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Abstract 

Data envelopment analysis (DEA) is a well-known non-parametric technique primarily used 

to estimate radial efficiency under a set of mild assumptions regarding the production 

possibility set and the production function. The technical efficiency measure can be 

complemented with a consistent radial metrics for cost, revenue and profit efficiency in DEA, 

but only for the setting with known input and output prices. In many real applications of 

performance measurement, such as the evaluation of utilities, banks and supply chain 

operations, the input and/or output data are often stochastic and linked to exogenous random 

variables. It is known from standard results in stochastic programming that rankings of 

stochastic functions are biased if expected values are used for key parameters. In this paper, 

we propose economic efficiency measures for stochastic data with known input and output 

prices. We transform the stochastic economic efficiency models into a deterministic 

equivalent non-linear form that can be simplified to a deterministic programming with 

quadratic constraints. An application for a cost minimizing planning problem of a state 

government in the US is presented to illustrate the applicability of the proposed framework. 

 

Keywords: Data envelopment analysis; Weight restrictions; random input-output; Cost 

efficiency; Quadratic programming. 
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1. Introduction  

Data envelopment analysis (DEA) is recognized as a powerful analytical tool that is widely 

used in measuring the relative efficiency of a group of decision making units (DMUs) with 

multiple inputs and multiple outputs. The first DEA model has been presented by Charnes et 

al. (1978) in the case of constant returns to scale (CRS) and later extended by Banker et al. 

(1984) in the case of variable returns to scale (VRS) for evaluating the technical efficiency of 

a set of comparable DMUs. A substantial number of DEA studies have been rapidly 

developed since 1978 and the evolution of the DEA scientific area can be found in Cook and 

Seiford (2009), Emrouznejad and De Witte (2010) and Liu et al. (2013).  

In the conventional input-oriented DEA models
1
, the efficiency of the DMU to be evaluated 

is measured by making a comparison of its observed input vector with a projected point on an 

input-isoquant.  That is, DEA emphasizes technical efficiency measurement by utilizing the 

radial measures, which are gauged relative to the input-isoquant by seeking the maximal equi-

proportional reduction in all the inputs of the DMU that would be feasible for a given output 

vector.   However, the radial input projection corresponding to the input-isoquant may not be 

located on the efficient (Pareto-Koopmans) input-frontier.  Hence, after obtaining the radial 

projection, solving an additional optimization problem is needed.  More precisely, in the 

radial-based DEA, it is common to use a two-phase procedure where the radial efficiency is 

estimated in the first phase and the input slack maximization problem is solved in the second 

phase.   An alternative procedure is maximization of input slack by directly solving slack-

based measures or input-oriented additive model.   In either way, a projection point based on 

only input slacks (input surpluses) may not be a cost-minimizing vector, which is very 

important from the economic theoretic and managerial viewpoints.  Cost minimization refers 

to the firm’s decisions on the choice of input quantities given its output level and input prices.   

Consider DMUs that minimize costs but do not maximize profits.  Such DMUs include, not 

only non-profit organizations and cooperative firms, but also firms which for example 

struggle under economic depression and hence the output expansion is not possible.   Under 

cost minimization, management chooses efficient input combinations but beyond that no 

particular criterion is implemented for choosing a specific output combination (Luenberger 

1995).  As is well-known, in competitive input and output markets profit maximization 

implies cost minimization but not vice versa.   

According to microeconomic theory, marginal, average and total cost functions are major 

                                                 
1
 We can also consider output oriented models analogously.   
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tools for production analysis, implying that cost minimization is one of the basic norms in 

economic analysis.  However, in real world situations, there exist inefficient firms due to 

excess use of their input-mix, in which case it is necessary to provide them with optimal input 

bundles.   

For managers of economic entities too, taking cost performance into account is of great 

necessity because cost minimizing behaviour is at the core of managerial objectives.   

However, achieving such an objective may not be easy when they face uncertainty in data for 

which case the standard cost efficiency (CE) analysis cannot provide a practical solution.  

This necessitates implementing the stochastic nature in CE analysis.    

A variety of production-based DEA models of stochastic programming have been 

developed for performance evaluation of DMUs in the various fields with different types of 

data such as deterministic, imprecise, interval and fuzzy data.  Charnes and Cooper’s (1959) 

stochastic programming
2
 is one of the most commonly used methods. In order to enhance the 

practicality, Charnes and Cooper (1963) further presented a chance-constrained programming 

(CCP) model, in which a stochastic linear programming problem was transformed into a 

deterministic non-linear programming problem, and it was first utilized by Land et al. (1993) 

to deal with data stochasticity in production-based DEA. 

 Cooper et al. (2000a, b, 2004) further extended the CCP model into a congestion 

framework in DEA.  While we recognise the usefulness of CCP, there does not exist any cost-

based chance-constrained DEA model, which has the good theoretical foundation as well as 

good practicality. Therefore, we propose a cost-based DEA model that directly deals with 

stochastic input and output data for the purpose of increasing the realism of the CE analysis. 

To the best of our knowledge, the present study is the first one to develop a CE-DEA model 

using the stochastic input and output data along the line of chance-constrained programming 

introduced by Charnes and Cooper (1963) and Cooper et al. (1996).  Our extension adapts 

Cooper et al.’s (2002a, b, 2004) production-based approach.  

To show the applicability of our model we provide an illustrative example using the data 

provided by Ray et al. (2008).  The dataset consists of US state-level data collected from the 

Economic Census.  Although the original data values are nonstochastic and single-valued, we 

show how to use them for a planning purpose by introducing stochasticity in the data.   

                                                 

2 Stochastic programming has been nowadays extended into numerous disciplines including 

operations research, mathematics and probability. 
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The remainder of this paper is organized as follows: In Section 2, we present a brief 

literature survey.  In Section 3 we provide a review of the principle DEA models. Section 4 

presents an extension of CE with stochastic input and output data. In Section 5, we develop a 

slack-based version of CE in the presence of stochastic data. Section 6 is dedicated to 

illustrate the application of the proposed approach using a case study for a cost minimizing 

planning problem of a state government in the US. Section 7 finally concludes our work and 

points out some directions of further work. 

2. Selective literature 

Some observations can be located on the efficient frontier in the deterministic DEA, while 

some stochastic inputs and outputs are by definition allowed to be around the efficient frontier 

can be allowed with the aim of conceptualizing the stochastic nature of the data into the 

model to adapt the measurement and specification errors.  Stochastic input and output 

variations in DEA have been studied within various input-output DEA contexts by many 

scholars (see e.g., Olesen and Petersen, 2015, Olesen and Petersen, 1995; Huang and Li, 

1996; Cooper et al., 1996, 1998, 2002, 2004; Land et al., 1993; Morita and Seiford, 1999; 

Sueyoshi, 2000; Talluri et al., 2006; Olesen, 2006; Bruni et al., 2009; Wu and Lee, 2010; 

Tsionas and Papadakis, 2010; Udhayakumar et al., 2011).  

Land et al. (1993) were the first to extend the chance-constrained programming (CCP) 

DEA proposed by Charnes and Cooper (1959), in order to compute efficiency in the presence 

of uncertainty in which inputs are assumed to be deterministic and outputs are jointly 

normally distributed. The CCP DEA is a non-parametric approach to evaluate the efficiency 

while stochastic frontier analysis (SFA) is an alternative parametric approach. The parametric 

approach puts emphasis on the production or cost function along with studying the 

characteristics of the functions under the presumption that all DMUs operate under rational 

behavior. In the literature, relatively few papers on efficiency analysis have analytically 

compared parametric and non-parametric approaches (e.g., Bjurek et al. 1990; Cooper and 

Tone 1997). Bjurek et al. (1990) argued that there is no significant difference between 

deterministic DEA and a loglinear parametric model. Cooper and Tone (1997) discussed DEA 

and stochastic cost functions, identifying some particular problems of bias in SFA 

approaches.  

   To measure the efficiency, several researchers have further extended the concept of the 

stochastic production function. Coelli (1996) presented a method to estimate the maximum 

likelihood estimator of SFA developed by Battese and Coelli (1992). In SFA, the inefficiency 
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effect can be used as how far the DMU operates below the frontier production function. Coelli 

(1996) indicated that the inefficiency effects can be referred to as the technical inefficiency. 

