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Channel Assignment Algorithms Satisfying Cochannel and Adjacent
Channel Reuse Constraints in Cellular Mobile Networks

Abstract
Improved channel assignment algorithms for cellular networks were designed by modeling the interference
constraints in terms of a hypergraph [1]. However, these algorithms only considered cochannel reuse
constraints. Receiver filter responses impose restrictions on simultaneous adjacent channel usage in the same
cell or in neighboring cells. We first present some heuristics for designing fixed channel assignment algorithms
with a minimum number of channels satisfying both cochannel and adjacent channel reuse constraints. An
asymptotically tight upper bound for the traffic carried by the system in the presence of arbitrary cochannel
and adjacent channel use constraints was developed in [2]. However, this bound is computationally
intractable even for small systems like a regular hexagonal cellular system of 19 cells. We have obtained
approximations to this bound using the optimal solutions for cochannel reuse constraints only and a further
graph theoretic approach. Our approximations are computationally much more efficient and have turned out
to track very closely the exact performance bounds in most cases of interest.
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Channel Assignment Algorithms Satisfying
Cochannel and Adjacent Channel Reuse
Constraints in Cellular Mobile Networks

Saswati Sarkar and Kumar N. Sivarajan, Member, IEEE

Abstract—Improved channel assignment algorithms for cellular
networks were designed by modeling the interference constraints
in terms of a hypergraph [1]. However, these algorithms only
considered cochannel reuse constraints. Receiver filter responses
impose restrictions on simultaneous adjacent channel usage in the
same cell or in neighboring cells. We first present some heuristics
for designing fixed channel assignment algorithms with a min-
imum number of channels satisfying both cochannel and adjacent
channel reuse constraints. An asymptotically tight upper bound
for the traffic carried by the system in the presence of arbitrary
cochannel and adjacent channel use constraints was developed in
[2]. However, this bound is computationally intractable even for
small systems like a regular hexagonal cellular system of 19 cells.
We have obtained approximations to this bound using the optimal
solutions for cochannel reuse constraints only and a further graph
theoretic approach. Our approximations are computationally
much more efficient and have turned out to track very closely the
exact performance bounds in most cases of interest.

Index Terms—Adjacent channel interference, cellular systems,
channel assignment algorithms, cochannel interference, graph
models, hypergraph models.

I. INTRODUCTION

I N A cellular system, the coverage area is logically divided
into cells. Each cell has a cell site or a base station. The

communication from the mobile user is directed to a central
switching office by the base station. The central switching office
directs this communication to the destination. Depending on the
mode of multiple access used by the mobile customers, cellular
systems can be broadly classified intochannelizedandnonchan-
nelizedsystems. In a channelized cellular system the multiple
access is time division multiple access (TDMA) or frequency
division multiple access (FDMA) or a combination of both. The
termchannelrefers to a time slot in TDMA, a frequency slot in
FDMA, and a combination of both in TDMA/FDMA systems
like group special mobiles (GSM). The traffic in a cellular sys-
tems is usually too high to allow the use of a channel for one
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call at a time; radio channels must be used simultaneously for
more than one call. This is known aschannel reuse. Channel
reusecauses interference, which in turn degrades the transmis-
sion quality. Transmission quality requirements impose certain
cochannel reuse constraints, i.e., the same channels may not be
used simultaneously within certain distance.

Interference is also caused by simultaneous use of adjacent
channels in close proximity. This happens because of imperfec-
tions in filters. Use of guard band between adjacent frequencies
somewhat mitigates this interference. However, guard bands
need to be significantly large in order to reduce this interference
below an acceptable threshold. This leads to poor utilization of
the limited radio spectrum. A better strategy is to eliminate the
adjacent channel interference by not using adjacent channels
in neighboring cells at the same time. This results in better
use of radio spectrum as all available channels can be used
in accommodating calls in the system. However, in this case,
channel allocation strategies need to satisfy cochannel and
adjacent channel use constraints. While frequency allocation in
presence of cochannel reuse constraint has received significant
attention, efficient channel allocation strategies which satisfy
both cochannel and adjacent channel use constraints do not exist.
This paper is directed toward addressing both these constraints.

We first describe our system model and the existing theoret-
ical results for cellular systems with different types of channel
allocation constraints, e.g., cochannel reuse constraints only [4],
and both cochannel and adjacent channel use constraints [2]
(Section II). Next, we present efficient fixed channel allocation
strategies that attain low blocking probabilities in presence of
limited spectrum availability in systems with cochannel and ad-
jacent channel constraints (Section III). The channel allocation
strategy we present closely approximates the minimum number
of channels required to attain certain desired blocking probabil-
ities in cells. Performance bounds are known for cellular sys-
tems with different channel use constraints. The efficiency of
actual channel allocation strategies can be determined by com-
paring their performances with these bounds. However, these
bounds are computationally complex when both cochannel and
adjacent channel constraints are considered. We present compu-
tationally simple approximation for these bounds, which track
the exact bounds closely (Sections IV and V). Channel use con-
straints need not be limited to adjacent channels, but may extend
to simultaneous use of arbitrary channels. This is because trans-
missions in nonadjacent channels may also cause interference.
However, the interference produced by simultaneous use of

0018-9545/02$17.00 © 2002 IEEE
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TABLE I
SYMBOL TABLE

nonadjacent channels in vicinity is negligible in general. Never-
theless, this interference may be significant in some cases, and
as such we address this generalization in Section VI.

II. SYSTEM MODEL AND ANALYTICAL PERFORMANCEBOUNDS

We describe the system model in this section. We introduce
some notations for this purpose. Table I summarizes all nota-
tions used extensively in the paper. The system consists of
cells which share a common set ofchannels. The underlying
offered traffic model is independent from cell to cell; in partic-
ular, we ignore the effects of call handovers and inter-cell calls.
However, it is likely that we can extend our results to the case in
which this independence assumption is dropped and handovers
and intercell calls are included. Our optimism is derived from
the fact that the results of [4], to which we shall refer exten-
sively, have been extended to include handovers in [7]. The un-
derlying model of offered traffic satisfies the “asymptotic traffic
property” (ATP) [4], which states that

where

is the carried traffic in a system with one cell, when
the offered traffic is and the number of available channels is

. Many offered traffic models including the common Poisson
arrivals and exponential holding times satisfy the ATP.

