44 research outputs found

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Design and Convergence Analysis of an IIC-based BICM-ID Receiver for FBMC-QAM Systems

    Get PDF

    Multicarrier Waveform Harmonization and Complexity Analysis for an Efficient 5G Air Interface Implementation

    Get PDF
    [EN] The coexistence of multiple air interface variants in the upcoming fifth generation (5G) wireless technology remains a matter of ongoing discussion. This paper focuses on the physical layer of the 5G air interface and provides a harmonization solution for the joint implementation of several multicarrier waveform candidates. Waveforms based either on cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) or on filter bank multicarrier (FBMC) are first presented through a harmonized system model. Complexity comparisons among five different waveforms are provided. Then, the complexity of a proposed configurable hardware implementation setup for waveform transmission and reception is evaluated. As a result, the harmonized transmitter and receiver exhibit 25¿40% and 15¿25% less complexity in floating-point operations, respectively, in comparison to two standalone implementations of the most complex waveform instances of the CP-OFDM and FBMC families. This highlights the similarities between both families and illustrates the component reuse advantages associated with the proposed harmonized solution.This work was performed in the framework of the H2020 Project METIS-II with reference 671680, which is partly funded by the European Union. The authors would like to acknowledge the contributions of their colleagues in METIS-II. This work was also supported in part by the Ministerio de Economia y Competitividad, under Grant TEC2014-60258-C2-1-R.Garcia-Roger, D.; Roger Varea, S.; Flores De Valgas, J.; Monserrat, JF. (2017). Multicarrier Waveform Harmonization and Complexity Analysis for an Efficient 5G Air Interface Implementation. Wireless Communications and Mobile Computing. 2017:1-11. https://doi.org/10.1155/2017/9765614S111201

    Waveform Advancements and Synchronization Techniques for Generalized Frequency Division Multiplexing

    Get PDF
    To enable a new level of connectivity among machines as well as between people and machines, future wireless applications will demand higher requirements on data rates, response time, and reliability from the communication system. This will lead to a different system design, comprising a wide range of deployment scenarios. One important aspect is the evolution of physical layer (PHY), specifically the waveform modulation. The novel generalized frequency division multiplexing (GFDM) technique is a prominent proposal for a flexible block filtered multicarrier modulation. This thesis introduces an advanced GFDM concept that enables the emulation of other prominent waveform candidates in scenarios where they perform best. Hence, a unique modulation framework is presented that is capable of addressing a wide range of scenarios and to upgrade the PHY for 5G networks. In particular, for a subset of system parameters of the modulation framework, the problem of symbol time offset (STO) and carrier frequency offset (CFO) estimation is investigated and synchronization approaches, which can operate in burst and continuous transmissions, are designed. The first part of this work presents the modulation principles of prominent 5G candidate waveforms and then focuses on the GFDM basic and advanced attributes. The GFDM concept is extended towards the use of OQAM, introducing the novel frequency-shift OQAM-GFDM, and a new low complexity model based on signal processing carried out in the time domain. A new prototype filter proposal highlights the benefits obtained in terms of a reduced out-of-band (OOB) radiation and more attractive hardware implementation cost. With proper parameterization of the advanced GFDM, the achieved gains are applicable to other filtered OFDM waveforms. In the second part, a search approach for estimating STO and CFO in GFDM is evaluated. A self-interference metric is proposed to quantify the effective SNR penalty caused by the residual time and frequency misalignment or intrinsic inter-symbol interference (ISI) and inter-carrier interference (ICI) for arbitrary pulse shape design in GFDM. In particular, the ICI can be used as a non-data aided approach for frequency estimation. Then, GFDM training sequences, defined either as an isolated preamble or embedded as a midamble or pseudo-circular pre/post-amble, are designed. Simulations show better OOB emission and good estimation results, either comparable or superior, to state-of-the-art OFDM system in wireless channels

    Prototyping FBMC/OQAM for 5G mobile communications proof of concept

    Get PDF
    [ANGLÈS] Nowadays, the number of wireless devices connected to the internet is rowing quite fast. However, the available spectrum will remain the same. Consequently, the next generation of mobile communications (5G) is driven by more spectral efficient waveforms. There are a number of candidate waveforms for 5G. One of them is the Filter Bank Multi-Carrier (FBMC) with Offset Quadrature Amplitude Modulation (OQAM) which is a variant of the current Orthogonal Frequency Division Multiplex (OFDM). The FBMC/OQAM is not only suitable for providing higher rates but also for having a better spectral efficiency than OFDM. In other words, in FBMC/OQAM the adjacent channel interference is reduced and consequently more users can be using the spectrum simultaneously. This project constitutes an experience of prototyping FBMC/OQAM for the FPGA based platform miniBEE. Which does not only provides the hardware platform but also a useful set of tools for Software Defined Radio (SDR) development

    The Alamouti Scheme with CDMA-OFDM/OQAM

    Get PDF
    This paper deals with the combination of OFDM/OQAM with the Alamouti scheme. After a brief presentation of the OFDM/OQAM modulation scheme, we introduce the fact that the well-known Alamouti decoding scheme cannot be simply applied to this modulation. Indeed, the Alamouti coding scheme requires a complex orthogonality property; whereas OFDM/OQAM only provides real orthogonality. However, as we have recently shown, under some conditions, a transmission scheme combining CDMA and OFDM/OQAM can satisfy the complex orthogonality condition. Adding a CDMA component can thus be seen as a solution to apply the Alamouti scheme in combination with OFDM/OQAM. However, our analysis shows that the CDMA-OFDM/OQAM combination has to be built taking into account particular features of the transmission channel. Our simulation results illustrate the 2×1 Alamouti coding scheme for which CDMA-OFDM/OQAM and CP-OFDM are compared in two different scenarios: (i) CDMA is performed in the frequency domain, (ii) CDMA is performed in time domain

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond
    corecore