1,151 research outputs found

    INTELLIGENTE TRANSPORT SYSTEMEN ITS EN VERKEERSVEILIGHEID

    Get PDF
    This report discusses Intelligent Transport Systems (ITS). This generic term is used for a broad range of information-, control- and electronic technology that can be integrated in the road infrastructure and the vehicles themselves, saving lives, time and money bymonitoring and managing traffic flows, reducing conges-tion, avoiding accidents, etc. Because this report was written in the scope of the Policy Research Centre Mobility & Public Works, track Traffic Safety, it focuses on ITS systems from the traffic safety point of view. Within the whole range of ITS systems, two categories can be distinguished: autonomous and cooperative systems. Autonomous systems are all forms of ITS which operate by itself, and do not depend on the cooperation with other vehicles or supporting infrastructure. Example applications are blind spot detection using radar, electronic stability control, dynamic traffic management using variable road signs, emergency call, etc. Cooperative systems are ITS systems based on communication and cooperation, both between vehicles as between vehicles and infrastructure. Example applications are alerting vehicles approaching a traffic jam, exchanging data regarding hazardous road conditions, extended electronic brake light, etc. In some cases, autonomous systems can evolve to autonomous cooperative systems. ISA (Intelligent Speed Adaptation) is an example of this: the dynamic aspect as well as communication with infrastructure (eg Traffic lights, Variable Message Sign (VMS)...) can provide additional road safety. This is the clear link between the two parts of this report. The many ITS applications are an indicator of the high expectations from the government, the academic world and the industry regarding the possibilities made possible by both categories of ITS systems. Therefore, the comprehensive discussion of both of them is the core of this report. The first part of the report covering the autonomous systems treats two aspects: 1. Overview of European projects related to mobility and in particular to road safety 2. Overview for guidelines for the evaluation of ITS projects. Out of the wide range of diverse (autonomous) ITS applications a selection is made; this selection is focused on E Safety Forum and PreVENT. Especially the PreVent research project is interesting because ITS-applications have led to a number of concrete demonstration vehicles that showed - in protected and unprotected surroundings- that these ITS-applications are already technically useful or could be developed into useful products. The component “guidelines for the evaluation of ITS projects” outlines that the government has to have specific evaluation tools if the government has the ambition of using ITS-applications for road safety. Two projects -guidelines for the evaluation of ITS projects- are examined; a third evaluation method is only mentioned because this description shows that a specific targeting of the government can be desirable : 1. TRACE describes the guidelines for the evaluation of ITS projects which are useful for the evaluation of specific ITS-applications. 2. FITS contains Finnish guidelines for the evaluation of ITS project; FIS is an adaptation of methods used for evaluation of transport projects. 3. The third evaluation method for the evaluation of ITS projects is developed in an ongoing European research project, eImpact. eImpact is important because, a specific consultation of stake holders shows that the social importance of some techniques is underestimated. These preliminary results show that an appropriate guiding role for the government could be important. In the second part of this document the cooperative systems are discussed in depth. These systems enable a large number of applications with an important social relevance, both on the level of the environment, mobility and traffic safety. Cooperative systems make it possible to warn drivers in time to avoid collisions (e.g. when approaching the tail of a traffic jam, or when a ghost driver is detected). Hazardous road conditions can be automatically communicated to other drivers (e.g. after the detection of black ice or an oil trail by the ESP). Navigation systems can receive detailed real-time up-dates about the current traffic situation and can take this into account when calculating their routes. When a traffic distortion occurs, traffic centers can immediately take action and can actively influence the way that the traffic will be diverted. Drivers can be notified well in advance about approaching emergency vehicles, and can be directed to yield way in a uniform manner. This is just a small selection from the large number of applications that are made possible because of cooperative ITS systems, but it is very obvious that these systems can make a significant positive contribution to traffic safety. In literature it is estimated that the decrease of accidents with injuries of fatalities will be between 20% and 50% . It is not suprising that ITS systems receive a lot of attention for the moment. On an international level, a number of standards are being established regarding this topic. The International Telecommunications Uniont (ITU), Institute for Electrical and Electronics Engineers (IEEE), International Organization for Standardization (ISO), Association of Radio Industries and Business (ARIB) and European committee for standardization (CEN) are currently defining standards that describe different aspects of ITS systems. One of the names that is mostly mentioned in literature is the ISO TC204/WG16 Communications Architecture for Land Mobile environment (CALM) standard. It describes a framework that enables transparent (both for the application and the user) continuous communication through different communication media. Besides the innumerable standardization activities, there is a great number of active research projects. On European level, the most important are the i2010 Intelligent Car Initiative, the eSafety Forum, and the COMeSafety, the CVIS, the SAFESPOT, the COOPERS and the SEVECOM project. The i2010 Intelligent Car Initiative is an European initiative with the goal to halve the number of traffic