The expected number of calls that would be in progress in cell
if all call requests could be honored is known as theoffered

traffic in cell . If denotes the offered traffic in cellthen
is theoffered traffic intensityin cell . The offered traffic

intensity in the system,, is the sum of the offered traffic intensi-
ties in the cells; thus, . We assume thatis rational.
The ratio represents the fraction of the total
offered traffic in cell and the vector is
thetraffic pattern. We assume that thes are rational. The car-
ried traffic intensity in cell , , is the carried traffic (expected
number of calls in progress) in cellper available channel in the

system. An objective is to maximize the total traffic carried by
a system .

We will first describe a mathematical model and performance
bounds for systems with cochannel reuse constraints only. These
have been presented in [4]. Subsequently, we present a general-
ization for including the adjacent channel use constraints. This
generalization was developed in [2].

Mathematical Model for Systems With Cochannel Reuse
Constraints: Cochannel reuse constraints in cellular systems
have been modeled by regular hexagonal channel reuse patterns
[3] for a long time. A hypergraph model was first used in [4].
This has been found to be the most efficient model for cochannel
reuse constraints [5]. We first describe the hypergraph model
briefly. A hypergraph is formally defined as ,
where is the set of vertices and is the set of edges, where
each edge is a nonempty subset of such that
[6]. A hypergraph is a generalization of a graph in that an edge
can have no more than two vertices in a graph but this restriction
does not hold for a hypergraph. Hypergraph modeling of cellular
systems is as follows:

• Each cell corresponds to a vertex.
• A forbidden setis a group of cellsall of which cannot use a

channel simultaneously. If no proper subset of a forbidden
set is forbidden, then it is aminimal forbidden set. An edge
is aminimal forbidden set.

• A set of vertices which does not contain an edge is an
independentset. Any group of cells which may use the
same channel simultaneously forms anindependent setof
the underlying hypergraph. If an independent set is not
a proper subset of another independent set, then it is a
maximal independent set.

Let the hypergraph modeling the cochannel reuse con-
straints have maximal independent sets and let denote
the size of the th maximal independent set. We define

if the th cell is in the th maximal
independent set of the hypergraph modeling
the cochannel reuse constraints and
otherwise.

Now, [4] presents an asymptotically1 tight upper bound
on the total carried traffic intensity in the cellular system
with cochannel reuse constraints. The upper bound is a
function of the offered traffic and is given by the optimal
value of the objective function of the following linear program:

Maximize

subject to

(LP1)

1The number of channels and the offered traffic are made arbitrarily large
while keeping the ratio finite.
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We denote this linear program by LP1. The intuition behind LP1
can be described as follows. The variabledenotes the traffic
carried in cell . The objective is to maximize the sum of the
traffic carried in all cells. Note that a channel can be simulta-
neously used by all cells in an independent set. Thus, one can
think of assigning channels to maximal independent sets rather
than to cells. Whenever a channel is assigned to a maximal in-
dependent set, all cells in the set receives the channel. Here,
denotes the fraction of channels allocated to theth maximal in-
dependent set. Thus, denotes the fraction of chan-
nels allotted to the maximal independent sets which contain cell

and this is the channel allocation of cell. Clearly, the carried
traffic in cell , is upper bounded by this quantity. The first
constraint represents this condition. The second constraint states
that the carried traffic in a cell is upper bounded by the offered
traffic. The remaining constraints are intuitive. This linear pro-
gram has nonnegative variables and constraints.

It was proved in [4] that if the offered traffic intensity,, is
less than or equal to a certain quantity, which depends on the
cellular system and the traffic pattern and there is no adjacent
channel use constraint, then there exists a channel assignment
algorithm which achieves arbitrarily low blocking probabilities,
if the number of available channels is sufficiently large. For

, no channel assignment algorithm can produce zero
blocking for any number of channels. The quantityhas been
termed thecapacityof the system. The capacity of a system
is a measure of the reuse offered by the system as informally
speaking each channel can carrycalls simultaneously in the
system on an average. It can also serve as a good operating load.
The capacity, is given by the optimal value of the objective
function of the following linear program:

(LP2)

We denote this linear program by LP2. Intuitively, is the
largest value of offered traffic for which the offered traffic in
any cell , does not exceed the resource allocated to cell
, . This linear program has nonnegative

variables and constraints.

The carried traffic and the system capacity are impor-
tant performance metrics of a cellular system. Now, [2] com-
putes these metrics in presence of adjacent channel use con-
straints. However, the strategies presented there are computa-
tionally complex. An important contribution of this paper is to
approximate these computations using techniques that are com-
putationally simple. For this purpose, we will use the optimum
solutions of LP1 and LP2 and a further graph theoretic tech-
nique. First, we explain the exact computations presented in [2].

Mathematical Model for Systems With Cochannel and
Adjacent Channel Use Constraints:Imperfect receiver filter
responses impose restrictions on simultaneous use of adjacent
channels in nearby cells. By “adjacent” channels we mean con-
secutive carrier frequencies in an FDMA system. In the case of
FDMA/TDMA systems, we assume all the time slots in a fre-

quency channel are allocated to the same cell so that we can treat
each carrier frequency as a channel. In the rest of this paper, we
assume that a channel is a carrier frequency. Thechannels are
numbered with adjacent channels given consecu-
tive numbers. The adjacent channel use constraints can be mod-
eled by an matrix such that

if the th and the th cells can use
adjacent channels simultaneously and
otherwise.

The matrix can be determined from the transmission quality
requirements and the interference produced by adjacent chan-
nels. For example, if the filters are perfect, then the adjacent
channels do not interfere with each other. As such, any two cells
can use adjacent channels simultaneously. In this case,
for all . Typically, the cells within a certain distancecannot
use adjacent channels simultaneously. Thus, if cells

and are separated by a distance greater than someand
otherwise. The value of depends on the interfer-

ence caused by adjacent channels and the transmission quality
requirements. Higher the interference or lesser the acceptable
interference threshold, higher the value of. Typical values of
are zero and in regular hexagonal cellular systems, where

is the cell radius. If , adjacent channels cannot be used
simultaneously in the same cell and if adjacent chan-
nels cannot be used simultaneously in the same cell and in ad-
jacent cells.

Now [2] presents asymptotically tight upper bounds on the
carried traffic intensity and the system capacity in presence of
cochannel and adjacent channel use constraints. We introduce
some notations for describing the results. The state of a channel
is an -tuple whose elements are either zero or one. Theth el-
ement is one iff the channel is carrying a call in theth cell. The
state of a channel (other than the one represented by the all zero

-tuple) represents an independent set of the underlying hyper-
graph modeling the cochannel reuse constraints. Letdenote
the set of states of a channel. (If the cochannel reuse constraints
are modeled by a hypergraph, the elements of, with the excep-
tion of the all zero -tuple, have a one-to-one correspondence
with the set of independent sets of the hypergraph.) The hyper-
state of a channel, , is , if the channel is in
state and the channel is in state . is the set
of hyperstates of a channel.2 iff a channel carries a call
in cell in the hyperstate . . Let .

