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Channel Assignment Algorithms Satistying Cochannel and Adjacent
Channel Reuse Constraints in Cellular Mobile Networks

Abstract

Improved channel assignment algorithms for cellular networks were designed by modeling the interference
constraints in terms of a hypergraph [1]. However, these algorithms only considered cochannel reuse
constraints. Receiver filter responses impose restrictions on simultaneous adjacent channel usage in the same
cell or in neighboring cells. We first present some heuristics for designing fixed channel assignment algorithms
with a minimum number of channels satisfying both cochannel and adjacent channel reuse constraints. An
asymptotically tight upper bound for the traffic carried by the system in the presence of arbitrary cochannel
and adjacent channel use constraints was developed in [2]. However, this bound is computationally
intractable even for small systems like a regular hexagonal cellular system of 19 cells. We have obtained
approximations to this bound using the optimal solutions for cochannel reuse constraints only and a further
graph theoretic approach. Our approximations are computationally much more efficient and have turned out
to track very closely the exact performance bounds in most cases of interest.
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Adjacent channel interference, cellular systems, channel assignment algorithms, cochannel interference, graph

models, hypergraph models
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Channel Assignment Algorithms Satisfying
Cochannel and Adjacent Channel Reuse
Constraints in Cellular Mobile Networks

Saswati Sarkar and Kumar N. Sivarajihember, IEEE

Abstract—mproved channel assignment algorithms for cellular  call at a time; radio channels must be used simultaneously for
networks were designed by modeling the interference constraints more than one call. This is known akannel reuseChannel

in terms of a hypergraph [1]. However, these algorithms only e secauses interference, which in turn degrades the transmis-
considered cochannel reuse constraints. Receiver filter responses ion lity. Transmission litv r irements im rtain
impose restrictions on simultaneous adjacent channel usage in the S10N quality. fransmission quality requirements impose certa

same cell or in neighboring cells. We first present some heuristics COchannel reuse constraints, i.e., the same channels may not be
for designing fixed channel assignment algorithms with a min- used simultaneously within certain distance.
imum number of channels satisfying both cochannel and adjacent  |nterference is also caused by simultaneous use of adjacent
channel reuse constraints. An asymptotically tight upper bound - channels in close proximity. This happens because of imperfec-
for the traffic carried by the system in the presence of arbitrary fi in filt U f d band bet di tf .
cochannel and adjacent channel use constraints was developed in onsint erS: ) seo gu.ar. and between adjacent irequencies
[2]. However, this bound is computationally intractable even for SOmewhat mitigates this interference. However, guard bands
small systems like a regular hexagonal cellular system of 19 cells. need to be significantly large in order to reduce this interference
We have obtained approximations to this bound using the optimal pelow an acceptable threshold. This leads to poor utilization of
solutions for cochannel reuse constraints only and a further graph - 6 |imjted radio spectrum. A better strategy is to eliminate the
theoretic approach. Our approximations are computationally . . . )

adjacent channel interference by not using adjacent channels

much more efficient and have turned out to track very closely the ) ) : ) )
exact performance bounds in most cases of interest. n nelghbonng Ce||S at the same time. ThIS I’eSU|tS n better

. : use of radio spectrum as all available channels can be used
Index Terms—Adjacent channel interference, cellular systems, . dati s in th t H in thi
channel assignment algorithms, cochannel interference, graph In accommoda I_ng calls |n_ € system. owever, In this case,
models, hypergraph models. channel allocation strategies need to satisfy cochannel and
adjacent channel use constraints. While frequency allocation in
presence of cochannel reuse constraint has received significant
|. INTRODUCTION attention, efficient channel allocation strategies which satisfy
N A cellular system, the coverage area is logically divideloth cochannel and adjacent channel use constraints do not exist.
into cells. Each cell has a cell site or a base station. TR&is paper is directed toward addressing both these constraints.
communication from the mobile user is directed to a central We first describe our system model and the existing theoret-
switching office by the base station. The central switching offideal results for cellular systems with different types of channel
directs this communication to the destination. Depending on tRlocation constraints, e.g., cochannel reuse constraints only [4],
mode of multiple access used by the mobile customers, cellugnd both cochannel and adjacent channel use constraints [2]
systems can be broadly classified ist@nnelizeéindnonchan- (Section Il). Next, we present efficient fixed channel allocation
nelizedsystems. In a channelized cellular system the multipkérategies that attain low blocking probabilities in presence of
access is time division multiple access (TDMA) or frequendymited spectrum availability in systems with cochannel and ad-
division multiple access (FDMA) or a combination of both. Thégacent channel constraints (Section Ill). The channel allocation
termchannelrefers to a time slot in TDMA, a frequency slot instrategy we present closely approximates the minimum number
FDMA, and a combination of both in TDMA/FDMA systemsof channels required to attain certain desired blocking probabil-
like group special mobiles (GSM). The traffic in a cellular sysiies in cells. Performance bounds are known for cellular sys-
tems is usually too high to allow the use of a channel for oriems with different channel use constraints. The efficiency of
actual channel allocation strategies can be determined by com-
. . . aring their performances with these bounds. However, these
Manuscript received February 21, 1999; revised August 22, 2001. The W(%é d . I | hen both h | and
of S. Sarkar was supported in part by NSF Grant ANI01-06984. A part of thiROUNdS are computationally complex when both cochannel an
work was conducted at the Indian Institute of Science, Bangalore, suppor&djacent channel constraints are considered. We present compu-
by a Nortel Networks Grant, presented at the 34th Annual Allerton Conf ationally simple approximation for these bounds, which track
ence on Communications, Control, and Computing 1996, and published ine{‘ﬁe . !
Proceedings. e exact bounds closely (Sections IV and V). Channel use con-
S. Sarkar is with the Department of Electrical Engineering, University straints need not be limited to adjacent channels, but may extend
Pennsylvania, Philadelphia, PA 19104 USA (e-mail: Swat'@ee-uf’eﬂ”-ed“)-ﬁo simultaneous use of arbitrary channels. This is because trans-
K. N. Sivarajan is with Tejas Networks, Bangalore 560 0012, India (e-mail; . . . di h | | . £
kumar@tejasnetworks.com). missions in nonadjacent channels may also cause interference.
Digital Object Identifier 10.1109/TVT.2002.801768 However, the interference produced by simultaneous use of
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TABLE |
SymBOL TABLE

system. An objective is to maximize the total traffic carried by
V
a systend ) | ;.

Symbol | Meaning We will first describe a mathematical model and performance
11:1/1 g”mgz Z? Ce”s,mal e bounds for systems with cochannel reuse constraints only. These
um maxi1 maependent sets .
of the hypergraph modeling co-channel _hav_e been_prese_nted in [4]_. Subsequently, we present_a gene_ral—
reuse constraints ization for including the adjacent channel use constraints. This
aij Indicates whether cell 7 is in jth maximal generalization was developed in [2].
- ‘Ingépe"de“;%lﬁ e Mathematical Model for Systems With Cochannel Reuse
i arc’lj;zz;etsc”;]’as;efr;;uslt;sgoujs lcyan usean Constraints: Cochannel reuse constraints in cellular systems
p Offered traffic have been modeled by regular hexagonal chaqnel reuse patterns
D; Fraction of offered traffic for cell ¢ [3] for a long time. A hypergraph model was first used in [4].
T Number of possible states of a channel This has been found to be the most efficient model for cochannel
R ?“mber thXPCTS‘f‘fS Off:j _Ch“”“elh 1 reuse constraints [5]. We first describe the hypergraph model
t t t t t . . .
o e capat Y ifout acjacent channe briefly. A hypergraphH is formally defined asf = (V, E),
T Traffic carried by system in absence of whereV is the set of vertices an#l is the set of edges, where
adjacent channel use constraints each edge is a nonempty subset &f such that J,.pe = V
g System capacity with adjacent channel [6]. A hypergraph is a generalization of a graph in that an edge
10 ;izf;‘l“j;ﬁ;:;sby e T presee oF can have no more than two vertices in a graph but this restriction
A .
adjacent channel use constraints does not hold for a hypergraph. Hypergraph modeling of cellular
gt Lower bound to 7§} systems is as follows:
Tar(r) | Lower bound to Ta(r) « Each cell corresponds to a vertex.

« A forbidden seis a group of cellall of which cannot use a
channel simultaneously. If no proper subset of a forbidden
setis forbidden, then it isminimal forbidden setAn edge
is aminimal forbidden set
« A set of vertices which does not contain an edge is an
independenset. Any group of cells which may use the
same channel simultaneously formsiagependent sedf
We describe the system model in this section. We introduce the underlying hypergraph. If an independent set is not
some notations for this purpose. Table | summarizes all nota- a proper subset of another independent set, then it is a
tions used extensively in the paper. The system consisié of maximal independent set
cells which share a common setiothannels. The underlying Let the hypergraphd modeling the cochannel reuse con-
offered traffic model is independent from cell to cell; in particstraints havel maximal independent sets and I&} denote
ular, we ignore the effects of call handovers and inter-cell calkhe size of thgith maximal independent set. We define
However, it is likely that we can extend our results to the case in 1, iftheith cell is in thejth maximal
which this independence assumption is dropped and handovers independent set of the hypergraph modeling
and intercell calls are included. Our optimism is derived from %ij = the cochannel reuse constraints and
the fact that the results of [4], to which we shall refer exten- 0, otherwise.
sivel)_/, have been extended t(_) incll_Jdg hand(“)vers in [71. The_un-NOW’ [4] presents an asymptoticallytight upper bound
derlying Enodel ofoffere_d traffic satisfies the “asymptotic traffiGy, he total carried traffic intensity in the cellular system
property” (ATP) [4], which states that with cochannel reuse constraints. The upper bafite) is a
lim C(k, n)/n = min(r, 1), function of the offered traffic- and is given by the optimal

. . . . value of the objective function of the following linear program:
C(k, n) is the carried traffic in a system with one cell, when

the offered traffic isk and the number of available channels iMaXimizir

n. Many offered traffic models including the common Poisson Z
Ty

=1

nonadjacent channels in vicinity is negligible in general. Never-
theless, this interference may be significant in some cases, and
as such we address this generalization in Section VI.