casualties by 2010. The eSafety Forum is an initiative of the European Commission, industry and other stakeholders and targets the acceleration of development and deployment of safety-related ITS systems. The COMeSafety project supports the eSafety Forum on the field of vehicle-to-vehicle and vehicle-to-infrastructure communication. In the CVIS project, attention is given to both technical and non-technical issues, with the main goal to develop the first free and open reference implementation of the CALM architecture. The SAFEST project investigates which data is important for safety applications, and with which algorithmsthis data can be extracted from vehicles and infrastructure. The COOPERS project mainly targets communication between vehicles and dedicated roadside infrastructure. Finally, the SEVECOM project researches security and privacy issues. Besides the European projects, research is also conducted in the United States of America (CICAS and VII projects) and in Japan (AHSRA, VICS, Smartway, internetITS). Besides standardization bodies and governmental organizations, also the industry has a considerable interest in ITS systems. In the scope of their ITS activities, a number of companies are united in national and international organizations. On an international level, the best known names are the Car 2 Car Communication Consortium, and Ertico. The C2C CC unites the large European car manufacturers, and focuses on the development of an open standard for vehicle-to-vehicle and vehicle-to-infrastructure communications based on the already well established IEEE 802.11 WLAN standard. Ertico is an European multi-sector, public/private partnership with the intended purpose of the development and introduction of ITS systems. On a national level, FlandersDrive and The Telematics Cluster / ITS Belgium are the best known organizations. Despite the worldwide activities regarding (cooperative) ITS systems, there still is no consensus about the wireless technology to be used in such systems. This can be put down to the fact that a large number of suitable technologies exist or are under development. Each technology has its specific advantages and disadvantages, but no single technology is the ideal solution for every ITS application. However, the different candidates can be classified in three distinct categories. The first group contains solutions for Dedicated Short Range Communication (DSRC), such as the WAVE technology. The second group is made up of several cellular communication networks providing coverage over wide areas. Examples are GPRS (data communication using the GSM network), UMTS (faster then GPRS), WiMAX (even faster then UMTS) and MBWA (similar to WiMAX). The third group consists of digital data broadcast technologies such as RDS (via the current FM radio transmissions, slow), DAB and DMB (via current digital radio transmissions, quicker) and DVB-H (via future digital television transmissions for mobiledevices, quickest). The previous makes it clear that ITS systems are a hot topic right now, and they receive a lot of attention from the academic world, the standardization bodies and the industry. Therefore, it seems like that it is just a matter of time before ITS systems will find their way into the daily live. Due to the large number of suitable technologies for the implementation of cooperative ITS systems, it is very hard to define which role the government has to play in these developments, and which are the next steps to take. These issues were addressed in reports produced by the i2010 Intelligent Car Initiative and the CVIS project. Their state of the art overview revealed that until now, no country has successfully deployed a fully operational ITS system yet. Seven EU countries are the furthest and are already in the deployment phase: Sweden, Germany, the Netherlands, the United Kingdom, Finland, Spain and France. These countries are trailed by eight countries which are in the promotion phase: Denmark, Greece, Italy, Austria, Belgium,Norway, the Czech Republic and Poland. Finally, the last ten countries find themselves in the start-up phase: Estonia, Lithuania, Latvia, Slovenia, Slovakia, Hungary, Portugal, Switzerland, Ireland and Luxembourg. These European reports produced by the i2010 Intelligent Car Initiative and the CVIS project have defined a few policy recommendations which are very relevant for the Belgian and Flemish government. The most important recommendations for the Flemish government are: • Support awareness: research revealed that civilians consider ITS applications useful, but they are not really willing to pay for this technology. Therefore, it is important to convince the general public of the usefulness and the importance of ITS systems. • Fill the gaps: Belgium is situated in the promotion phase. This means that it should focus at identifying the missing stakeholders, and coordinating national and regional ITS activities. Here it is important that the research activities are coordinated in a national and international context to allow transfer of knowledge from one study to the next, as well as the results to be comparable. • Develop a vision: in the scope of ITS systems policies have to be defined regarding a large number of issues. For instance there is the question if ITS users should be educated, meaning that the use of ITS systems should be the subject of the drivers license exam. How will the regulations be for the technical inspection of vehicles equipped with ITS technology? Will ITS systems be deployed on a voluntary base, or will they e.g. be obliged in every new car? Will the services be offered by private companies, by the public authorities, or by a combination of them? Which technology will be used to implement ITS systems? These are just a few of the many questions where the government will have to develop a point of view for. • Policy coordination: ITS systems are a policy subject on an international, national and regional level. It is very important that these policy organizations can collaborate in a coordinated manner. • Iterative approach to policy development: developing policies for this complex matter is not a simple task. This asks for an iterative approach, where policy decisions are continuously refined and adjusted