, and
, . .

An asymptotically tight upper bound 3 on the total carried
traffic intensity in the system in the presence of cochannel and
adjacent channel use constraints can be computed as follows:

2
 is determined by� and the matrixB.
3Unlike T (r) which is the upper bound for alln, T (r) is the upper bound

only in the asymptotic case.
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where

(Here, are variables in the linear program.)
Note that can be determined by computing a linear pro-

gram with nonnegative variables and constraints.
We denote this linear program as LP3.

Next, we describe the computation of the network capacity,
in presence of both cochannel and adjacent channel use con-

straints. Recall that network capacity has the property that
there exists a channel assignment algorithm which achieves ar-
bitrarily low blocking probabilities, if the number of available
channels is sufficiently large and the offered trafficis less than
or equal to . For , no channel assignment algorithm
can produce zero blocking for any number of channels. Now,
[2] shows that

Note that can be determined by computing a linear program
with nonnegative variables and constraints.
We denote this linear program as LP4.

In general, both and are very large. When cochannel
reuse constraints are modeled by a hypergraph and adjacent
channels not used in the same cell ( ), ,
for a system with three cells (refer Fig. 1), ,
for a system with seven cells (refer Fig. 2), ,
for a system with 19 cells (refer Fig. 3) and ,
for a system with 37 cells (refer Fig. 4). Thus, both these linear
programs are computationally intractable for systems of reason-
able size.

We will not use LP3 and LP4 any further in this paper ex-
cept for computing the exact values of and for com-
parison with the corresponding approximations. In Sections IV
and V, we derive lower bounds on and , which we de-
note by and , respectively, using the solutions to the
linear programs LP1 and LP2 for computing and and a
further graph theoretic approach. These lower bounds are com-
putationally much simpler as and .
In general, and are quite close to and
respectively. Note that upper bounds on and are al-
ready known in the form of and respectively. We first
present some heuristics for designing fixed channel assignment
algorithms with a minimum number of channels satisfying both

Fig. 1. A system with three cells.

Fig. 2. A system with seven cells.

Fig. 3. A system with 19 cells.

Fig. 4. A system with 37 cells.

cochannel and adjacent channel use constraints in the next sec-
tion (Section III). The design strategy will introduce a graph
theoretic approach which will be used subsequently to approx-
imate and .

III. H EURISTIC APPROACH FOR THEDETERMINATION OF THE

NUMBER OF CHANNELS REQUIRED FOR A

GIVEN FIXED CHANNEL ALLOCATION

A channel allocation algorithm in which groups of channels
are allocated to cellsa priori and a cell accepts a requested call
only if it has a free channel among those allocated to it is known
as afixed channel allocationalgorithm. Though much more
sophisticated algorithms, e.g.,dynamic channel allocation
schemes, have been devised which sometimes out perform the
fixed channel allocation schemes, fixed channel allocation al-
gorithms are still the ones in actual use because they are easy to
implement. For a fixed channel allocation scheme, the number
of channels required for cell, can be determined from the
traffic offered to cell and the acceptable blocking probability,
using Erlang-B formula. Given the channel requirements for
each cell, we may be interested in , the minimum number
of channels necessary to make the allocation, satisfying the
cochannel reuse and the adjacent channel use constraints
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imposed by the transmission quality requirements. This will
be less than in general because of channel reuse.
We have not found any efficient algorithm for this purpose
in the literature when channel allocation needs to satisfy both
cochannel and adjacent channel use constraints. We suggest a
heuristic approach here.

We first describe the concept of graphs ,
induced by a -tuple . be any

-tuple such that is a nonnegative rational number and
is the number of maximal independent sets of the hyper-

graph modeling the cochannel reuse constraints of the cellular
system. Let be the ones with nonzero
values. Let ,
where are relatively prime positive in-
tegers. If , . It is convenient to think of
as being (proportional to) the number of channels that are to
be assigned to maximal independent set . Form a graph

4 as follows. .
Vertices and are joined by an edge iff for each
cell in the th maximal independent set and each cellin
the th maximal independent set of the hypergraph modeling
the cochannel reuse constraints for the cellular system, i.e.,
if any two cells such that one is in theth maximal inde-
pendent set and the other in theth maximal independent
set can use adjacent channels simultaneously. Next, form a
graph .

.
Vertices and have an edge between them iff the ver-

tices and have an edge between them in . In ef-
fect, each vertex in represents a maximal independent
set (which is to be assigned at least one channel) and to obtain

each vertex in is replaced by vertices where
is (proportional to) the number of channels to be assigned

to the maximal independent set represented by that vertex. We
say that and have been induced by the -tuple

.
Theorem 1: Let and be the graphs induced

by some -tuple . Let
become Hamiltonian5 upon the addition of some edges. Let

6 channels be available. Then there
exists a fixed channel allocation algorithm which allocates

channels to theth cell, for , for any
nonnegative integer.

Note that the proof exhibits a channel allocation algorithm
which attains the purpose.

Proof: Let channels be avail-
able. If the lemma is trivially true. Let . We say
that we allocate a channel to a maximal independent set when
we allocate the channel to each cell in the maximal indepen-
dent set. First, we show that it is possible to allocate chan-
nels to the th maximal independent set without violating the

4In our notation in any graphG = (V; E), V is the vertex set andE is the
edge set.

5A cycle in a graph is a sequence of vertices such that consecutive vertices
in the cycle have an edge between them and no vertex in the sequence occurs
more than once except the first (or the last), which occurs twice, once in the first
position and again in the last position. A graph is Hamiltonian iff it has a cycle
consisting of all vertices. Such a cycle is known as a Hamilton cycle.

61 = 1 iff pq > 0 and1 = 0, otherwise.

cochannel reuse and adjacent channel use constraints. Let the
Hamilton cycle of vertices of formed upon the addition of
edges to be . Note that

. Some of the consecutive vertices in this cycle
are linked by an edge in and some by an added edge if .
If , without loss of generality, and are
joined by an added edge. Allocate channels to the maximal in-
dependent sets as per the following algorithm.

1) , , .
2) Give channel numberedto the th maximal indepen-

dent set.
3) If , . If stop.
4) If and are linked by an edge

in , then ; else . .
Go to step 2).

