6 research outputs found

    Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs

    Get PDF
    Data envelopment analysis (DEA) is a well-known non-parametric technique primarily used to estimate radial efficiency under a set of mild assumptions regarding the production possibility set and the production function. The technical efficiency measure can be complemented with a consistent radial metrics for cost, revenue and profit efficiency in DEA, but only for the setting with known input and output prices. In many real applications of performance measurement, such as the evaluation of utilities, banks and supply chain operations, the input and/or output data are often stochastic and linked to exogenous random variables. It is known from standard results in stochastic programming that rankings of stochastic functions are biased if expected values are used for key parameters. In this paper, we propose economic efficiency measures for stochastic data with known input and output prices. We transform the stochastic economic efficiency models into a deterministic equivalent non-linear form that can be simplified to a deterministic programming with quadratic constraints. An application for a cost minimizing planning problem of a state government in the US is presented to illustrate the applicability of the proposed framework

    Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkData envelopment analysis (DEA) is a well-known non-parametric technique primarily used to estimate radial efficiency under a set of mild assumptions regarding the production possibility set and the production function. The technical efficiency measure can be complemented with a consistent radial metrics for cost, revenue and profit efficiency in DEA, but only for the setting with known input and output prices. In many real applications of performance measurement, such as the evaluation of utilities, banks and supply chain operations, the input and/or output data are often stochastic and linked to exogenous random variables. It is known from standard results in stochastic programming that rankings of stochastic functions are biased if expected values are used for key parameters. In this paper, we propose economic efficiency measures for stochastic data with known input and output prices. We transform the stochastic economic efficiency models into a deterministic equivalent non-linear form that can be simplified to a deterministic programming with quadratic constraints. An application for a cost minimizing planning problem of a state government in the US is presented to illustrate the applicability of the proposed framework

    Chance-constrained DEA models with random fuzzy inputs and outputs

    No full text
    Data Envelopment Analysis (DEA) is a widely used mathematical programming technique for comparing the inputs and outputs of a set of homogenous Decision Making Units (DMUs) by evaluating their relative efficiency. The conventional DEA methods assume deterministic and precise values for the input and output observations. However, the observed values of the input and output data in real-world problems can potentially be both random and fuzzy in nature. We introduce Random Fuzzy (Ra-Fu) variables in DEA where randomness and vagueness coexist in the same problem. In this paper, we propose three DEA models for measuring the radial efficiency of DMUs when the input and output data are Ra-Fu variables with Poisson, uniform and normal distributions. We then extend the formulation of the possibility–probability and the necessity–probability DEA models with Ra-Fu parameters for a production possibility set where the Ra-Fu inputs and outputs have normal distributions with fuzzy means and variances. We finally propose the general possibility–probability and necessity–probability DEA models with fuzzy thresholds. A set of numerical examples and a case study are presented to demonstrate the efficacy of the procedures and algorithms

    Interval and fuzzy optimization. Applications to data envelopment analysis

    Get PDF
    Enhancing concern in the efficiency assessment of a set of peer entities termed Decision Making Units (DMUs) in many fields from industry to healthcare has led to the development of efficiency assessment models and tools. Data Envelopment Analysis (DEA) is one of the most important methodologies to measure efficiency assessment through the comparison of a group of DMUs. It permits the use of multiple inputs/outputs without any functional form. It is vastly applied to production theory in Economics and benchmarking in Operations Research. In conventional DEA models, the observed inputs and outputs possess precise and realvalued data. However, in the real world, some problems consider imprecise and integer data. For example, the number of defect-free lamps, the fleet size, the number of hospital beds or the number of staff can be represented in some cases as imprecise and integer data. This thesis considers several novel approaches for measuring the efficiency assessment of DMUs where the inputs and outputs are interval and fuzzy data. First, an axiomatic derivation of the fuzzy production possibility set is presented and a fuzzy enhanced Russell graph measure is formulated using a fuzzy arithmetic approach. The proposed approach uses polygonal fuzzy sets and LU-fuzzy partial orders and provides crisp efficiency measures (and associated efficiency ranking) as well as fuzzy efficient targets. The second approach is a new integer interval DEA, with the extension of the corresponding arithmetic and LU-partial orders to integer intervals. Also, a new fuzzy integer DEA approach for efficiency assessment is presented. The proposed approach considers a hybrid scenario involving trapezoidal fuzzy integer numbers and trapezoidal fuzzy numbers. Fuzzy integer arithmetic and partial orders are introduced. Then, using appropriate axioms, a fuzzy integer DEA technology can be derived. Finally, an inverse DEA based on the non-radial slacks-based model in the presence of uncertainty, employing both integer and continuous interval data is presented

    Robust optimization in data envelopment analysis: extended theory and applications.