[I. SYSTEM MODEL AND ANALYTICAL PERFORMANCEBOUNDS

7

where lim k/n =r.

n—oo

arrivals and exponential holding times satisfy the ATP. 4
The expected number of calls that would be in progress in Cgubject to

¢ if all call requests could be honored is known as dffered o

traffic in cell 7. If A; denotes the offered traffic in cellthen z; < Y Xja;5, i=1,2,...,N

A;/n is theoffered traffic intensityn cell <. The offered traffic J=1

intensity in the systemr, is the sum of the offered traffic intensi-

tiesinthe cells; thus; = >~ A, /n. We assume thatis rational. X.>0. j=1,2 ... M

The ratiop; = A;/ ., A; represents the fraction of the total o T

offered traffic in celli and the vectop = (p1, p2, ..., pn) iS S X=1

thetraffic pattern We assume that thes are rational. The car- j=1

ried traffic intengity in celk, Tis is the Carri_ed traffic (eXp?Cted 1The number of channels and the offered traffic are made arbitrarily large
number of calls in progress) in célper available channel in the while keeping the ratio finite.

\

z; < pir, 1=1,2, ..., N
(LP1).

/
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We denote this linear program by LP1. The intuition behind LPquency channel are allocated to the same cell so that we can treat
can be described as follows. The variabjedenotes the traffic each carrier frequency as a channel. In the rest of this paper, we
carried in celli. The objective is to maximize the sum of theassume that a channel is a carrier frequency.nTtleannels are
traffic carried in all cells. Note that a channel can be simultarumberedl, 2, ..., n with adjacent channels given consecu-
neously used by all cells in an independent set. Thus, one ¢&e numbers. The adjacent channel use constraints can be mod-
think of assigning channels to maximal independent sets ratledéed by anV x N matrix B such that

than to cells. Whenever a channel is assigned to a maximal in-

. . 1, if theith and thejth cells can use
dependent set, all cells in the set receives the channel. Nere, b — { ' J
)

adjacent channels simultaneously and

denotes the fraction of channels allocated tojthemaximal in- 2, otherwise.

dependent set. Thus, "2, X ;a;; denotes the fraction of chan- _ _ o _
nels allotted to the maximal independent sets which contain c&lle matrix3 can be determined from the transmission quality
i and this is the channel allocation of c&liClearly, the carried requirements and the interference produced by adjacent chan-
traffic in cell i, z; is upper bounded by this quantity. The firstels. For example, if the filters are perfect, then the adjacent
constraint represents this condition. The second constraint st@e@nnels do not interfere with each other. As such, any two cells
that the carried traffic in a cell is upper bounded by the offere@®n use adjacent channels simultaneously. In this égse; 1
traffic. The remaining constraints are intuitive. This linear prdor all 4, j. Typically, the cells within a certain distandeannot
gram has\/ + N nonnegative variables agdV + 1 constraints. Use adjacent channels simultaneously. Thys,= 1 if cells

It was proved in [4] that if the offered traffic intensity, is * andj are separated by a distance greater than séraed

less than or equal to a certain quantigywhich depends on the i = 2 otherwise. The value of depends on the interfer-

cellular system and the traffic pattern and there is no adjac&’i‘tce caused by adjacent channels and the transmission quality

channel use constraint, then there exists a channel assignrﬁ%ﬂ't"rements' Higher th_e interference or Ies_ser the acceptable
interference threshold, higher the valuelofypical values ofl

algorithm which achieves arbitrarily low blocking probabilities, 4/3P lar h | celiul h
if the number of available channels is sufficiently large. Fdf'e zeroan 3? Inrégular hexagonal ceflular systems, where
is the cell radius. 1/ = 0, adjacent channels cannot be used

r > 719, N0 channel assignment algorithm can produce zero ) . .
blocking for any number of channels. The quantighas been simultaneously in the same cell andli= /3P adjacent chan-

termed thecapacityof the system. The capacity of a systenﬁ‘e'S cannot be used simultaneously in the same cell and in ad-

is a measure of the reuse offered by the system as informéf’f§ent cells. ically tigh bound h
speaking each channel can carpycalls simultaneously in the Now [2] presents asymptotically tight upper bounds on the

system on an average. It can also serve as a good operating IBQU'ed traffic intensity and the system capacity in presence of

The capacityr is given by the optimal value of the objectiveCOChannel gnd adjacent.channel use constraints. We introduce
function of the following linear program: some notations for describing the re_sults. The state of a channel
is anN-tuple whose elements are either zero or one.:ilhel-
o o ement is one iff the channel is carrying a call in ittecell. The
. ZXJ' =1, X; >0, ZXja;,j > par, state of a channel (othe_r than the one represented by t_he all zero
= = (LP2). N-tuple) represents an independent set of the underlying hyper-
graph modeling the cochannel reuse constraintsrLé¢note
the set of states of a channel. (If the cochannel reuse constraints
are modeled by a hypergraph, the elements fith the excep-

We denote this linear program by LP2. Intuitively, is the tion of the all zeraN-tuple, have a one-to-one correspondence
largest value of offered traffic for which the offered traffic in  with the set of independent sets of the hypergraph.) The hyper-
any celli, p;r does not exceed the resource allocated to cellate of a channel 1 < i < n, is (p, ¢), if the channel is in
i, Z?il Xja;;. This linear program has/ + 1 nonnegative statep and the channel+ 1 is in stateg. Q C 7 x 7 is the set
variables andV + 1 constraints. of hyperstates of a channiell;,, = 1 iff a channel carries a call

The carried traffic’(r) and the system capacity are impor- in cell in the hyperstate € Q. 1., = 3217 | di. Let|[Q = R.
tant performance metrics of a cellular system. Now, [2] confu () = {w: w = (n,7') € Q, 7 € 7}, andQp(n) =
putes these metrics in presence of adjacent channel use don-w = (7', ) € Q, 7' € 7}, n € 7. Qu(n), Qr(n) C Q.
straints. However, the strategies presented there are compd@asymptotically tight upper bourifly ()3 on the total carried
tionally complex. An important contribution of this paper is tdraffic intensity in the system in the presence of cochannel and
approximate these computations using techniques that are cadjacent channel use constraints can be computed as follows:
putationally simple. For this purpose, we will use the optimum
solutions of LP1 and LP2 and a further graph theoretic tech- {

max

i=1,...,N.

nique. First, we explain the exact computations presented in [2]T’4 (r) = max

Mathematical Model for Systems With Cochannel and
Adjacent Channel Use Constraints:Imperfect receiver filter
responses impose restrictions on simultaneous use of adjacent
chanr_1e|s in r!earby ceIIs._By _“adjacent” channels we mean cony, ¢ yetermined by and the matrix.
secutive carrier frequencies in an FDMA system. In the case 0bypjike 7(r) which is the upper bound for all, T (r) is the upper bound
FDMA/TDMA systems, we assume all the time slots in a freenly in the asymptotic case.

Z twSw: S = (81, 2, ---, SR) € S(r)}

weN
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where ng@
'(817"'78R): )
> diwsw < pir, 1=1,2,...N, Fig. 1. A system with three cells.
weN
S(T) _ Sw Z 07 w € Q7 6
Y se= 2 s mer =6,
weQy (1) weQ L (n) eoo
P )
\ we Y,
. . . Fig. 2. A system with seven cells.
(Here,s1, sq, ... are variables in the linear program.)

Note thatl’4 () can be determined by computing a linear pro-
gram with R nonnegative variables ad+ 1 + |7| constraints.
We denote this linear program as LP3.

