix containing the singular vectors,
and ∧ is a diagonal matrix containing the singular values λ1 ≥
λ2 ≥ · · · ≥ λN on its diagonal. Equation (7) is rewritten as

Ĥ
MMSE

jjk = U	pU
HĤ

LS

jjk (9)

where 	p is a diagonal matrix with entries

δn =

{ λn

λn+
β

SNR

, n = 1, 2, . . . , p

0, n = p+ 1, . . . , N.
(10)

The MSE of the MMSE is presented in the following
theorem.
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Theorem 2: The MSE expression of the MMSE algorithm
for multicell MU-MIMO systems in the presence of PC is given
as follows:

MSEMMSE =
1
N

Q∑
q �=j

p∑
n=1

λnδ
2
n +

σ2

N

p∑
n=1

λn

+
1
N

(
p∑

n=1

(δn − 1)2λn +

N∑
n=p+1

λn

)

<
1
N

Q∑
q �=j

djq +
σ2 + 1
N

. (11)

Proof: See Appendix B.
Remark: In Theorem 2, it can be seen that the MSE for

MMSE is introduced by two factors. The values of both terms
are much smaller than for LS. The first term can be suppressed
as the number of subcarriers increases. However, the number of
subcarriers could not be unlimitedly increased because OFDM
that uses a large number of subcarriers will be very sensitive to
the impact of the reuse of nonorthogonal pilots. Similar to the
MSE expression of the LS algorithm, a large number of pilot
subcarriers cannot decrease the MSE caused by PC. However,
the clue for mitigating the impact of cross gains is to develop
appropriate pilot reuse or allocation schemes.

IV. DESIGN AND ANALYSIS OF SPACE-ALTERNATING

GENERALIZED EXPECTATION–MAXIMIZATION-BASED

H-INF ALGORITHM IN MULTICELL MULTIUSER

MULTIPLE-INPUT

MULTIPLE-OUTPUT SYSTEMS

Earlier, we have shown that the MMSE algorithm can obtain
optimal performance by using prior information and better
suppression to PC. Although the use of SVD of channel cor-
relation matrix is able to reduce the number of multiplications
with negligible performance loss, its complexity is still quite
high since obtaining the SVD itself has high computational
complexity on the order of O(N3). Here, we introduce the
H-inf algorithm, which were proposed in [22] and [23], to
multicell MU-MIMO systems.

A. H-inf Channel Estimation

As an alternative to the classical MMSE estimation, an
H-inf filter can achieve an acceptable estimation performance
without accurate knowledge of the statistical information of the
involved signals. The idea of the H-inf filtering is to construct
a filter that guarantees the H-inf norm of the estimation error is
less than a prescribed positive value.

As for multicell MU-MIMO systems, the idea of the H-inf
is to find an estimation method so that the ratio between the
whole channel estimation error (between the jth BS and K
users in each cell) and the input noise/interference is less than a
prescribed threshold. Given a positive scalar factor s, the H-inf

estimator for each received OFDM symbol needs to satisfy the
following objective function [22], [23]:2

sup
Zj

=
‖Ĉj −Cj‖2W

‖Zj‖2
< s (12)

where ‖Ĉj −Cj‖2W = (Ĉj −Cj)
HW (Ĉj −Cj); Ĉj is

a LQK × 1 vector, denoting the channel response vector
to be estimated; Cj = [CT

j1, . . . ,C
T
jQ]

T ; Cjq = [CT
jq1, . . . ,

CT
jqK ]T ; and W > 0 is a weighting matrix. The H-inf channel

estimation in multicell MU-MIMO systems can be described as
[22], [23]

Ĉj = ηjε
−1
j T †Y j (13)

where T = [T 1, . . . ,TQ], T q = [T q1, . . . ,T qK ], T qk =
XqkFN,L, and εj = M1,1 +M1,2ξj and ηj = M2,1 +
M2,2ξj , are both LQK × LQK matrices. ξj is a LQK × 1
vector, satisfying ‖ξj‖∞ = max(|ξ1|, . . . , |ξLQK |) < 1, and
ξ1 = · · · = ξLQK . M1,1, M1,2, and M2,1, M2,2 can be
expressed as

M1,1 =ΩR
1
2 +R− 1

2

M1,2 = s−
1
2ΩW

1
2

M2,1 =ΩR
1
2

M2,2 = s−
1
2ΩW

1
2 − s

1
2W

1
2 (14)

where R = T †T = ILQK if QPSK is adopted, Ω=Ω1Ω
1/2
2 −

Ω2, Ω2=(R− s−1W )−1, and Ω1 can be easily obtained by
the canonical factorization of ILQK +Ω2.