   Olesen and Petersen (1995) developed a chance constrained DEA model by imposing 

chance constraints on the multiplier model. Cooper et al. (1996) presented a joint chance 

constraints programming model in the multiplier DEA model. They used “satisficing 

concepts” presented by Simon (1957) to develop the potential applications of DEA models to 

situations where 100% efficiency can be replaced by aspired levels of performance. Huang 

and Li (1996) proposed a dominance structure to remove the anomalous (Pareto) efficient 

DMUs from the DEA envelopment side where input and output data are characterized by 

random variations. Cooper et al. (1998) introduced the “alpha-stochastic efficiency” and 

“alpha-stochastic efficiency dominance” of a DMU in stochastic DEA using the joint chance 

constraints where random disturbances are applied in the inputs and outputs on the 

assumption that the statistical distributions of data are known. Morita and Seiford (1999) 

studied robustness of the efficiency results when input and output data are subject to the 

stochastic measurement error. Sueyoshi (2000) put forward a stochastic DEA model to 

restructure strategy of a Japanese petroleum company, which is reformulated in the manner 

that ex ante information can be incorporated into the stochastic model. Cooper et al. (2002a) 

proposed a generalization of Cooper et al. (2002b)’s CCP model for identifying the technical 

efficiencies and inefficiencies. Cooper et al. (2004) extended congestion in DEA models 

based on CCP models. Talluri et al. (2006) applied chance constrained DEA model for vendor 

evaluation.  Olesen (2006) presented a comparison of two different models (Land et al., 1993; 

Olesen and Petersen, 1995), both designed to extend DEA to the case of stochastic inputs and 

outputs. Lahdelma and Salminen (2006) proposed the SMAA-D method by combining DEA 

and SMAA-2 (stochastic multicriteria acceptability analysis) presented in (Lahdelma et al. 

1998; Lahdelma and Salminen, 2001) which can be dealt with uncertain or imprecise data to 

provide stochastic efficiency measures. Bruni et al. (2009) proposed a stochastic DEA model 

based on the theory of joint probabilistic constraints to extend the concept of ‘‘Stochastic 

efficiency’’ to a measure called “alpha-stochastic efficiency”. Udhayakumar et al. (2011) 

exploited the genetic algorithm method to solve the chance constrained DEA model, which 

involves the concept of satisficing.  

   Tavana et al. (2012) developed three imprecise DEA models in the presence of probability-

possibility, probability-necessity and probability-credibility constraints where fuzziness and 

randomness simultaneously are allowed to exist in an efficiency evaluation problem. Tavana 
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et al. (2013) introduced random fuzzy variables in DEA with the coexistence of randomness 

and vagueness. In this respect, they proposed three DEA models for measuring the radial 

efficiency of DMUs when the input and output data are random fuzzy variables with Poisson, 

uniform and normal distributions. Tavana et al. (2014) proposed a chance-constrained DEA 

model with birandom input and output data as well as formulating a super-efficiency model 

with birandom constraints that was solved by means of an equivalent non-linear deterministic 

model.  

   Although many contributions in CE have been reported in the DEA literature (see, e.g., Färe 

et al., 1985; Schaffnit et al., 1997; Jahanshahloo et al., 2008; Thompson et al., 1996; Camanho 

and Dyson, 2008), only a few researchers have considered uncertainty in the CE context (see 

e.g., Kuosmanen and Post 2001, 2002, 2003; Camanho and Dyson 2005; Mostafaee and 

Saljooghi, 2010). Kuosmanen and Post (2001) developed a DEA-based method to determine 

the upper and lower bounds for overall economic efficiency and allocative efficiency with 

incomplete price data in the form of a convex polyhedral cone. Kuosmanen and Post (2003) 

corrected a technical error concerning the lower bound of Kuosmanen and Post (2001). 

Kuosmanen and Post (2002) discussed necessary and sufficient first-order stochastic 

dominance (FSD) efficiency conditions for economic efficiency with regarding the 

preferences of the decision-maker and the statistical distribution of the prices. Camanho and 

Dyson (2005) developed weight restrictions methods for estimating cost efficiency bounds in 

complex scenarios of input price uncertainty under the assumption that input prices are in the 

form of ranges. However, Camanho and Dyson’s (2005) model is not only computationally 

expensive but also may produce an infeasible solution (Mostafaee and Saljooghi, 2010. 

Amirteimoori et al (2006) proposed two DEA-based models to obtain the upper and lower 

bound of cost efficiency of each DMU with respect to the optimistic and pessimistic 

viewpoints, respectively. They then introduced a two-step procedure to improve the cost 

efficiency of DMUs. 

   Mostafaee and Saljooghi (2010) proposed a pair of two-level mathematical programming 

models to obtain the upper and lower bounds of the cost efficiency where the uncertain input 

prices are in the form of ranges. Bagherzadeh Valami (2009) provided an approach for 

generalizing the CE of DMUs when input prices are characterized by triangular fuzzy 

numbers. Fang and Li (2012) presented some counterexamples to show that the theorem of 

Mostafaee and Saljooghi (2010) on determination of the upper bound of CE is not correct in 

general and they then provided an alternative proof to clarify the reason. Fang and Li (2013) 
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studies the theoretical properties on the relationships and characteristics of the efficiency 

solutions between cone-ratio DEA models and CE models in situations of price uncertainty, 

where the upper and lower bounds of the input prices can be estimated for each DMU. They 

additionally developed a method and a lexicographic order algorithm based on the duality 

study to estimate the lower bounds of the CE measure. 

   The above literature shows the lack of much attention to the CE analysis under uncertainty 

due to the degrees of complexity while real-world problems often include uncertain data, 

particularly the cases with stochastic input and output data. As can be seen in the aforesaid 

literature, no study has been dealt with stochastic data in CE. In this study, we strive to fill 

this gap by extending a CE-DEA model when inputs and outputs are stochastic. By exploiting 

the chance-constrained approach (Cooper et al., 1996) and converting the stochastic model to 

deterministic programming with quadratic constrains, we decrease the degree of complicated 

calculus and handle the embedded non-linearity. 

 

3. Preliminaries 

   In this section, we first review the basic DEA models for measuring the technical efficiency, 

and we then present the non-parametric cost efficiency models. 

2.1 Technical efficiency 

   Suppose that there are n DMUs to be evaluated where each DMU produces s outputs using 

m inputs. Let 
 
and 

 
be the observed input 

and output vectors of DMUj (j=1,…,n). The production technology or production possibility 

set (PPS), cT , is defined, as cT  = {(x, y) | x can produce y}. 

Accordingly, we consider the following assumptions to construct production technology 

without determining any functional form: 

a) Free disposability: ( , ) , ,0 ( , )c cx y T x x y y x y T         . 

b) Convexity: cT  is convex. 

c) r returns to scale: ( , ) ( , ) , ( )c cx y T qx qy T q r     where 0( )crs  . 

   The production technology based on the observations and the assumptions (a-c) is expressed 

as follows:   

 
1 1

, : , , 0, 1,...,
n n

c j j j j j

j j

T x y y y x x j n  
 

 
     
 

    (1) 
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   We evaluate the technical efficiency of firm p, producing output 
rpy  using input 

ipx , by 

examining whether and to what extent it can reduce its inputs without decreasing the outputs 

(so-called the input-oriented model) or augment its outputs without increasing the inputs (so-

called the output-oriented model). Mathematically speaking, we measure the efficiency of 

DMUp under the assumption of constant returns to scale (CRS) using the following linear 

programming problems: 

Primal CCR model (input-oriented)  

1

1

min

. .

, 1,..., ,

,    1,..., ,

0, 1,..., .

p

n

j ij p ip

j

n

j rj rp

j

j

s t

x x i m

y y r s

j n



 









 

 

 





 
(2) 

Dual CCR model (input-oriented)  

1

1

1 1

max

. .

1,

0, 1,..., ,

, 0, 1,..., ; 1,..., .

s

p r rp
r

m

i ip
i

s m

r rj i ij
r i

r i

u y

s t

v x

u y v x j n

u v r s i m






 





  

  





 

 
(3) 

where 
ru ),,1( sr   and iv  ),,1( mi   in model (2) are the weights assigned to the r

th
 

output and i
th

 input, respectively. The primal and dual of programs are called envelopment and 

multiplier DEA models, respectively. The formulations (2) and (3) can be converted to the 

DEA models under the assumption of variable returns to scale (VRS) by adding the convexity 

constraint 
1

1
n

jj



  and a free variable, 0u , respectively. Notice that the objective function 

of models (2) and (3) represents the best relative efficiency and the DMUs with 1* p  (

* 1p  ), are called the technically input-efficient, and those units with 
* 1p   (

* 1p  ) are 

called technically input-inefficient.  