Next, we describe the computation of the network capacity,
3! in presence of both cochannel and adjacent channel use con-
straints. Recall that network capacity has the property that
there exists a channel assignment algorithm which achieves ar-
bitrarily low blocking probabilities, if the number of available
channels is sufficiently large and the offered traffic less than Fig. 3. A system with 19 cells.
or equal torg'. Forr > 74, no channel assignment algorithm
can produce zero blocking for any number of channels. Now,
[2] shows that

'ZdinwZPir; i:1727"'N‘
wEeN
S 2 07 w €
A _ .
ry = maxnr: S sw= Y s, mET
weQy () w€QL(n)
> s, =1,
\ we /

A . . . Fig. 4. A system with 37 cells.
Note thatrg* can be determined by computing a linear program

with R + 1 nonnegative variables and 1 constraints. . L
+ nneg +Irl+ cochannel and adjacent channel use constraints in the next sec-
We denote this linear program as LP4. . . . -
It|on (Section Ill). The design strategy will introduce a graph

In general, both? and|r| are very large. When cochannethe retic approach which will be used subsequently to approx-
reuse constraints are modeled by a hypergraph and adjacenf) P q y PP

channels not used in the same cdll£ 0), R ~ 10, || ~ 10 imaters: andTy(r).
for a system with three cells (refer Fig. 1§, ~ 100, || ~ 10
for a system with seven cells (refer Fig. )~ 10°, || ~ 103
for a system with 19 cells (refer Fig. 3) afti~ 107, |7| ~ 10°
for a system with 37 cells (refer Fig. 4). Thus, both these linear
programs are computationally intractable for systems of reasonA channel allocation algorithm in which groups of channels
able size. are allocated to cella priori and a cell accepts a requested call
We will not use LP3 and LP4 any further in this paper exanly if it has a free channel among those allocated to it is known
cept for computing the exact values:gf and7's(r) for com- as afixed channel allocatioralgorithm. Though much more
parison with the corresponding approximations. In Sections Bbphisticated algorithms, e.gdynamic channel allocation
and V, we derive lower bounds a andT4(r), which we de- schemes, have been devised which sometimes out perform the
note byri'l andT 41, (r), respectively, using the solutions to theixed channel allocation schemes, fixed channel allocation al-
linear programs LP1 and LP2 for computifigr) andr, and a gorithms are still the ones in actual use because they are easy to
further graph theoretic approach. These lower bounds are camplement. For a fixed channel allocation scheme, the number
putationally much simpler a3/ < R andN < |r| < R. of channels required for cell n; can be determined from the
In general, T4 (r) andrytl are quite close td’4(r) andrg' traffic offered to celli and the acceptable blocking probability,
respectively. Note that upper bounds Ba(r) andr' are al- using Erlang-B formula. Given the channel requirements for
ready known in the form of’(r) andr( respectively. We first each cell, we may be interestedsip,;,,, the minimum number
present some heuristics for designing fixed channel assignmehichannels necessary to make the allocation, satisfying the
algorithms with a minimum number of channels satisfying bottochannel reuse and the adjacent channel use constraints

I1l. HEURISTIC APPROACH FOR THEDETERMINATION OF THE
NUMBER OF CHANNELS REQUIRED FOR A
GIVEN FIXED CHANNEL ALLOCATION
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imposed by the transmission quality requirements. This widbchannel reuse and adjacent channel use constraints. Let the
be less thaan”=1 n; in general because of channel reusddamilton cycle of vertices of” formed upon the addition gf
We have not found any efficient algorithm for this purposedgestd” bev;, j,, Vi, jis -« Viv_y. ju—1s Vio. jo - NOtE that
in the literature when channel allocation needs to satisfy bath— Z;‘il m;. Some of the consecutive vertices in this cycle
cochannel and adjacent channel use constraints. We suggesiedinked by an edge iR’ and some by an added edge it 0.
heuristic approach here. R _If p > 0, without loss of generalityy;,, , j, , andv,;, are

We first describe the concept of graph(X), F'(X) joined by an added edge. Allocate channels to the maximal in-
induced by aM-tuple X = (Xi1,X,,...,Xy). X be any dependent sets as per the following algorithm.
M-tuple such thatX; is a nonnegative rational number and 1y ; — 0,y = 0, ¢ = 1.
M is the number of maximal independent sets of the hyper- 2y Gjye channel numberddto thei,th maximal indepen-
graph modeling the cochannel reuse constraints of the cellular ~ yent set.

system. LetXy,, Xk,,..., Xk, be the ones with nonzero 3) lfa=U—1,¢c— c+1.1f ¢ > ¢ stop.

values. LetXy, : Xy, @« Xiy = Mg, Mgy oot Mgy, 4) If vi, j, andvi, ). 00icesmeay are linked by an edge
where my, , my,,...,mg, are relatively prime positive in- in F’, thenb — b+1; elseb — b+2.a — (a+1) mod U.
tegers. IfX; = 0, m; = 0. It is convenient to think ofny, Go to step 2).

as being (proportional to) the number of channels that are &9 <o rve that we are moving along the Hamilton cyctemes

be assigned to maximal independent a&t. Form a graph 5 each time the vertex, ;, is encountered thfth maximal

F(X) = (VF’fF)4 as_f(_)llo(\;vi. Vr :d{vk}fjf%_’ U ’U’“V}‘h independent set is given a channel. Since we are allocating
Ve|r|t|§§3vﬁ, i_n hv’“t arle J()llned y a; eage I, d_ 1 Or: e,a](; different channels to different maximal independent sets, the
cell # in the .lt maximal indepen ent set and each gel . cochannel reuse constraints are satisfied. Two ¢eltslj can

the kth maximal mdependent_set of the hypergraph modeh_ t adjacent channels onlyiifs in a maximal independent set
_the cochannel reuse constramt_s f_or the cellulgr sys_tem, i and;j in k, such that the vertices corresponding to the two
if any two cells such that one IS in th{ﬁth ma_X|maI inde- o ximal independent sets andk, are linked by an edge in
pendent set and the other in tieth maximal independent . and, hence, it¥ (vg. andv , have an edge between them in

set can use adjacent channels simultaneously. Next, fornpaiﬁ va andu; have an edge between them/il. This means
graphF’(X) = (VF’; EF/). Ve = {Ukll- <oy Ukymy > Vka 1,

that any cell in the maximal independent set andj in k, are
"'\}v’“?mkz’ ""vgvl’ : h ’“kvmkvd}' b hem iff th permitted to use adjacent channels simultaneously. Thus, the
ticezrtlce;ﬁéla ar;]al;kébana\éz a(r; Ee?ﬁeeitv:he;?];r&g ! Ir: :f_verédjacent channel use constraints are satisfied. The verigis

ki Uk g : encountered times while traversing the Hamilton cycjdimes

fect, each vertex in"(.X) represents a maximal mdependeq%ymgq different channels to theth maximal independent set,

set (which is to be assigned at least one channel) and to ob Neachi, such that\;, > 0 andji € {1, 2, ..., mj,}. Thus,
each of the following vertices;,1, v;,2, ..., iy, ms, give ¢

h imal ind q d by th €Hannels to the;th maximal independent set, giving gin,,
to the maximal independent set represented by that vertex. Y& o5 ifX;, > 0. If X; = 0, the jth maximal independent

say that'(.X) and F”(X) have been induced by thi-tuple set getsgm; = 0 channels. Ifp = 0 no channel has been
X :h (X1, ij XM)- d /(%) be th hs ind dskipped? If p > 0, p— 1 channels are skipped the last time the
b Theorem 1'L|Gt E(Xl and F”(X) be the graphs |r/1 UCed Hamilton cycle is traversed andchannels are skipped each of
b}e/cf)%rgelj\g;lijlfoii; ur;)n (ti](el 7a§éi7ti'o.ﬁ '/O?(é‘é )r%mL(Sctigi s()l(_ )et the otherg — 1 times the Hamilton cyclﬁlis traversed, because
M ; ' of the p added edges. Thusg(p + > ., m;) — lipg>o0}
Z(]?s—:s%j?l :(;J Z;Ealrfgg0;;(;:chz;at'nonneIZlbiri\;\iqablﬁ:cl—lhzﬂcfzztr%hannEIS have been used to aIIoc@echhannels to theth
%M ml»);~ channels to the’sthl cell fgrll < Z"]\'] for any er?la_tximal independent set sat_isfying _the_ cochannel reuse e_md
T 225=1 Mj%ij ' ="="0 adjacent channel use constraints. This fixed channel allocation

honnegative integey. algorithm allocateg 3>, m;a;; channels to théth cell. m
Note that the proof exhibits a channel allocation algorithm gConsider the foﬁo%ihzlintéggr linear program: '

which attains the purpose.
Proof: Letq(p+ Zfil my;) — 1gpe>0y Channels be avail-

F'(X) each vertex inF'(X) is replaced bym vertices where

M 3\
able. If¢ = 0 the lemma is trivially true. Ley > 0. We say Minimize )" W;
that we allocate a channel to a maximal independent set when i=1
we allocate the channel to each cell in the maximal indepen- M )
dent set. First, we show that it is possible to alloeatg chan- £ Wjaij 2 ni, i=1,2,...N (ILP)
nels to thejth maximal independent set without violating the -
W; >0, j=1,2,..., M,
“4In our notation in any grapty = (V. E), V is the vertex set an& is the W; integer. )

edge set.

SA cycle in a graph is a sequence of vertices such that consecutive vertices . . . .
in the cycle have an edge between them and no vertex in the sequence ode@kn be the optimal value of the objective function. Consider

more than once except the first (or the last), which occurs twice, once in the filggtaphsG =FWP, ..., Wﬁ) andG’' = F(WP, ..., W]\Oj)'
position and again in the last position. A graph is Hamiltonian iff it has a cycle ' ) ’ ' )
consisting of all vertices. Such a cycle is known as a Hamilton cycle. A channel is said to be “skipped” if it is not allocated to any maximal inde-

61 (pg>0y = 1iff pg > 0 andly,,~0; = 0, otherwise. pendent set.
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induced by the optimal solutiodW?, ...,
lowing Corollary follows from Theorem 1.