B. H-inf Channel Estimation via SAGE Process

A direct solution to (13) will result from intense calculation
of the matrix inversion and multiplication operations for each
OFDM symbol of all users in Q cells over L paths, and the
complexity is on the order of O(L3Q3K3). In the case of large
values of L, K, and Q, computational complexity load will
be high.

In multicell MU-MIMO systems, propagation vectors be-
tween the BS antenna arrays and different terminals often could
be considered uncorrelated [4]. Since the SAGE can decompose
the spatially multiplexed channels, we can apply this iterative
algorithm to deal with the problem of high complexity [20].
Generally, the SAGE process is developed to avoid matrix
inversion of the ML estimator; therefore, we first assess the
feasibility by applying SAGE. Equation (13) can be rewritten
as follows:

Ĉj =ηjε
−1
j T †Y j

=γĈ
ML

j (15)

2The numerator of (12) is considered to be the whole estimation error
between the jth BS and K users in each cell. Thus, the denominator of (12)
will be AWGN Zj . However, if the local estimation error is considered, (e.g.,
between the jth and K users in the qth cell), the signal, except for that from the
qth cell, will be the interference, which will finally change the establishment of
the objective function.
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where γ = ηjε
−1
j . Equation (15) can be interpreted as a filter

matrix γ applied to the ML estimation, indicating some links
between the H-inf and ML estimators. Thus, we can develop
an H-inf estimator by combining the SAGE process. Instead of
solving (13) directly, the SAGE algorithm converts a multicell
MU-MIMO channel estimation problem into a series of single-
cell single-user SISO channel estimation problems, making the
dimensions of Ω, W , and R involved in the computation of εj ,
ηj much smaller. Thus, the calculation is simplified drastically.

The SAGE-based H-inf estimation can be iteratively imple-
mented as follows.

• Initialization:
For q = 1, . . . , Q,
For k = 1, . . . ,K

Ŷ
(0)

jqk = T qkεjqkη
−1
jqkĈ

(0)

jqk (16)

where εjqk and ηjqk of dimension L× L are the simpli-
fied versions of εj and ηj , respectively. The initial value

of channel estimation Ĉ
(0)

jqk is 1L, where 1L is an L× 1
vector whose elements are all 1.

• At the ith iteration (i = 0, 1, 2, . . .):
For k = 1 + [i mod K], we have

Π̂
(i)

jqk= Ŷ
(i)

jqk +

[
Y j −

K∑
k=1

Ŷ
(i)

jqk

]
(17)

Ĉ
(i+1)

jqk = arg min
Cjqk

{∥∥∥Π̂(i)

jqk−T qkεjqkη
−1
jqkCjqk

∥∥∥2} . (18)

By solving (18), we can obtain

Ĉ
(i+1)

jqk =ηjqkε
−1
jqkT

†
qkΠ̂

(i)

jqk (19)

Ŷ
(i+1)

jqk =T qkεjqkη
−1
jqkĈ

(i+1)

jqk (20)

while for 1 ≤ k′ ≤ K and k′ �= k

Ŷ
(i+1)

jqk = Ŷ
(i)

jqk. (21)

C. Performance Analysis

1) Analysis of Matrix γ: To find a solution for the H-inf,
we assume R− s−1W > 0 [22], [23], where R is an identity
matrix because QPSK is adopted,3 s is a positive scalar factor,
and W is also a diagonal matrix that have equal dimensions.
Thus, M1,1, M1,2, M2,1, and M2,2 are all diagonal matrices,
respectively. Finally, matrix γ is a real diagonal matrix with
equal diagonal elements.

Since the diagonal matrix γ is needed to estimate the perfor-
mance of the H-inf, we will find the relation between γ and the
identity matrix. First, it is assumed that

γ < ILQK . (22)

3Note that R will not be an identity matrix if 16-QAM, 64-QAM, or
other modulations are adopted. However, γ is always a diagonal matrix. The
proposed algorithm is valid for the different modulations.