Observe that we are moving along the Hamilton cycletimes
and each time the vertex is encountered theth maximal
independent set is given a channel. Since we are allocating
different channels to different maximal independent sets, the
cochannel reuse constraints are satisfied. Two cellsand can
get adjacent channels only ifis in a maximal independent set

and in such that the vertices corresponding to the two
maximal independent sets and are linked by an edge in

and, hence, in ( and have an edge between them in
iff and have an edge between them in). This means

that any cell in the maximal independent set and in are
permitted to use adjacent channels simultaneously. Thus, the
adjacent channel use constraints are satisfied. The vertexis
encountered times while traversing the Hamilton cycletimes
giving different channels to theth maximal independent set,
for each such that and . Thus,
each of the following vertices give
channels to the th maximal independent set, giving it
channels, if . If , the th maximal independent
set gets channels. If no channel has been
skipped.7 If , channels are skipped the last time the
Hamilton cycle is traversed andchannels are skipped each of
the other times the Hamilton cycle is traversed, because
of the added edges. Thus,
channels have been used to allocate channels to the th
maximal independent set satisfying the cochannel reuse and
adjacent channel use constraints. This fixed channel allocation
algorithm allocates channels to theth cell.

Consider the following integer linear program:

Minimize

integer.

(ILP)

Let be the optimal value of the objective function. Consider
graphs and

7A channel is said to be “skipped” if it is not allocated to any maximal inde-
pendent set.
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induced by the optimal solution . The fol-
lowing Corollary follows from Theorem 1.

Corollary 1: Let become Hamiltonian on the addition of
edges. Then channels are sufficient for the fixed

channel allocation algorithm which allocateschannels to the
th cell, for , where g.c.d. of nonzero s, if

there exists at least one nonzero and otherwise.
We summarize the heuristic approach as follows.

1) Compute the ILP. Let be the optimal value of the objec-
tive function. Let be the optimal
solution. g.c.d. of nonzero , if there exists at least
one nonzero and , otherwise.

2) Form and from the optimal solution as dis-
cussed above, i.e., and

.
3) Compute the minimum number of edges required to

make Hamiltonian or an approximation to it, say. We
discuss how to compute of in Section IV.

4) Use channels to make the fixed channel
allocation. The closer is to , fewer the number of
additional edges required to make Hamiltonian and
lesser the number of channels used.

5) The algorithm for making the required fixed channel al-
location using channels follows from the
proof of Theorem 1. Find the channels allocated to the
th maximal independent set by the algorithm described

in the proof to allocate channels to theth
maximal independent set. All the channels allocated to
the th maximal independent set are allocated to each of
the cells in the th maximal independent set. This gives
the actual channel allocation to the cells.

If is small compared to , then the number of channels ob-
tained from our heuristic will be close to the minimum since

channels are necessary for making the fixed channel alloca-
tion even while satisfying only the cochannel reuse constraints.
We illustrate the actual channel allocation to the cells in the fol-
lowing examples.

Example III.1: Consider the system with seven cells shown
in Fig. 2. Let the cochannel reuse constraint be that the max-
imum interference should not exceed 0.15 units. A channel may
be used simultaneously in any number of cells, as long as the
total interference does not exceed 0.15. Assume that the cell ra-
dius is . Distance between adjacent cells is one unit, and
distance between nonadjacent two-hop away cells like one and
three is . Assume that the interference produced in cellby
the simultaneous use of a channel in cellis . Thus,
adjacent cells cannot use the same channel simultaneously (in-
terference will be 1). No combination of three or more cells can
use a channel simultaneously, e.g., the total interference pro-
duced in cell 3 if cells 1, 3, 5 use the same channel simultane-
ously is 2/9 . However, cells
1 and 3 can simultaneously use the same channel, when cell 5
is not using it. The hypergraph modeling this cochannel reuse
constraint has ten maximal independent sets: , ,

, , , , , , , . We
need to allocate four channels to each cell. Thus, , for

(a) (b) (c)

Fig. 5. The graphs for the system with seven cells when use of adjacent
channel is prohibited in the same cell: (a) shows the graphG , (b) the graph
G, and (c) the basic interference graph.

(a) (b)

Fig. 6. The graphs for the system with seven cells when adjacent channel use
is prohibited in the same cell, and also cell seven cannot use a channel if its
adjacent channel is being used in cell 2, 4, or 6. (a) shows the graphG and (b)
the graphG .

. The ILP gives nonzero values to only the following
maximal independent sets:

.
, , , ,

and . We
shall consider two different adjacent channel use constraints.

Case 1) Adjacent channels cannot be used simultaneously
only in the same cell. The graphsand have been
shown in Fig. 5. is Hamiltonian. Thus,
and 16 channels are sufficient.

is a Hamilton cycle in . Proceeding as per the
algorithm in Theorem 1 with , gets channels
1, 9, gets 2, 10, gets 3, 11, gets 4, 12, gets
5, 13, gets 6, 14, gets 7, 15 and gets 8, 16.
Thus, cell 1 gets channels , cell 2 gets

, cell 3 gets , cell 4 gets
, cell 5 gets , cell 6 gets
, and cell 7 gets .

Case 2) Again assume that adjacent channels cannot be
used simultaneously in the same cell and also that
cell 7 cannot use a channel if its adjacent channel
is being used in either cell 2, 4, or 6. Refer to
Fig. 6(a) and (b) for and , respectively. is
not Hamiltonian. However, it becomes Hamiltonian
when edges are added between the pairs of vertices

and . Thus, and 19 chan-
nels are sufficient. is a Hamilton
cycle in with the added edges. Proceeding as
per the algorithm in Theorem 1 with , gets
channels 1, 11, gets 2, 12, gets 3, 13, gets 5,
15, gets 6, 16, gets 7, 17, gets 8, 18 gets 9,
19. Thus, cell 1 gets channels , cell 2
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gets , cell 3 gets , cell 4
gets , cell 5 gets , cell 6
gets , and cell 7 gets .

For large systems the ILP is difficult to evaluate. The integer
constraints in the ILP may be relaxed to get an approximate
solution. Thus, can then be taken
as an approximation to and
can be used in place of the optimal solution to the ILP.
Clearly channels, with obtained
from the corresponding and and from the

, is sufficient for the required fixed channel
allocation. In general is a good approximation to, the
optimal value of the objective function of the ILP.

IV. A PPROXIMATION TO

We will present an approximation strategy for. We use a
two-step procedure here. We start with the optimal solution of
LP2 which satisfies the cochannel constraints. Next, we modify
this optimal solution with the objective of satisfying the adjacent
channel constraints, using a graph theoretic technique similar to
that of Section III. We describe the approach in details next.

