9 research outputs found

    Channel Assignment Algorithms Satisfying Cochannel and Adjacent Channel Reuse Constraints in Cellular Mobile Networks

    Get PDF
    Improved channel assignment algorithms for cellular networks were designed by modeling the interference constraints in terms of a hypergraph [1]. However, these algorithms only considered cochannel reuse constraints. Receiver filter responses impose restrictions on simultaneous adjacent channel usage in the same cell or in neighboring cells. We first present some heuristics for designing fixed channel assignment algorithms with a minimum number of channels satisfying both cochannel and adjacent channel reuse constraints. An asymptotically tight upper bound for the traffic carried by the system in the presence of arbitrary cochannel and adjacent channel use constraints was developed in [2]. However, this bound is computationally intractable even for small systems like a regular hexagonal cellular system of 19 cells. We have obtained approximations to this bound using the optimal solutions for cochannel reuse constraints only and a further graph theoretic approach. Our approximations are computationally much more efficient and have turned out to track very closely the exact performance bounds in most cases of interest

    Channel assignment algorithms satisfying cochannel and adjacent channel reuse constraints in cellular mobile networks

    Full text link

    Optimal channel assignment and power control in wireless cellular networks

    Get PDF
    Wireless mobile communication is a fast growing field in current telecommunication industry. In a wireless cellular network, channel assignment is a mechanism that assigns channels to mobile users in order to establish a communication between a mobile terminal and a base station. It is important to determine an optimal allocation of channels that makes effective use of channels and minimizes call-blocking and call-dropping probabilities. Another important issue, the power control, is a problem of determining an optimal allocation of power levels to transmitters such that the power consumption is minimized while signal quality is maintained. In wireless mobile networks, channels and transmitter powers are limited resources. Therefore, efficient utilization of both those resources can significantly increase the capacity of network. In this thesis, we solve such optimizations by the hybrid channel assignment (HCA) method using integer linear programming (ILP). Two novel sets of ILP formulation are proposed for two different cases: Reuse Distance based HCA without power control, and Carrier-to-Interference Ratio based HCA combined with power control. For each of them, our experimental results show an improvement over other several approaches

    Channel Assignment Algorithms Satisfying Cochannel and Adjacent Channel Reuse Constraints in Cellular Mobile Networks

    No full text
    Recently improved channel assignment algorithms for cellular networks were designed by modelling the interference constraints in terms of a hypergraph [1]. However these algorithms only considered cochannel reuse constraints. Receiver filter responses impose restrictions on simultaneous adjacent channel usage in the same cell or in neighbouring cells. We first present some heuristics for designing fixed channel assignment algorithms with a minimum number of channels satisfying both cochannel and adjacent channel reuse constraints. An asymptotically tight upper bound for the traffic carried by the system in the presence of arbitrary cochannel and adjacent channel reuse constraints was developed in [2]. However this bound is computationally intractable even for small systems like a regular hexagonal cellular system of 19 cells. We have obtained approximations to this bound using the optimal solutions for cochannel reuse constraints only, and a further graph theoretic approach. Our approximations are computationally much more efficient and have turned out to track very closely the exact performance bounds in most cases of interest

    Frequency Selective Surface Assisted Dynamic Spectrum Access for the Wireless Indoor Environment

    Get PDF
    This thesis investigates the impact of the use of Frequency Selective Surfaces (FSS) when applied to walls to improve the performance of indoor wireless communications. FSS controlled spectrum sharing is examined using a point-to-point network topology containing two different types of users, intra-room and inter-room, and considers a system with open spectrum access where all users have equal regulatory status. This approach is used together with FSS walls to smartly control resource assignment inside the building. The FSS filter activation threshold is examined, using a threshold value measured from sensing interference in up to three spectrum bands. It is shown how using this threshold, and different FSS state activation strategies, can significantly improve the way an indoor wireless communications system can control its spectrum resources. Different FSS activation strategies are explored. It is shown how the model where a specific value of FSS threshold is set and used throughout shows much better performance compared to situations where the FSS is either continually on or continually off. This performance can be further improved if a more deterministic value is used. This is achieved by using a sliding window average assessment of performance which aims to minimize the frequency of instantaneous FSS states changes; this means a statistical value is used to determine when to activate the FSS. The result shows that a longer sliding window tends to give a better performance for inter-room users without significantly decreasing the performance of intra-room users. An analytical model of system performance using a two-dimensional Markov Chain is developed. Systems with One Available Spectrum (1AS) and Two Available Spectrums (2AS) have been analysed using a state-transition-rate diagram and global equilibrium expressions for both systems are presented

    Un cadre économique pour le routage et l'allocation de canaux dans les réseaux maillés sans fil avec la radio cognitive