Corollary 1: Let G’ become Hamiltonian on the addition of
p edges. Then+ (¢gp—1)" channels are sufficient for the fixed
channel allocation algorithm which allocateschannels to the
sth cell, for1 < i < N, whereq = g.c.d. of nonzerd’VjOs, if
there exists at least one nonz andg = 0 otherwise.

We summarize the heuristic approach as follows.

W¢)). The fol-

(b) (©)

Fig. 5. The graphs for the system with seven cells when use of adjacent
1) Compute the ILP. Let be the optimal value of the 0bjec_channel is prohibited in the same cell: (a) shows the gx@ph(b) the graph

tive function. Let(W, W, ..., W§}) be the optimal
solution.q = g.c.d. of nonzerdV?, if there exists at least
one nonzer(WJO andq = 0, otherwise.

2) Form G and G’ from the optimal solution as dis-
cussed above, ield = FWP,...,W}) and
G = F(WPO, ..., Woy.

3) Compute the minimum number of edges,, required to
makeG’ Hamiltonian or an approximation to it, sayWe
discuss how to compute @f,;, in Section IV.

4) Usen + (pq — 1)t channels to make the fixed channel

lesser the number of channels used.
5) The algorithm for making the required fixed channel alt
location using: + (pq — 1) channels follows from the

G, and (c) the basic interference graph.

(b)
allocation. The closep is 0 pmin, fewer the number of rig 6 The graphs for the system with seven cells when adjacent channel use
additional edges required to mak& Hamiltonian and is prohibited in the same cell, and also cell seven cannot use a channel if its

adjacent channel is being used in cell 2, 4, or 6. (a) shows the g¥egid (b)
he graphG’.

proof of Theorem 1. Find the channels allocated to the< i < 7. The ILP gives nonzero values to only the following
Jth maximal independent set by the algorithm describedaximal independent sets: — {1, 3}, b — {2,4}, ¢ —
in the proof to aIIocaté’VJO = gm; channels to thgth {3, 5}, d — {4,6},e¢ — {1,5}, f — {2,6},9 — {7}
maximal independent set. All the channels allocated o= 6 = c =d =e = f = 2,9 = 4,n = 16,q = 2,
the jth maximal independent set are allocated to each 9f, = iy, = m,. = my = m. = m¢ = 1 andm, = 2. We

the cells in thejth maximal independent set. This giveshall consider two different adjacent channel use constraints.

the actual channel allocation to the cells.

Case 1) Adjacent channels cannot be used simultaneously

If pq is small compared ta, then the number of channels ob-
tained from our heuristic will be close to the minimum since
n channels are necessary for making the fixed channel alloca-
tion even while satisfying only the cochannel reuse constraints.
We illustrate the actual channel allocation to the cells in the fol-
lowing examples.

Example 111.1: Consider the system with seven cells shown
in Fig. 2. Let the cochannel reuse constraint be that the max-
imum interference should not exceed 0.15 units. A channel may
be used simultaneously in any number of cells, as long as the
total interference does not exceed 0.15. Assume that the cell ra-

only inthe same cell. The graptisandG’ have been
shown in Fig. 5G" is Hamiltonian. Thusp,;, = 0
and 16 channels are sufficient.g1 b ¢ d g2 e f
a is a Hamilton cycle inG’. Proceeding as per the
algorithm in Theorem 1 witly = 2, a gets channels
1,9,91 gets 2, 10p gets 3, 11¢ gets 4, 12 gets
5, 13,92 gets 6, 14¢ gets 7, 15 and gets 8, 16.
Thus, cell 1 gets channef4, 7, 9, 15}, cell 2 gets
{3, 8, 11, 16}, cell 3 gets{1, 4, 9, 12}, cell 4 gets
{3, 5, 11, 13}, cell5gets[4, 7, 12, 15}, cell 6 gets
{5, 8, 13, 16}, and cell 7 get§2, 6, 10, 14}.

dius is1/+/3. Distance between adjacent cells is one unit, and Case 2) Again assume that adjacent channels cannot be

distance between nonadjacent two-hop away cells like one and
three isy/3. Assume that the interference produced in eddly

the simultaneous use of a channel in eei d(u, v)~*. Thus,
adjacent cells cannot use the same channel simultaneously (in-
terference will be 1). No combination of three or more cells can
use a channel simultaneously, e.g., the total interference pro-
duced in cell 3 if cells 1, 3, 5 use the same channel simultane-
ously is 2/9(d(1, 3)™* + d(3, 5)=* = 2/9). However, cells

1 and 3 can simultaneously use the same channel, when cell 5
is not using it. The hypergraph modeling this cochannel reuse
constraint has ten maximal independent s¢is:3}, {1, 4},

{1, 5}, {2, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 6}, {4, 6}, {7}. We

need to allocate four channels to each cell. Thys= 4, for

used simultaneously in the same cell and also that
cell 7 cannot use a channel if its adjacent channel
is being used in either cell 2, 4, or 6. Refer to
Fig. 6(a) and (b) foiG andG’, respectivelyG’ is

not Hamiltonian. However, it becomes Hamiltonian
when edges are added between the pairs of vertices
(91, b) and(d, ¢2). Thus,pmin < 2 and 19 chan-
nels are sufficienth c d g2 e f a g1 b is a Hamilton
cycle in G’ with the added edges. Proceeding as
per the algorithm in Theorem 1 with = 2, b gets
channels 1, 11; gets 2, 124 gets 3, 1342 gets 5,
15,e gets 6, 16,f gets 7, 17¢ gets 8, 1&1 gets 9,

19. Thus, cell 1 gets chann€]s, 8, 16, 18}, cell 2
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gets{1, 7, 11, 17}, cell 3 gets[2, 8, 12, 18}, cell 4

gets{1, 3, 11, 13}, cell 5 gets(2, 6, 12, 16}, cell 6

gets{3, 7, 13, 17}, and cell 7 getg5, 9, 15, 19}.
For large systems the ILP is difficult to evaluate. The integer
constraints in the ILP may be relaxed to get an approximate
solution. ThuS,napprox = Z;\il [Wf} can then be taken
as an approximation ta and ([W21, [WS7, ..., [W{])
can be used in place of the optimal solution to the ILP.
Clearly napprox + (pg — 1)t channels, withp obtained
from the corresponding: and G’ and ¢ from the ([W{7,
(W, ..., [W{)), is sufficient for the required fixed channel
allocation. In generat,p.ox is @ good approximation to, the
optimal value of the objective function of the ILP.

M
E mja;j;
j=1
M
E my
k=1

M
14+0p Z m;
Jj=1

m;j

sincerO =

Mz

my

>~
Il
—

M
2 mjai
—_J=t

Thus, in the asymptotic limit the carried traffic inten-
We will present an approximation strategy fgt. We use a sity in the ith cell is lim,_ C(pirn. quM:l mjai;)/n
two-step procedure here. We start with the optimal solution of 1y, (5., ZMl mjaij/(p + Z T mj)) = pir. Thus, the
LP2 which satisfies the cochannel constraints. Next, we modifyocking probability is zero in the asymptotic limit for this fixed

this optimal solution with the objective of satisfying the adjacehannel allocation algorrthm if < ro/(1+p/ Z] L)

channel constraints, using a graph theoretic technique S|m|lar|1|qus rd > ro/(1 + p/z m;) sincerd is the largest
7=1""

that of Section . We describe the approach in details next. vajue ofr for which a channel assignment algorithm that has

Let G and G’ be the graphs induced by a rationdl-tuple  asymptotically zero blockln exists. n
(XP, X9, ..., X§}), which forms an optimal solution of LP2. [ gt rdL = ro/(1+ p/ ZJ . m;). Clearly the lower bound
(Clearly any extreme point of the feasible region correspondsjtothe trghtest i) = Pmin, Wherepm;, is the minimum number
rational values ofX{’, X§, ..., X{} because the constraintsof edges which must be added @ to make it Hamiltonian.
involve rational numbers onIy We know at least one of the e general, the problem of findingi,;, is NP-complete [9] but
treme points gives the optimal solution, if there exists an optimgl,;,, can be found easily in the following special cases.
solution [8]. LP2 always has an optimal solution [4]. Thus, there 1) G is a completé graph. LetG’ haveyg: vertices. Then
always exists a rational/-tuple (X©, X9, ..., X{}) which

IV. APPROXIMATION TO 7§

forms an optimal solution of 5}32% (the number of vertices o +
inG)=V < Nandye =}, my. . maxm; — Z mj |, ifye >3,
Theorem 2: Let G’ become Hamlltonlan upon the addition _ j p

of somep edges. Themg' > r¢/(1 + p/ Z —, my;). Pmin = garg maxy my

Proof: Let there ben channels. Them = qlp + 0, if ygr =2
ZM1 mj) + t, where0 < ¢ < (p + ZM1 mj) and g 1, if o = 1.
is a nonnegative integer (Euclidean drvrsron theorem). By /
Theorem 1 we have a fixed channel allocation algorithmhe proof goes as follows. LetyG/ > 3, and let

that aIIocateSqZ ", mja;; channels to theith cell, for max;m; < M \—1 j£argmax, m, Mj- L€t vjp be a vertex
1 <i¢ < N. Usmg the ATP and the independence of ofyy v ., = > 11 m;. The degree of a vertex in a graph
fered traffic from cell to cell it can be shown that this fixed; [denoted bde( )] is the number of edges incident on

channel alle\gatron algorithm carrres a traffic intensity ogG,(U]k) M Lizj T = Y6 — M
min(pir, (350, mjaii/p + >3, m;)) in the asymptotic
limit (n — oo) in cell4 (refer to the Appendix for the proof). M