2.2 Cost efficiency  
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It is evident that technical efficiency alone does not necessarily imply cost minimization, 

whereas the opposite is true. To fully investigate the sources of inefficiency into its 

components of cost, allocative, scale and technical efficiency, we need to decompose the 

radial measures. In this section, we define the decomposition beginning from the most 

important; the radial cost efficiency measure. 

   Consider an empirically constructed PPS of (1) with n DMUs under the CRS assumption. 

Let 
ipw be the given price for the i

th
 input of DMUp. Then, the minimum cost for DMUp with 

 input prices is obtained by solving the following linear program (Färe et al. 1985): 

1

1

1

min

. .

, 1,..., ,

, 1,..., ,

0, 0, 1,..., ; 1,..., .

m

ip i

i

n

j rj rp

j

n

j ij i

j

j i

w x

s t

y y r s

x x i m

x j n i m







  

  

    







        (4) 

where 
j  and 

 
x

i
 are the decision variables. The second set of inequality constraints can be 

converted to equality constraints. The optimal solution of (4) yields *

ix  as an optimal level of 

input i for producing the current outputs at minimal cost. By the use of the objective function 

value of model (4), the cost efficiency of DMUp is obtained as CE =
1 1

m m

ip i ip ipi i
w x w x

    

where CE varies in [0, 1].  

CE evaluates the ability to produce current outputs at minimal cost by a firm and Farrell’s 

decomposition of CE consists of multiplication of three components as 

cost efficiency (CE) =technical efficiency (TE) × allocative efficiency (AE)  

 

where cost efficiency and technical efficiency are calculated by models (4) and (2). Allocative 

efficiency gauges to what extent the cost of the DMU can be scaled down when the selected 

inputs are most suitable for the input price ratio faced by the DMU in a given situation.   

   The market prices or managerial information enable us to determine bounds on ratio of pairs 

of weights. This is often referred to weight restrictions in DEA. Camanho and Dyson (2005) 

proposed a multiplier DEA-based model under weight restrictions to measure the CE of the 

DMUs in complex scenarios of price uncertainty as follows: 

 

ipw
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1

1

1 1

max

. .

1,

0, 1,..., ,

, , , 1,..., ,

0, 1,..., .

s

r rp
r

m

i ip
i

s m

r rj i ij
r i

kp

k g

gp

r

u y

s t

v x

u y v x j n

w
v v k g k g m

w

u r s





 



  

  

 





 

  

where 
 
v

k
 and 

 
v

g
 are the input weights of the cost efficiency, and 

 
w

kp
 and 

 
w

gp
are the input 

prices of DMUp, for any two inputs k and g used by DMU. Jahanshahloo et al. (2008) relaxed 

some constrains of Camanho and Dyson (2005)’s model and proposed the following model 

with lower computational complexity. 

1

1

1

1

0, 1,..., .

max

. .

, 1,..., ,

r

s

r rp

r

m

ip ijs

i
r rj m

r
ip ip

i

u r s

u y

s t

w x

u y j n

w x









 

 








 (5) 

   On the basis of Schaffnit et al. (1997) it can be shown that model (5) is equivalent with the 

CE measure calculated by Camanho and Dyson (2005). The dual of the above problem can be 

written as follows:  

1

1

1

1

min

. .

, 1,..., ,

0, 1,..., .

m

ij ijn

i
j m

j
ip ip

i

n

j rj rp

j

j

w x

w x

s t

y y r s

j n









 
 
 
 
 
 

  

  








 (6) 

By using a variable transformation 
1 1 1

n m m

p j ij ij ip ip

j i i

w x w x 
  

 
  

 
  

 

model (5) is converted to 

the following model: 



 

11 

 

 
1 1 1

1

min

. .

,

, 1,..., ,

0, 1,.., .

p

n m m

j ij ij p ip ip

j i i

n

j rj rp

j

j

s t

w x w x

y y r s

j n



 





  





 

 

  



 
(7) 

   Note that we take 
1 1 1

n m m

j ij ij p ip ip

j i i

w x w x 
  

    into account in model (7) instead of 

1 1 1

n m m

j ij ij p ip ip

j i i

w x w x 
  

   . Based on the production technology (1), the cost-based 

production technology set can be defined as  

 
1 1

, : , , 0, 1,...,
n n

C j j j j j

j j

T x y y y x x j n  
 

 
     
 

 
 

where 
1

.
m

j ip ij

i

x w x


  

   As a result, model (7) is the alternative version of the CE model (4) and its optimal value is 

the CE of 
pDMU .  

   Similarly, the revenue efficiency model in terms of the weight-restricted standard [output-

oriented] DEA model can be formulated as follows:   

1 1 1

1

max

. .

, 1,..., ,

, 1,..., ,

0, 1,..., .

p

n s s

j rp rj p rp rp

j r r

n

j ij ip

j

j

s t

y y r s

x x i m

j n



   





  



 

 

 

  



 (8) 

 

where 
rp  are the output prices. The procedure of obtaining model (8) represents in Appendix 

A. 

   Models (7) and (8) need the deterministic input and output data for each DMU although, in 

many real-world applications, the data often involve uncertainty. 

4. Cost efficiency with stochastic input-output data 

As discussed before, in measuring efficiency of the firms, the data may involve stochastic 

variations and stochastic programming is one of the main models to deal with uncertainty in 

many decision-making problems (Charnes and Cooper, 1959). In this section, we extend the 

stochastic version of models (7) and (8) to evaluate the cost and revenue efficiency of units 
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with weight restrictions. Let us assume that  1 ,...,
T m

j j mjX x x   and 

 1 ,...,
T s

j j sjY y y    are the random input and output vectors for DMUj, 1,...,j n , and 

each of them has a normal distribution. Let us also assume,  1 ,...,
T m

j j mjX x x   and 

 1 ,...,
T s

j j sjY y y    are the expected vectors of the inputs and outputs of 
 jX  and jY , 

respectively. Let  1 ,...,
T m

j j mjW w w    be the input prices of .  

When the stochastic input and output data are available the weight-restricted cost efficiency 

model (7) can be rewritten by the following stochastic programming:  

1 1

*

1

1

min

. .

1 ,

1 , 1,..., ,

0, 1,..., .

p

n m m

j ip ij ip ip

j i i

n

j rj rp

p

j

j

s t

Pr w x w x

Pr y y r s

j n



  

 





  



    
      

    

 
    

 







  



                                                                  (9) 

where Pr denotes “probability” and “~” presents the data as random variables with a normal 

distribution while  0,1  is a pre-defined scalar for identifying an allowable chance of 

failing to satisfy the constraints. In Theorem 1 we will specify the deterministic form of 

model (9) that can be solved by the General Algebraic Modeling System (GAMS) software as 

well as studying the connection of (9) with the earlier discussed model (7). 

Theorem 1: Consider the stochastic weight-restricted cost efficiency model (9). The 

corresponding deterministic equivalent of model (9) can be expressed as follows: 

jDMU
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 (10) 

 

where 
1  is the inverse of cumulative distribution function (CDF) and Var(.) and Cov(.,.) 

are the variance and covariance operators. 

Proof. See Appendix B.  

 

Lemma: If we assume that the outputs and inputs among different DMUs are independent, 

i.e.,  , 0ij ikCov x x   and  , 0rj rkCov y y  . This independence assumption in model (10) 

leads to the following model: 

 

 

 

     

     

1

1 1 1

1

1

2 2 2 2 2

1 1 1

2 2

1

min

. .

,

, 1,..., ,

2 ,

1 2 , 1,..., ,

, , 0, 1,...

p

n m m

j ip ij p ip ip

j i i

n

j rj r rp

j

n m m

j ip ij p p p ip ip

j i i

n

r j rj rp p

j

j r

s t

w x v w x

y u y r s

v w Var x w Var x

u Var y Var y r s

v u r



  

 

   

 





  





  



 
  

 

  

  

   

 

  



  



,s; 1,..., .j n

                                                 (11) 

Proof. Let  
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1,
, 1,..., , 1

0,
j p

j p
j n

j p
 


  


. 

Obviously, it can be indicated that v=0. Therefore, this solution is feasible for model (10).  