To satisfy (22), one has ε− η > 0. By applying (14), we
can get

ε− η =(M1,1 +M1,2ξj)− (M2,1 +M2,2ξj)

=R− 1
2 + s

1
2W− 1

2 ξj > 0. (23)

Therefore, our hypothesis is valid. Intuitively, when W is
fixed, a smaller s is made, a smaller γ is obtained, and a better
performance is achieved, which is the intrinsic characteristic of
the H-inf algorithm, as will be discussed in the following.

2) Impact of PC on H-inf: Since the estimation errors in
cells are independent of each other, we analyze the channels
from the K users in the jth cells. The following assumptions
are made: 1) All subcarriers have equal power; 2) phase-
shift orthogonal pilot sequences are used for different users
within each cell; and 3) the same pilot sequences are reused in
other cells.

The channel estimation of the H-inf can be rewritten as

Ĉ
H−inf

jj =γT †
jY j

=γT †
j

Q∑
q �=j

T qCjq + γCjj + γT †
jZj . (24)

The MSE of the H-inf is given in the follow theorem.
Theorem 3: The MSE expression of the H-inf algorithm for

multicell MU-MIMO systems in the presence of PC is given as
follows:

MSEH−inf =
1
L
r2nn

Q∑
q �=j

djq

︸ ︷︷ ︸
PC

+
1
L
r2nnσ

2 +
1
L
(1 − rnn)

2︸ ︷︷ ︸
noise

.

(25)

Proof: See Appendix C.
Remark: In Theorem 3, it can be seen that the MSE includes

two terms. The MSE caused by PC or noise cannot be decreased
by increasing the number of pilots. The MSE of the first term
will be decreased as the length of CIR increases; however, this
is limited by the length of CP of OFDM. The first term can be
improved by decreasing the value of rnn (or s). The appropriate
pilot reuse or allocation techniques should be developed to
improve the impact of cross gains.

To make a comparison of the MSE between the H-inf and
the ML, the following analysis is presented. If γ = ILQK , the
H-inf channel estimation will be converted into ML. Similarly,
the MSE expression of the ML algorithm can be obtained in
multicell MU-MIMO systems in presence of PC, as follows.

Theorem 4: The MSE expression of the ML algorithm for
multicell MU-MIMO systems in the presence of PC is given as
follows:

MSEML =
1
L

Q∑
q �=j

djq + σ2. (26)

Proof: See Appendix D.
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TABLE I
COMPLEXITY OF CHANNEL ESTIMATION ALGORITHMS

Remark: According to Theorem 4, the MSE caused by PC
for H-inf is obviously less than for ML. For the MSE caused
by the noise, since 0 < rnn < 1, and σ2 is a set unit variance,
djj denotes direct gains within the jth cell, and it is assigned to
be unity; therefore, the upper bound of the MSE caused by the
noise can be given as follows:

MSEN,H−inf <
1
L
σ2. (27)

Referring to Theorems 1, 3, and 4, the MSE comparison
between LS, ML, and H-inf algorithms can be summarized as
follows:

MSEH−inf < MSEML < MSELS. (28)

3) Complexity Analysis: Considering the number of com-
plex multiplications for each OFDM symbol as a complexity
metric, the inversion of an n× n matrix requires n3 operations,
the pseudoinverse of an n× r matrix requires 2r2n+ r3 op-
erations, and the product of an m× r matrix with an r × n
matrix requires mrn operations. Let Kit denote the number
of iterations that should not be too large due to the superior
convergence property of SAGE [20]. A comparison of com-
plexity between the LS, MMSE, and proposed H-inf algorithms
is given in Table I. As expected, the H-inf estimation has less
complexity than the MMSE algorithm, and the complexity can
be further reduced by using the SAGE iterative process.

V. SIMULATION RESULTS

We consider a multicell MU-MIMO system with M antennas
at each BS to investigate the impact of PC on the MSE of
channel estimation algorithms. It is assumed that Q = 3 cells,
and K = 10 users in each cell. The phase-shifted orthogonal
pilot sequences used in the first cell is reused in the second and
third cells. Thus, we consider a scenario where pilot sequences
are reused. Furthermore, for all k, djqk = 1 (direct gain) if
j = q, and djqk = a (cross gain) if j �= q. Since the cell layout
and shadowing are captured by using the constant djqk, PC is
handled by adjusting the cross gains. For OFDM symbols with
N subcarriers, the length of CP is 16, and QPSK is used. For
the number of iterations in SAGE iterative process, we choose
Kit = 3.

A. Performance of Two Classical Estimation Algorithms

Here, the representative performances for classical LS and
MMSE algorithms in multicell MU-MIMO systems are shown.