Letr < ro/(1+p/ E] 1 mj). Then max m; < Z m;

i=1
iZarg max; m;

M M
it <Piro 1+p Z m; ax m; < Z
j=1 ¢ i=1

2 maxm;
M o
Z Xj 1277
j=1

AN

m; + maxm;
K2

istarg max; m;

<

2maxm; <
1

M
1+p > m;
J=1

from the third set of inequalities in LP2

8A graph is simple if no edge joins a vertex to itself. A graph is complete if it
is simple and any two distinct vertices in the graph has an edge between them
[10].
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TABLE I
A COMPARISON OF THECOMPLEXITIES OF DEORA'S METHOD [2] AND OUR METHOD IN THE CASE WHERE ADJACENT CHANNEL
USE IN THE SAME CELL ALONE IS PROHIBITED

Deora’s method(2] QOur method
No. of | Cochannel Number of Number of quber of
cells Interf. vars. constrs. vars constrs vertices in
Threshold G G’
UT | NUT | UT NUT
3101 17 9 3 4 2 2
71015 201 25 11 8 7 8
19 | 0.1 53515 311 85 20| 17 18 98 74
19 | 02 344539 833 | 249 20 8 14 18 | 624998
19 | 03 681543 1238 | 242 20| 18 17| 147 50
19 | 0375 802297 1373 | 188 20| 17 11 49 | 500006
19 | 04 824137 1397 | 194 20| 18 82
19 | 05 856699 1432 | 167 20 6 10
19 | 06 867139 1444 | 146 20 9 19
19 | 273 867971 1445 | 140 20 3 3
37 1 0.1 235796085 | 21310 | 4987 38 | 34 111
M TABLE Il
E m; THE LOWER BOUNDS ON CAPACITIES OBTAINED USING OUR METHOD
max m; < =1 IN THE CASE WHERE ADJACENT CHANNEL USE IN THE SAME CELL
) - ALONE IS PROHIBITED
el . No. of | Cochannel ot Jro ol To
m; < —- forallj cells | Interf. UT | NUT | UT | NUT | UT | NUT
Threshold
. el 370D i) 150 150
de (vjr) 2 2 " 7| 015 1.0 175 175
19 | 0.02 10 | 1.0 2.11 | 1.85 2.11 | 185
. L 19 | 0.1 10 | 10 3.10 | 2.56 3.10 | 2.56
Thus,G is Hamiltonian [10, p. 54, Th. 4.3]). Thug,ij, = 0 19 | 02 10 | 1.0 422 | 320 | 422 |32
and the relation holds in this case. 19103 1o 1.0 465 | 384 | 465 | 3.84
. 19 | 0375 1.0 | 1.0 504 | 4 504 | 4
Let maxjm; > 35 sargmax,m, M- L€ i = 19 | 04 099 | 1.0 | 504 | 4 510 | 4
arg maxy, mrg. v;1, Vi2, - - -, Uim, Must be part of the Hamilton 19 | 05 1.0 | 1.0 573 | 4 573 | 4
cycle. Clearlyv;,, v;; do not have an edge between thengin ;3 (7))2 ig :g g-gg j g‘gg Z
since@ is simple. Thus, an extra edge must be added betwe 37 | o1 10 ’ 513 513
v anduy, if they are consecutive vertices in the cycle. There 37 | 0.12 1.0 5.69 5.69
M i 37 | 0.39 1.0 9.25 9.25
must be at leastn; ZJ 1 Ty Pairs vig and v;;, such | os o e 028
that the vertices of the palr occupy consecutive positions in tt 37 | 06 1.0 1074 10.74
cycle. Thusmax,; m ; _ m; edges must be 37 107 1.0 10.96 10.98
Y 7 s E =1 jzarg maxi my 117 €49 37 | 074 1.0 12.33 1233

added to maké&”’ Hamlltonlan By placing one;;, for somek
and somg # ¢ between; andv;;y; till the v;; s are exhausted,
exactlym; — Z]‘fl i M pairsv;, andv;; will be there such  2) G is completely disconnected, i.e.G7 has no
that the vertices of the pair occupy consecutlve positions in thdge. Thus,G’ is also completely disconnected. Thus,
cycle. Thus, only max;m; ]_ljgéargmaka;\ M;  Pmin = VG' = ZMl m;. We have found that7 is in general
edges need be added to mak& Hamiltonian. Thus, disconnected if adjacent channels cannot be used simultane-
Pmin = max;mj — Y00, o omy in this case, ously in the same or adjacent cells.
Letye = 1. SinceG is simple,G’ must be simple and, thus, 3) There are certain sufficient conditions involving the degree
one edge must be added to maKeHamiltonian. Letye: = 2. sequence and the number of edge<3in[10], [11] for G’ to
Note thatyg < ~g'. If 7v¢ = 1, andVg = v, m; = 1. be Hamiltonian. If these are satisfied, thep,, = 0. Often a
(X0 >0,X° =0,ifi #1,37, X° =1 = XP =1, goodapproximation tp,,;, can be found from these sufficiency
my; = 1.) This meansys: = 1 which is a contradiction. Thus, conditions.
ve = 2. Let Vg = {v;1, v;1}. SinceG is complete, so i+, If none of the above cases apply, then we need to resort to
Thus, there is an edge betwegnandv;; . As per our definition, other means to fing..;». The problem of findingmi, can be
v;1v51v41 1S @ Hamilton cycle. Thus, no edge need be addedteduced to a traveling salesman problem [10]. The traveling
G’ to make it Hamiltonian. Thug,,;, = 0 if g = 2. salesman problem is an NP-complete problem but there exist
G is complete for many systems. For examplds complete techniques which yield good approximations to the required re-
for a linear array of cells, where any two cells can use the sasdt [9], [10].
channel simultaneously iff they are separated by a disténze We have used the following seemingly crude method which
uZ, whereZ is the center to center distance between adjacesurprisingly gives small values ¢fin a very short time for all
cells and the adjacent channel use constraint is that the sametbelicases we have studied and whose results we shall present in
cannot use adjacent channels simultaneouslyag€dp; ., for Tables Il and Ill. We first briefly describe our method. Finding a
all 7. Thus,p..in can be computed easily for these systems. Hamilton cycle inG’ is equivalent to finding a closure-possible
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walk?® in G (yg¢ < N) traversing vertex; m; times. The length using the same channelasbarringu; anadditivemodel
of the walk must be.. We have observed that a simplench of interference is thus assumed;

and backtrack technique gives a walk of length, sdy very « the cell radius is assumed to bg\/3 or equivalently the
fast, wherel’ is fairly close toyg . Moreover this walk traverses distance between adjacent cells is taken to be 1;

no vertexv; more thann; times but after the length of the walk < let the requisite transmission quality be that the maximum
increases td” any further increase takes place very slowly. We interference must be less than or equal to some given
stop the branch and backtrack process after a walk, whigh is threshold; this limits cochannel reuse.

vertices long is obtained. If this walk traverses the vertex;  This model for interference is the same as that used in [4].
times, we try to insertn; — n; v;s in the walk that has already The cochannel reuse constraints have been modeled by a hy-
been obtained. If we cannot do so, we add extra edges, whichdgrgraph. We illustrate the computation of the approximation to
crease the value gfwe can get. The numbéfis decided upon .4 by the following.
after a few observations. We illustrate the branch and backtracolgxamme IV.2: Consider the system with seven cells shown
procedure by the example that follows. _ in Fig. 2 described in Example 111.1. The same model for in-
Example IV.1: Let the graph+ consist of / vertices num- tarference is assumed as in Section Il. The cochannel reuse
beredl, 2, ..., W whereW is quite large. The edges i are  constraints, and hence the maximal independent sets of the hy-
as follows:i andi + 1 are joined by an edge for all< W — 1. pergraph modeling the cochannel reuse constraints, remain the
W has an edge with 1 and B/ — 1 has an edge with 1. There iSggme as in Example 111.1. LP2 gives nonzero values to only the
no other edge id7. m; = 1 for all i. The only closure-possible following maximal independent sets:— {1, 3}, b — {2, 4},
walk covering each vertex onceligV 23--- W —1. (Wecon- . _, {3,5},d — {4, 6}, e — {1,5}, f — {2,6}, g — {7}.
sidercyclicshiftssuchasW 23--- W—landW 23---W—1 , _p_ . — j—¢c— F=1/8g=1/4,mg=mp=m, =

1 as being equivalent.) However, the branch and backtrack pfg- — ,, — mys = 1, andm, = 2. We shall consider two
cedure may move along the branich3 - - - W —1. Thus, awalk gjtferent adjacent channel use constraints as in Example I1l.1.

of lengthW — 1 is obtained very fast but then on, the process c 1) Adi t ch | t b d simult |
backtracks in order to insef’ and this may take a long time. C25€ 1) Adjacent channels cannot be used simultaneously
only inthe same cell. Thus;; = 2 foralli andb;; =

If the procedure is terminated when the walk of length— 1 2
is obtained, them” can be very easily inserted between 1 and 2 1 'f.z # J. The graph<y aanl r):?we beep shown
and, thus, a closure-possible walk is obtained ard 0. If W In Fig. 5(2) and (b), reiFL)ectlveI@ IS Harm|lt0n|an.
could not be inserted i.e., if it did not have edges joining it to ngs'p‘llf; = Dandry™ = ro = 1.75. Clearly,
1 and 2, then two edges could have been added, one joifiing rp =g here.aglbedg2e faisaHamilton
to 1 and the other to 2, and a closure-possible walk could hav
been obtained, giving = 2. This value ofp is small, partic-
ularly if W is large and, thus, we get a good approximation to
Pmin IN @ vVery short time.