It should be emphasised that the factor  embedded in the developed stochastic weight-

restricted cost efficiency model plays an important role in determining the cost efficiency 

score for each DMU. We, therefore, focus on the role of  in the following discussion to 

highlight the effect of the  value on the cost efficiency score of a DMU. 

Proposition 2: Let 0 5.  . Then the objective function of model (10) varies in 0 1*

p  . 

Proof. Let 1, 0,p j j p       and 1   for all j p . Then v
i
= 0, u

r
=1  and all 

constraints of model (10) will be satisfied by this solution. Due to the minimization of model 

(10), the upper bound of 
*

p  is less than or equal to unity. 

Assume that 0*

p  . Then, 
1( ) 0    and v 0  with regards to 0 5.   and, as a result, 

the first constraint of model (10) is converted to the following inequality: 

1 1

1

0

n m

j ip ij

j i

p m

ip ip

i

w x

w x



  



 
 
 

 

 


 

Hence, 0*

p  .  

Now let us assume 0*

p  . Then 
j =0. From the second constraint of model (6) we have 

0rpy   which contradicts with 0rpy  . Therefore, the upper bound of 
*

p  is bigger than zero. 

This completes the proof.  

Remark: When α 5.0 , the objective function of model (10) may be negative (i.e., 0*

p  ). 

According to the above remark and proposition 2, the stochastic cost efficiency can be 

calculated using model (9) under 0 5.   condition. 

Proposition 3: The proposed stochastic cost efficiency model (10) always results in at least 

one efficient DMU i.e., there exists at least one  1k ,...,n  such that 1k
  .  

Proof. See Appendix C. 

Proposition 4: Let 0.5  . If   decreases in model (10), then stochastic cost efficiency 

increases or unchanged.  

Proof: See Appendix D. 

Proposition 5: If 0.5  , the optimal solution of model (10) is unique.  
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Proof: See Appendix E.  

 

Definition (Stochastic cost efficiency): 
pDMU  is stochastically cost efficient if and only if 

the objective function of model (10) is equal to 1, i.e., 
* 1p  . 

 

Here, we extend the above definition to the revenue efficiency not only because revenue is a 

pivotal intent for both public and private firms, but also in many circumstances political 

pressure may push some organizations to sell products to domestic consumers at subsidized 

prices. However, the observed values of inputs and outputs in real-world problems are often 

uncertain. We determine the weight-restricted revenue efficiency model with stochastic data 

by re-formulation of model (8) as   

1 1 1

1

max

. .

1 , 1,..., ,

1 , 1,...,

0, 1,..., .

n s s

j rp rj rp rp

j r r

n

j ij ip

j

j

s t

Pr y y r s

Pr x x i m

j n

  





 
        

 

 
     

 

  

  



 

(12) 

   Similar to the prior formulation on the stochastic cost efficiency model, the deterministic 

equivalent to the stochastic revenue efficiency model (12) is formulated as: 

 

     

1

1 1 1

1

1

2 2 2 2

1 1 1 1 1 1

2

max

. .

,

( ) , 1,...,

, 2 ,

,

n s s

j rp rj rp rp

j r r

n

j ij ip

j

n n s s n s

j k rp rj rk rp rp j rp rj rp

j k r r j r

i j k ij

s t

y u y

x v x i m

u Cov y y var y Cov y y

v Cov x



  





     



 
       

 

    

   
           

   

  

  



    

     2 2

1 1 1 1

2 , , 1,..., ,

0, 0, 0; 1,..., ; 1,..., .

n n m n

ik p ip ip p j ij ip

j k i j

j i

x w Var x Cov x x i m

u v i m j n

   

     

     

  

 

(13) 

 

One of the referees asked us to investigate whether the proposed method can be extended 

into a non-radial efficiency measure along with decomposing cost efficiency into allocative 

and technical efficiency with stochastic input-output data.  In response to the first question, 
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we develop a stochastic version of SBM measure by using the expected value operator in the 

ensuing section.  For the second question, we develop a stochastic version of CCR (SCCR) 

technical efficiency measure (SCCR) and the corresponding decomposition of stochastic cost 

efficiency (SCE) as represented below.   

As noted in Section 3, cost efficiency can be decomposed into allocative efficiency and 

technical efficiency in a non-stochastic situation. In the case of stochastic inputs and outputs, 

we first develop the following stochastic CCR technical efficiency model: 

1

1

min

. .

1 , 1,..., ,

1 , 1,..., ,

0, 1,.., .

SCCR

p p

n

j ij p ip

j

n

j rj rp

j

j

s t

Pr x x i m

Pr y y r s

j n

 

  

 









 
    

 

 
    

 

 





 
(14) 

where SCCR

p  is called stochastic technical efficiency of DMUp. Similarly, the deterministic 

equivalent of model (14) can be straightforwardly formulated for the purpose of calculating 

the optimal value of SCCR

p .  

 

Proposition 6: * SCCR

p p  . 

Proof: Let us assume that  ,SCCR

j p   is a feasible solution. It is easy to show that  ,SCCR

j p   

is also a feasible solution to the model (9), and consequently * SCCR

p p  .  

  

We define stochastic cost efficiency as the product of stochastic technical efficiency and 

stochastic allocative efficiency, viz., * SCCR SAE

p p p    .  

 

5. Extension to a slack-based method 

Our cost efficiency method in Section 4 does not consider slacks in the output side. Hence, this section 

extends our method into a slacks-based measure (SBM) as one of the referees suggested. Let us adapt 

Tone (2000)’s SBM model with stochastic input and output data as presented below: 

 as follows:  
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1

1

1

1

1
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1

1
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 
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 


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









 (15) 

It is well-known that the fractional program (15) can be solved via the Charnes and Cooper (1962) 

transformation as follows: 

1

1

1

0

1

1

1
min ,
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,     1,..., ,

1
1 ,

,

1,    

0, 1,..., ; 0, 1,..., ;  0, 1,..., ;  0.
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i
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n
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



























 

 

  

 

 



      











 (16) 

Since the stochastic SBM model (16) is more complicated than the stochastic cost and CCR 

models, we propose to use the expected values. The stochastic SBM model (16) consisting of 

the random variables can be converted into a deterministic model with the use of the expected 

value operator of random variables as follows:  
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 
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;  0.s t 

 (18) 

 

It is worth noting that, due to Jensen's Operator Inequality, the objective function and the 

second constraint of the above model can be approximated as: 

1 10

1 1m m
i i

i ii ip

s s
E t t

m x m E x

 

 

 
  
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1 1

1 1
 1.

s s
r r

r rrp rp

s s
E t t

s y s E y

 

 

 
   

     
    

 

6. An empirical application: stochastic cost minimization planning for a state 

government in the US  

 

In this section, we consider the cost minimization of 48 states in the US. The data for this 

example is constructed from the 2002 Economic Census – Manufacturing for the USA 

(United States Census Bureau, 2002) used in Ray et al. (2008) for cost minimization choice of 

production location. Analogously to Ray et al. (2008) we assume one output which is 

measured by the gross value of production and five inputs including 1) Production labour 

(L1), 2) non-production labour (L2), 3) capital (K), 4) energy (E) and 5) materials (M). We 

also assumed that all prices are fixed as listed in Table 1 but input and output variables follow 

normal distribution with known mean and standard deviation that are given in Table 2 and 

Table 3. 

- L1 is measured by the number of hours worked. The corresponding input price is wage 

paid per hour to production workers (w1). However, because different economy in 

different states, the input prices for production labour in different states are reported in the 
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column w1 in Table 1. For example, for Alabama (AL), the wage paid per hour is 

$15.156. 

- L2 is the number of non-production employees and its corresponding wage rate (w2) is 

total emolument per employee (e.g. for Alabama, the hourly salary per non-production 

employee is $48).  

- E is constructed by deflating the expenditure on purchased fuels and electricity by a state-

specific energy price (e.g. for Alabama, the average energy price is 5.07). 

- M is total expenditure on materials, parts, and containers is used as a measure of the 

materials input quantity, its input price assumed to be fixed (unity) for every state. 

- K is the average of beginning and end of the year values of gross fixed assets and its 

corresponding input price is measured by the sum of depreciation, rent, and (imputed) 

interest expenses per dollar of gross value of capital (e.g. for Alabama, the average cost of 

capital (price of capital) is  0.121). 

------Insert Table 1 here------ 

 

Table 3 presents the results of the stochastic cost efficiency model for the distinct  -values.  