Fig. 2 shows the MSE performance of LS and MMSE
algorithms versus the SNR for different values of L at M = 50,
a = 0.6, and N = 128. It is shown in the figure that MMSE is
more resistant to PC than LS. This is because LS just utilizes

Fig. 2. MSE versus SNR with different L at M = 50, a = 0.6, and N = 128.

Fig. 3. MSE versus the SNR with different N at M = 50 and a = 0.6.

few pilot subcarriers, whereas MMSE makes use of more
prior information. The performance of LS can be improved by
increasing the length of CIR. In addition, the performance of
the MMSE is not related to the length of CIR. The analytical
results given by (6) and (11) are very close to the simulation
results.

The MSE performance of LS and MMSE algorithms is
shown in Fig. 3 for different values of N in the case of a = 0.6
as a function of SNR. It is shown in the figure that the perfor-
mance of the LS is independent of the number of subcarriers,
whereas the MSE of MMSE can be improved by increasing the
number of subcarriers. Since the number of subcarriers is larger,
the subcarrier spacing becomes smaller; the systems with a
larger number of subcarriers are more sensitive to PC.

Fig. 4 shows that the MSE performance of the LS and
MMSE algorithms as a function of a for different values of
L and N at SNR = 5 dB. It is shown that the performance
of LS and MMSE generally degrades due to increasing cross
gain a, implying that the interference caused by PC is more
serious. Meanwhile, the performance improves when a < 0.7.



616 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 2, FEBRUARY 2015

Fig. 4. MSE versus a with different L and N at M = 50, and SNR = 5 dB.

Fig. 5. MSE versus M at a = 0.6, L = 8, and s = 0.1.

It is worth noting that the performance of the MMSE with
512 subcarriers is worse than with 256 subcarriers since OFDM
is vulnerable to PC, particularly in the case of a large number
of subcarriers.

B. Performance of the Proposed H-inf Estimation Algorithm

Here, the performance of the proposed H-inf algorithm in
multicell MU-MIMO systems is plotted.

Fig. 5 shows the MSE performance of H-inf- and SAGE-
based algorithms versus M for a = 0.6, L = 8, and s = 0.1. In
this figure, it is shown that the performance of the SAGE-based
algorithm is almost the same as that of H-inf when M > 30,
due to the fact that, when the number of antennas at each BS is
large, the estimation error caused by local convergence of the
SAGE iterative process will vanish.

Fig. 6 shows the MSE performance of the SAGE-based
algorithm versus SNR for different values of s for a = 0.6,
M = 50, and L = 8. It is shown that the MSE performance
is gradually enhanced when s decreases. According to (12) in

Fig. 6. MSE versus SNR with different s at a = 0.6, M = 50, and L = 8.

Fig. 7. MSE versus SNR with different L at a = 0.6, M = 50, and s = 0.1.

Section IV, the intrinsic characteristics of the H-inf algorithm
can make the estimation error less than a prescribed bound. As
expected, the performance is much improved by decreasing s.

In the following, the DFT (or called transform domain)
algorithm will first be introduced as a reference because it can
be used to reduce the noise component effectively and has
been widely used in OFDM-based systems. Furthermore, ML
algorithm will also be considered to make a comparison with
the proposed algorithm.

The MSE performance of LS, DFT, ML, MMSE, and SAGE-
based algorithms is shown in Fig. 7 versus SNR for different
values of L at a = 0.6, M = 50, and s = 0.1. It is shown
that the SAGE-based algorithm is more resistant to PC than
LS, DFT, and ML. This is because the SAGE-based algorithm
utilizes other information, such as, transmitted data and scalar
factor s. It is also shown that the performance of SAGE-based
algorithm can be improved by increasing the length of CIR, as
shown in the analytical expression in (25). Furthermore, when
L = 16, its performance is close to the optimal MMSE, which
can be considered a lower bound of the MSE. In terms of
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Fig. 8. MSE versus a at SNR = 5 dB, M = 50, s = 0.1, and L = 8.

Fig. 9. MSE versus M with different a at L = 8 and SNR = 5 dB.

the complexity presented in Section IV-C, the SAGE-based
algorithm can be considered a substitute for MMSE in multicell
MU-MIMO systems.