    成層圏飛翔体通信における無線通信路及びその性能に関する研究

    Get PDF
    制度:新 ; 文部省報告番号:甲2383号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2007/3/15 ; 早大学位記番号:新447

    Navigation and guidance requirements for commercial VTOL operations

    Get PDF
    The NASA Langley Research Center (LaRC) has undertaken a research program to develop the navigation, guidance, control, and flight management technology base needed by Government and industry in establishing systems design concepts and operating procedures for VTOL short-haul transportation systems in the 1980s time period. The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation of operating systems and piloting techniques associated with VTOL operations under all-weather conditions from downtown vertiports; the definition of terminal air traffic and airspace requirements; and the development of avionics including navigation, guidance, controls, and displays for automated takeoff, cruise, and landing operations. The program includes requirements analyses, design studies, systems development, ground simulation, and flight validation efforts

    Improving Vehicular ad hoc Network Protocols to Support Safety Applications in Realistic Scenarios

    Full text link
    La convergencia de las telecomunicaciones, la informática, la tecnología inalámbrica y los sistemas de transporte, va a facilitar que nuestras carreteras y autopistas nos sirvan tanto como plataforma de transporte, como de comunicaciones. Estos cambios van a revolucionar completamente cómo y cuándo vamos a acceder a determinados servicios, comunicarnos, viajar, entretenernos, y navegar, en un futuro muy cercano. Las redes vehiculares ad hoc (vehicular ad hoc networks VANETs) son redes de comunicación inalámbricas que no requieren de ningún tipo de infraestructura, y que permiten la comunicación y conducción cooperativa entre los vehículos en la carretera. Los vehículos actúan como nodos de comunicación y transmisores, formando redes dinámicas junto a otros vehículos cercanos en entornos urbanos y autopistas. Las características especiales de las redes vehiculares favorecen el desarrollo de servicios y aplicaciones atractivas y desafiantes. En esta tesis nos centramos en las aplicaciones relacionadas con la seguridad. Específicamente, desarrollamos y evaluamos un novedoso protocol que mejora la seguridad en las carreteras. Nuestra propuesta combina el uso de información de la localización de los vehículos y las características del mapa del escenario, para mejorar la diseminación de los mensajes de alerta. En las aplicaciones de seguridad para redes vehiculares, nuestra propuesta permite reducir el problema de las tormentas de difusión, mientras que se mantiene una alta efectividad en la diseminación de los mensajes hacia los vehículos cercanos. Debido a que desplegar y evaluar redes VANET supone un gran coste y una tarea dura, la metodología basada en la simulación se muestra como una metodología alternativa a la implementación real. A diferencia de otros trabajos previos, con el fin de evaluar nuestra propuesta en un entorno realista, en nuestras simulaciones tenemos muy en cuenta tanto la movilidad de los vehículos, como la transmisión de radio en entornos urbanos, especialmente cuando los edificios interfieren en la propagación de la señal de radio. Con este propósito, desarrollamos herramientas para la simulación de VANETs más precisas y realistas, mejorando tanto la modelización de la propagación de radio, como la movilidad de los vehículos, obteniendo una solución que permite integrar mapas reales en el entorno de simulación. Finalmente, evaluamos las prestaciones de nuestro protocolo propuesto haciendo uso de nuestra plataforma de simulación mejorada, evidenciando la importancia del uso de un entorno de simulación adecuado para conseguir resultados más realistas y poder obtener conclusiones más significativas.Martínez Domínguez, FJ. (2010). Improving Vehicular ad hoc Network Protocols to Support Safety Applications in Realistic Scenarios [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/9195Palanci