Let and be the graphs induced by a rational-tuple
, which forms an optimal solution of LP2.

(Clearly any extreme point of the feasible region corresponds to
rational values of because the constraints
involve rational numbers only. We know at least one of the ex-
treme points gives the optimal solution, if there exists an optimal
solution [8]. LP2 always has an optimal solution [4]. Thus, there
always exists a rational -tuple which
forms an optimal solution of LP2.) (the number of vertices
in ) and .

Theorem 2: Let become Hamiltonian upon the addition
of some edges. Then .

Proof: Let there be channels. Then
, where and

is a nonnegative integer (Euclidean division theorem). By
Theorem 1 we have a fixed channel allocation algorithm
that allocates channels to the th cell, for

. Using the ATP and the independence of of-
fered traffic from cell to cell it can be shown that this fixed
channel allocation algorithm carries a traffic intensity of

in the asymptotic
limit ( ) in cell (refer to the Appendix for the proof).

Let . Then

from the third set of inequalities in LP2

since

Thus, in the asymptotic limit the carried traffic inten-
sity in the th cell is

. Thus, the
blocking probability is zero in the asymptotic limit for this fixed
channel allocation algorithm if .

Thus, since is the largest
value of for which a channel assignment algorithm that has
asymptotically zero blocking exists.

Let . Clearly the lower bound
is the tightest if , where is the minimum number
of edges which must be added to to make it Hamiltonian.
In general, the problem of finding is NP-complete [9] but

can be found easily in the following special cases.
1) is a complete8 graph. Let have vertices. Then

if ,

if

if .

The proof goes as follows. Let , and let
. Let be a vertex

in . . The degree of a vertex in a graph
[denoted by ] is the number of edges incident on.

8A graph is simple if no edge joins a vertex to itself. A graph is complete if it
is simple and any two distinct vertices in the graph has an edge between them
[10].
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TABLE II
A COMPARISON OF THECOMPLEXITIES OF DEORA’S METHOD [2] AND OUR METHOD IN THE CASE WHERE ADJACENT CHANNEL

USE IN THE SAME CELL ALONE IS PROHIBITED

for all

Thus, is Hamiltonian [10, p. 54, Th. 4.3]). Thus,
and the relation holds in this case.

Let . Let
. must be part of the Hamilton

cycle. Clearly do not have an edge between them in,
since is simple. Thus, an extra edge must be added between

and if they are consecutive vertices in the cycle. There
must be at least pairs and such
that the vertices of the pair occupy consecutive positions in the
cycle. Thus, edges must be
added to make Hamiltonian. By placing one for some
and some between and till the s are exhausted,
exactly pairs and will be there such
that the vertices of the pair occupy consecutive positions in the
cycle. Thus, only
edges need be added to make Hamiltonian. Thus,

in this case.
Let . Since is simple, must be simple and, thus,

one edge must be added to makeHamiltonian. Let .
Note that . If , and , .
( , , if , ,

.) This means which is a contradiction. Thus,

. Let . Since is complete, so is .
Thus, there is an edge betweenand . As per our definition,

is a Hamilton cycle. Thus, no edge need be added to
to make it Hamiltonian. Thus, if .

is complete for many systems. For example,is complete
for a linear array of cells, where any two cells can use the same
channel simultaneously iff they are separated by a distance

, where is the center to center distance between adjacent
cells and the adjacent channel use constraint is that the same cell
cannot use adjacent channels simultaneously and for
all . Thus, can be computed easily for these systems.

TABLE III
THE LOWER BOUNDS ONCAPACITIES OBTAINED USING OUR METHOD

IN THE CASE WHERE ADJACENT CHANNEL USE IN THE SAME CELL

ALONE IS PROHIBITED

2) is completely disconnected, i.e., has no
edge. Thus, is also completely disconnected. Thus,

. We have found that is in general
disconnected if adjacent channels cannot be used simultane-
ously in the same or adjacent cells.

3) There are certain sufficient conditions involving the degree
sequence and the number of edges in[10], [11] for to
be Hamiltonian. If these are satisfied, then . Often a
good approximation to can be found from these sufficiency
conditions.

If none of the above cases apply, then we need to resort to
other means to find . The problem of finding can be
reduced to a traveling salesman problem [10]. The traveling
salesman problem is an NP-complete problem but there exist
techniques which yield good approximations to the required re-
sult [9], [10].

We have used the following seemingly crude method which
surprisingly gives small values ofin a very short time for all
the cases we have studied and whose results we shall present in
Tables II and III. We first briefly describe our method. Finding a
Hamilton cycle in is equivalent to finding a closure-possible
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walk9 in ( ) traversing vertex times. The length
of the walk must be . We have observed that a simplebranch
and backtrack10 technique gives a walk of length, say, very
fast, where is fairly close to . Moreover this walk traverses
no vertex more than times but after the length of the walk
increases to any further increase takes place very slowly. We
stop the branch and backtrack process after a walk, which is
vertices long is obtained. If this walk traverses the vertex
times, we try to insert s in the walk that has already
been obtained. If we cannot do so, we add extra edges, which in-
crease the value ofwe can get. The number is decided upon
after a few observations. We illustrate the branch and backtrack
procedure by the example that follows.

Example IV.1: Let the graph consist of vertices num-
bered where is quite large. The edges in are
as follows: and are joined by an edge for all .

has an edge with 1 and 2. has an edge with 1. There is
no other edge in . for all . The only closure-possible
walk covering each vertex once is . (We con-
sider cyclic shifts such as and
1 as being equivalent.) However, the branch and backtrack pro-
cedure may move along the branch . Thus, a walk
of length is obtained very fast but then on, the process
backtracks in order to insert and this may take a long time.
If the procedure is terminated when the walk of length
is obtained, then can be very easily inserted between 1 and 2
and, thus, a closure-possible walk is obtained and . If
could not be inserted i.e., if it did not have edges joining it to
1 and 2, then two edges could have been added, one joining
to 1 and the other to 2, and a closure-possible walk could have
been obtained, giving . This value of is small, partic-
ularly if is large and, thus, we get a good approximation to

in a very short time.
If the graph does not give a small value of fast with

the above method with a particular optimal solution, the graph
obtained from some other rational optimal solution may be

tried. This often helps when there are multiple optimal solutions
(degeneracy).