Fig. 8 shows the MSE performance of LS, DFT, MMSE, and
SAGE-based algorithms for SNR = 5 dB, M = 50, s = 0.1,
and L = 8 as a function of a. It is shown that the performance
of all the algorithms degrades much when cross gain a is large.
Furthermore, their performances have obvious improvement
when the value of a decreases. Finally, the MSE performance
of LS, DFT, MMSE, and SAGE-based algorithms is shown
in Fig. 9 as a function of M with different values of a for
SNR = 5 dB and L = 8. It is shown that the performance of LS
is vulnerable to the impact of PC no matter what the value of
M is. However, the performance of DFT, MMSE, and SAGE-
based algorithms improve significantly as M increases when
a = 0.6. The impact of PC is big when cross gains a = 1.

VI. CONCLUSION

In this paper, we have analytically investigated the impact
of PC on the several pilot-based channel estimation algorithms,

including classical LS, MMSE algorithms, and our proposed
H-inf algorithms in multicell MU-MIMO systems under a real-
istic system model that considers imperfect channel estimation,
PC, multicarrier, and multipath channels. Analytical expres-
sions were derived, and comparisons were made. It has been
shown that, of all the algorithms, the optimal MMSE is most
resistant to PC with high complexity. By slightly increasing the
number of OFDM subcarriers, PC suppression can be achieved
in the MMSE. In addition, by increasing the number of pilot
subcarriers for all channel estimation algorithms, PC cannot
be mitigated. For the proposed H-inf algorithms, proper length
increment of CIR is helpful for the suppression of PC. Sim-
ulation results have shown that the proposed H-inf algorithm
has almost the same performance as MMSE, and it leads to
better suppression to PC than LS, DFT, and ML. In addition,
the H-inf via the SAGE iterative process does not introduce any
performance loss when the number of antennas is large at each
BS in multicell MU-MIMO systems.

APPENDIX A
MEAN SQUARE ERROR OF LEAST SQUARES

According to (5), the channel estimation error of LS is
expressed as

SLS = Ĉ
LS

jj −Cjj

=

Q∑
q �=j

Cjq +A†
jZj

=SPC,LS + SN,LS (A.1)

where SPC,LS and SN,LS denote the errors introduced by the
PC and the noise, respectively, and they are independent of each
other.

For the PC term, it is assumed that the channel vectors of
different users in different cells have the same characteristics.
Furthermore, channel vectors between BS antenna arrays and
different terminals are uncorrelated. Thus, the MSE of PC for
LS is given as follows:

MSELS =
1

LK
tr
{
E
[
SPC,LSS

H
PC,LS

]}

=
1

LK
tr

⎧⎪⎨
⎪⎩E

⎡
⎢⎣ Q∑

q �=j

Cjq

⎛
⎝ Q∑

q �=j

Cjq

⎞
⎠H
⎤
⎥⎦
⎫⎪⎬
⎪⎭

=
1

LK

Q∑
q �=j

K∑
k=1

tr{RCC} (A.2)

where RCC = E[CjqkC
H
jqk] = D

1/2
jqkE[GjqkG

H
jqk]D

1/2
jqk, and

the MSE of PC for LS can be simplified as

MSELS =
1

LK

Q∑
q �=j

djq

(
K∑

k=1

L−1∑
l=0

g2jqkl

)

=
1
L

Q∑
q �=j

djq. (A.3)
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It can be seen that the impact of PC can be significant if djq
(cross gain) between cells are of the same order in terms of djj
(direct gain) within the same cell.

For the noise term, the MSE is given as follows:

MSELS =
1

LK
tr
{
E
[
SN,LSS

H
N,LS

]}
=

1
LK

tr

{
E

[
A†

jZj

(
A†

jZj

)H]}

=
1

LK
tr

{
A†

jRZZ

(
A†

j

)H}
(A.4)

where RZZ = E[ZjZ
H
j ] = σ2ILK . According to AH

j Aj =
(P/N)ILK , the MSE of the noise term for LS can be re-
written as

MSELS =
σ2

LK
tr
{(

AH
j Aj

)−1
}

=
N

P
σ2 (A.5)

where P is the number of pilot subcarriers in each OFDM
symbol.

APPENDIX B
MEAN SQUARE ERROR OF MINIMUM

MEAN SQUARE ERROR

According to (9), the channel estimation error of MMSE is
given as follows:

SMMSE = Ĥ
MMSE

jjk −Hjjk

=U	pU
H

Q∑
q �=j

Hjqk +U	pU
HFN,LA

†
jkZj

+U

([
	p 0
0 0

]
− IN

)
UHHjjk

=SPC,MMSE + SN,MMSE (B.1)

where SPC,MMSE and SN,MMSE denote the errors introduced
by the PC and the noise, respectively.