    The applications of satellites to communications, navigation and surveillance for aircraft operating over the contiguous United States. Volume 1 - Technical report

    Get PDF
    Satellite applications to aircraft communications, navigation, and surveillance over US including synthesized satellite network and aircraft equipment for air traffic contro

    先進ITSのための中継アシスト車車間通信技術の研究

    Get PDF
    Wireless vehicular communications for advanced Intelligent Transport Systems (ITS) have the potential to support safety driving, enhance the efficiency of transportation and play an important role in the future automated driving system. The vehicle-to-vehicle(V2V), vehicle-to-infrastructure (V2I) and vehicle-to-pedestrian (V2P) communications in the advanced ITS enable safety support applications that can predict potential traffic accidents, warn drivers and, in some cases, directly control vehicles to prevent collisions. Such applications require highly reliable broadcast communications. However, the reliability of wireless communication in vehicular environments suffers from fast fading due to multipath propagation, shadowing , and distance-dependent path loss. In addition, hidden terminal (HT) problem is a great concern in CSMA/CA based wireless networks due to its distributed access nature. The packet delivery rate (PDR) of V2V communications rapidly decreases especially under non-line-of-sight (NLOS) environments such as intersections. A vehicle-roadside-vehicle relay-assisted V2V communication scheme has been proposed to improve the reliability of V2V communications. In the scheme, packets sent from a vehicle can be directly received by other vehicles or relayed by a relay station (RS) to the other vehicles. Then path diversity effect can be obtained that improves PDR of V2V communications. However, when the V2V traffic becomes higher, the number of packets that RS has to retransmit becomes larger. This leads to a large number of packets waiting in the transmit queue of RS and packet congestion happens. If the normal relay scheme is employed, thepackets may be dropped due to the limited queue size. Then the gain obtained by relay-assist may be decreased. A packet payload combining relay (PCRL) scheme is proposed to deal with the congestion issue. In the scheme, multiple V2V packet payloads are combined into a single packet and the resultant packet is rebroadcasted once the channel becomes idle. Analytical and simulated results show that the proposed PCRL scheme can remarkably alleviate the congestion issue and improve the relaying performance.The PCRL scheme, however, still suffers from HT problem. In the intersection environments where LOS propagation between VSs is often unavailable, the packet collision frequently happens due to HTs when RS receives V2V packets. If RS cannot receive V2V packets, the advantage of relay-assist becomes smaller. Therefore an improved PCRL scheme with sectorized receiving RS (SR-V2VC/PCRL) is proposed to mitigate the effect of HT problem as well as alleviating the congestion issue. An analytical model is then developed to analyze the performance of SR-V2VC/PCRL scheme considering a single