We now present our results for systems with 3, 7, 19, 37 reg-
ular hexagonal cells (refer to Figs. 1–4). We have assumed that
the cochannel reuse in the system is constrained by the max-
imum tolerable interference. (Any two calls in the system using
the same channel simultaneously interfere with each other. The
interference diminishes with increase in distance between the
callers.) The assumed model of interference is as follows:

• interference produced in cell due to the usage of the
same channel in cell equals , where
is the center-to-center distance between cellsand ;

• total interference produced in cell interference
produced by all other cells using the same channel

, where is the set of cells

9A walk in a graph is a sequence of vertices such that the consecutive vertices
in the sequence have an edge between them. A walk is closure-possible if the
first and the last vertices have an edge between them.

10This procedure traverses along the graph without visiting any vertexv

more thanm times as long as it can, and when it cannot it backtracks along
the traced path, until it can proceed along some branch which has not yet been
visited.

using the same channel as, barring ; anadditivemodel
of interference is thus assumed;

• the cell radius is assumed to be or equivalently the
distance between adjacent cells is taken to be 1;

• let the requisite transmission quality be that the maximum
interference must be less than or equal to some given
threshold; this limits cochannel reuse.

This model for interference is the same as that used in [4].
The cochannel reuse constraints have been modeled by a hy-
pergraph. We illustrate the computation of the approximation to

by the following.
Example IV.2: Consider the system with seven cells shown

in Fig. 2 described in Example III.1. The same model for in-
terference is assumed as in Section III. The cochannel reuse
constraints, and hence the maximal independent sets of the hy-
pergraph modeling the cochannel reuse constraints, remain the
same as in Example III.1. LP2 gives nonzero values to only the
following maximal independent sets: , ,

, , , , .
, ,

, and . We shall consider two
different adjacent channel use constraints as in Example III.1.

Case 1) Adjacent channels cannot be used simultaneously
only in the same cell. Thus, for all and
, if . The graphs and have been shown

in Fig. 5(a) and (b), respectively. is Hamiltonian.
Thus, and . Clearly,

here. is a Hamilton
cycle in .

Case 2) Assume adjacent channels cannot be used simulta-
neously in the same cell and also that cell seven
cannot use a channel if its adjacent channel is being
used in either cell 2, 4, or 6. Thus

if ,

or ,
,

otherwise.

Refer to Fig. 6(a) and (b) for and , respec-
tively. is not Hamiltonian. However, it becomes
Hamiltonian when edges are added between
and . Thus, and .
Using , .

is a Hamilton cycle in with the added
edges.

We will study two cases of adjacent channel use constraints.
The first prevents the use of adjacent channels in the same cell
simultaneously but allows any other form of adjacent channel
use. All nondiagonal elements of the correspondingmatrix
are 1 and the diagonal elements are 2. The second adjacent
channel use constraint prevents the simultaneous use of adja-
cent channels in cells separated by a distance, i.e.,
iff and otherwise.

We have also studied two different traffic patterns: Uniform
traffic (UT) pattern and the Nonuniform traffic (NUT) pattern.
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TABLE IV
A COMPARISON OF THECOMPLEXITIES OFDEORA’S METHOD [2] AND OUR

METHOD IN THE CASE WHERE ADJACENTCHANNEL USE IN THE SAME CELL

AND IN ADJACENT CELLS IS PROHIBITED

TABLE V
THE LOWER BOUNDS ONCAPACITIES OBTAINED USING OUR METHOD

IN THE CASE WHERE ADJACENT CHANNEL USE IN THE SAME CELL

AND IN ADJACENT CELLS IS PROHIBITED

In the former the same amount of traffic is offered in each cell,
i.e., , for all . In the latter the maximum traffic is
offered in the central cell, one half of that in the next ring of
cells, one third of that in the next ring, and so on. Nonuniform
traffic pattern has been studied for the system with 19 cells only.
For this system

,

, and

.

This model of nonuniform traffic pattern may be representative
of cities where more traffic is offered in the center and less in
the outskirts.

The results for the first case have been tabulated in Tables II
and III and for the second case in Tables IV and V. The number
of vertices in and have not been listed for the second case
because the graph is completely disconnected in all these
cases and we get and, hence, from the special case
2). The number of vertices in and are anyway the same as
the corresponding ones in Table II.

In Table II, we have not listed the number of vertices of
and for the 19-cell system with nonuniform traffic pattern
for interference threshold because an optimal solution of
LP2 in each of these cases is same as that for an interference
threshold of 0.375. Thus, the graphsand are also the same
as that for an interference threshold of 0.375. We have listed

the number of variables, constraints, and so on, in the linear
program used in [2] in one of the cases for the 37 cell system.
The numbers are even larger for the other cases for the 37 cell
system when the interference threshold is higher.11

The following observations may be made from the tabulated
data.

1) We know that . Thus, is a good
approximation to if is close
to 1 and is the same as if . Thus, Table III
indicates that is a very good approximation to and often
gives the exact in the first case, i.e., when adjacent channels
cannot be used simultaneously in the same cell only. Also the
proximity of to 1 indicates that in this case.
Table II indicates that the computation of the exact value of
as per [2] may be impossible in this case even for the system with
19 cells. We could compute the approximations for the system
with 19 cells using no more than 0.4 s of system time on an
IBM SP2 machine. Our computations took less than 0.5 min of
system time on an IBM SP2 for the system with 37 cells.

2) Consider Table V, where we list the results for the case
where adjacent channels cannot be used simultaneously in the
same cell and in adjacent cells. The graphis completely dis-
connected in this case and . Thus,

. Thus, the value of does not
guarantee that our approximation is good. However, in this case
the number of variables and constraints in the linear program
used in [2] are not that large and we could computeas per
[2] for systems with 3, 7, 19 cells. Comparison of with
indicates that is reasonably close to in most of the cases
but there is a significant difference in some of the cases. Better
heuristics than those we have proposed here may be needed
in such cases. The results indicate that(in this case

) is significantly higher than . Our approximation is
much easier to compute in this case even for the system with
19 cells. For the system with 37 cells again the computation of
the exact value of as per [2] may be impossible.

V. APPROXIMATION TO

We now show how to approximate . The approach is
similar to the that of the previous section. We start with the op-
timal solution of LP1 instead of LP2 here. The details follow.

Let LP1 have a rational optimal solution .
Now let and be the graphs induced by the -tuple

. Clearly , for
.

Theorem 3: Let become Hamiltonian upon the addition
of edges. Then .