The value of   represents the pre-determined minimum probability that each of the 

constraints of (11) fails to satisfy.  If   =0.05, then the five percentage of unsatisfied 

constraints is allowed by the decision maker.  Since   is a predetermined acceptable risk, it 

can be used as a planning purpose.     

          The last column for α=0.5 corresponds to the standard deterministic cost efficiency 

(Farrell cost efficiency), while other columns represent stochastic cost efficiency at given 

levels of α.  Comparison of the Farrell cost efficiency results with chance-constrained cost 

efficiency results provides interesting insight. Overall the chance constrained scores for each 

DMU are higher than (or equal to) the deterministic counterparts. It is evident from the 

reported results that DMUs have a higher efficiency score under α=0.001 compared with other 

probability levels.  This is also illustrated in Figure 1. 

 

------Insert Table 3 and Figure 1 here------ 

 

Under all given probability levels, Delaware (DE) is the best performer. Louisiana (LA) is 

stochastically efficient for 0.001 0.3   but not Farrell cost efficient.  Interestingly, Table 3 

and Figure 1 show that efficiency increases when assuming lower probability, i.e.   
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Effα=0.001 ≥ Effα=0.01 ≥ Effα=0.04 ≥Effα=0.05 ≥ Effα=0.1 ≥ Effα=0.3 ≥ Effα=0.4 ≥ Effα=0.5. 

Table 3 also shows that the number of stochastically cost efficient states increases as   

decreases.  Only DE is stochastically cost efficient for   = 0.5, equivalently Farrell cost 

efficient, while there are four and eighteen stochastically cost efficient states for   =0.05 and 

  =0.001, respectively.  Table 4 shows the benchmark units for each state.  For stochastically 

cost inefficient states, DE is the only benchmark or contributes the obtained efficient target 

for every inefficient state.  For   =0.1 where DE and LA are stochastically cost efficient, the 

efficient targets of IN, ND, TX, WA and WI are formed by DE and LA.   

 

For an illustrative purpose, suppose the state government of AL (Alabama), which tries 

to develop its cost-efficient state economy by maintaining the previous year’s output value, 

and its hypothetical economic planning department (division) is in charge. In order to develop 

a cost-efficient state economy for the next year, the department attempts to provide an 

efficient target.   However, the next year’s overall economic situation is not certain and hence 

a practical production possibility set cannot be deterministic, i.e., the inputs and outputs of all 

states to be used to construct empirical technology sets representing various future production 

possibilities should be treated as stochastic.   Now consider the situation where the economic 

planning department decides to use the stochastic cost efficiency criterion and then take the 

risk of   =0.01 based on Tables 1-4 and other available economic information. Then the 

efficient target is obtained as the convex combination of DE and LA.  The computation of 

(11) yields the following feasible optimal solution vector  

    * * * * *

7 16, , , , 0.721798, 58.13526,1.467466, 0.56954, 0.131606p v u v   , 

where the numbers 7 and 16 in the subscripts represent DE and LA, respectively.  Considering 

the first constraint in (11) leads to the following relationship: 

           
 1

1 1

1 1

n m

j ip ij

j i

pm m

ip ip ip ip

i i

w x
v

w x w x







 

 

 
   

 

 

 
,  

Plugging the optimal solution and observed values in the left-hand side, we obtain 
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where the number 1 in the subscript indicates AL.  The efficient input target vector for   

=0.01 is obtained as 
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 

  

where 
1Lc , 

2Lc , 
Ec , 

Mc  and 
Kc  are observed cost shares.  Note that the risk factor  

 
1

1 *

,10.01 / Lv w  weighted by 
1Lc  is added to * *

7 1,7 16 1,16L L   in order to obtain the efficient 

target for the L1 input.  Similarly, the other input targets are obtained.  The total minimum 

cost for   =0.01 is 1682.085 and the observed cost is $2330.413 million, in which case the 

stochastic cost efficiency is 0.7218.  In contrast, for   =0.5 the total cost is $1201.550 million 

with the cost efficiency of 0.5156 which is equivalent to the Farrell cost efficiency score.  See 

Table 5.  Rather than taking the risk of allowing for the 50% violation of each constraint in 

(11) to obtain the efficiency score of 0.5156, it is desirable to take a smaller risk of the 1% 

violation according to the proposed stochastic cost efficiency analysis.   The stochastic cost 

efficiency method can aid policy makers with the economic planning decisions since we live 

in the world of uncertainty.   
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Before concluding this section, we provide an illustration based on the 2002 Economic 

Census that we utilise in this section. According to Table 6, Alabama represented by AL, 

which is used as our illustrative example, is the least efficient in terms of the stochastic SBM 

model with a score of 0.5197, while its target DMUs DE and LA are the most efficient with 

the score of one. For the stochastic decomposition analysis, we focus on α=0.5, 0.3 and 0.1 

because some DMUs have a score more than one for α less than 0.1 (see Table 6).  For all 

chosen α-values in Table 6, DE has always the best performance and LA is the best or the 

second best performance among all the states with respect to stochastic AE and stochastic 

CCR.  This indicates that the early results of stochastic CE are consistent with those of 

stochastic AE and stochastic CCR.  An additional important finding is that stochastic AE is 

less than stochastic CCR for all DMUs except for the stochastic cost efficient DMUs.  This 

signposts that the allocative inefficiency arising from the wrong mix of inputs for given input 

prices, is more severe than the radial technical inefficiency.   

------Insert Table 6 here------ 

 

We emphasize that the data used in this application and the analysis does not aim to 

represent an in-depth or meticulous study of the problem at hand, but rather to show the 

applicability of our method. The key feature of the models in this study is that they enable 

managers to view more appropriate economic efficiency measures. 

 

 

7. Concluding remarks and future work  

Cost efficiency evaluates the ability of DMUs to produce the current outputs at minimal cost, 

given exogenous input prices. Analogously, revenue efficiency provides an estimate of 

attainable maximum revenue for a given input intensity and a set of output prices. In the 

conventional deterministic view of economic efficiency, the ex post evaluation is made for the 

case of deterministic and known prices. However, as many production and process planning 

decision are made in anticipation of unknown and stochastic information, the evaluation 

introduces a bias with unknown properties. Naturally, a parametric stochastic approach such 

as SFA may be used to address the stochastic nature of the composite variables cost and 

revenue, but resorting to a parametric approach introduces additional strong assumptions of 

the entire production set and the distribution of the inefficiency. This paper focuses at the case 

of stable and known deterministic market prices, exposed to random influences only through 
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the production technology. Such applications are readily found in e.g. financial 

intermediation, banking, utilities, food processing and logistics.   

   Precisely speaking, this paper has developed economic efficiency, both cost and revenue 

efficiencies, when input and/or output data of the DMUs are considered to be stochastic 

whereas input prices are known and deterministic. The chance-constrained program proposed 

in this study requires the known mean and variance, along with assuming the normal 

distribution for the input/output data of each unit. We show that the deterministic equivalent 

of the stochastic model, can be converted to a quadratic problem. The key parameter in the 

model is the chance constraint parameter alpha, also used in Charnes and Cooper (1959) and 

in the SDEA models (Land et al., 1993).   

   In the application on US state data, the findings show an interesting pattern when the 

stochastic model is applied. Whereas the deterministic model heavily penalizes the 

performance of certain states down to as much as 55% lower cost efficiency, the stochastic 

model shows broad ranges of states with comparable cost efficiency results in the ranges 

around 30-40% lower than best practice. Of course, the assumptions regarding the data 

generation process for the input prices in the application can be discussed, given regional 

patterns of population, unemployment and required skills. Nevertheless, we suspect that the 

distribution of the estimates from the stochastic model more closely mimics the true economic 

situation for a future decision than the deterministic frontier results. The decision maker must 

take into account not only the expected value for the input prices, but also their underlying 

variance, even in terms of the economic efficiency of the entities to be assessed.  

   Further work may concern the case of input and output prices that are stochastic. In 

addition, one may explore the determination of mean and variance and extending the model 

for non-standard normal distribution of data, for example, cases that data follows skewed or 

truncated normal distribution since in many real applications ‘sticky’ prices are primarily 

changing upwards. Since data in many real-world problems are relatively noisy, another 

future research direction would be to scrutinise the robustness of the results of the proposed 

model in this study in face of SFA. 
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Appendix B. 