    Get PDF
    Les réseaux maillés sans fil avec la radio cognitive sont constitués des routeurs de maille avec la capacité cognitive qui sont interconnectés entre eux par des liaisons sans fil permettant l’acheminement du trafic en relais et certains d’entre eux jouent le rôle de passerelle afin d’accéder au réseau internet. La capacité cognitive est une manière économique pour augmenter la bande passante disponible, mais elle nécessite un mécanisme de gestion adaptative de bande passante pour faire face aux dynamiques des activités des utilisateurs primaires. Dans cette thèse, nous modélisons les opérations conjointes d'allocation des canaux et le routage des connexions des usagers secondaires (sans licence d’accès) dans les réseaux maillés sans fil avec la radio cognitive. Le processus d'allocation des canaux inclut les opportunités de réutilisation des canaux afin d’améliorer la performance du réseau. On définit un cadre économique pour l'adaptation et le contrôle des ressources du réseau qui nous permet l’intégration du processus de routage avec celui d’allocation de canaux avec le but de la maximisation du profit du réseau. Le cadre économique est basé sur la notion du prix caché dépendant de l’état du noeud qui est dérivée de la théorie de la décision de Markov en mode décomposé. Les prix cachés des noeuds sont utilisés comme les métriques de routage tandis que leurs valeurs moyennes sont utilisées pour allouer des canaux parmi les différents noeuds. Le déploiement de ce modèle décomposé possède l’avantage d’implémentation décentralisée des processus utilisés dans le cadre économique qui permet leurs exécutions en temps réel. Les routages des connexions des usagers secondaires sont réalisés sans endommager les transmissions des usagers primaires et sans créer de l’interférence avec les transmissions d’autres usagers secondaires. Les canaux cognitifs sont utilisés de manière opportuniste et l’accès prioritaire de l’usager primaire dans sa bande de fréquence (son canal) est modélisé par la préemption. Les connexions d’usagers secondaires sont considérées homogènes et nous abordons uniquement l'adaptation de capacité à court terme dans lequel le nombre de canaux disponibles au réseau est constant et par ailleurs nous présumons aussi qu'il y a toujours un nombre suffisant d'interfaces radio lorsque les canaux sont réaffectés aux noeuds. Les résultats sont portés sur les deux cas de non-réutilisation et de réutilisation des canaux et pour chaque cas la performance obtenue confirme le modèle théorique d’optimisation présenté dans les chapitres correspondants. Par ailleurs, deux approches heuristique et analytique de calcul de la capacité sont comparées manifestant les mêmes performances. Les résultats de simulation illustrent la maximisation du profit du réseau et l'efficacité du schéma d'allocation des canaux proposé qui est intégré avec l'algorithme de réutilisation des canaux

    Development of resource allocation strategies based on cognitive radio

    Get PDF
    [no abstract

    Μεταφορά και Διαχείριση Ευρυζωνικής Κίνησης σε Ασύρματα Τηλεπικοινωνιακά Δίκτυα

    Get PDF
    Αντικείμενο της παρούσας διατριβής αποτελεί η μελέτη των τεχνικών διαχείρισης πόρων σε ασύρματα ευρυζωνικά δίκτυα επικοινωνιών με στόχο την βελτιστοποίηση της φασματικής απόδοσης καθώς και η μελέτη εναλλακτικών τεχνολογιών μεταφοράς ασύρματης ευρυζωνικής κίνησης. Στο πρώτο κεφάλαιο γίνεται μια σύντομη επισκόπηση των ευρυζωνικών δικτύων ασύρματης πρόσβασης καθώς και των χαρακτηριστικών τους. Στη συνέχεια αναφέρονται συνοπτικά τα σημαντικότερα θέματα που αφορούν τις τεχνικές της διαχείρισης πόρων σε τέτοιου είδους δίκτυα. Τέλος παρουσιάζονται οι επικρατέστερες εναλλακτικές τεχνολογίες που έχουν προταθεί για την μεταφορά ασύρματης ευρυζωνικής κίνησης. Στο δεύτερο κεφάλαιο περιγράφεται το μοντέλου ενός τυπικού ασύρματου ευρυζωνικού δικτύου και γίνεται μια εκτενής ανασκόπηση των επικρατέστερων τεχνικών διαχείρισης πόρων που έχουν προταθεί στην διεθνή βιβλιογραφία. Στη συνέχεια παρουσιάζονται αναλυτικά οι προτεινόμενες τεχνικές διαχείρισης πόρων καθώς και τα συγκριτικά αποτελέσματα της προσομοίωσης των μεθόδων αυτών σε σχέση με την αποδοτικότερη από τις υπάρχουσες τεχνικές. Τέλος συνοψίζονται τα συμπεράσματα που προέκυψαν από την εφαρμογή των προταθέντων τεχνικών. Στο τρίτο κεφάλαιο αρχικά παρουσιάζεται αναλυτικά το μοντέλο ενός συστήματος μεταφοράς ασύρματης ευρυζωνικής κίνησης μέσω επίγειας ασύρματης οπτικής ζεύξης. Στη συνέχεια μελετάται και αξιολογείται η απόδοση του εν λόγω συστήματος, χρησιμοποιώντας ως μετρικές την μέση πιθανότητα διακοπής καθώς και τη μέση πιθανότητα σφάλματος οι οποίες υπολογίζονται σε κλειστή μορφή. Τέλος παρουσιάζονται τα αριθμητικά αποτελέσματα της προσομοίωσης και παρατίθενται τα σχετικά συμπεράσματα. Στα πλαίσια του τέταρτου κεφαλαίου γίνεται η παρουσίαση της προτεινόμενης αρχιτεκτονικής ενός πολύ-αλματικού δικτύου εναέριων πλατφορμών μεγάλου ύψους οι οποίες διασυνδέονται με ασύρματη οπτική ζεύξη, με σκοπό την μεταφορά ασύρματης ευρυζωνικής κίνησης σε μεγάλες αποστάσεις. Εξετάζεται τόσο το σενάριο τους ενός όσο και το σενάριο των πολλών αλμάτων, και μελετάται η απόδοση ενός τέτοιου συστήματος όσον αφορά την μέση πιθανότητα διακοπής στον τελικό χρήστη. Στο τέλος του κεφαλαίου παρατίθενται τα αριθμητικά αποτελέσματα της προσομοίωσης καθώς και τα σχετικά συμπεράσματα. Τέλος, στο κεφάλαιο 5 συνοψίζονται τα σημαντικότερα συμπεράσματα που προέκυψαν από την παρούσα διατριβή και γίνονται υποδείξεις για περαιτέρω έρευνα.The present thesis aims to study resource allocation techniques in fixed broadband wireless networks in order to optimize their spectral efficiency as well as to investigate alternative broadband transfer methods. The first chapter gives a brief overview of broadband wireless access networks with their characteristics. The fundamental resource management techniques proposed in the open technical literature are also referred. Finally, the prevailing broadband transfer technologies are presented. The second chapter describes a typical wireless broadband network model and provides a comprehensive review of the key resource management techniques proposed in the literature. Then, the proposed resource management techniques are presented and compared using proper simulation results. Finally, conclusions are summarized. In the third chapter, the analytical model of a wireless broadband traffic model over a terrestrial wireless optical link is analyzed. Its performance is extracted using analytical expressions of the average outage probability and the average error probability metrics. Appropriate simulation results are depicted as well. In the fourth chapter, a network architecture comprising of several high amplitude platforms communicating with each other using optical links, is introduced in order to transfer broadband traffic over long distances. The outage probability performance is examined using either one-hop or multi-hop scenarios and suitable numerical results are provided. Finally, in chapter 5, concluding remarks are summarized and suggestions for further research are indicated