Proof: This proof is similar to that of Theorem 2. Let
there be channels. Then for some

and where and is a nonnegative
integer (Euclidean division theorem). By Theorem 1 we have
a fixed channel allocation algorithm allocating

11From the Hamilton cycle,r = (1 + p= m ) r = 4:5. Using
the fact thatr increases with increase in allowable interference threshold and
r = 5:04 for a lower value of the interference threshold, namely 0.375, we
get a better lower bound. We have similarly improved the lower bound for the
37-cell system with an interference threshold of0:5.
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channels to theth cell for . Using the ATP and
the independence of offered traffic it can be shown that this
fixed channel allocation algorithm carries a traffic intensity of

in the asymptotic
limit ( ) in cell (refer to the Appendix for the proof).
Let the total traffic intensity carried by this algorithm in the
system be . Then

since

Thus,
, where the last equality defines

Again, the lower bound is the tightest if . The tech-
niques for finding in the special cases and the approx-
imation to in the general case discussed in Section IV
apply here. Certain other observations simplify the computa-
tion of , e.g., for . (This follows
from the definition of and the fact that .) Since

, one
can be assured that the approximation is doing well ifis small
compared to . In general, it is much easier to compute

than as per [2].
We would also like to point out that since , for

, if is known then we can set
for .

Example V.1:Consider the system with seven cells described
in Example III.1 (Fig. 2). The same model for interference is
assumed as in Section III The cochannel reuse constraint and,
hence, the maximal independent sets of the hypergraph mod-
eling the cochannel reuse constraint remains the same as in Ex-
ample III.1. LP1 gives the following solution:

if

if

if .

For

if

if

otherwise.

For

if

if ,

otherwise.

For

if

otherwise.

Throughout, in this example, we shall assume that . We
shall consider two different adjacent channel use constraints as
in Example III.1.

Case 1) Adjacent channels cannot be used simultaneously
only in the same cell. We have found in Example IV.2
that . So , for .
Let LCM . For

if

if

otherwise.

where LCM .
Since , , is given by

Fig. 5(a). is always Hamiltonian in this range.
Let , and .

, , , ,
, .

is a cycle in . Now insert between
and , between and , and so on in the

above cycle till the s are exhausted. Thes will be
exhausted before one reaches since

for . This gives a Hamilton cycle
in since and ,
and are connected by an edge in. Thus,

. for .
For , , and

otherwise. and are given by Fig. 5(c).
is clearly Hamiltonian. The Hamilton cycle is

. Thus, , . Thus,
for all . Hence, for

all . Refer to Fig. 7 for , and .
Recall that we had observed earlier that is very
close to and, hence, to for the same adjacent
channel use constraint as in this case and we find that

for the system with seven
cells. Hence, we expect that will track
and hence very closely even for larger sys-
tems with the same adjacent channel use constraint
as in this example.
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Fig. 7. The curve (A) givesT (r),T (r) andT (r) for Example II.3.1. The
curve (A) also givesT (r) for Example II.3.2, while the curve (B) givesT (r)
for Example II.3.2.T (r) is between curves (A) and (B) in this case.

Case 2) Again assume that adjacent channels cannot be used
simultaneously in the same cell and also that cell 7
cannot use a channel if its adjacent channel is being
used in either cell 2, 4, or 6. We know from Example
IV.2 that . Thus, for

. For ,

if

if

otherwise.

Refer to Fig. 6(a) and (b) for and respectively.
is not Hamiltonian. However, it becomes Hamil-

tonian when edges are added between the pairs
of vertices and . Thus,
and , for .

is a Hamilton cycle in with
the added edges. However, we can get a better
upper bound by observing that
and , if . Using this

, for . For
, s are given by those in case

1 for the samerange of. is given byFig.6(a). is
also thesameas thatgiven in case 1 for the samerange
of . is not, in general, Hamiltonian. However
can be made Hamiltonian by adding edges between
the pairs of vertices , , ,

, and so on until the s are exhausted. (All
s will be exhausted because here,

where are as defined in case 1 for the same
range of .)

is a
Hamilton cycle in with the added edges. Thus,
for , and

(using the values of and s)

[using the value of ]

For , s are given by those in case 1 for
the same range of. and are given by Fig. 5(c).

is clearly Hamiltonian. is the Hamilton
cycle. Thus, . Summarizing

if

if

if

if .

VI. A PPROXIMATION IN THE PRESENCE OFARBITRARY

RESTRICTIONS ONSIMULTANEOUS USE OF

ANY TWO DIFFERENTCHANNELS

Simultaneous use of any two channels can produce interfer-
ence even if they are not the same or adjacent. In most cases,
the filter responses are good enough so that the interference
produced by nonadjacent channels is negligible. Nevertheless,
sometimes there may be restrictions on the simultaneous use
of nonadjacent channels also. As mentioned before [2] formu-
lates linear programs for the computation of and in
the presence of any such restriction but these linear programs
are intractable because of the large number of variables and con-
straints even for systems of moderate size, e.g., a system with 19
cells.12 We can extend our approximations to this general case
under certain special circumstances.

The cochannel reuse constraints are modeled by a hypergraph
as before. The channels are numbered . The distance
between channels numbered is defined to be . The
numbering should be such that this distance is proportional to
the actual separation between them in the radio spectrum. The
adjacent channel use constraints are modeled by a matrix,
which is defined slightly differently from the corresponding def-
inition in Section I. is a matrix, such that if cells
can use adjacent channels simultaneously, then . Other-
wise, is the minimum distance between the channels that can
be used simultaneously in cellsand . Note that if the restric-
tion is only on adjacent channel use, as assumed in Sections IV
and III, then the elements of are 1 and 2. (This agrees with
the definition of in Section IV.)

A graph is induced by an -tuple
as follows. Let be any -tuple, such that

is a nonnegative rational number and is the number
of maximal independent sets of the hypergraph modeling
the cochannel reuse constraints of the cellular system. Let

be the ones with nonzero values. Let
, where

are relatively prime positive integers. If
, . Form a weighted graph

as follows: , , ,
, .

12If there are restrictions on the simultaneous use ofc channels,
 � � �
� �� � �� � , c times. Refer to the relevant discussion in Section I of the work in
[2]. j� j is large andj
j is very large making the number of variables extremely
large.
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Fig. 8. The weightedD graph for a system with three cells. The numbers
against the edges indicate their weights.