Proof of Theorem 1: 

Let us assume  

 

Since 
ijx  is distributed normally,  also has a random variable with normal distribution with 
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Therefore,  is:   
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from both sides of the right-hand of the first 

inequality constraint in model (9) and divide through by the standard deviation of h
 
to result 
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Note that  has a standard normal distribution with zero mean and unit 

variance. Therefore, we can write 

 

where   represents the normal cumulative distribution function. We utilize the fractal 

function of a standard normal distribution,  1  , to obtain  

 

 

Similarly, the second inequality stochastic constraint of model (9) can be ultimately 

transformed into  

 
where  

 

 

Thus, the deterministic equivalent model (9) can be represented as 
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   Due to  and  the above model is obviously a nonlinear programming model. By 

substitution of the quadratic equality constraint 
 
and  in model (A), the 

following quadratic programming problem is formulated: 

 
 

The proof is complete.  
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Appendix C. 

Proof of proposition 3: 
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solution of model (10). This shows 
k    and which contradicts with the optimality of 

minimizing model (10), 
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 . It deduces that there exists at least one efficient DMU (i.e., 
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Appendix D. 

Proof of proposition 4: 

Let j , v  and p  
are a feasible solution of model (10) under probability level α. Obviously 

j , v  and p  
are still the feasible solution of model (10) at probability level  
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This shows that j , v  and p  are the feasible solution at  
. Then we conclude that the 

efficiency at  

 is greater or equal to efficiency at  . 
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Appendix E. 

Proof of proposition 5: 

First, model (10) is a convex programming problem since  and 

 are the convex functions where

 

 and  are the 

convex functions and  1 0 

 

for 0.5  .

 

We therefore conclude that model (10) has the 

global optimal solutions. The proof is complete. 
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Figure 1: Stochastic efficiency of US firms increase when probability reduce 
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Table 1: Manufacturing random average output, average inputs, and input prices for individual states in the US 

State 
Output

* 

$ million 

Inputs* 
 

Inputs Prices  

L1 L2 E M K 
 

w1 w2 PE PM PK 

AL 13.087 85.72 12.46 82.7 6.648 7.289  15.156 48.509 5.07 1 0.121 

AZ 8.442 41.76 12.81 11.25 2.842 3.592  15.633 61.057 8.47 1 0.147 

AR 14.71 104.99 12.72 55.5 7.001 6.832  13.555 43.837 5.94 1 0.14 

CA 7.805 41.34 12.1 13.26 3.155 2.951 
 

15.66 59.732 8.68 1 0.158 

CO 6.449 35.22 10.07 10.44 2.604 3.175  17.248 57.09 6.79 1 0.153 

CT 8.29 46.61 16.53 10.43 2.564 3.624  18.038 60.108 10.4 1 0.135 

DE 23.087 72.71 15.7 47.5 14.049 10.057  18.293 56.644 7.3 1 0.127 

FL 5.164 31.73 8.68 12.33 2.064 2.228  14.423 54.015 6.51 1 0.146 

GA 14.249 78.82 12.14 44.72 6.743 5.872 
 

14.78 51.099 5.21 1 0.126 

ID 8.371 50.31 7.96 34.8 3.797 5.63 
 

15.748 52.347 6.47 1 0.151 

IL 11.135 60.92 13.68 25.07 4.964 4.906 
 

16.55 55.667 6.96 1 0.137 

IN 17.443 92.7 15.1 54.25 8.141 7.798  18.058 53.257 5.34 1 0.125 

IA 17.06 84.74 15.73 44.14 7.575 6.708  15.847 50.422 6.7 1 0.129 

KS 15.697 80.21 15.82 33.97 8.298 5.204  16.118 53.369 6.6 1 0.132 

KY 20.659 94.13 14.39 67.2 11.543 8.124 
 

17 52.309 6.27 1 0.127 

LA 25.469 62.57 11.69 206.65 15.402 16.322  18.954 54.601 4.95 1 0.112 

ME 7.343 51.11 9.69 51.94 2.929 5.436  17.911 49.792 5.08 1 0.119 

MD 9.058 46.05 14.02 27.24 3.537 4.08  17.537 57.893 7.34 1 0.135 

MA 8.735 47.09 15.64 11.27 3.103 3.254  16.851 61.662 10.48 1 0.161 

MI 14.59 71.56 12.28 25.45 7.593 5.896  20.764 56.791 7.09 1 0.136 

MN 9.886 56.36 14.55 22.1 4.432 4.026  16.541 54.706 6.61 1 0.143 

MS 13.651 99.43 13.17 63.57 6.988 7.289  13.545 46.478 6.1 1 0.11 

MO 12.877 63.95 11.15 21.65 6.635 4.729  17.561 54.261 7.31 1 0.133 

MT 4.045 21.53 3.92 32.78 2.366 2.271  15.846 45.036 5.07 1 0.126 

NE 15.519 83.08 11.92 28.71 8.806 5.159  13.976 46.421 6.77 1 0.14 

NV 4.819 31.7 8 8.14 1.883 2.139  15.543 54.822 13.61 1 0.164 

NH 6.908 48.02 13.36 9.22 2.647 3.22  15.936 58.449 11.95 1 0.154 

NJ 8.998 43.82 12.38 16.1 3.578 3.606  17.241 58.436 8.32 1 0.142 

NM 6.45 29.03 5.85 13.81 2.386 3.236  16.432 52.156 7.18 1 0.166 

NY 6.996 39.63 10.11 13.66 2.456 2.778 
 

16.24 55.539 7.6 1 0.137 

NC 14.577 86.19 14.04 31.82 5.743 5.727  14.068 50.299 6.84 1 0.128 

ND 9.343 45.3 8.77 38.23 5.279 3.994  14.439 44.624 3.81 1 0.135 

OH 13.888 72.73 13.08 30.44 6.747 5.718  18.237 52.873 7.68 1 0.133 

OK 9.939 53.33 10.12 25.59 5.181 4.044 
 

16.01 47.058 6.79 1 0.122 

OR 8.228 45.48 9.59 22.61 3.003 3.716  16.797 54 7.35 1 0.147 

PA 10.881 60.45 12.48 28.33 4.595 4.692  16.236 53.646 7.08 1 0.127 

RI 5.063 39.98 9.13 6.34 1.898 2.134  14.457 54.63 11.72 1 0.143 

SC 18.155 98.97 15.65 61.72 8.297 11.377  15.565 53.528 6.11 1 0.121 

SD 11.539 61.06 9.11 16.93 5.409 2.956 
 

13.16 41.818 6.44 1 0.136 

TN 15.759 88.79 14.52 44.46 7.699 7.621  15.595 51.748 5.97 1 0.126 

TX 14.551 54.91 12.47 80.36 7.87 7.5  16.321 55.635 5.17 1 0.118 

UT 8.188 46.54 11.76 16.97 3.751 3.416  15.152 51.259 6.24 1 0.164 

VT 8.051 48.34 13.09 9.59 2.966 5.076  16.496 53.245 12.58 1 0.17 

VA 14.197 78.21 13.91 40.59 5.387 6.417  15.784 52.787 5.68 1 0.121 

WA 10.315 44.32 12.93 35.02 5.097 4.537  18.079 52.591 5.54 1 0.133 

WV 12.804 68.63 11.4 86.68 6.329 9.032  16.696 52.806 5.21 1 0.12 

WI 12.556 71.6 13.97 28.74 5.562 5.211  16.979 52.578 6.72 1 0.136 

WY 7.3 24.75 4.17 58.81 4.026 4.494  18.269 47.707 5.52 1 0.12 
*
Source: Ray et al. (2008)  
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Table 2: Standard deviation of outputs and inputs for individual states in the US 