If the graphG’ does not give a small value of fast with
the above method with a particular optimal solution, the graph

e cycle inG’.

Case 2) Assume adjacent channels cannot be used simulta-
neously in the same cell and also that cell seven
cannot use a channel if its adjacent channel is being
used in either cell 2, 4, or 6. Thus

G’ obtained from some other rational optimal solution may be 2, ifi=j,
tried. This often helps when there are multiple optimal solutions b or (i, j) € {(2,7), (4, 7), (6, 7),
(degeneracy). ij (7,2), (7, 4), (7, 6)},

We now present our results for systems with 3, 7, 19, 37 reg- .
ular hexagonal cells (refer to Figs. 1-4). We have assumed that 1, otherwise.
the cochannel reuse in the system is constrained by the max-
imum tolerable interference. (Any two calls in the system using Refer to Fig. 6(a) and (b) fo& and G’, respec-
the same channel simultaneously interfere with each other. The tively. G’ is not Hamiltonian. However, it becomes
interference diminishes with increase in distance between the Hamiltonian when edges are added betwe&nd
callers.) The assumed model of interference is as follows: andd, g2. Thus,pui, < 2 andrgtl = 0.8 = 1.4.

« interference produced in cell due to the usage of the Usingrgtt < rgt <ro, 14 <71 <1.75.bcd g2
same channel in cell equalsd(u, v)~*, whered(u, v) e f a g1 bis a Hamilton cycle in;’ with the added
is the center-to-center distance between aelsdv; edges.

« total interference produced in cell = interference  We will study two cases of adjacent channel use constraints.

produced by all other cells using the same channghe first prevents the use of adjacent channels in the same cell
= Yoec(u) d(u,v)~*, whereC(u) is the set of cells simultaneously but allows any other form of adjacent channel
use. All nondiagonal elements of the correspondihgnatrix
9 . . i . are 1 and the diagonal elements are 2. The second adjacent
A walk in a graph is a sequence of vertices such that the consecutive vertices . . .
in the sequence have an edge between them. A walk is closure-possible if@R@Nnel use constraint prevents the simultaneous use of adja-
first and the last vertices have an edge between them. cent channels in cells separated by a distande i.e.,b;; = 1
10This procedure traverses along the graph without visiting any vertex jff d(i, J) >1 andbij — 2 otherwise.

more thanm ; times as long as it can, and when it cannot it backtracks along . . . . .
the traced path, until it can proceed along some branch which has not yet beeV€ have also studied two different traffic patterns: Uniform

visited. traffic (UT) pattern and the Nonuniform traffic (NUT) pattern.
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TABLE IV the number of variables, constraints, and so on, in the linear

A COMPARISON OF THECOMPLEXITIES OF DEORA'S METHOD [2] AND OUR program used in [2] in one of the cases for the 37 cell system.
METHOD IN THE CASE WHERE ADJACENT CHANNEL USE IN THE SAME CELL

AND IN ADJACENT CELLS 1S PROHIBITED The numbers are even larger for the othgr cases for the 37 cell
Deora’s method[2] QOur method SyStem When the Intel’ference threshold IS h|gher
No. of | Cochannel Number of Number of The following observations may be made from the tabulated
cells Interference vars. constrs. vars | constrs data
Threshold ' AL A AL
3T oD m 3 3 n 1) We know thatry'~ < rg* < 7. Thus,rg~ is a good
71015 63 14| 1 8 approximation tog! if rg\L /rg = (1+p/ Y12, m;) ' isclose
1901 7368 3111 86 20 to 1 and is the same ag' if 7't /r; = 1. Thus, Table IlI
19 | 02 19097 832 | 249 20 indicates thatAZ | d imation ig! and oft
19 | 03 24131 1237 | 242 20 indicates that; ~ is a very good approximation tg' and often
19 | 0375 25125 1322 | 188 20 gives the exactg' in the first case, i.e., when adjacent channels
191 04 25244 1396 | 194 20 cannot be used simultaneously in the same cell only. Also the
{g 8'2 gﬁg iﬁé :% fg proximity of '~ /ry to 1 indicates thati' =~ r¢ in this case.
19 | 23 25467 1444 | 140 20 Table Il indicates_that thg co_mpu_tation of the exact valug;of _
as per [2] may be impossible in this case even for the system with
19 cells. We could compute the approximations for the system
TABLE V with 19 cells using no more than 0.4 s of system time on an
THE LOWER BOUNDS ON CAPACITIES OBTAINED USING OUR METHOD . . .
IN THE CASE WHERE ADJACENT CHANNEL USE IN THE SAME CELL |BM SPZ maChIne OUI’ COmputat'onS tOOk |ESS than 05 min Of
AND IN ADJACENT CELLS IS PROHIBITED system time on an IBM SP2 for the system with 37 cells.
No. of | Cochannel o /g gl g 2) Consider Table V, where we list the results for the case
cells | Imerforence | UT ) NUT | UT ] NUT | UT | NUT | where adjacent channels cannot be used simultaneously in the
3700 T0 0.75 075 same cell and in adjacent cells. The grapis completely dis-
7| 015 0.75 0.875 117 connected in this case apg,;, = vg . Thus,73'E /ro = (1 +
19 | 0.1 065 | 0.80 | 155 | 1.28 | 237 | 16 /ZM )= — 0.5. Thus, the value of&Z /r, does not
19 | 02 076 | 080 | 211 | 1.6 | 278 | 20 P/ 2j=1 M = Y.o. 1S, TIE O A
19 | 03 073 | 096 | 233 | 1.92 | 3.17 | 2.0 guarantee that our approximation is good. However, in this case
}g 8-275 g-g? }-8 ;gg 33 ;}; ;-8 the number of variables and constraints in the linear program
19 | 0s 090 | 10 |28 |20 1317120 used in [2] are not that large and we couk_j comptgte_as per
19 | 06 095 | 1.0 | 3.0 20 | 317 | 20 [2] for systems with 3, 7, 19 cells. Comparisorvgf- with 73
19123 0 |10 [317 |20 [317]20 indicates that;'* is reasonably close tg' in most of the cases

but there is a significant difference in some of the cases. Better

In the former the same amount of traffic is offered in each ceffeuristics than those we have proposed here may be needed
i.e.,p; = 1/N, for all i. In the latter the maximum traffic is " j‘LJCh cases. The results |nd|cat4e that(in this casero =
offered in the central cell, one half of that in the next ring of”0 ) IS Significantly higher than+". Our approximation is
cells, one third of that in the next ring, and so on. Nonuniforfiiuch €asier to compute in this case even for the system with

traffic pattern has been studied for the system with 19 cells onfy? Cells. For the SXStem with 37 cells again the computation of
For this system the exact value of§' as per [2] may be impossible.

1/24, ie{l,...,4,7,8 12, 13,16, ..., 19}, V. APPROXIMATION TO T4 (r)

pi =< 1/16, i€ {5 6,9, 11, 14, 15}, and We now show how to approximatg, (). The approach is
1/8 i=10 similar to the that of the previous section. We start with the op-
’ o timal solution of LP1 instead of LP2 here. The details follow.

i i i O o
This model of nonuniform traffic pattern may be representati\ﬁ Let LP1 have a rational optimal solutiofy, ..., Xy;).

! I -
of cities where more traffic is offered in the center and less | O\g IetOG and GO be the grapgs induced bX[ thel-tuple
the outskirts. Vs X5y Xyp). Clearly Xi7 = my /3252, my, for

The results for the first case have been tabulated in Tableéléhlzogre%'s, Let G' become Hamiltonian upon the addition

and Il and for the second case in Tables IV and V. The numbe, M
of vertices inG andG’ have not been listed for the second cas frp edge§ Th?TA(T) = T(.T)./(l +p/ ZJ=1 m;)
. . . Proof: This proof is similar to that of Theorem 2. Let
because the grapi’ is completely disconnected in all these% M
AL . here ben channels. Then = ¢(p+ > _._, m;) + t for some
cases and we get,;, and, hencerg* from the special case Y, g=1""1 )
2). The number of vertices if andG’ are anyway the same as! @ndg where0 < < (p +3_;_, m;) andq is a nonnegative
the corresponding ones in Table 1. mtt_eger (Euclidean d|V|§|on theo_rem). By T_heortje\}”n 1 we have
In Table II, we have not listed the number of verticescof 2 fixed channel allocation algorithm allocating _;_, m;ai;
and G’ for the 19-cell system with nonuniform traffic pattern
for interference thresholg 0.4 because an optimal solution of 'From the Hamilton cycle;s'” = (14 p/ YL m;)~'ro = 4.5. Using
LP2 in each of these cases is same as that for an interfereﬁ@éﬁcﬁ thaté* increases with increase in allowable interference threshold and
, Iso the same ™. = 5.04 for a lower value of the interference threshold, namely 0.375, we
threshold of 0'375' Thus, the grapisandG’ are also '~ get a better lower bound. We have similarly improved the lower bound for the
as that for an interference threshold of 0.375. We have listgtlcell system with an interference thresholddf.
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channels to théth cell for1 < i < N. Using the ATP and For
the independence of offered traffic it can be shown that this