There is an edge between any two verticesand (even if
). The weight of an edge between the vertices and

is

Example VI.1: Consider the system with three cells shown in
Fig. 1. Let the minimum separation between channels used si-
multaneously in the same cell be 3, i.e., cell 1 cannot use channels
1, 2 or 1, 3 simultaneously and so on. Adjacent cells cannot use
adjacent channels simultaneously. Any other cells can use adja-
cent channels simultaneously. Let there be no cochannel reuse in
the system, i.e., there are 3maximal independentsets each
consisting of a single cell. , ,

The graph induced by (2, 2, 2) is shown in Fig. 8.
We present the results as follows.
Theorem 4: Let be the weighted graph induced by

some -tuple . Let satisfy the triangle
inequality.13 Let there be a Hamilton cycle in of weight14

. Let be the weight of an edge which has the max-
imum weight amongst all edges in the Hamilton cycle. Let

channels be available. Then there exists a
fixed channel allocation algorithm that allocates
channels to theth cell, for , for any nonnegative
integer .

Proof: This proof is along the same lines as that of
Theorem 1. Again if the lemma is trivially true
( ). Let . Let the Hamilton cycle of weight

be . .
Without loss of generality . If the
algorithm given in the proof of Theorem 1 is slightly modified,
it allocates channels to theth maximal independent set
satisfying the cochannel reuse and the adjacent channel use
constraints, using channels. The following
modification is required in step 4):

.
. Go to step 2).
Clearly, this allocation satisfies the cochannel reuse con-

straints. Let cell get channel and cell get channel . Let
channel be allocated to theth maximal independent set and
channel be allocated to theth maximal independent set.
Thus, cell is in the th maximal independent set and cellis
in the th maximal independent set. Note that is equal
to the total weight of at least one of the paths betweenand

13w(v ; v ) � w(v ; v ) + w(v ; v )
14The weight of a Hamilton cycle in a weighted graph is the sum of the

weights of the edges in the cycle.

on the Hamilton cycle. Because of the triangle inequality,
the weight of both the paths on the Hamilton cycle is greater
than or equal to and this weight is greater than
or equal to , the minimum separation between the channels
which can be simultaneously used in these cells. Thus, this
allocation satisfies the adjacent channel use constraints. This is
the advertised fixed channel allocation.

The following Corollary follows from Theorem 4.
Corollary 2: Let a fixed channel allocation that allocates

channels to theth cell be desired. Let be the graph induced
by an optimal solution of the ILP . Let

g.c.d. of nonzero s if there exists at least one nonzero
and let otherwise. Let there be a Hamilton cycle in

of weight . is the weight of an edge which has the
maximum weight amongst all edges in the Hamilton cycle. If
satisfies the triangle inequality, channels are
sufficient to achieve the required fixed channel allocation.

Theorem 5: Let be the graph induced by a rational optimal
solution of LP2, . Let there be a Hamilton
cycle in of weight . If satisfies the triangle inequality,

.
Proof: The proof follows from Theorem 4, Lemmas 1 and

2 along the same lines as the proof of Theorem 1 follows from
Theorem 1, and Lemmas 1 and 2.

Remarks: . The lower bound
is tightest if , where is the weight of the
minimum weight Hamilton cycle in the graph induced by

, a rational optimal solution of LP2.
Theorem 6: Let be the graph induced by a rational optimal

solution of LP1, . Let there be a Hamilton
cycle in of weight . If satisfies the triangle inequality,

.
The proof follows the same lines as that of Theorem 3.
Remarks: . Again the

lower bound is the tightest if , where is the
weight of the minimum weight Hamilton cycle in the graph
induced by , a rational optimal solution of
LP1. Note that if the restriction is only on adjacent channel use,
as assumed in Sections IV and III, then the elements ofare 1
and 2. (This agrees with the definition ofin Section IV.) This
makes always satisfy the triangle inequality in this case. Also
the lower bounds with given by Theorems 5 and 6 turn out
to be the same as those given by Theorems 2 and 3, respectively,
with in these cases. The same observation applies for the
results of Corollaries 1 and 2.

The problem of finding the minimum weight Hamilton cycle
in is the same as the traveling salesman problem which is
NP-complete. However if satisfies the triangle inequality,
there are some polynomial time algorithms which will produce,
within known bounds, an approximation to the traveling
salesman problem [9]. Thus, this technique is useful, whenever

satisfies the triangle inequality, to get an estimate ofand
, more so because the exact values of these quantities

are intractable even for systems of reasonably small size. The
generalization for the case in which does not satisfy triangle
inequality is complicated. This is a topic for future research.

We would like to mention that the results in this section present
our preliminary research in this area. Nevertheless, these results
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indicate promising directions for extending the approximations
toward the general case of arbitrary restrictions for simultaneous
use of any two channels. We hope that this research will stimu-
late further interest in the arbitrary generalizations.

VII. CONCLUSION AND SUMMARY

We now summarize the contributions of this paper. There are
various performance bounds for a cellular system which are
useful from the theoretical as well as from the network opera-
tors’ point of view. The computation of the exact values of these
performance bounds in the presence of cochannel reuse and
adjacent channel use constraints is difficult or rather impossible
even for systems of reasonably small size. We have developed
approximations to these performance bounds in the presence
of cochannel reuse and adjacent channel use constraints which
are computationally much simpler. These approximations track
very closely the actual performance bounds in most cases. We
have also presented good heuristics for the problem of finding
the minimum number of channels necessary for achieving any
given fixed channel allocation algorithm in the presence of
cochannel reuse and adjacent channel use constraints.

We make one observation before conclusion: we have made
all computations in two steps. The LPs or the ILP take care
of the cochannel reuse constraints and the graph theoretic
approach takes care of the adjacent channel use constraint.
The advantage of this modularization is that if for some reason
the adjacent channel use constraints change but the cochannel
reuse constraints remain the same, then only the graph theoretic
computations need be repeated. This is helpful because for actual
systems both the ILP and the LPs may be computationally quite
intensive.

APPENDIX

Lemma 1: Let the carried traffic in a one cell system be de-
noted by when channels are allocated to the cell
and is the offered traffic in the cell.

if , and .
Proof: This proof follows easily from the ATP introduced

in [4]. We give the proof here for the sake of completeness

as since

by the ATP

Lemma 2: Let channels be avail-

able where and is a nonnegative
integer. The fixed channel allocation algorithm which allocates

channels to theth cell carries a traffic intensity

of in the asymptotic
limit ( ) in the th cell.

Proof: As argued in [4], because of the independence
of the offered traffic and the fixed channel allocation algo-

rithm, each cell behaves as a one cell system with offered
load and channels. Thus, the carried

traffic intensity in the th cell is .

If , ,

for each . Thus,

. Let

. Then and

since
and are fixed constants independent of.
Thus,

. Thus,

by Lemma 1.
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