State 
Output* 

$ million 

Inputs* 
 

L1 L2 E M K 
 

AL 1.22 2.63 0.92 2.28 0.67 0.69  

AZ 1.02 1.74 0.89 0.9 0.43 0.49  

AR 1.25 2.73 0.98 2.1 0.71 0.75  

CA 0.91 1.72 0.92 0.92 0.49 0.43 
 

CO 0.79 1.57 0.9 0.82 0.44 0.49  

CT 0.88 1.73 1.08 0.89 0.45 0.53  

DE 1.39 2.25 1.13 1.79 1.08 0.9  

FL 0.69 1.53 0.8 0.96 0.38 0.38  

GA 1.15 2.32 0.92 1.69 0.71 0.64 
 

ID 0.93 1.78 0.81 1.7 0.51 0.63 
 

IL 1.06 2.23 1 1.39 0.62 0.61 
 

IN 1.26 2.64 1.03 2 0.72 0.77  

IA 1.31 2.33 0.99 1.73 0.74 0.66  

KS 1.35 2.5 1.02 1.57 0.77 0.63  

KY 1.46 2.79 1.04 2.09 0.9 0.71 
 

LA 1.47 2.01 0.95 3.59 1.04 1.14  

ME 0.8 1.95 0.83 2.04 0.46 0.61  

MD 1.04 1.85 1.08 1.42 0.51 0.54  

MA 1.01 1.83 1.01 0.89 0.46 0.45  

MI 1.33 2.36 0.93 1.29 0.77 0.62  

MN 1.04 1.95 0.96 1.2 0.54 0.51  

MS 1.13 2.85 0.98 2.16 0.69 0.7  

MO 1.2 2.1 0.84 1.2 0.65 0.58  

MT 0.6 1.3 0.51 1.6 0.39 0.38  

NE 1.14 2.35 0.92 1.38 0.8 0.64  

NV 0.66 1.56 0.8 0.82 0.37 0.4  

NH 0.77 1.85 1 0.76 0.43 0.47  

NJ 0.87 1.67 0.94 1.08 0.51 0.55  

NM 0.84 1.45 0.67 1.05 0.43 0.49  

NY 0.89 1.79 0.81 1.06 0.43 0.45 
 

NC 1.14 2.58 0.95 1.43 0.68 0.63  

ND 1.03 1.89 0.79 1.78 0.64 0.5  

OH 1.28 2.36 1 1.47 0.66 0.65  

OK 1.11 1.98 0.81 1.44 0.64 0.54 
 

OR 0.9 1.7 0.8 1.24 0.44 0.52  

PA 1.11 2.06 0.9 1.36 0.57 0.56  

RI 0.68 1.61 0.79 0.65 0.37 0.4  

SC 1.34 2.81 1.1 1.99 0.81 0.94  

SD 0.99 1.97 0.81 1.11 0.62 0.48 
 

TN 1.39 2.51 1.01 1.88 0.76 0.74  

TX 1.29 2.04 0.93 2.33 0.73 0.71  

UT 0.85 1.94 0.9 1.14 0.53 0.49  

VT 0.84 1.85 0.92 0.84 0.46 0.58  

VA 1.2 2.51 1.04 1.69 0.66 0.68  

WA 1.03 1.92 0.93 1.71 0.65 0.59  

WV 1.08 2.2 0.85 2.67 0.65 0.81  

WI 1.03 2.15 1.03 1.46 0.68 0.6  

WY 0.82 1.27 0.55 2.04 0.54 0.59  
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Table 3: The stochastic cost efficiency of US firms 

State α=0.001 α=0.01 α=0.04 α=0.05 α=0.1 α=0.3 α=0.4 α=0.5 

AL 0.7957  0.7218  0.6676  0.6575  0.6237  0.5578  0.5357  0.5156  
AZ 1.0000  0.9039  0.8189  0.8041  0.7547  0.6596  0.6279  0.5992  
AR 0.8329  0.7504  0.6929  0.6828  0.6492  0.5838  0.5618  0.5418  
CA 0.9726  0.8549  0.7748  0.7609  0.7145  0.6252  0.5955  0.5687  
CO 0.9692  0.8474  0.7647  0.7503  0.7025  0.6110  0.5807  0.5533  
CT 0.8421  0.7460  0.6803  0.6689  0.6307  0.5570  0.5324  0.5102  
DE 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  
FL 0.8900  0.7728  0.6938  0.6800  0.6345  0.5473  0.5184  0.4924  
GA 0.9899  0.9005  0.8350  0.8229  0.7819  0.7026  0.6760  0.6519  
ID 0.9596  0.8496  0.7739  0.7606  0.7165  0.6313  0.6028  0.5770  
IL 0.9626  0.8585  0.7865  0.7739  0.7320  0.6510  0.6239  0.5994  
IN 0.9637  0.8840  0.8266  0.8162  0.7803  0.7057  0.6806  0.6579  
IA 1.0000  0.9451  0.8746  0.8622  0.8210  0.7409  0.7140  0.6897  
KS 1.0000  0.9375  0.8637  0.8508  0.8078  0.7242  0.6962  0.6708  
KY 1.0000  1.0000  0.9589  0.9456  0.9015  0.8159  0.7871  0.7611  
LA 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9873  0.9573  
ME 0.7192  0.6461  0.5938  0.5844  0.5520  0.4879  0.4665  0.4470  
MD 0.9267  0.8169  0.7421  0.7290  0.6855  0.6016  0.5736  0.5483  
MA 0.9173  0.8096  0.7360  0.7231  0.6803  0.5975  0.5699  0.5448  
MI 1.0000  1.0000  0.9512  0.9366  0.8880  0.7938  0.7622  0.7336  
MN 0.8873  0.7902  0.7222  0.7103  0.6707  0.5939  0.5681  0.5448  
MS 0.7791  0.7020  0.6482  0.6388  0.6074  0.5463  0.5257  0.5072  
MO 1.0000  1.0000  0.9555  0.9406  0.8911  0.7951  0.7630  0.7338  
MT 0.9891  0.8605  0.7706  0.7549  0.7029  0.6030  0.5698  0.5398  
NE 1.0000  0.9992  0.9246  0.9115  0.8679  0.7834  0.7551  0.7295  
NV 0.9627  0.8353  0.7493  0.7343  0.6848  0.5900  0.5586  0.5303  
NH 0.8054  0.7107  0.6462  0.6349  0.5975  0.5254  0.5013  0.4796  
NJ 1.0000  0.9007  0.8230  0.8094  0.7643  0.6774  0.6484  0.6223  

NM 1.0000  1.0000  1.0000  1.0000  0.9609  0.8309  0.7878  0.7490  
NY 0.9776  0.8564  0.7740  0.7596  0.7118  0.6197  0.5889  0.5612  
NC 0.9730  0.8757  0.8089  0.7972  0.7582  0.6826  0.6573  0.6343  
ND 1.0000  0.9531  0.8754  0.8616  0.8152  0.7205  0.6878  0.6582  
OH 1.0000  0.9537  0.8767  0.8632  0.8182  0.7310  0.7018  0.6753  
OK 1.0000  0.9353  0.8533  0.8390  0.7911  0.6983  0.6672  0.6390  
OR 0.9909  0.8772  0.7995  0.7859  0.7407  0.6533  0.6240  0.5976  
PA 0.9747  0.8678  0.7945  0.7816  0.7388  0.6557  0.6279  0.6027  
RI 0.8353  0.7294  0.6574  0.6448  0.6031  0.5227  0.4960  0.4718  
SC 0.9731  0.8860  0.8207  0.8091  0.7705  0.6956  0.6705  0.6478  
SD 1.0000  1.0000  0.9627  0.9480  0.8990  0.8045  0.7728  0.7442  
TN 1.0000  0.8894  0.8197  0.8074  0.7664  0.6868  0.6601  0.6359  
TX 1.0000  1.0000  0.9388  0.9254  0.8792  0.7859  0.7546  0.7263  
UT 0.9169  0.8124  0.7405  0.7279  0.6862  0.6059  0.5790  0.5548  
VT 0.9347  0.8294  0.7575  0.7449  0.7030  0.6221  0.5950  0.5706  
VA 0.9730  0.8811  0.8132  0.8009  0.7601  0.6810  0.6545  0.6306  
WA 1.0000  0.9248  0.8495  0.8358  0.7895  0.6999  0.6699  0.6429  
WV 0.8745  0.7971  0.7412  0.7311  0.6958  0.6248  0.6010  0.5795  
WI 0.9364  0.8436  0.7777  0.7662  0.7277  0.6533  0.6284  0.6058  
WY 1.0000  1.0000  1.0000  1.0000  0.9446  0.8315  0.7937  0.7595  
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Table 4: Benchmarks  