    Dynamic power allocation and routing for satellite and wireless networks with time varying channels

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2004.Includes bibliographical references (p. 283-295).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Satellite and wireless networks operate over time varying channels that depend on attenuation conditions, power allocation decisions, and inter-channel interference. In order to reliably integrate these systems into a high speed data network and meet the increasing demand for high throughput and low delay, it is necessary to develop efficient network layer strategies that fully utilize the physical layer capabilities of each network element. In this thesis, we develop the notion of network layer capacity and describe capacity achieving power allocation and routing algorithms for general networks with wireless links and adaptive transmission rates. Fundamental issues of delay, throughput optimality, fairness, implementation complexity, and robustness to time varying channel conditions and changing user demands are discussed. Analysis is performed at the packet level and fully considers the queueing dynamics in systems with arbitrary, potentially bursty, arrival processes. Applications of this research are examined for the specific cases of satellite networks and ad-hoc wireless networks. Indeed, in Chapter 3 we consider a multi-beam satellite downlink and develop a dynamic power allocation algorithm that allocates power to each link in reaction to queue backlog and current channel conditions. The algorithm operates without knowledge of the arriving traffic or channel statistics, and is shown to achieve maximum throughput while maintaining average delay guarantees. At the end of Chapter 4, a crosslinked collection of such satellites is considered and a satellite separation principle is developed, demonstrating that joint optimal control can be implemented with separate algorithms for the downlinks and crosslinks.(cont.) Ad-hoc wireless networks are given special attention in Chapter 6. A simple cell- partitioned model for a mobile ad-hoc network with N users is constructed, and exact expressions for capacity and delay are derived. End-to-end delay is shown to be O(N), and hence grows large as the size of the network is increased. To reduce delay, a transmission protocol which sends redundant packet information over multiple paths is developed and shown to provide O(vN) delay at the cost of reducing throughput. A fundamental rate- delay tradeoff curve is established, and the given protocols for achieving O(N) and O(vN) delay are shown to operate on distinct boundary points of this curve. In Chapters 4 and 5 we consider optimal control for a general time-varying network. A cross-layer strategy is developed that stabilizes the network whenever possible, and makes fair decisions about which data to serve when inputs exceed capacity. The strategy is decoupled into separate algorithms for dynamic flow control, power allocation, and routing, and allows for each user to make greedy decisions independent of the actions of others. The combined strategy is shown to yield data rates that are arbitrarily close to the optimally fair operating point that is achieved when all network controllers are coordinated and have perfect knowledge of future events. The cost of approaching this fair operating point is an end-to-end delay increase for data that is served by the network.by Michael J. Neely.Ph.D
    corecore