ON VEHICULAR TECHNOLOGY, VOL. 51, NO. 5, SEPTEMBER 2002

' . . ) o . r/14, ifie{a,b, ...,
fixed channel allocation algorithm carries a traffic intensity of / _ L fa: b, f}
min(p;r, Zﬁil mjai;/(p + Z]A/il m;)) in the asymptotic r<7/4, Xi(r)=qr/7, ifi=g
limit (n — o0) in cell 7 (refer to the Appendix for the proof). 0, otherwise.
Let the total traffic intensity carried by this algorithm in thq:
system be€l'rc 4 (7). Then
u T/4<r<7/3
N z_: mja;; r/14, ifie{a, b, ..., f}
TFCA(T) = Z min Pty = Vi XZ(T) = 1-— 37”/77 if 2 = g,
i=1 p+ Y my 0, otherwise.
! For
M M . .
N El m; El mja;; >3 Xl(r)—{l/& ifie{a,b,..., f}
1= . 1= - ’ 7 - .
= Z o R P Ty 0, otherwise.
=tp+ = m; J; m; Throughout, in this example, we shall assume that Q. We
shall consider two different adjacent channel use constraints as
M in Example 111.1.
Z m; N / . .
X0 Case 1) Adjacent channels cannot be used simultaneously
Z min { pi; z_: g i onlyinthe same cell. We have found in Example IV.2
p+ Zlmj =l B thatry! = 7't = 7/4.S0Tar(r) = r,forr < 7/4.
! Leth = LCM(r/ 14— 6r). For7/4 <r < 7/3
M
sinceX? = m,; m h— ifi b, ...
J ’ /; r min(r, 14 — 6r)’ i€fa b . f}
- 14 — 6r
M =Y ifi=
> my min(r, 14 — 6r)’ =9
Jj=1 .
i T(r). 0, otherwise.
p+ 2 m; whereh = LCM(r, 14 — 6r).

7j=1

Thus,Ta(r) > Trea(r) > (S1L, my/(p+ 05, m)))T(r)

= T4 (r), where the last equality defin@, 7, (r) m
Again, the lower bound is the tightestjif= p.,;n. The tech-

niques for findingp.,in in the special cases and the approx-

imation to p.,;, in the general case discussed in Section IV

apply here. Certain other observations simplify the computa-

tion of T4(r), €.9.,Ta(r) = r for r < rgtL. (This follows

from the definition ofrg' and the fact that{'X < rgt.) Since

Tar(r) = T(r)/(1 + p/ ¥}L, mj) < Ta(r) < T(r), one
can be assured that the approximation is doing welisfsmall
compared t(Z;.‘il m;. In general, itis much easier to compute
Tar(r) thanTs(r) as per [2].

We would also like to point out that sincgs(r) = r,
r < rgtl < rdt,if rgtl is known then we can sty (r)
for r < gL,

Example V.1: Consider the system with seven cells described
in Example III.1 (Fig. 2). The same model for interference is
assumed as in Section Il The cochannel reuse constraint and,
hence, the maximal independent sets of the hypergraph mod-
eling the cochannel reuse constraint remains the same as in Ex-
ample Ill.1. LP1 gives the following solution:

f

/r'/
14 3r/7,
2,

if r <7/4
if 7/4<r<7/3
if > 7/3.

T(r)

Sincem; # 0,1 € {a, b, ..., g}, G is given by
Fig. 5(a). G’ is always Hamiltonian in this range.
Letm;, = z,i € {a,b,..., f} andm, = y.

VCI; = {ah as, ..., Qg, b17 b2, ey bx, ...fl, fg,
oy fas g15 g2ty ooy gy arby - fraghy oo foees
azb, - -+ frarisacycleinG’. Nowinserty; between

a1 andby, go betweenb; andcy, and so on in the
above cycle till they; s are exhausted. Thyes will be
exhausted before one reacthes, ) sincel < y <
2z for 7/4 < r < 7/3. This gives a Hamilton cycle
in G’ sinceg; andp;,p € {a, b, ..., f}1<i<y
andl < j < z are connected by an edgeit. Thus,
Pmin = 0. Tar(r) = T(r)for7/4 < r < 7/3.
Forr > 7/3, m; = 1,¢ € {a,b,..., f} and
m; = 0 otherwise G andG’ are given by Fig. 5(c).
G’ is clearly Hamiltonian. The Hamilton cycle is
abedefa. Thus,Tar(r) = T(r), r > 7/4. Thus,
Tar(r) =T(r) forall r. HenceTs(r) = T(r) for
all r. Refer to Fig. 7 forT'ar,(r), Ta(r) andT'(r).
Recall that we had observed earlier thaf is very
close tory and, hence, te;' for the same adjacent
channel use constraint as in this case and we find that
Tar(r) = Ta(r) = T(r) for the system with seven
cells. Hence, we expect th@t, 1, (r) will track T(r)
and hencel'4(r) very closely even for larger sys-
tems with the same adjacent channel use constraint
as in this example.
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Approximated Carried Traffic Intensity

' T T T T Forr > 7/3, m;s are given by those in case 1 for
2F the same range of G andG’ are given by Fig. 5(c).
4 G’ is clearly Hamiltonianabcde f a is the Hamilton
15 | 4 cycle. ThusT'sr,(r) = T(r). Summarizing
T, if r<7/5
'r I 7/5, if 7/5 < <7/4
Tap(r) =4 7+3r .
- A) — A , if7/4 7/3
03 ® — g <<t/
. . . ‘ ‘ ( 2, if > 7/3.
0 05 1 5 2 25 3

Offere;i Traffic Intensity (Erlangs/channel)
VI. APPROXIMATION IN THE PRESENCE OFARBITRARY

Fig.7. The curve (A) give®.1 . (r), T(r) andT(r) for Example I1.3.1. The RESTRICTIONS ONSIMULTANEOUS USE OF

curve (A) also gived'(r) for Example 11.3.2, while the curve (B) givés, 1, (1) ANY TWO DIEFERENT CHANNELS
for Example 11.3.21°4(r) is between curves (A) and (B) in this case.

Case 2) Again assume that adjacent channels cannot be

Simultaneous use of any two channels can produce interfer-
ence even if they are not the same or adjacent. In most cases,

e filter responses are good enough so that the interference
cannot use a channel if its adjacent channel is beif oduged by nonadjacent chaqngls Is negligibl_e. Nevertheless,
used in either cell 2, 4, or 6. We know from Examplec‘ metimes there may be restrictions on the simultaneous use
IV.2 that 7L = 7/5. Thus, Tar(r) = r for r < of nonadjacent channels also. As mentioned before [2] formu-

simultaneously in the same cell and also that cell

. X a
7/5. For7/5 < r < 7/4, lates linear programs for the cqm_putatlonht(r) _andro in
the presence of any such restriction but these linear programs
1, ifie{a, b, ..., f} are intractable because of the large number of variables and con-
mi=142 ifi=g straints even for systems of moderate size, e.g., a system with 19
’ _ cellsi2 We can extend our approximations to this general case
0, otherwise.

under certain special circumstances.

Refer to Fig. 6(a) and (b) fa& andG’ respectively. The cochannel reuse constraints are modeled by a hypergraph
G' is not Hamiltonian. However, it becomes Hamil-2s before. The channels are numbetreg, ..., n. The distance

tonian when edges are added between the paftétween channels numbered; is defined to begi — j|. The

of vertices(g1, b) and (d, ¢2). ThuS, pmin < 2 numbering should be such that this distance is proportional to
andTar(r) = 0.8T(r), for7/5 < r < 7/4. the actual separation between them in the radio spectrum. The
bedg2efaglb is a Hamilton cycle inG’ with adjacent channel use constraints are modeled by a mafrix
the added edges. However, we can get a betwhichis defined slightly differently from the corresponding def-
upper bound by observing thdt,(7/5) = 7/5 initionin Section |.B isaN x N matrix, such that if cells, j
andTar(r) > Tar(r'),if r > r’. Using this can use adjacent channels simultaneously, thes 1. Other-
Tar(r) = 7/5 for7/5 < r < 7/4. For wise,b,; is the minimum distance between the channels that can
7/4 < r < 7/3, m;s are given by those in casebe used simultaneously in celland;. Note that if the restric-
1forthe samerange of G is given by Fig. 6(a)V is  tion is only on adjacent channel use, as assumed in Sections IV
alsothe same asthatgivenin case 1forthe same ramgel 1Il, then the elements d® are 1 and 2. (This agrees with
of . G’ is not, in general, Hamiltonian. Howevéf  the definition of B in Section 1V.)

can be made Hamiltonian by adding edges betweenA graph D is induced by amV/-tuple (X1, Xo, ..., Xa)

the pairs of vertices(gi, b1), (g2, d1), (g3, b2), as follows. Let(X;, X5, ..., X,/) be anyM-tuple, such that