State α=0.001 α=0.01 α=0.04 α=0.05 α=0.1 α=0.3 α=0.4 α=0.5 

AL DE, LA DE, LA DE, LA DE, LA DE DE DE DE 
AZ AZ DE DE DE DE DE DE DE 
AR DE, LA DE DE DE DE DE DE DE 
CA DE DE DE DE DE DE DE DE 
CO DE, LA DE DE DE DE DE DE DE 
CT DE DE DE DE DE DE DE DE 
DE DE DE DE DE DE DE DE DE 
FL DE DE DE DE DE DE DE DE 
GA DE, LA DE, LA DE, LA DE, LA DE DE DE DE 
ID DE, LA DE DE DE DE DE DE DE 
IL DE, LA DE DE DE DE DE DE DE 
IN DE, LA DE, LA DE, LA DE, LA DE, LA DE DE DE 
IA IA DE DE DE DE DE DE DE 
KS KS DE DE DE DE DE DE DE 
KY KY KY DE DE DE DE DE DE 
LA LA LA LA LA LA LA DE DE 
ME DE, LA DE, LA DE, LA DE, LA DE DE DE DE 
MD DE, LA DE DE DE DE DE DE DE 
MA DE DE DE DE DE DE DE DE 
MI MI MI DE DE DE DE DE DE 
MN DE, LA DE DE DE DE DE DE DE 
MS DE, LA DE DE DE DE DE DE DE 
MO MO MO DE DE DE DE DE DE 
MT DE, LA DE, LA DE DE DE DE DE DE 
NE NE DE DE DE DE DE DE DE 
NV DE DE DE DE DE DE DE DE 
NH DE DE DE DE DE DE DE DE 
NJ NJ DE DE DE DE DE DE DE 

NM NM NM NM NM DE DE DE DE 
NY DE DE DE DE DE DE DE DE 
NC DE, LA DE DE DE DE DE DE DE 
ND ND DE, LA DE, LA DE, LA DE, LA DE DE DE 
OH OH DE DE DE DE DE DE DE 
OK OK DE DE DE DE DE DE DE 
OR DE DE DE DE DE DE DE DE 
PA DE, LA DE DE DE DE DE DE DE 
RI DE DE DE DE DE DE DE DE 
SC DE, LA DE, LA DE DE DE DE DE DE 
SD SD SD DE DE DE DE DE DE 
TN TN DE, LA DE DE DE DE DE DE 
TX TX TX DE, LA DE, LA DE, LA DE DE DE 
UT DE, LA DE DE DE DE DE DE DE 
VT DE DE DE DE DE DE DE DE 
VA DE, LA DE, LA DE DE DE DE DE DE 
WA WA DE, LA DE, LA DE, LA DE, LA DE DE DE 
WV DE, LA DE, LA DE, LA DE, LA DE, LA DE DE DE 
WI DE, LA DE DE DE DE DE DE DE 
WY WY WY WY WY DE DE DE DE 

#of efficient 

states 18 9 4 4 2 2 1 1 
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Table 5: Input Targets for AL 

 

L 1 L 2 E M K total cost cost efficiency

α＝0.01 54.620 11.203 59.049 10.414 8.299 1682.085 0.7218

α＝0.5 41.216 8.900 26.926 7.964 5.701 1201.550 0.5156

observed 85.72 12.46 82.7 6.648 7.289 2330.4134  
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Table 6: Decomposition Analysis for selected  -values and stochastic SBM 

 
 α=0.5 α=0.3 α=0.1  

State SCE SAE SCCR SCE SAE SCCR SCE SAE SCCR SSBM 

AL 0.5156 0.6084  0.8474 0.5578 0.5877  0.9492 0.6237 0.6237  1 0.5197 

AZ 0.5992 0.5992  1 0.6596 0.6596  1 0.7547 0.7547  1 1 

AR 0.5418 0.5859  0.9248 0.5838 0.5838  1 0.6492 0.6492  1 0.5786 

CA 0.5687 0.5940  0.9574 0.6252 0.6252  1 0.7145 0.7145  1 0.8548 

CO 0.5533 0.6226  0.8887 0.611 0.6110  1 0.7025 0.7025  1 0.8991 

CT 0.5102 0.5102  1 0.557 0.5570  1 0.6307 0.6307  1 1 

DE 1 1.0000  1 1 1.0000  1 1 1.0000  1 1 

FL 0.4924 0.5507  0.8941 0.5473 0.5554  0.9854 0.6345 0.6345  1 1 

GA 0.6519 0.6934  0.9402 0.7026 0.7026  1 0.7819 0.7819  1 0.6382 

ID 0.577 0.6498  0.8879 0.6313 0.6313  1 0.7165 0.7165  1 0.637 

IL 0.5994 0.6730  0.8907 0.651 0.6568  0.9912 0.732 0.7320  1 0.6776 

IN 0.6579 0.7039  0.9347 0.7057 0.7057  1 0.7803 0.7803  1 0.634 

IA 0.6897 0.7141  0.9658 0.7409 0.7409  1 0.821 0.8210  1 0.6747 

KS 0.6708 0.7192  0.9327 0.7242 0.7242  1 0.8078 0.8078  1 0.6757 

KY 0.7611 0.7726  0.9851 0.8159 0.8159  1 0.9015 0.9015  1 0.7937 

LA 0.9573 0.9573  1 1 1.0000  1 1 1.0000  1 1 

ME 0.447 0.5022  0.89 0.4879 0.4936  0.9884 0.552 0.5520  1 0.6024 

MD 0.5483 0.5839  0.939 0.6016 0.6016  1 0.6855 0.6855  1 0.7274 

MA 0.5448 0.5448  1 0.5975 0.5975  1 0.6803 0.6803  1 0.9324 

MI 0.7336 0.7722  0.95 0.7938 0.7938  1 0.888 0.8880  1 0.7065 

MN 0.5448 0.6171  0.8828 0.5939 0.6039  0.9834 0.6707 0.6707  1 0.687 

MS 0.5072 0.6028  0.8414 0.5463 0.5845  0.9347 0.6074 0.6074  1 0.5236 

MO 0.7338 0.7697  0.9534 0.7951 0.7951  1 0.8911 0.8911  1 1 

MT 0.5398 0.6787  0.7954 0.603 0.6883  0.8761 0.7029 0.7029  1 1 

NE 0.7295 0.7504  0.9721 0.7834 0.7834  1 0.8679 0.8679  1 0.7169 

NV 0.5303 0.5895  0.8995 0.59 0.5923  0.9962 0.6848 0.6848  1 1 

NH 0.4796 0.5098  0.9407 0.5254 0.5254  1 0.5975 0.5975  1 0.8496 

NJ 0.6223 0.6308  0.9865 0.6774 0.6774  1 0.7643 0.7643  1 0.8312 

NM 0.749 0.7490  1 0.8309 0.8309  1 0.9609 0.9609  1 1 

NY 0.5612 0.5612  1 0.6197 0.6197  1 0.7118 0.7118  1 1 

NC 0.6343 0.6343  1 0.6826 0.6826  1 0.7582 0.7582  1 0.7104 

ND 0.6582 0.7446  0.884 0.7205 0.7307  0.9861 0.8152 0.8152  1 0.6692 

OH 0.6753 0.7438  0.9079 0.731 0.7310  1 0.8182 0.8182  1 0.6609 

OK 0.639 0.7280  0.8778 0.6983 0.7099  0.9837 0.7911 0.7911  1 0.6686 
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OR 0.5976 0.6021  0.9925 0.6533 0.6533  1 0.7407 0.7407  1 0.8298 

PA 0.6027 0.6531  0.9229 0.6557 0.6557  1 0.7388 0.7388  1 0.6949 

RI 0.4718 0.4718  1 0.5227 0.5227  1 0.6031 0.6031  1 1 

SC 0.6478 0.6924  0.9356 0.6956 0.6956  1 0.7705 0.7705  1 0.6063 

SD 0.7442 0.7442  1 0.8045 0.8045  1 0.899 0.8990  1 1 

TN 0.6359 0.7186  0.8849 0.6868 0.6898  0.9956 0.7664 0.7664  1 0.6096 

TX 0.7263 0.7648  0.9497 0.7859 0.7859  1 0.8792 0.8792  1 0.6458 

UT 0.5548 0.6348  0.874 0.6059 0.6253  0.969 0.6862 0.6862  1 0.7332 

VT 0.5706 0.5706  1 0.6221 0.6221  1 0.703 0.7030  1 1 

VA 0.6306 0.6335  0.9954 0.681 0.6810  1 0.7601 0.7601  1 0.6886 

WA 0.6429 0.6717  0.9571 0.6999 0.6999  1 0.7895 0.7895  1 0.6871 

WV 0.5795 0.6588  0.8796 0.6248 0.6374  0.9802 0.6958 0.6958  1 0.5398 

WI 0.6058 0.6673  0.9078 0.6533 0.6541  0.9988 0.7277 0.7277  1 0.6687 

WY 0.7595 0.7645  0.9934 0.8315 0.8315  1 0.9446 0.9446  1 1 

 

 