For the PC term, the channel estimation error for the kth user
in the jth BS is

MSEPC,MMSE

=
1
N

tr
{
E
[
SPC,MMSES

H
PC,MMSE

]}

=
1
N

tr

⎧⎪⎨
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H
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⎤
⎥⎦
⎫⎪⎬
⎪⎭

=
1
N

Q∑
q �=j
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{
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HRHH(U	pU
H)

H
}
. (B.2)

To simplify the expression, we use the following properties
of the trace operator tr{DAD} =

∑
k akkd

2
k in which D is a

diagonal matrix with the elements dk on its diagonal and A (not
necessarily a diagonal elements) has diagonal elements akk.

According to (B.2), the MSE becomes

MSEPC,MMSE =
1
N

Q∑
q �=j

p∑
n=1

λnδ
2
n. (B.3)

Since the channel power (variance) is normalized in both
frequency domain and time domain, (B.3) can be limited as

MSEPC,MMSE <
1
N

Q∑
q �=j

p∑
n=1

λn =
1
N

Q∑
q �=j

tr{RCC}

=
1
N

Q∑
q �=j

L−1∑
l=0

djqg
2
jql =

1
N

Q∑
q �=j

djq. (B.4)

Equation (B.4) is similar to (A.2), in which the impact of PC
also depends on the value of djq .

For the noise term, according to (B.1), the MSE can be given
as follows:

MSEN,MMSE

=
1
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tr
{
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H
N,MMSE

]}
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1
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λn

)
. (B.5)

Equation (B.5) can be also constrained as follows:

MSEMMSE <
σ2

N

p∑
n=1

λn +
1
N

p∑
n=1

λn

=
σ2 + 1
N

p∑
n=1

λn =
σ2 + 1
N

tr {RCC}

<
σ2 + 1
N

djq <
σ2 + 1
N

. (B.6)

APPENDIX C
MEAN SQUARE ERROR OF H-INF

Given (24), the channel estimation error in the jth cell can be
given as follows:

SH−inf = Ĥ
H−inf

jj −Hjj

=γT †
j

Q∑
q �=j

T qCjq + γT †
jZj − (ILQK − γ)Cjj

=SPC,H−inf + SN,H−inf (C.1)
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where SPC,H−inf and SN,H−inf denote the errors introduced
by the PC and the noise, respectively.

By taking the PC term into account, the channel estimation
error is

MSEPC,H−inf

=
1

LK
tr
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[
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H
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(C.2)

where Θ = FH
N,LΨjqk, and Ψjqk = X†

jkXqk. Notice that Θ
is a unitary matrix, whereas γ is a diagonal matrix; therefore,
(C.2) can be simplified as

MSEPC,H−inf =
1

LK

Q∑
q �=j

K∑
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tr
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γRCCγ

H
}

=
1
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=
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where rnn is the diagonal element of γ.
For the noise term, we have TH

jkT jk = IL. Thus, the MSE
is given as follows:
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1
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tr
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H
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APPENDIX D
MEAN SQUARE ERROR OF MAXIMUM LIKELIHOOD

For the ML algorithm, channel estimation between the jth
BS and K users in the jth cell is performed by directly
minimizing the following cost function [20]:

Ĉ
ML

jj = argmin
Cjj

{
‖Y j −ΩjCj‖2

}
(D.1)

where Ωj = [Ωj1, . . . ,ΩjK ], and Ωjk = XqkFN,L. The
channel estimation is given as follows:

Ĉ
ML

jj =Ω†
jY j

=Cjj +Ω†
j

Q∑
q �=j

ΩqCjq +Ω†
jZj . (D.2)

Given (D.2), the channel estimation error is given as follows:

SML = Ĉ
ML

jj −Cjj

=Ω†
j

Q∑
q �=j

ΩqCjq +Ω†
jZj

=SPC,ML + SN,ML (D.3)

where SPC,ML and SN,ML denote the errors introduced by the
PC and the noise, respectively.

For the PC term, the channel estimation error for the kth user
in the jth BS is
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Therefore, (D.4) can be simplified as
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For the noise term, we have ΩH
jkΩjk = ILK , and the MSE

is given as follows:
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