intersection scenario. Numerical results show that the reliability of V2V communications is significantly improved by the proposed scheme. Furthermore, performance of the SR-V2VC/PCRL scheme is discussed for an urban environment with multiple intersections. In such environment, RSs at intersections should cooperate with each other to obtain the largest diversity gain. After theoretically analyzing the performance of the sectorized receiving scheme under multiple interference sources, large-scale simulations are conducted to evaluate the performance of SR-V2VC/PCRL scheme. It is shown that the SR-V2VC/PCRL remarkably improves the reliability of V2V communications. SR-V2VC/PCRL scheme even performs better when employing higher data rate modulation for V2V and relay transmissions.The aforementioned proposals can remarkably improve the reliability of V2V communications. In order to improve the performance of relay-assist ed scheme when traffic load becomes even higher, a network coding(NC)based PCRL scheme (PCRL-NC) with a payload sorting and selection algorithm is proposed to adapt multiple node environment in an intersection. It is shown that the scheme can benefit from NC in alleviating the congestion issue while effectively mitigating the disadvantage of NC. As a result, the introduction of PCRL-NC to the proposed SR-V2VC/PCRL scheme can remarkably improve the reliability of V2V communications under various traffic environments. 近年,先進的なITS (Intelligent Transport Systems: 高度道路交通システム)のための通信技術への期待が高まっている.これには,車両がその位置や速度などの情報を交換する車車間通信,路側機が車両へ信号状態や道路規制などの情報を提供する路車間通信,車両と歩行者の間で情報の交換を行う歩車間通信などがある.これらにブロードキャスト通信を活用することで,各車両では潜在的な交通事故を予測して運転手に警告し,さらには制動を行うことにより事故を未然に回避できる.さらにこの情報を利用して車両を自動制御することで,交通流を意識した協調型自動走行を実現することが可能になるものと期待されている. 車車間通信を用いて安全運転支援およびより高度な自動走行システムを実現するためには,高信頼,かつ低遅延の無線通信技術が要求される.しかしながら道路上の移動通信では,多重波伝搬によるフェージングや建物によるシャドウイング,さらに自律分散通信システム特有の問題である隠れ端末問題による干渉などの影響で,通信の信頼度が低下する.特に事故発生確率の高い交差点ではその影響が顕著である. 本論文では車車間通信の品質を改善することを目的として,交差点等に中継局(Relay Station; RS)を設置し,車車間通信パケットを転送中継する中継アシスト車車間通信に関する諸技術が提案されている.中継局は交差点付近の信号機などに併設され,高いアンテナ高を有することと,他の車載局に対して見通し内(Line-of-Sight; LOS)伝搬環境にあるため,中継アシストシステムはシャドウイングやフェージングの問題の軽減に有効であることが既に示されている.しかしながら,トラヒックが増加するにつれて中継局での輻輳問題が発生し,中継効果が低下するという課題があった.そこで本論文では中継によるエアトラヒックの増加を抑える方法として,中継送信時に複数のパケットペイロードをまとめて1つのパケットに再構成して送信するペイロード合成中継法を提案する.本提案法により中継局での輻輳問題が解決でき,中継効果が向上することを解析結果から明らかにした. 交差点における中継アシスト車車間通信のもう1つの課題として,中継局受信時に隠れ端末問題の影響で受信成功率が低下することがある.この課題に対しては中継局受信時にセクタアンテナを用いることが有効であることが示されているが,本研究ではペイロード合成中継法にセクタ化受信を組合せたセクタ化受信ペイロード合成中継法を提案し,その効果を理論解析およびシミュレーションにより示した.セクタ化受信によって中継局での受信成功率を改善すると中継すべきパケット数が増加するが,提案法ではペイロード合成によって中継パケットの送信効率を高めることができるので,結果として中継効果を高めて平均パケット伝送成功率を大幅に向上できることを明らかにした. さらに,複数交差点からなる市街地環境におけるセクタ化受信ペイロード合成中継法の効果を,大規模ネットワークシミュレーションを用いてブロードキャスト配信成功率として総合的に評価した.他の車両および離れた中継局など干渉源が複数存在する市街地環境においても,提案法を用いることによって隠れ端末問題の影響が有効に回避できること,隣接する中継局間で互いに棲分け中継をすることで非常に高い中継効果が得られることを明らかにした. 以上のように提案法は中継アシスト車車間通信の特性を大幅に改善できるが,通信トラヒックがさらに高い環境に対処するため,中継パケットのエアトラヒックをさらに圧縮できる方法として,複数ノード環境に適したネットワークコーディング法を用いたペイロード合成中継法を提案する.本提案法では,車車間ペイロードのソーティングと合成対象パケットの選択アルゴリズムによって複数ノード環境でのネットワークコーディングの弱点を抑えつつ,輻輳問題に有効に対処できることを示した.結果として本提案法をセクタ化受信と組合せることで,幅広い通信トラヒック条件においてブロードキャスト配信成功率が大きく向上することを明らかにした.電気通信大学201