(94, d2), and so on until thg;s are exhausted. (All X is a nonnegative rational number aid is the number

gis will be exhausted because< y < 2z here, of maximal independent sets of the hypergraph modeling
wherez, y are as defined in case 1 for the samghe cochannel reuse constraints of the cellular system. Let

range of r.) bicidigaer frargibacadagaeafanags X, | X, ..., X, be the ones with nonzero values. Let
b{Cldl.(]2l€lflC_ll.(]21,—1.'" barca:dzez.fmambl IS a Xk1 : sz et ka = Mg, @ My © o0 0 Mpy, where
Hamilton cycle inG” with the added edges. Thus,,,, ., = ., are relatively prime positive integers. If
for 7/4 < <7/3, pmin <y and X; = 0, m; = 0. Form a weighted grap® = (Vp, Ep)

T(T) as follows:Vp = }{Uk117 coor Ukimyyy s Ukaly oo o0 Ukomyy s + v o
Tl ¥ Vky 1y -« Vkymy,, S

X m
i€{a,...,q}
T(r) .
= 237 (using the values of andm;s) 12f there are restrictions on the simultaneous use ohannels§} C  x
T X --- X 7, ctimes. Refer to the relevant discussion in Section | of the work in

_ 74 3r [using the value OT(T)] [2]. |7| is large and(?| is very large making the number of variables extremely
T 14— 3r : large.
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vk, on the Hamilton cycle. Because of the triangle inequality,
the weight of both the paths on the Hamilton cycle is greater
than or equal tow(vy,, vg,) @and this weight is greater than
or equal tob;;, the minimum separation between the channels
which can be simultaneously used in these cells. Thus, this
Fig. 8. The weighted) graph for a system with three cells. The number@llocation satisfies the adjacent channel use constraints. This is
against the edges indicate their weights. the advertised fixed channel allocation. ]

The following Corollary follows from Theorem 4.

Corollary 2: Let a fixed channel allocation that allocates
channels to théth cell be desired. Leb be the graph induced

There is an edge between any two verticeandv; (even if
v; = v;). The weight of an edge between the vertiogs and
Vk,b is

W(Vkas ko) = | 0AX bijain,azn, by an optimal solutionoof the ILRXY, XP, ..., X7)). Let
I<i, jSN q = g.c.d. of nonzerdX;’s if there exists at least one nonzero
= 19512?%1:1 bij. W and letg = 0 otherwise. Let there be a Hamilton cycle in
1<G<N,ajp, =1 D of weight L. w,. is the weight of an edge which has the

Example VI.1: Consider the system with three cells shown imaximum weight amongst all edges in the Hamilton cyclé If
Fig. 1. Let the minimum separation between channels used stisfies the triangle inequalityy L — wy,.x + 1) channels are
multaneously inthe same cellbe 3, i.e., cell 1 cannot use chanrgifficient to achieve the required fixed channel allocation.

1, 2 or 1, 3 simultaneously and so on. Adjacent cells cannot usélheorem 5: Let D be the graph induced by a rational optimal
adjacent channels simultaneously. Any other cells can use adjalution of LP2( X, X9, ..., X{)). Let there be a Hamilton
cent channels simultaneously. Let there be no cochannel reusgjigle in D of weight L. If D satisfies the triangle inequality,
the system, i.e., there are 3maximalindependentsétsceach 4 > r Zj‘il m;/L.

consisting of a single celb = {1}, b = {2}, ¢ = {3} Proof:” The proof follows from Theorem 4, Lemmas 1 and
3 2 1 2 along the same lines as the proof of Theorem 1 follows from
B=12 3 2]|. Theorem 1, and Lemmas 1 and 2. u
1 2 3 Remarks: g Z?il m;/L < r§t < ro. The lower bound

. . - is tightest if L = Lun, Where Ly, is the weight of the
Th\?vgraphD '??#Ced b3|/t(2’ 2]; 2”) is shown in Fig. 8. minimum weight Hamilton cycle in the grapP induced by
We present the resulisas follows. - (¥0 X9 XG), arational optimal solution of LP2.
someM-tuple .(X be Xar) I?etD sgtis?y the trianale Y" Theorem 6: Let D be the graphinduced by arational optimal
b Voo S M 9€ solution of LP1(XP, X9, ..., X§)). Let there be a Hamilton

1 1tv1i3 1 1 I 4
I}eqtjglg' L%tetTﬁ éev\f)eeig?]tHoe;rglrI]toend;:Zc\llshli?h or:‘avg/etlhgg ﬂma)gycle in D of weight L. If D satisfies the triangle inequality,

(r) > T(r) Y02, m;/L

imum weight amongst all edges in the Hamilton cycle. LetAl(") = T(r) 25—y m /L.

(L — wmax + 1)T channels be available. Then At4here exists a ;he pr(l)(of;)”owsk?e samg Ige; as thgt ;f The/ffem ?h
fixed channel allocation algorithm that allocates. ;| m;a;; emarks: T'(r) 3,y m;/I. < Ta(r) < T(r). Again the
channels to theth cell, for1 < i < N, for any nonnegative 'OWer bound is the tightest it. = Lynin, Where Ly, is the

integerq. weight of the minimum weight Hamilton cycle in the graph
Proof: This proof is along the same lines as that dhduced by X{, X ..., X7}), arational optimal solution of
Theorem 1. Again if = 0 the lemma is trivially true LP1.Note thatif the restriction is only on adjacent channel use,
(Wmax > 1). Letg > 0. Let the Hamilton cycle of weight as assumed in Sections IV and IlI, then the elements afe 1
L be iy, Uiy jrs - v s Vig v jo_rs Vigjor U = ZM1 m; and 2. (This agrees with the definition Bfin Section IV.) This
9 1,710 » Yty —1, —19 Y2 . j= .

Without loss of generalitys(vi, . jy_1» Vigjo) = Wmax- If the makesD always satisfy the triangle inequality in this case. Also
algorithm given in the proof of Theorem 1 is slightly modifiedthe lower bounds wittt...;;, given by Theorems 5 and 6 turn out

it allocatesgm; channels to thgth maximal independent setto be the same as those given by Theorems 2 and 3, respectively,
satisfying the cochannel reuse and the adjacent channel Wi# pwin in these cases. The same observation applies for the
constraints, usinggL — wmax + 1) channels. The following results of Corollaries 1 and 2.

modification is required in step 4): The problem of finding the minimum weight Hamilton cycle
b= b+w(vi,, . Viigi1ymoaviasymear)- @ = (@+1) mod in D is the same as the traveling salesman problem which is
U. Go to step 2). NP-complete. However iD satisfies the triangle inequality,

Clearly, this allocation satisfies the cochannel reuse coffrere are some polynomial time algorithms which will produce,
straints. Let celi get channek; and cellj get channeks. Let  jthin known bounds, an approximation to the traveling
channel:; be allocated to theth maximal independent set andsalesman problem [9]. Thus, this technique is useful, whenever
channelk, be allocated to théth maximal independent set. ) satisfies the triangle inequality, to get an estimatelpfind
Thus, celli is in the sth maximal independent set and cglis 7, (r), more so because the exact values of these quantities
in thetth maximal independent set. Note tiiat — k| is equal  gre intractable even for systems of reasonably small size. The
to the total weight of at least one of the paths betwegrand  generalization for the case in whidh does not satisfy triangle

Bup(oy, vs) < w(or, v5) + w(vs, v3) inequality is complicated. This is a topic for future research.

The weight of a Hamilton cycle in a weighted graph is the sum of the VW& Wwould like to mention that the resultsinthis section present
weights of the edges in the cycle. our preliminary research in this area. Nevertheless, these results
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indicate promising directions for extending the approximationghm, each cell behaves as a one cell system with offered
toward the general case of arbitrary restrictions for simultanedoesad p,rn and qZ?il mja;; channels. Thus, the carried

use of any two channels. We hope that this research will stimgagfic intensity in theith cell is C(p;rn, g Z?il mjaij)/m.
late further interest in the arbitrary generalizations. M M -
ye If 3752 mjai; = 0, Clpirn, ¢3°52, mjaij)/n = 0,

. M B
VII. CONCLUSION AND SUMMARY for eachn. Thus, lim, .o C(pirn, ¢} 252, mjai)/n =

. M M
. . . . 0 = T . Qg . ). Let
We now summarize the contributions of this paper. There are,, min(pir, 325 m]ffjé,(p + Z_:J—l ;)
various performance bounds for a cellular system which afej=1 miai]{[> 0. The_np’im/” DT andhmn—mj(\?/”) =
useful from the theoretical as well as from the network oper&/(p + >_;—; m;) since 0 < &t < (p + >3-, my)

tors’ point of view. The computation of the exact values of theg#d p, m;, a;;, M are fixed constants independent of

performance bounds in the presence of cochannel reuse &ds, lim,—oo(qY 12, mjai;/n) = S35 mjai/(p +

adjacent channel use constraints is difﬁqult or rather impossi%%‘i1 m;) > 0. Thus,lim,, ... C(pirn, q ZjM:1 mjai;)/n =
even for systems of reasonably small size. We have develo%(lam(m" ZM m;ai;/(p+ Ez_u m;)) by Lemma 1 -
approximations to these performance bounds in the presence ' = <=1 "7 g=17" '

of cochannel reuse and adjacent channel use constraints which
are computationally much simpler. These approximations track REFERENCES
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