    Get PDF
    Performance evaluation of decision-making units (DMUs) via the data envelopment analysis (DEA) is confronted with multi-conflicting objectives, complex alternatives and significant uncertainties. Visualizing the risk of uncertainties in the data used in the evaluation process is crucial to understanding the need for cutting edge solution techniques to organizational decisions. A greater management concern is to have techniques and practical models that can evaluate their operations and make decisions that are not only optimal but also consistent with the changing environment. Motivated by the myriad need to mitigate the risk of uncertainties in performance evaluations, this thesis focuses on finding robust and flexible evaluation strategies to the ranking and classification of DMUs. It studies performance measurement with the DEA tool and addresses the uncertainties in data via the robust optimization technique. The thesis develops new models in robust data envelopment analysis with applications to management science, which are pursued in four research thrust. In the first thrust, a robust counterpart optimization with nonnegative decision variables is proposed which is then used to formulate new budget of uncertainty-based robust DEA models. The proposed model is shown to save the computational cost for robust optimization solutions to operations research problems involving only positive decision variables. The second research thrust studies the duality relations of models within the worst-case and best-case approach in the input \u2013 output orientation framework. A key contribution is the design of a classification scheme that utilizes the conservativeness and the risk preference of the decision maker. In the third thrust, a new robust DEA model based on ellipsoidal uncertainty sets is proposed which is further extended to the additive model and compared with imprecise additive models. The final thrust study the modelling techniques including goal programming, robust optimization and data envelopment to a transportation problem where the concern is on the efficiency of the transport network, uncertainties in the demand and supply of goods and a compromising solution to multiple conflicting objectives of the decision maker. Several numerical examples and real-world applications are made to explore and demonstrate the applicability of the developed models and their essence to management decisions. Applications such as the robust evaluation of banking efficiency in Europe and in particular Germany and Italy are made. Considering the proposed models and their applications, efficiency analysis explored in this research will correspond to the practical framework of industrial and organizational decision making and will further advance the course of robust management decisions

    Robust optimization in data envelopment analysis: extended theory and applications.

    Get PDF
    Performance evaluation of decision-making units (DMUs) via the data envelopment analysis (DEA) is confronted with multi-conflicting objectives, complex alternatives and significant uncertainties. Visualizing the risk of uncertainties in the data used in the evaluation process is crucial to understanding the need for cutting edge solution techniques to organizational decisions. A greater management concern is to have techniques and practical models that can evaluate their operations and make decisions that are not only optimal but also consistent with the changing environment. Motivated by the myriad need to mitigate the risk of uncertainties in performance evaluations, this thesis focuses on finding robust and flexible evaluation strategies to the ranking and classification of DMUs. It studies performance measurement with the DEA tool and addresses the uncertainties in data via the robust optimization technique. The thesis develops new models in robust data envelopment analysis with applications to management science, which are pursued in four research thrust. In the first thrust, a robust counterpart optimization with nonnegative decision variables is proposed which is then used to formulate new budget of uncertainty-based robust DEA models. The proposed model is shown to save the computational cost for robust optimization solutions to operations research problems involving only positive decision variables. The second research thrust studies the duality relations of models within the worst-case and best-case approach in the input – output orientation framework. A key contribution is the design of a classification scheme that utilizes the conservativeness and the risk preference of the decision maker. In the third thrust, a new robust DEA model based on ellipsoidal uncertainty sets is proposed which is further extended to the additive model and compared with imprecise additive models. The final thrust study the modelling techniques including goal programming, robust optimization and data envelopment to a transportation problem where the concern is on the efficiency of the transport network, uncertainties in the demand and supply of goods and a compromising solution to multiple conflicting objectives of the decision maker. Several numerical examples and real-world applications are made to explore and demonstrate the applicability of the developed models and their essence to management decisions. Applications such as the robust evaluation of banking efficiency in Europe and in particular Germany and Italy are made. Considering the proposed models and their applications, efficiency analysis explored in this research will correspond to the practical framework of industrial and organizational decision making and will further advance the course of robust management decisions
    corecore