    Geometry-based Radio Channel Characterization and Modeling: Parameterization, Implementation and Validation

    Get PDF
    The propagation channel determines the fundamental basis of wireless communications, as well as the actual performance of practical systems. Therefore, having good channel models is a prerequisite for developing the next generation wireless systems. This thesis first investigates one of the main channel model building blocks, namely clusters. To understand the concept of clusters and channel characterization precisely, a measurement based ray launching tool has been implemented (Paper I). Clusters and their physical interpretation are studied by using the implemented ray launching tool (Paper II). Also, this thesis studies the COST 2100 channel model, which is a geometry-based channel model using the concept of clusters. A complete parameter set for the outdoor sub-urban scenario is extracted and validated for the COST 2100 channel model (Paper III). This thesis offers valuable insights on multi-link channel modeling, where it will be widely used in the next generation wireless systems (Paper IV and Paper V). In addition, positioning and localization by using the phase information of multi-path components, which are estimated and tracked from the radio channels, are investigated in this thesis (Paper VI). Clusters are extensively used in geometry-based stochastic channel models, such as the COST 2100 and WINNER II channel models. In order to gain a better understanding of the properties of clusters, thus the characteristics of wireless channels, a measurement based ray launching tool has been implemented for outdoor scenarios in Paper I. With this ray launching tool, we visualize the most likely propagation paths together with the measured channel and a detail floor plan of the measured environment. The measurement based ray launching tool offers valuable insights of the interacting physical scatterers of the propagation paths and provides a good interpretation of propagation paths. It shows significant advantages for further channel analysis and modeling, e.g., multi-link channel modeling. \par The properties of clusters depend on how clusters are identified. Generally speaking, there are two kinds of clusters: parameter based clusters are characterized with the parameters of the associated multi-path components; physical clusters are determined based on the interacting physical scatterers of the multi-path components. It is still an open issue on how the physical clusters behave compared to the parameter based clusters and therefore we analyze this in more detail in Paper II. In addition, based on the concept of physical clusters, we extract modeling parameters for the COST 2100 channel model with sub-urban and urban micro-cell measurements. Further, we validate these parameters with the current COST 2100 channel model MATLAB implementation. The COST 2100 channel model is one of the best candidates for the next generation wireless systems. Researchers have made efforts to extract the parameters in an indoor scenario, but the parameterization of outdoor scenarios is missing. Paper III fills this blank, where, first, cluster parameters and cluster time-variant properties are obtained from the 300~MHz measurements by using a joint clustering and tracking algorithm. Parameterization of the COST 2100 channel model for single-link outdoor MIMO communication at 300~MHz is conducted in Paper III. In addition, validation of the channel model is performed for the considered scenario by comparing simulated and measured delay spreads, spatial correlations, singular value distributions and antenna correlations. Channel modeling for multi-link MIMO systems plays an important role for the developing of the next generation wireless systems. In general, it is essential to capture the correlations between multi-link as well as their correlation statistics. In Paper IV, correlation between large-scale parameters for a macro cell scenario at 2.6 GHz has been analyzed. It has been found that the parameters of different links can be correlated even if the base stations are far away from each other. When both base stations were in the same direction compared to the movement, the large-scale parameters of the different links had a tendency to be positively correlated, but slightly negatively correlated when the base stations were located in different directions compared to the movement of the mobile terminal. Paper IV focuses more on multi-site investigations, and paper V gives valuable insights for multi-user scenarios. In the COST 2100 channel model, common clusters are proposed for multi-link channel modeling. Therefore, shared scatterers among the different links are investigated in paper V, which reflects the physical existence of common clusters. We observe that, as the MS separation distance is increasing, the number of common clusters is decreasing and the cross-correlation between multiple links is decreasing as well. Multi-link MIMO simulations are also performed using the COST 2100 channel model and the parameters of the extracted common clusters are detailed in paper V. It has been demonstrated that the common clusters can represent multi-link properties well with respect to inter-link correlation and sum rate capacity. Positioning has attracted a lot of attention both in the industry and academia during the past decades. In Paper VI, positioning with accuracy down to centimeters has been demonstrated, where the phase information of multi-path components from the measured channels is used. First of all, an extended Kalman filter is implemented to process the channel data, and the phases of a number of MPCs are tracked. The tracked phases are converted into relative distance measures. Position estimates are obtained with a method based on so called structure-of-motion. In Paper VI, circular movements have been successfully tracked with a root-mean-square error around 4 cm when using a bandwidth of 40 MHz. It has been demonstrated that phase based positioning is a promising technique for positioning with accuracy down to centimeters when using a standard cellular bandwidth. In summary, this thesis has made efforts for the implementation of the COST 2100 channel model, including providing model parameters and validating such parameters, investigating multi-link channel properties, and suggesting implementations of the channel model. The thesis also has made contributions to the tools and algorithms that can be used for general channel characterizations, i.e., clustering algorithm, ray launching tool, EKF algorithm. In addition, this thesis work is the first to propose a practical positioning method by utilizing the distance estimated from the phases of the tracked multi-path components and showed a preliminary and promising result

    5G and beyond networks

    Get PDF
    This chapter investigates the Network Layer aspects that will characterize the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond, including some promising emerging services as Unmanned Aerial Vehicles or Base Stations, and V2X communications

    Wideband mobile propagation channels: Modelling measurements and characterisation for microcellular environments

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore