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Abstract

Enhancing concern in the efficiency assessment of a set of peer entities termed Decision Mak-
ing Units (DMUs) in many fields from industry to healthcare has led to the development of
efficiency assessment models and tools. Data Envelopment Analysis (DEA) is one of the most
important methodologies to measure efficiency assessment through the comparison of a group
of DMUs. It permits the use of multiple inputs/outputs without any functional form. It is
vastly applied to production theory in Economics and benchmarking in Operations Research.

In conventional DEA models, the observed inputs and outputs possess precise and real-
valued data. However, in the real world, some problems consider imprecise and integer data.
For example, the number of defect-free lamps, the fleet size, the number of hospital beds or the
number of staff can be represented in some cases as imprecise and integer data.

This thesis considers several novel approaches for measuring the efficiency assessment
of DMUs where the inputs and outputs are interval and fuzzy data. First, an axiomatic
derivation of the fuzzy production possibility set is presented and a fuzzy enhanced Russell
graph measure is formulated using a fuzzy arithmetic approach. The proposed approach uses
polygonal fuzzy sets and LU-fuzzy partial orders and provides crisp efficiency measures (and
associated efficiency ranking) as well as fuzzy efficient targets. The second approach is a new
integer interval DEA, with the extension of the corresponding arithmetic and LU-partial orders
to integer intervals. Also, a new fuzzy integer DEA approach for efficiency assessment is
presented. The proposed approach considers a hybrid scenario involving trapezoidal fuzzy
integer numbers and trapezoidal fuzzy numbers. Fuzzy integer arithmetic and partial orders
are introduced. Then, using appropriate axioms, a fuzzy integer DEA technology can be
derived. Finally, an inverse (DEA) based on the non-radial slacks-based model in the presence
of uncertainty, employing both integer and continuous interval data is presented.

Data Envelopment Analysis (DEA); Efficiency assessment; Decision Making Units (DMUs);
Inverse DEA; Integer intervals; Fuzzy integer
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Resumen

El aumento de la preocupación por la evaluación de la eficiencia de la conjunto de entidades
pares denominadas Unidades de Toma de decisiones en muchos campos, desde la industria
hasta la atención médica, ha llevado al desarrollo de modelos y herramientas de evaluación de
la eficiencia. El Análisis Envolvente de Datos es una de las metodologías más importantes para
medir la evaluación de la eficiencia a través de la comparación de un grupo de Unidades de
Toma de decisiones. Permite el uso de múltiples entradas/salidas sin ninguna forma funcional.
Se aplica ampliamente a la teoría de la producción en Economía y al evaluación comparativa
en Investigación Operativa.

En los modelos de Análisis Envolvente de Datos convencionales, las entradas y salidas
observadas poseen datos precisos y de valor real. Sin embargo, en el mundo real, algunos
problemas consideran datos enteros e imprecisos. Por ejemplo, el número de lámparas sin
defectos, el tamaño de la flota, el número de camas de hospital o el número de empleados
pueden representarse en algunos casos como datos imprecisos y enteros.

La tesis considera varios enfoques novedosos para medir la evaluación de la eficiencia
de Unidades de Toma de decisiones donde las entradas y salidas son datos de intervalos y
difusos. En primer lugar, se presenta una derivación axiomática del conjunto de posibilidades
de producción difuso y se formula una medida del gráfico de Russell mejorado difuso utilizando
un enfoque aritmético difuso. El enfoque propuesto utiliza conjuntos difusos poligonales y
órdenes parciales difusos LU y proporciona medidas de eficiencia nítidas (y clasificación de
eficiencia asociada), así como objetivos de eficiencia difusos. El segundo enfoque es un nuevo
Análisis Envolvente de Datos con intervalos de enteros, con la extensión de los correspondientes
órdenes parciales LU y aritméticas a intervalos enteros. Además, se presenta un nuevo enfoque
de Análisis Envolvente de Datos con enteros difusos para la evaluación de la eficiencia. El
enfoque propuesto considera un escenario híbrido que involucra números enteros difusos
trapezoidales y números difusos trapezoidales. Se introducen la aritmética de enteros difusos
y los órdenes parciales. Luego, usando los axiomas apropiados, se puede derivar una tecnología
para el Análisis Envolvente de Datos de enteros difusos. Finalmente, se presenta un Análisis
Envolvente de Datos inverso basado en el modelo de holguras no radiales en presencia de
incertidumbre, empleando datos con intervalos enteros y continuos.

Análisis Envolvente de Datos; Evaluación de la eficiencia; Unidades de Toma de Decisiones;
Análisis Envolvente de Datos inverso; Intervalos enteros; Entero difuso
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different α-levels, and the corresponding α-levels of the fuzzy integer numbers
resulting from their addition and multiplication. . . . . . . . . . . . . . . . . . . 13

2.3 The structure of DMUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 The PPS under different return to scale . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 PPS, frontier, and efficiency measurement under CRS assumption . . . . . . . . . 20

3.1 Consider two DMUs that consume a single input and produce a single and
unit output. The input of DMU1 and DMU2 are X̃1 = (1, 1.75, 2.5, 3.5, 4.75, 6),
and X̃2 = (2, 3, 3, 3.5, 4.75, 6), respectively. Left: DMU2 is clearly inefficient,
X̃1 � X̃2, X̃1 , X̃2 and they have the same output but when (3.10) is solved
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Chapter 1

Introduction

One of the widespread and main problems in all kinds of organizations, including public bodies,
firms, and schools, is assessing and improving efficiency. Reduced costs, increased revenue,
reduced natural resources depletion, reduced pollution, and increased sustainability are some
benefits of evaluating efficiency. Therefore, it is necessary to develop efficiency assessment
models and tools. Data envelopment analysis (DEA) is a non-parametric methodology to
assess the efficiency of a set of Decision Making Units (DMUs) that consume multiple inputs to
produce multiple outputs (Charnes et al. [31], Banker et al. [28]). A Production Possibility Set
(PPS) can be derived from inputs and outputs and some certain axioms. The non-dominated
subset of the PPS is defined as the efficient frontier. A DMU that is belongs to the efficient
frontier is efficient. Otherwise, it is inefficient and the process of projecting it onto the efficient
frontier determines an efficient target operating point. There are different ways to define
the PPS (e.g. Constant Returns to Scale (CRS) and Variable Returns to Scale (VRS)) as well
as different ways of projecting inefficient DMU onto the efficient frontier and evaluating the
corresponding efficiency scores, e.g. using efficiency potential (Lozano and Calzada-Infante
[107], Soltani and Lozano [129]), multidirectional approaches (Lozano and Soltani [108]) or
lexicographic approaches (Lozano and Soltani [109, 110]), among others.

DEA is very well organized in the case of crisp data, but there are situations in which data is
uncertain and imprecise. Dyson and Shale [49] study uncertainty in DEA and review different
approaches for dealing with uncertainty. A classic approach for dealing with uncertainty is
stochastic DEA methods, such as Chance Constrained DEA (Cooper et al. [38], [39]) or Monte
Carlo simulation (e.g. Kao and Liu [85, 86]). In these approaches, it is assumed that the input
and output data are random variables whose joint distribution function is known (generally
a multivariate normal) or can be fitted from historical data (e.g. a beta distribution). The
resulting efficient frontier is random. Olesen and Petersen [116] discuss a review of stochastic
DEA approaches, including Stochastic Frontier Analysis and Chance-constrained DEA. Also
Salahi et al. [123] and Izadikhah [70] work on Robust optimization and Chance-constrained
DEA approaches, respectively.

Interval and fuzzy data is an alternative way to random data to study data uncertainty.
Thus, often the data variability is not due to randomness. For example, the typical input
variables such as the number of employees of a certain company or business unit are not
random but can fluctuate from one month to another (or even from one week to another)
throughout the year and it may not be reached a crisp number to represent variable. Another
example happens with typical output variables like the number of customers attended may
not exist and the corresponding numbers are imprecise. Interval and Fuzzy data have proved
very helpful to model these types of uncertainties.
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Hence, considering DEA to fuzzy data has been many hot topics in the literature (see
Hatami-Marbini et al. [63] and Emrouznejad et al. [51] for a survey and a taxonomy), although
many of the existing approaches have drawbacks (Soleimani-damaneh et al. [128]). A number
of Fuzzy DEA (FDEA) approaches apply the α-level set (i.e. α-cut) concept (e.g. Kao and
Liu [84], Saati et al. [121]). Another large group of FDEA studies considers a fuzzy ranking
approach (e.g. Guo and Tanaka [59], León et al. [99], Ghasemi et al. [55]). Other researchers
define a possibility (e.g. Lertworasirikul et al. [101], or a fuzzy arithmetic approach (e.g. Wang
et al. [139]) or consider fuzzy random/type-2 fuzzy sets (e.g. Tavana et al. [136]). Another
category of FDEA approaches, which has been thoroughly reviewed in Peikani et al. [118], is
fuzzy chance-constrained DEA. Therefore FDEA is a growing area of efficiency analysis under
uncertainty, with many new approaches and applications being reported (e.g. Kachouei et al.
[83], Ebrahimnejad and Amani [50]). Also, FDEA can be applied to solve multiobjective fuzzy
optimization problems (e.g. [25]-[27]).

In terms of interval DEA, there have been also many research, most of them use radial
multiplier formulations (e.g. Despotis and Smirlis [42], Zhu [155]), although there are also
additive imprecise DEA approaches (e.g. Lee et al. [100]), FDH interval DEA models (e.g.
Jahanshaloo et al. [78]), non-radial, non-oriented imprecise DEA approaches (e.g. Azizi et
al. [22]), ideal point approaches (e.g. Jahanshahloo et al. [73]), inverted DEA approaches
(e.g. Inuiguchi and Mizoshita [69]), interval DEA with negative data (e.g. Hatami-Marbini
et al. [62]), flexible measure interval DEA approaches (e.g. Kordrostami and Jahani Sayyad
Noveiri [96]) and common weights imprecise DEA approaches (e.g. Hatami-Marbini et al.
[61]). Applications involve in manufacturing industry (e.g. Wang et al. [139]), banks and bank
branches (e.g. Jahanshaloo et al [74], Inuiguchi and Mizoshita [69], Hatami-Marbini et al. [62]),
power plants (e.g. Khalili-Damghani et al. [91]), etc.

Another approach in DEA is integer DEA, it is first considered by Lozano and Villa [111] and
consequently study in Kuosmanen and Kazemi Matin [98] and Kazemi Matin and Kuosmanen
[90]. Advanced integer DEA models utilize Directional Distance Function (DDF) (e.g. Tan et al.
[135]), super-efficiency (e.g. Du et al. [46], Chen et al. [36]), flexible measures (e.g. Kordrostami
et al. [95]), two-stage systems (e.g. Ajirlo et al. [2]) or congestion (e.g. Khoveyni et al. [93]). A
related problem is variables that can only take certain discrete values (e.g. Amirteimoori and
Kordrostami Amir2014). Integer DEA has been used, for example, to hotel performance (Wu
et al.[146]), sports (e.g. Wu et al. [147], Chen et al. [35]) and transportation (e.g. Lozano et al.
[112], Yu and Hsu [150]).

As far as we know, The first fuzzy integer DEA approach is introduced by Kordrostami et
al. [94] that develop the fuzzy integer DEA model of Jie et al. [81] applies the fuzzy number
ranking method and the graded mean integration representation method to assess the efficiency
score of DMUs where all the data are fuzzy integer data (triangular fuzzy numbers). They also
study the hybrid scenario, in which some of the fuzzy inputs and outputs are integer and the
rest are real-valued.

Also, another outstanding research area is inverse DEA. The concept of the inverse DEA
model is firstly introduced by Zhang and Cui [152]. They study the input increases of a DMU
are evaluated for its given output increases under the CCR efficiency fixed constraints, although
inverse DEA is formally studied by Wei et al. [143]. They considered the first question in inverse
DEA (output-estimation)."If the inputs of DMUo increase, how much should the outputs of
DMUo increase to preserve the efficiency score of DMUo?" Wei et al. [143] and Yan et al. [148]
propose a linear programming problem when DMUo is weakly efficient and a multiple-objective
linear programming (MOLP) problem when DMUo is inefficient to answer this question. The
second question in inverse DEA (input-estimation) is studied by Hadi-Vancheh et al. ([65],
[64]). "If the outputs of DMUo increase, how much should the outputs of DMUo increase to

2



preserve the efficiency score of DMUo?" They develope the models, which have introduced by
Wei et al. [143]. Input-estimation and output-estimation have been studied by Jahanshahloo
et al. ([76], [77]), provided that DMUo maintains or improves the efficiency score. Also, both
questions have been investigated under inter-temporal dependence by Jahanshahloo et al. [80].
The third question in inverse DEA (input-output estimation) is introduced by Jahanshahloo
et al. [75]. " If the inputs and outputs of DMUo increase, how much should the inputs and
outputs of DMUo increase to preserve the efficiency score of DMUo?" This question is answered
only for the efficient DMUo. They applied MOLP for input-output estimation. The third
question in inverse DEA was extended by Ghobadi [57], which improves the efficiency score
of DMUo. Most of the literature has studied on radial inverse DEA such as CCR [31], BBC
[28], ST [124],and FG [52]. However, When slacks are of importance, radial inverse DEA can
not answer questions in inverse DEA. Thus, some researchers consider inverse DEA based on
non-radial models. As far as we know, Jahanshahloo et al. [75] apply a non-radial inverse
DEA based on the Enhanced Russel model. They assume that the efficiency scores of each
dimension remain unchanged. Then Zhang and Cui in [153] introduce a non-radial inverse
DEA model, supposing that the overall efficiency score remains unchanged, covering all radial
and non-radial measures that are monotonous.

The following chapters are devoted to study results and fuzzy optimization techniques
to solve DEA and inverse DEA, discussing the future work of this thesis. It is organized as
follows. In chapter 2, basic notations and results related to intervals and fuzzy numbers to
define new integer intervals and fuzzy integer numbers are introduced. Then optimization
techniques, DEA and inverse DEA are presented. Chapter 3 is based on our published paper
titled "Efficiency assessment using fuzzy production possibility set and enhanced Russel Graph
measure" (see [17]). We will use the enhanced Russell Graph measure (ERM), a non-radial and
non-oriented approach, studied by Pastor et al. [117] under uncertain data that inputs and
outputs are given by polygonal fuzzy numbers. The corresponding fuzzy PPS form inputs and
outputs are derived and a fuzzy ERM model is modeled. To solve the proposed non-linear
FERM model, a crisp optimization model is modeled to linearized. We finally have a simple
and effective FDEA approach for evaluating the efficiency and projecting the production units.
It is measured with a crisp efficiency score instead of a fuzzy efficiency. Chapter 4 is based on
our published paper named "Integer interval DEA: an axiomatic derivation of the technology
and an additive, slacks-based model" (see [18]). A new integer interval DEA technology and
a new slacks-based DEA approach including two phases are considered. Chapter 5 is related
to our submitted paper termed "Fuzzy integer Data Envelopment Analysis DEA" (see [19]).
It defines a new fuzzy integer DEA technology and a new slacks-based fuzzy integer DEA
approach that develop our previous work in Arana-Jimenez et al. [18] from interval integer
DEA to fuzzy integer DEA. We consider that inputs and outputs can be either trapezoidal
fuzzy integer numbers (TFZ) or trapezoidal (real-valued) fuzzy numbers (tFC). Chapter 6 is
based on our submitted paper named "Using slacks-based model to solve inverse DEA with
integer intervals for input estimation" (see [149]). The concepts about integer intervals are used
to extend inverse DEA. We use non-radial slacks-based measure, which has more properties
of radial models, on integer interval framework. We consider the following question: "If the
output of DMUo increases such that its inefficiency score is not less than t-percent, how much
should the input of DMUo increase?"
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Chapter 2

Preliminaries on intervals, fuzzy
numbers, and DEA

2.1 Introduction

In this chapter, the basic notations and results pertaining to intervals and fuzzy numbers are
introduced to define new integer intervals and fuzzy integer numbers. Fuzzy logic was defined
by Zadeh [151] to study the situations which are imprecise. More researchers have studied this
subject and its applications, but there is a few literature in integer cases. The innovation of our
work is to developed integer interval and fuzzy integer numbers. Then a brief introduction of
optimization techniques, DEA, and inverse DEA is discussed.

2.2 Intervals

In this section, we introduce those arithmetic operations between intervals that are used in the
next the sections and chapters.

Given R be the real number set. We denote by KC =
{[

a, a
]
| a, a ∈ R and a ≤ a

}
the family

of all bounded closed intervals in R.

Definition 2.2.1. Given A = [a, a] ∈ KC, B = [b, b] ∈ KC

• Addition: A + B := {a + b | a ∈ A, b ∈ B} = [a + b, a + b],

• Opposite value: −A = {−a : a ∈ A} = [−a,−a],

• Multiplication: A · B := {a · b | a ∈ A, b ∈ B} = [min(A · B),max(A · B)],

where A · B = {a · b, a · b, a · b, a · b}.

• Multiplication by scalar: for any λ,

λ · A :=

[λ · a, λ · a] λ ≥ 0
[λ · a, λ · a] λ < 0

• difference: A − B = A + (−B) := {a − b | a ∈ A, b ∈ B} = [a − b, a − b],
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Example 2.2.1. Consider the following examples of the defined operations for continuous intervals. Note
that, when applied to continuous intervals, all these operations produce continuous interval domains.
For addition, [−5, 2] + [−4,−1] = [−9, 1]; for opposite value, −[2, 7] = [−7,−2]; for multiplication,
[2, 4] · [4, 6] = [8, 24]; for multiplication by scalar, 3 · [2, 4] = [6, 12], −3 · [2, 4] = [−12,−6]; for
difference, [−6, 7] − [2, 3] = [−6, 7] + [−3,−2] = [−9, 5].

For more detail on interval arithmetic, we refer to Moore [114, 115], Alefeld and Herberger
[3] ,and Stefanini and Arana-Jimenez [133].

Also, It is necessary also to define a partial order relationship for intervals, which are well
known in the literature, (see, e.g., [144, 133, 30] and the references therein).

Definition 2.2.2. Given two intervals A = [a, a],B = [b, b] ∈ KC, we say that:

(i) [a, a] � [b, b] if and only if a ≤ b and a ≤ b.

(ii) [a, a] ⪯ [b, b]i f andonlyi f [a, a] � [b, b] and [a, a] , [b, b].

(iii) [a, a] ≺ [b, b] if and only if a < b and a < b.

2.2.1 Integer intervals

Apt and Zoeteweij [7] defined some arithmetic operations on integer intervals. Recently,
Arana-Jiménez et al. [18] have extended them and established a new notation, as following.

Let A and B be integer intervals, we have following arithmetic operations:

• Addition: A + B := {a + b | a ∈ A, b ∈ B},

• Subtraction: A − B := {a − b | a ∈ A, b ∈ B},

• Multiplication: A ∗ B := {a ∗ b | a ∈ A, b ∈ B},

• Multiplication by scalar: for any integer λ,

λ ∗ A :=

λ ∗ a λ ≥ 0
−λ ∗ a λ < 0

Example 2.2.2. To illustrate the previous arithmetic operations between integer intervals, consider the
following examples. For the case of sum and subtraction, {3, 4, 5}+ {2, 3, 4} = {5, 6, 7, 8, 9}, {3, 4, 5, 6} −
{2, 3, 4, 5, 6, 7} = {−4, ,−3,−2,−1, 0, 1, 2, 3, 4}; and for the case of multiplication, {2, 3, 4} ∗ {4, 5, 6} =
{8, 10, 12, 12, 15, 16, 18, 20, 24}, 3∗{2, 3, 4} = {6, 9, 12}. Note, from the last example, that {2, 3, 4}∗{4, 5, 6}
does not contains all integer numbers from 8 to 24, and also 3 ∗ {2, 3, 4} does not contains all integer
numbers from 6 to 12.

Therefore, for A, B integer intervals and a λ an integer the following holds:

• A + B,A − B are integer intervals.

• A ∗ B does not correspond to an integer interval, in general. And the same for λ ∗ A.
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To deal with this problem, it is necessary to introduce a new multiplication operation for
the multiplication between two integer interval to be an integer interval also. Let Z be the
integer set. We denote by KZ =

{[
a, a
]
Z
| a, a ∈ Z and a ≤ a

}
a closed integer interval in Z.

Definition 2.2.3. Let A = [a, a] ∈ KZ, B = [b, b] ∈ KZ

• Addition: [a, a]Z + [b, b]Z = [a + b, a + b]Z

• Subtraction: [a, a]Z − [b, b]Z = [a − b, a − b]Z

• Multiplication: [a, a]Z · [b, b]Z = [min(A · B),max(A · B)]Z,

where A · B = {a · b, a · b, a · b, a · b}.

• Multiplication by scalar: for any integer λ,

λ · A :=

[λ · a, λ · a]Z λ ≥ 0
[λ · a, λ · a]Z λ < 0

Example 2.2.3. Consider the following examples of the above operations for integer intervals. [4, 5]Z +
[−1, 2]Z = [3, 7]Z, [−4, 5]Z − [−1, 2]Z = [−6, 4]Z, [2, 4]Z · [4, 6]Z = [8, 24]Z, 3 · [2, 4]Z = [6, 12]Z.
It can be seen that the arithmetic operations for integer intervals defined above always produce integer
intervals.

Moreover, to extend the previous multiplication by an integer scalar to the case of a real
scalar, we define the smaller integer bigger than and the largest integer less than a real number,
i.e. given x ∈ R, we define

i(x) = min {z ∈ Z : z ≥ x} , (2.1)
I(x) = max {z ∈ Z : z ≤ x} . (2.2)

Therefore, given A = [a, a]Z ∈ KZ and λ ∈ R:

λ · A :=

[λ · a, λ · a] ∩Z λ ≥ 0
[λ · a, λ · a] ∩Z λ < 0

=

[i(λ · a), I(λ · a)]Z λ ≥ 0
[i(λ · a), I(λ · a)]Z λ < 0

=
[
min{i(λ · a), i(λ · a)},max{I(λ · a), I(λ · a)}

]
Z
.

Let us also define the continuous extension of an integer interval [a, a]Z ∈ KZ as

C([a, a]Z) := [a, a] ∈ KC (2.3)

Conversely, we define the integer projection of [a, a] ∈ KC as

Z([a, a]) := [i(a), I(a)]Z ∈ KZ (2.4)

If a ≤ a and a, a ∈ Z thenZ([a, a]) = [a, a]Z ∈ KZ. In this case, [a, a] ∈KC→Z, which is the set
of intervals whose endpoints are integer. Note also that Z(C([a, a]Z)) = [a, a]Z and in general,
given [a, a] ∈ KC, then C(Z([a, a])) ⊆ [a, a].

Now, an adaptation of LU-fuzzy partial orders on intervals to integer intervals will be used.
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Definition 2.2.4. Given two integer intervals A = [a, a]Z,B = [b, b]Z ∈ KZ, we say that:

(i) [a, a]Z � [b, b]Z if and only if a ≤ b and a ≤ b.

(ii) [a, a]Z ≺ [b, b]Z if and only if a < b and a < b.

In a similar manner, we define the relationships A � B and A ≻ B for intervals and integer
intervals, which really means B � A and B ≺ A, respectively. Note that, for the sake of
simplicity, we use the same symbols of partial orders to compare intervals in KC as to compare
integer intervals in KZ.

2.3 Fuzzy numbers

We denote by KC =
{[

a, a
]
| a, a ∈ R and a ≤ a

}
the family of all bounded closed intervals in R.

A fuzzy set on Rn is a mapping u : Rn
→ [0, 1]. For each fuzzy set u, we denote its α-level set

as [u]α = {x ∈ Rn
| u(x) ≥ α} for any α ∈ (0, 1], and its support as supp(u) = {x ∈ Rn

| u(x) > 0}.
The closure of supp(u) defines the 0-level of u, i.e. [u]0 = cl(supp(u)) where cl(M) means the
closure of the subset M ⊂ Rn. Following Dubois & Prade [47, 48], a fuzzy set u on R is said to
be a fuzzy number if (i) u is normal, this is there exists x0 ∈ R such that u(x0) = 1, (ii) upper
semi-continuous function, (iii) convex, and (iv) [u]0 is compact. FC denotes the family of all
fuzzy numbers. The α-levels of a fuzzy number can be represented as [u]α =

[
uα,uα

]
∈ KC,

uα,uα ∈ R. Although there are many parametrical families of fuzzy numbers (see [24] and [60]
for a complete description of these families), two of the most used families of fuzzy numbers are
triangular and trapezoidal fuzzy numbers, because of their easy modeling and interpretation
(see, for instance, [47, 48, 88, 92, 105, 131]). As an extension of these two families of fuzzy
numbers, and inspired in other definitions of parametric fuzzy numbers (see, for instance,
[131, 132, 60, 24]), below we review the concept of polygonal fuzzy numbers, introduced by
Báez et al. [24] as a particular case of polygonal fuzzy sets.

Definition 2.3.1. Given a partition of the interval [0, 1], Pk = {αi : i = 0, 1 . . . , k}, with 0 = α0 <
α1 <, . . . , < αk = 1, a fuzzy number ã is said to be a k-polygonal fuzzy number with respect to Pk if its
α-levels satisfy [ã]α = (1−λ)[ã]αi−1 +λ[ã]αi , where 0 ≤ αi−1 < α ≤ αi ≤ 1 for some i = 1, . . . , k− 1 and
λ = λ(α) = (α − αi−1)/(αi − αi−1).

In terms of their membership function instead of their α-levels, a polygonal fuzzy number
can alternatively be defined as follows.

Proposition 2.3.1. Given a partition of the interval [0, 1], Pk = {αi : i = 0, 1 . . . , k}, with 0 = α0 <
α1 <, . . . , < αk = 1, for k ∈ N, a fuzzy number ã is a k-polygonal fuzzy number with respect to Pk if
and only if there exist a−0 , a

−

1 , . . . , a
−

k , a
+
k , . . . , a

+
1 , a
+
0 ∈ R with a−0 ≤ a−1 ≤ · · · ≤ a−k ≤ a+k ≤ · · · ≤ a+1 ≤ a+0 ,

such that its membership function is

ã(x) =



x − a−i−1

a−i − a−i−1
(αi − αi−1) + αi−1, if i ∈ {1, . . . , k} and a−i−1 ≤ x < a−i ,

1, if a−k ≤ x ≤ a+k ,
a+i−1 − x
a+i−1 − a+i

(αi − αi−1) + αi−1, if i ∈ {1, . . . , k} and a+i < x ≤ a+i−1,

0, otherwise.

(2.5)
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Figure 2.1: Representation for a general k− polygonal Fuzzy number ã =
a−0 , a

−

1 , . . . , a
−

k , a
+
k , . . . , a

+
1 , a
+
0 , with respect a partition α0 = 0 < α1 ≤ . . . ≤ αk = 1 (top) and

some examples of k = 1, k = 2 and k = 3 regular polygonal fuzzy numbers (bottom).

As a result of Proposition 2.3.1, we can denote a k-polygonal fuzzy number with respect
to Pk = {αi : i = 0, 1 . . . , k} as ã = a−0 , a

−

1 , . . . , a
−

k , a
+
k , . . . , a

+
1 , a
+
0 . For the sake of simplicity, in the

sequel, we will assume that αi =
i
k , and then ã is said to be a regular k-polygonal fuzzy number.

We denote the set of all regular k-polygonal fuzzy numbers as RPFNk. Thus, ã = (a−0 , a
−

1 , a
+
1 , a
+
0 )

corresponds to a trapezoidal fuzzy number. And if a−1 = a+1 then ã is a triangular fuzzy number,
and it can be noted as ã = (a−, a, a+). Finally, we denote 0̃ and 1̃ as the regular polygonal fuzzy
numbers whose components are all 0 and 1, respectively.

For better illustration, we introduce the definition of trapezoidal fuzzy numbers that have
been extensively studied in the literature (for example [47], [48], [88], [92], [105], [131]). Also
we present examples of both, a general k− polygonal fuzzy number, on the top, and regular
1-polygonal and 2-polygonal fuzzy numbers, on the bottom in Figure 2.1 .

Definition 2.3.2. Given a1, a2, a3 and a4 ∈ R with a1 ≤ a2 ≤ a3 ≤ a4. If the fuzzy set u : R→ [0, 1] is
defined as

u(x) =


x−a1
a2−a1

i f x ∈ [a1, a2]
1 i f x ∈ [a2, a3]
a4−x
a4−a3

i f x ∈ [a3, a4]
0 c.c.

(2.6)

then u is said to be a trapezoidal fuzzy number, u ∈ TFC, and it is also denoted as u ≡ ã =
(a1, a2, a3, a4). If a2 = a3, then we have a triangular fuzzy (tFC).

8



As an extension for fuzzy numbers (see [29], [56], [103]), the membership function u ∗ v,
with ∗ ∈ {+, ·}, is defined as

(u ∗ v)(z) := Sup min{u(x),u(y)}.

And given λ ∈ R,

(λ · u)(x) :=

u(x/λ) λ , 0
0 λ = 0

Therefore, the addition, multiplication, and multiplication by scalar of fuzzy numbers is
also a fuzzy number, and it can be considered by means of α-levels (see, for instance, Theorem
2.6, [56]). In this regard, given u, v ∈ FC represented by means ofα-levels as [u]α = [uα,uα] ∈ KC,
and [v]α = [vα, vα] ∈ KC, respectively, and λ ∈ R, then for any α ∈ [0, 1]:

[u + v]α := [u]α + [v]α = [uα + vα,uα + vα], (2.7)

[u · v]α := [u]α · [v]α =
[
min{uα · vα,uα · vα,uα · vα,uα · vα}, (2.8)

max{uα · vα,uα · vα,uα · vα,uα · vα}
]
,

[λ · u]α := λ · [u]α =

[λ · uα, λ · uα] λ ≥ 0
[λ · uα, λ · uα] λ < 0

(2.9)

=
[
min{λ · uα, λ · uα},max{λ · uα, λ · uα}

]
As mentioned above, if u, v ∈ FC, and λ ∈ R, then it holds that u + v ∈ FC, u · v ∈ FC, and

λ · u ∈ FC.

Regarding the previous arithmetic operations (2.7), (2.8), and (2.9), we present the following
definitions for two arithmetic operations, namely sum, multiplication, and multiplication by
scalar.

Definition 2.3.3. Given two regular k-polygonal fuzzy numbers ã = a−0 , a
−

1 , . . . , a
−

k , a
+
k , . . . , a

+
1 , a
+
0 and

b̃ = b−0 , b
−

1 , . . . , b
−

k , b
+
k , . . . , b

+
1 , b
+
0 , the following basic arithmetical operations can be defined:

(i) Addition

ã + b̃ = (a−0 + b−0 , a
−

1 + b−1 , . . . , a
−

k + b−k , a
+
k + b+k , . . . , a

+
1 + b+1 , a

+
0 + b+0 ) (2.10)

(ii) The multiplication of two k-fuzzy polygonal numbers, ãb̃ = c̃ = (c−0 , c
−

1 , . . . , c
−

k , c
+
k , . . . , c

+
1 , c
+
0 ),

where {
c−i = min{a−i b−i , a

−

i b+i , a
+
i b−i , a

+
i b+i }

c+i = max{a−i b−i , a
−

i b+i , a
+
i b−i , a

+
i b+i }

i = 0, 1, . . . , k (2.11)

(ii) Multiplication by a scalar λ ∈ R,

λã =
{

(λa−0 , λa−1 , . . . , λa−k , a
+
k , . . . , λa+1 , λa+0 ) if λ ≥ 0;

(λa+0 , . . . , λa+k−1, λa+k , λa−k , λa−k−1, . . . , λa−0 ) if λ < 0.
(2.12)

Note that the multiplication (2.11) is not the same as defined previously in (2.8). But it is
indeed an approximation of the latter which ensures an internal operation.
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For illustration, we present the following arithmetic rules on the trapezoidal fuzzy numbers
(TFC) (see, for example, Kumar et al. [97], Kaufmann, Gupta [88], khan et al. [92]). Given two
trapezoidal fuzzy numbers ã = (a1, a2, a3, a4) ∈ TFC, b̃ = (b1, b2, b3, b4) ∈ TFC, and λ ∈ R,

ã + b̃ := (a1 + b1, a2 + b2, a3 + b3, a4 + b4) (2.13)

ã · b̃ :=
(

min{a1b1, a1b4, a4b1, a4b4},min{a2b2, a2b3, a3b2, a3b3},

max {a2b2, a2b3, a3b2, a3b3},max {a1b1, a1b4, a4b1, a4b4}
)

(2.14)

λ · ã :=

(λ · a1, λ · a2, λ · a3, λ · a4) λ ≥ 0
(λ · a1, λ · a2, λ · a3, λ · a4) λ < 0

(2.15)

Note that the multiplication (2.14) is not the same as defined previously in (2.8). But it is
indeed an approximation of the latter which ensures an internal operation, i.e. ã · b̃ ∈ TFC. For
further information on triangular and trapezoidal fuzzy numbers, the reader is referred to, for
example, [24], [131], [132].

Let us recall th LU-fuzzy partial orders, which are well known in the literature (see, e.g.,
[144, 133] and the references therein).

Definition 2.3.4. Given two fuzzy numbers u, v ∈ FC represented by means of α-levels as [u]α =
[uα,uα] ∈ KC, [v]α = [vα, vα] ∈ KC, respectively, then:

(i) u � v if and only if [uα,uα] � [vα, vα], for all α ∈ [0, 1].

(ii) u ≺ v if and only if [uα,uα] ≺ [vα, vα], for all α ∈ [0, 1].

The relationships µ � ν and µ ≻ ν means ν � µ and ν ≺ µ, respectively. In Arana
[8] a reformulation of the previous definition for triangular fuzzy numbers by means of the
relationship between their parameters is presented. The following extends this result to regular
k-polygonal fuzzy numbers.

Proposition 2.3.2. Given two regular k-polygonal fuzzy numbers ã = a−0 , a
−

1 , . . . , a
−

k , a
+
k , . . . , a

+
1 , a
+
0 and

b̃ = b−0 , b
−

1 , . . . , b
−

k , b
+
k , . . . , b

+
1 , b
+
0 with respect to {αi : i = 0, 1 . . . , k}, it follows that

(i) ã � b̃ if and only if a−i ≤ b−i , and a+i ≤ b+i , for all i = 0, 1, . . . , k.

(ii) ã ≺ b̃ if and only if a−i < b−i , and a+i < b+i , for all i = 0, 1, . . . , k.

We can also consider a natural extension of Definition 2.3.4 to vectors of fuzzy numbers.
Thus, given two vectors of fuzzy numbers µ = (µ1, . . . , µH) and ν = (ν1, . . . , νH), we say that
µ � (≺)ν if µh � (≺)νh for all h.

2.3.1 Fuzzy integer numbers

To extend fuzzy numbers and applications, Wang et al. in [141] have presented a definition for
fuzzy integer numbers. This definition, under our notation, is as follows.

Definition 2.3.5. A fuzzy set u : R→ [0, 1] is called a fuzzy integer number if its support is a closed
integer interval, denoted [u(0),u(0)]Z, and satisfies the following:

1) u is normal; i.e., there exists x′ ∈ [u(0),u(0)]Z such that u(x′) = 1,
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2) u(xi) ≤ u(x j) for any xi, x j ∈ [u(0), x′]Z with xi ≤ x j,

3) u(xi) ≥ u(x j) for any xi, x j ∈ [x′,u(0)]Z with xi ≤ x j,

Let FZ be the family of all fuzzy integer numbers and note that FZ ⊆ FC. A fuzzy integer
number can be represented by means of its α-levels as [u]α

Z
=
[
uα,uα

]
Z
∈ KZ, where uα,uα ∈ Z.

The arithmetic operations of integer intervals has been presented, let us do the same for
fuzzy integer numbers. Once more, the multiplication between two fuzzy integer numbers
and the multiplication by a scalar introduced in [141] do not preserve the closeness of these
operations, i.e. the α-levels of the multiplication and multiplication by scalar operations are
not necessarily a closed integer interval. In order to overcome this issue, let us consider that
the product of these α-levels is equal to the product of the corresponding α-levels of the fuzzy
integer numbers involved. Mathematically, given u, v ∈ FZ, represented by means of their
α-levels, for any α ∈ [0, 1], as [u]α

Z
= [uα,uα]Z, and [v]α

Z
= [vα, vα]Z, respectively, and given

λ ∈ R, let

[u + v]αZ = [u]αZ + [v]αZ = [uα + vα,uα + vα]Z, (2.16)

[u · v]αZ = [u]αZ · [v]αZ =
[
min{uα · vα,uα · vα,uα · vα,uα · vα}, (2.17)

max{uα · vα,uα · vα,uα · vα,uα · vα}
]
Z
,

[λ · u]αZ = λ · [u]αZ =

[λ · uα, λ · uα] ∩Z = [i(λ · uα), I(λ · uα)]Z λ ≥ 0
[λ · uα, λ · uα] ∩Z = [i(λ · uα), I(λ · uα)]Z λ < 0

=
[
min{i(λ · uα), i(λ · uα)},max{I(λ · uα), I(λ · uα)}

]
Z
. (2.18)

In this manner, given u, v ∈ FZ and λ ∈ R, it holds that u+ v ∈ FZ, u · v ∈ FZ, and λ ·u ∈ FZ.

Given Equations (2.3) and (2.4), the continuous extension of a fuzzy integer number u ∈ FZ
can be defined by means of α-levels as C([uα,uα]Z) = [uα,uα] ∈ KC. Conversely, the integer
projection of a given fuzzy number u ∈ FC by means of α-levels [u]α = [uα,uα] ∈ KC is
Z([uα,uα]) = [i(uα), I(uα)]Z ∈ KZ. Z([uα,uα]) = [I(uα), i(uα)]Z ∈ KZ. If uα ≤ uα and uα,uα ∈ Z
then Z([uα,uα]) = [uα,uα]Z ∈ KZ. In this case, we say that [uα,uα] ∈ KC→Z, which is the set of
intervals whose endpoints are integer. Note also that, in this case, Z(C([uα,uα]Z)) = [uα,uα]Z,
but in general, given [uα,uα] ∈ KC, then C(Z([uα,uα])) ⊆ [uα,uα].

Wang et al. [141] introduce the definition of trapezoidal fuzzy integer numbers (TFZ). We
rewrite it with our notation as follows.

Definition 2.3.6. Given a1, a2, a3 and a4 ∈ Z with a1 ≤ a2 ≤ a3 ≤ a4. If the fuzzy set u : R→ [0, 1] is
defined as

u(x) =


x−a1
a2−a1

i f x ∈ [a1, a2]Z
1 i f x ∈ [a2, a3]Z
a4−x
a4−a3

i f x ∈ [a3, a4]Z
0 otherwise

(2.19)

then u is said to be an trapezoidal fuzzy integer number (TFZ), and it is denoted as u ≡ ã =
(a1, a2, a3, a4)Z. If a2 = a3, then we have a triangular fuzzy integer number (tFZ).
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For any α ∈ [0, 1], the α-level of a trapezoidal fuzzy integer number is a closed integer
interval and can be represented as

[u]αZ = [uα,uα]Z = [a1 + (a2 − a1)α, a4 − (a4 − a3)α] ∩Z =
= [i(a1 + (a2 − a1)α), I(a4 − (a4 − a3)α)]Z (2.20)

The same discussion given above, in Equations (2.16), (2.17), and (2.18), for the basic
arithmetic by means of α-levels for general fuzzy integer numbers FZ applies also to the
trapezoidal fuzzy integer numbers TFZ. However, for trapezoidal (triangular) fuzzy integer
numbers, usually represented by their components ã = (a1, a2, a3, a4)Z, we must be aware that
the intuition may fail when they are seen as the projection of their continuous extension. The
following example illustrates more clearly this issue, as well as the basic arithmetic with TFZ.

Example 2.3.1. In this example, we show that the extension of arithmetic rules of trapezoidal fuzzy
numbers (TFC) to trapezoidal fuzzy integer numbers (TFZ) does not work. Let be ã = (1, 2, 2, 3)Z and
b̃ = (4, 6, 8, 9)Z two trapezoidal fuzzy integer numbers. For the case of the addition, defined by α-levels
as per Equation (2.16), we have that ã+ b̃ ∈ FZ, but ã+ b̃ , (1+4, 2+6, 2+8, 3+9)Z = (5, 8, 10, 12)Z.
In other words, the sum rule given by Equation (2.13) for the continuous case (TFC) does not apply.
This can be observed in the middle panel of Figure 2.2. For each fuzzy integer number, the α−level, for
each of the four values of α considered (α ∈ {0, 0.25, 0.5, 1}), are shown. Note that, in the case of ã, for
any 0 < α < 1 we have that [ã]α

Z
= [ã]1

Z
. Those intermediate levels are plotted with grey colour just

to illustrate this feature. Hence, we can say that ã has two characteristic α−levels, those of α = 0 and
α = 1, which are plotted in black colour. Something similar occurs in the case of b̃, i.e. it has three
characteristic α−levels, α = 0, α = 0.5 and α = 1. For any 0 < α < 0.5, [b̃]α

Z
= [b̃]0.5

Z
, and for any

0.5 < α < 1 we have that [b̃]α
Z
= [b̃]1

Z
.

The middle panel shows ã + b̃ calculated as per Equation (2.16). This sum has the same three
characteristic α−levels as b̃ since the sum operation is defined using alpha−levels. We have represented
with a white square symbol those integers that belong to (5, 8, 10, 12)Z, but not to ã + b̃. Thus, for
example, for α = 0.5, by (2.16) we have that

[ã + b̃]0.5
Z = [ã]0.5

Z + [b̃]0.5
Z = [2, 2]Z + [5, 8]Z = [7, 10]Z,

whereas [(5, 8, 10, 12)Z]0.5
Z
= [7, 11]Z. The latter can be seen as the integer projection of the continuous

extension, this is Z
(
[ã]0.5 + [b̃]0.5 = [ã + b̃]0.5

)
= Z
(
[1.5, 2.5] + [5, 8.5]

)
= Z
(
[6.5, 11]) = [7, 11]Z.

In this manner, we highlight the fact that: i) ã + b̃ ∈ FZ, but ã + b̃ < TFZ, as defined in (2.19);
and ii) the natural or intuitive idea or extension of the sum as the integer projection of the continuous
extension, which in this example corresponds to (5, 8, 10, 12)Z, is not the proposed definition of the sum
of trapezoidal fuzzy integer numbers, given by Equation (2.16). As it has been mentioned, the reason
for this is that arithmetic operations for fuzzy numbers are defined using α−levels.

Similarly, for the multiplication case, plotted at the bottom panel of Figure 4.1, this difference is
even more significant. Defined by α-levels in Equation (2.17), we have that ã · b̃ ∈ FZ, but ã · b̃ ,
(1 ·4, 2 ·6, 2 ·8, 3 ·9)Z = (4, 12, 16, 27)Z, i.e. the product rule given by Equation (2.14) for the continuous
case (TFC) does not apply here. Thus, for α = 0.5, following Equation (2.17), we have that

[ã · b̃]0.5
Z = [ã]0.5

Z · [b̃]0.5
Z = [2, 2]Z · [5, 8]Z = [10, 16]Z,

whereas

Z
(
[ã]0.5

· [b̃]0.5 = [ã · b̃]0.5
)
= Z
(
[1.5, 2.5] ·[5, 8.5]

)
= Z
(
[7.5, 21.25]) = [8, 21]Z = [(4, 12, 16, 27)Z]0.5

Z

.
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Figure 2.2: The two trapezoidal fuzzy integer numbers ã, b̃ of Example 2, represented for
different α-levels, and the corresponding α-levels of the fuzzy integer numbers resulting from
their addition and multiplication.

Let us now introduce the continuous extension of a trapezoidal fuzzy integer number (TFZ)
to a trapezoidal fuzzy number (TFC) as C((a1, a2, a3, a4)Z) = (a1, a2, a3, a4) ∈ TFC. Conversely,
if a1 ≤ a2 ≤ a3 ≤ a4 and a1, a2, a3, a4 ∈ Z, we introduce the integer projection of a trape-
zoidal fuzzy number (TFC) to a trapezoidal fuzzy integer number (TFZ) as Z(a1, a2, a3, a4) =
(a1, a2, a3, a4)Z ∈ TFZ. Note that, in the case a1, a2, a3, a4 ∈ Z, both operations are inverse, i.e.
Z(C((a1, a2, a3, a4)Z)) = (a1, a2, a3, a4)Z ∈ TFZ. In this case, we say that (a1, a2, a3, a4) ∈ TFC→Z,
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where TFC→Z is the set of trapezoidal fuzzy numbers whose four parameters are integer.

Definition 2.3.7. Given two fuzzy integer numbers u, v ∈ FZ represented by means of α-levels as
[u]α
Z
= [uα,uα]Z ∈ KZ, [v]α

Z
= [vα, vα]Z ∈ KZ, respectively, then:

(i) u � v if and only if [uα,uα]Z � [vα, vα]Z, for all α ∈ [0, 1].

(ii) u ≺ v if and only if [uα,uα]Z ≺ [vα, vα]Z, for all α ∈ [0, 1].

We can also introduce the relations u � v and u ≻ v for fuzzy numbers and fuzzy integer
numbers as equivalent to v � u and v ≺ u, respectively. In a similar way as for intervals, for the
sake of simplicity, we use the same symbols for partial orders when comparing fuzzy numbers
as when comparing fuzzy integer numbers. This unified notation will make easier, in the next
section, the formulation of a hybrid DEA model with inputs and outputs that can be either fuzzy
numbers or fuzzy integer numbers. Furthermore, as an application of the criterion given in
[8, 13], we can determine the partial order between trapezoidal fuzzy numbers by means of the
order between their corresponding parameters. Thus, given (a1, a2, a3, a4), (b1, b2, b3, b4) ∈ TFC,
it is clear that (a1, a2, a3, a4) � (≺)(b1, b2, b3, b4) if and only if ai � (≺)bi, for i ∈ {1, 2, 3, 4}. Similarly,
given (a1, a2, a3, a4)Z, (b1, b2, b3, b4)Z ∈ TFZ, then (a1, a2, a3, a4)Z � (≺)(b1, b2, b3, b4)Z if and only
if C((a1, a2, a3, a4)Z) = (a1, a2, a3, a4) � (≺)(b1, b2, b3, b4) = C((b1, b2, b3, b4)Z), that is, ai � (≺)bi, for
i ∈ {1, 2, 3, 4}. Therefore, the order relation between two trapezoidal fuzzy integer numbers is
the the same as the order relation between their corresponding trapezoidal fuzzy continuous
extensions.

2.4 Optimization

In real-world situations, optimization has extensive applications, for instance, optimization
can be used to improve efficiency, effectiveness, profit and also to decrease costs, energy
consumption. We next introduce specific optimization programming problems that have been
applied in this thesis.

2.4.1 Interval and Fuzzy Programming

Generally, the optimization problem is to find the minimum (or maximum) of a specific objective
function under some constraints. In the conventional optimization problem, the objective
function and constraints are vector functions, but in real-world problems, the objective function,
as well as the constraints are under a different form of uncertainty. In this thesis, we will
consider optimization problems under interval and fuzzy uncertainty. The interval and fuzzy
optimization problems are represented as below:

Min f (x) (2.21)

s.t. g j(x) � 0 j = 1, ...,m,

hw(x) = 0 w = 1, ..., p,

x is a n − dimensional interval or f uzzy number

where f is the objective function to be minimized over the n-dimensional interval or fuzzy
number, g j(x) � 0 are inequality constraints, hw(x) = 0 are equality constraints, and � is
inequality sign for intervals and fuzzy numbers.
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To solve interval and fuzzy optimization problem, we take into account the arithmetic
operations and partial order relations which is introduced in this chapter. Therefore, interval
and fuzzy optimization problem can be formulated as a crisp optimization problem as below:

Min f (x) (2.22)

s.t. g j(x) ≤ 0 j = 1, ...,m,

hw(x) = 0 w = 1, ..., p,

x ∈ Rn

where f : Rn
→ R is the objective function to be minimized over the n-dimensional vector

x and g j(x) ≤ 0 are inequality constraints, and hw(x) = 0 are equality constraints.

Generally, the optimization problem is classified into four main sub-fields, Linear Pro-
gramming (LP), Non-Linear Programming (NLP), Integer Linear Programming (ILP), Integer
Non-Linear Programming (INLP). The problems that allow both integer and continuous vari-
ables are termed Mixed Integer Linear Programming (MILP) or Mixed Integer Non Linear
Programming (MINLP). In LP the objective function and constraints are linear and variables
are continuous, but in NLP one or more constraints or objective function are non-linear and the
variables are also continuous. In IP the objective function and constraints are linear and vari-
ables are integer, while in INLP the one or more constraints or objective function are non-linear
and the variables are also an integer. LP belongs to complexity class P. Finding the solution for
this kind of optimization problem is easy. The simplex or interior point method can be applied.
On contrary, NLP and INLP are NP-hard, but when NLP and INLP are convex, they belong to
P because of the applicability of the interior point method. If solution region of a problem is
convex and the objective function is convex in a min problem or concave in a max problem, the
problem is said convex. In general, solving a convex problem is easier. ILP is NP-complete. In
particular, the special case of 0-1 ILP in which variables are binary.

2.4.2 Multiple Objective Programming (MOP)

Multiple objective optimization is an outstanding topic of a mathematical optimization problem
that has been applied in many scientific areas such as economics, engineering, industry. MOP
involves more than one objective function to be optimized. In this thesis, we will study
MOP, since we will use related MOP with crisp data to solve intervals and fuzzy optimization
problems. MOP are represented as below:

Min ( f1(x), f2(x), ..., fk(x)) (2.23)

s.t. g j(x) ≤ 0 j = 1, ...m,

hw(x) = 0 w = 1, ..., p,

x ∈ Rn

where f (x) = ( f1(x), f2(x), ..., fk(x)) is the multiple objective function to be minimized over
the n-dimensional vector x, g j(x) ≤ 0 are inequality constraints, and hw(x) = 0 are equality
constraints.
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The set X = {x ∈ Rn : g j(x) ≤ 0, j = 1, 2, ...,m, hw(x) = 0,w = 1, ..., p} is feasible solution of
the model (2.23). In MOP, there is not usually a feasible solution that minimizes all objective
function. Therefore, It is necessary to introduce Pareto solution and weakly Pareto solution,
defined by Pareto dominated relation. The set of Pareto optimal is termed Pareto frontier.

Definition 2.4.1. (see [153]). Let x∗ ∈ X be a feasible solution to the problem (2.23). x∗ ∈ X is said to
be a Pareto (efficient) solution to the problem (2.23) if there isn’t feasible solution x ∈ X of (2.23) such
that fi(x) ≤ fi(x∗) for all i = 1, 2, ..., k and fi(x) < fi(x∗) for at least one i.

Definition 2.4.2. (see [153]). Let x∗ ∈ X be a feasible solution to the problem (2.23). x∗ ∈ X is said to
be a weakly Pareto (weakly efficient) solution to the problem (2.23) if there isn’t feasible solution x ∈ X
of (2.23) such that fi(x) < fi(x∗) for all i = 1, 2, ..., k.

There are different methods to generate weakly Pareto (weakly efficient) solutions of MOP.
One of the most usual methods is weighted sum problems (see [9] and [10]). Given MOP (2.23)

and w ∈ {w = (w1,w2, · · · ,wk) ∈ Rk
|

k∑
i=1

wi = 1,wi > 0}, We define the related sum problem as

follows.

Min
k∑

i=1

wi fi(x) (2.24)

s.t. g j(x) ≤ 0 j = 1, ...,m,

hw(x) = 0 w = 1, ..., p,

x ∈ Rn

Theorem 2.4.1. w ∈ {w = (w1,w2, · · · ,wk) ∈ Rk
|

k∑
i=1

wi = 1,wi > 0} such that x is optimal solution

of (2.24), then x ∈ X is a Pareto solution of (2.23).

Theorem 2.4.2. w ∈ {w = (w1,w2, · · · ,wk) ∈ Rk
|

k∑
i=1

wi = 1,wi > 0} such that x is optimal solution

of (2.24), then x ∈ X is a weakly Pareto solution of (2.23).

Another approach to solve MOLP is ϵ− constraints Method, introduced by Chankong and
Haimes [33]. Decision makers opt for one objective out of k to be minimized and the rest of the
objectives to be restricted within user-specific values.

Min fµ(x) (2.25)

s.t. fi(x) ≤ ϵi i = 1, ...k i , µ,

g j(x) ≤ 0 j = 1, ...,m,

hw(x) = 0 w = 1, ..., p,

x ∈ Rn

Theorem 2.4.3. [113] If x∗ is a optimal solution of the problem (2.25) then x∗ is a weakly Pareto solution
of the problem (2.23).
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Let us recall, as in most of real-life situation some or all inputs/outputs can be taken as
integer data, for instance, the number of patient in any hospital, the problems that some or
all inputs/outputs are considered as integer, are of importance. To this matter, mix integer
programming plays an important role (see [11], [12], and the bibliography there in).

2.5 Data Envelopment Analysis (DEA)

Next, in this section is presented the brief introduction of basic concepts and models in Data
Envelopment Analysis (DEA).
Data envelopment analysis (DEA) is a non-parametric methodology for evaluating the ef-
ficiency of a set of homogeneous units commonly named Decision Making Units (DMUs),
consuming multiple inputs to produce multiple outputs. DEA is introduced by Charnes et
el. [31], refereed as the CCR model and Banker et el. [28] developed a modification of the
CCR model as the BCC model. Then DEA turn to one of the predominant fields in Operation
Research and Management.

Figure 2.3: The structure of DMUs

Figure 2.3 represents DMUs as a production entity with some performance metrics con-
suming multiple inputs to produce multiple outputs. In a set of homogeneous DMUs, the
inputs and outputs of the DMUs are the same for all DMUs, can be different organizations
from schools to hospitals. The inputs are a resource that enters to DMUs such as labor, fixed
cost and the outputs are the quantity produced by DMUs such as products yields, profit. The
performance metrics are classified as the smaller inputs are the better and the larger outputs
are the better.
Efficiency is a comprehensive score for each DMU, obtained by comparing the production
of each DMU with the others. Overall, to measure efficiency, there are two main parametric
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and non-parametric methods. DEA is one of the most common non-parametric methods to
assist efficiency. The main alternative to DEA is Stochastic Frontier Analysis (SFA) which is a
non-parametric method. In contrast to the parametric method, non-parametric methods don’t
require any information on production function to determine efficiency. A production func-
tion is an equation that explains the input-output relationship. The most common production
function used in SFA is the regression function and Cobb-Doaglas function. Therefore, DEA
utilizes multiple outputs, but SFA considers only one output at a time. Conversely, SFA is a
better predictor of future performance.

2.5.1 Production Possibility Set (PPS)

In this section, a Production Possibility Set (PPS), DEA technology, is inferred from the input
and output data of a set of DMUs, and applying some basic axioms (like Envelopment, free
disposability, and convexity). The PPS contains all the operating points that are deemed
feasible.

Let us consider a set of n DMUs. For j ∈ J = {1, . . . ,n}, each DMU j has m inputs X j =
(x1 j, . . . , xmj) ∈ Rm, produces s outputs Y j = (y1 j, . . . , ysj) ∈ Rs. The production possibility set
(PPS) or technology, defined as below:

T = {(X,Y)|X can produce Y}

introduce by Charnes et el. [31], PPS satisfies in the following axioms:

(A1) Envelopment: (X j,Y j) ∈ T, for all j ∈ J.

(A2) Free disposability: (X,Y) ∈ T, (X′,Y′) ∈ Rm+s, X′ ≧ X, Y′ ≦ Y⇒ (X′,Y′) ∈ T.

(A3) Convexity: (X,Y), (X′,Y′) ∈ T, then λ(X,Y) + (1 − λ)(X′,Y′) ∈ T, for all λ ∈ [0, 1].

(A4) Scalability (constant-returns to scale (CRS)): (X,Y) ∈ T⇒ (λX, λY) ∈ T, for all λ ∈ R+.

According to the minimum extrapolation principle (see [28]), the PPS, which contains all
the feasible input-output bundles, is the intersection of all the sets that satisfy axioms (A1)-(A4)
and PPS under constant-returns to scale (CRS) can be expressed as

TDEA =

(x, y) ∈ Rm+s
+ : x ≥

n∑
j=1

λ jX j, y ≤
n∑

j=1

λ jY j, λ j ≥ 0

 . (2.26)

where λ j represents the intensity variable attached to DMU j.
By adding the constraint

∑n
j=1 λ j = 1,

∑n
j=1 λ j ≥ 1, and

∑n
j=1 λ j ≤ 1 to (2.26), we can obtain the

PPS under the assumption variable-returns to scale (VRS), increasing-returns to scale (IRS), and
decreasing-returns to scale (DRS), respectively. The Figure 2.4 represent PPS under different
returns to scale with a simple numerical example with three single-input single-output DMUs
represented by A, B, and C .

2.5.2 Technical efficiency and classical DEA models

First, let us present the definition of efficiency, introduced by Charnes et al. [31], as below:
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Figure 2.4: The PPS under different return to scale

Definition 2.5.1. (Pareto-Koopmans efficiency) DMU o is said to be efficient if and only if for any
(X,Y) ∈ TDEA such that X � Xo and Y � Yo, then (X,Y) = (Xo,Yo).

As already discussed, the non-dominated subset of the PPS is said the efficient frontier.
DMUs that belong to the efficient frontier are labeled efficient while the DMUs that do not
belong to the efficient frontier are labeled inefficient and can be projected onto the efficient
frontier. The projection of a DMU onto efficient frontier is called its target and the distance
from the DMU to the target, which is a measure of the potential improvements that the DMU
can achieve, is used to compute a quantitative efficiency score.

In DEA, there are two models of efficiency with different characteristics; radial and non-
radial models. In radial DEA models, the efficiency of a DMUo is evaluated in two ways;
input-oriented models and output-oriented models. The input-oriented models decrease all the
inputs of DMUo equi-proportionally without decreasing the outputs. Therefore, the problem
is formulated as

min{θo ∈ R+|(θoXo,Yo) ∈ T}

In other words, it is to project DMUo on the PPS to measure how much its inputs can be
decreased at maximum. Figure 2.5 represents a simple example with eight two-inputs one-
output DMUs under PPS, introduced by Charnes et al. [31], CCR model. The outputs of DMUs
are the same. We can see that the efficiency of DMUo is θ = OH

′

OH by projection it to H′ on the
frontier.

The first DEA model with PPS under constant-returns to scale (CRS), CCR model, intro-
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Figure 2.5: PPS, frontier, and efficiency measurement under CRS assumption

duced by Charnes et al. [31] can be represented as below:

(CCR) Min θ (2.27)

s.t.
n∑

j=1

λ jxi j ≤ θxio, i = 1, . . . ,m,

n∑
j=1

λ jyrj ≥ yro, r = 1, . . . , s,

λ j ≥ 0, j = 1, . . . ,n.

where (θ∗, λ∗) are optimal solution and 0 ≤ θ∗ ≤ 1.

Note that, according to model (2.27), Banker et al. [28] introduce BCC model with PPS
under variable-returns to scale (VRS).

Theorem 2.5.1. If DMUo is efficient, then θ = 1

Although Theorem 2.5.1 is a necessary condition, it is not sufficient to guarantee the effi-
ciency of DMUo. For explanation, in Figure 2.5, eficient frontier is represented in black line. It is
clear that DMUs F and E have θ < 1 and thus according to Definition 2.5.1, they are inefficient.
DMUs A, B, C, D, and S have θ = 1, but it does not imply that DMUs are efficient. According
to Definition 2.5.1, A, B, C, and D are efficient, but S is not efficient because X1D < x1S and
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X2D = X2S. Therefore, to get more information about the efficiency of each DMU, we need to
formulate the model (2.27) as below:

(CCR) Min θ (2.28)

s.t.
n∑

j=1

λ jxi j = θxio − s−i , i = 1, . . . ,m,

n∑
j=1

λ jyrj = yro + s+r , r = 1, . . . , s,

λ j ≥ 0, j = 1, . . . ,n.

s−i ≥ 0, ∀i,

s+r ≥ 0, ∀r.

where s−i and s+r are slacks for inputs and outputs respectively.

Definition 2.5.2. For each DMUo, o ∈ {1, . . . ,n}, we say that the DMU o is

(i) Pareto efficient if θ∗ = 1, s−i = 0,∀i and s+r = 0,∀r,

(ii) weakly efficient if θ∗ = 1 and s−i , 0 and s+r , 0 for some i, r,

(iii) inefficient if θ > 0.

Let (θ∗, s−∗i , s
+∗
r ,λ

∗) be the optimal solution for (2.28) for a given DMUo, we can compute its
input and output targets Xtarget

o and Ytarget
o as

xtarget
io = θ∗xio − s−∗i , i = 1, . . . ,M, (2.29)

ytarget
io = yro + s+∗r , r = 1, . . . ,S. (2.30)

Output-oriented models increase all the outputs equi-proportionally without increasing the
inputs, i.e.

max{ϕo ∈ R+|(Xo, ϕoYo) ∈ T}

.

(CCR) Min ϕ (2.31)

s.t.
n∑

j=1

λ jxi j ≤ xio, i = 1, . . . ,m,

n∑
j=1

λ jyrj ≥ ϕyro, r = 1, . . . , s,

λ j ≥ 0, j = 1, . . . ,n.
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where (ϕ∗, λ∗) are optimal solution and ϕ∗ ≥ 1 and if ϕ∗ = 1 then DMUo is at least weakly
efficient.

The non-radial models, for instance, the Additive Model, the Slack-based Model (SBM),
and the Enhanced Russell Graph Efficiency Measure (ERM), are other DEA approaches which
the reductions of inputs and outputs are not equi-proportional.

One of the important models is the Slack-based non-radial model (SBM), introduced by
Tone [137].

(SBM) ρ0 = Min

1 −
1
m

m∑
i=1

sx
i

xio

1 +
1
s

s∑
r=1

sy
r

yro

(2.32)

s.t.
N∑

j=1

λ jxi j ≤ xip − sx
i , i = 1, . . . ,M,

N∑
j=1

λ jyrj ≥ yrp + sy
r , r = 1, . . . ,S,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

y
r ≥ 0, i = 1, . . . ,M, r = 1, . . . ,S.

whereλ j, j = 1, . . . ,n, are the intensity variables used for defining the corresponding efficient
target of DMUo. The inefficiency measure I(Xo,Yo) is units invariant and non-negative.

Theorem 2.5.2. DMUo is efficient if and only if ρ = 1.

The targets (X̃target
o , Ỹtarget

o ) of the DMUo is presented as below:

X̃target
o =

n∑
j=1

λ∗jX̃ j (2.33)

Ỹtarget
o =

n∑
j=1

λ∗jỸ j (2.34)

Theorem 2.5.3. ρ(X̃target
o , Ỹtarget

o ) = 1.

Also, Pastor et al. [117] proposed another non-radoal model, Enhanced Russell Graph
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Efficiency Measure (ERM):

(ERM) R = Min

1
m

m∑
i=1

θi

1
s

s∑
r=1

γr

(2.35)

s.t.
n∑

j=1

λ jxi j ≤ θixio, i = 1, . . . ,m,

n∑
j=1

λ jyrj ≥ γryro, r = 1, . . . , s,

θi ≤ 1, γr ≥ 1, ∀i, r,
λ j ≥ 0, j = 1, . . . ,n.

where λ j, j = 1, . . . ,n, are the intensity variable of each DMU j for defining the corresponding
efficient target of DMUp. R is interpreted as the the ratio between the average input reduction
and the average output increase, and 0 < R ≤ 1. and .

Although the objective function of (2.35) is non linear, it is possible to reformulate the
problem and get an linear programming problem.

Theorem 2.5.4. DMUo is efficient if and only if R = 1.

Besides, this model provides the targets (X̃target
o , Ỹtarget

o ) associated to a DMUo, given as

X̃target
o =

n∑
j=1

λ∗jX̃ j (2.36)

Ỹtarget
o =

n∑
j=1

λ∗jỸ j (2.37)

Theorem 2.5.5. R(X̃target
o , Ỹtarget

o ) = 1.

2.6 Inverse DEA

Two main questions have been considered in the most investigation related to inverse DEA. As
discussed before, the first question in inverse DEA (output-estimation) is considered by Wei et
al. [143]. "If the inputs of DMUo increase, how much should the outputs of DMUo increase to
preserve the efficiency score of DMUo?" The second question in inverse DEA (input-estimation)
is considered by Hadi-Vancheh et al. [65, 64]. "If the outputs of DMUo increase, how much
should the outputs of DMUo increase to preserve the efficiency score of DMUo?" They devel-
oped the models, which were introduced by Wei et al. [143].

2.6.1 Output-estimation in inverse DEA

To answer the first question, we need to calculate the minimum increase of output (β∗o) if the
input of DMUo increase from Xo to αo = Xo +△Xo, where △Xo ≩ 0 such that the efficiency score
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of DMUo remains constant. In fact,

β∗o = (β∗1o, β
∗

2o, ..., β
∗

so)t = Yo + △Yo, △ Yo ≩ 0.

To solve the above question, Wei et al. [143] introduced the following MOLP:

Max (β1o, ..., βso) (2.38)

s.t.
N∑

j=1

λ jxi j ≤ αio, i = 1, . . . ,m,

N∑
j=1

λ jyrj ≥ ϕ
∗

oβro, r = 1, . . . , s,

βro ≥ yro, i = 1, . . . , s,

λ j ≥ 0, j = 1, . . . ,N.

where ϕ∗ is the optimal value of the model (2.31).

Definition 2.6.1. (see [153]). Let (λ∗, β∗0) be a feasible solution to the model (2.38). (λ∗, β∗0) is said to be
a Pareto (efficient) solution to the model (2.38) if there isn’t feasible solution (λ, β0) of the model (2.38)
such that βro ≤ β∗ro for all r = 1, 2, ..., s and βro < β∗ro for at least one r.

Definition 2.6.2. (see [153]). Let (λ∗, β∗0) be a feasible solution to the model (2.38). (λ∗, β∗0) is said to
be a weakly Pareto (weakly efficient) solution to the model (2.38) if there isn’t feasible solution (λ, β0) of
the model (2.38) such that βro ≤ β∗ro for all r = 1, 2, ..., s.

Furthermore, assume that the DMUn+1 represents DMUo. After modification of inputs and
outputs, the following model is introduced to estimate the efficiency of the DMUn+1:

ϕ+∗o Max ϕ (2.39)

s.t.
n∑

j=1

λ jxi j + λn+1αio ≤ αio, i = 1, . . . ,m,

n∑
j=1

λ jyrj + λn+1β
∗

ro ≥ ϕβ
∗

ro, r = 1, . . . , s,

λ j ≥ 0, j = 1, . . . ,n.

where (λ∗, ϕ∗) are optimal solution.

Definition 2.6.3. If the optimal values of the model (2.31) and (2.39) are equal, it is said to be the
efficiency score remains unchanged; that is, ϕ(αo, β∗o) = ϕ(X0,Y0).

To answer the question, Wei et al. [143] established the following theorems.
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Theorem 2.6.1. Assume that ϕo > 1 and the inputs of DMUo are increased from X0 to α0 =
X0 + △Xo (△Xo ≩ 0).

(1) Let (λ∗, β∗o) be a Weak Pareto solution to the model (2.38) and if outputs of DMUo are increase
to β∗ then efficiency score of the DMUo under new inputs and outputs remains unchanged

(
ϕ(αo, β∗o) =

ϕ(Xo,Yo)
)
.

(2) Conversely, let (λ∗, β∗o) be a feasible solution to the model (2.38). If the efficiency score of the DMUo

under new inputs and outputs remains unchanged
(
ϕ(αo, β∗o) = ϕ(Xo,Yo)

)
, then (λ∗, β∗o) is a Weak

Pareto solution to the model (2.38).

For at least weakly efficient DMUs (ϕ = 1), Wei et al. [143] suggested the following Linear
Programming (LP):

(CCR) Min ϕ (2.40)

s.t.
n∑

j=1

λ jxi j ≤ αio, i = 1, . . . ,m,

n∑
j=1

λ jyrj ≥ ϕyro, r = 1, . . . , s,

θi ≤ 1, γr ≥ 1, ∀i, r,
λ j ≥ 0, j = 1, . . . ,n.

Theorem 2.6.2. Assume that ϕo = 1 and the inputs of DMUo are increased from X0 to α0 =
X0 + △Xo (△Xo ≩ 0). If ϕ∗ is the optimal value of the model (2.40) then efficiency score of the
DMUo under new inputs and outputs remains unchanged

(
ϕ(αo, ϕ∗Yo) = ϕ(Xo,Yo)

)
.

2.6.2 Input-estimation in inverse DEA

To answer the second question, we need to calculate the minimum increase of input (α∗o) if the
output of DMUo increase from Yo to βo = Yo +△Yo, where △Yo ≩ 0 such that the efficiency score
of DMUo remains constant. In fact,

α∗o = (α∗1o, α
∗

2o, ...,
∗

so )t = Xo + △Xo, △ Xo ≩ 0.

To solve the above question, Hadi-Vencheh et al. [65] introduced the following MOLP:

Min (α1o, ..., αmo) (2.41)

s.t.
N∑

j=1

λ jxi j ≤ θ
∗

oαio, i = 1, . . . ,m,

N∑
j=1

λ jyrj ≥ βro, r = 1, . . . , s,

αmo ≥ xmo, i = 1, . . . ,m,

λ j ≥ 0, j = 1, . . . ,N.
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where θ∗ is the optimal value of the model (2.27).

Definition 2.6.4. (see [153]). Let (λ∗, α∗0) be a feasible solution to the model (2.41). (λ∗, α∗0) is said to be
a Pareto (efficient) solution to the model (2.41) if there isn’t feasible solution (λ, α0) of the model (2.41)
such that αio ≤ α∗io for all i = 1, 2, ...,m and αio < α∗io for at least one i.

Definition 2.6.5. (see [153]). Let (λ∗, α∗0) be a feasible solution to the model (2.41). (λ∗, α∗0) is said to
be a weakly Pareto (weakly efficient) solution to the model (2.41) if there isn’t feasible solution (λ, α0) of
the model (2.41) such that αio ≤ α∗io for all i = 1, 2, ...,m.

Furthermore, assume that the DMUn+1 represents DMUo. After modification of inputs and
outputs, the following model is introduced to estimate the efficiency of the DMUn+1:

θ+∗o Min θ (2.42)

s.t.
n∑

j=1

λ jxi j + λn+1α
∗

io ≤ θα
∗

io, i = 1, . . . ,m,

n∑
j=1

λ jyrj + λn+1βro ≥ βro, r = 1, . . . , s,

λ j ≥ 0, j = 1, . . . ,n.

where (λ∗, θ∗) are optimal solution.

Definition 2.6.6. If the optimal values of the model (2.31) and (2.42) are equal, it is said to be the
efficiency score remains unchanged; that is, θ(αo, β∗o) = θ(X0,Y0).

To answer the question, Hadi-Vencheh et al. [65] established the following theorems.

Theorem 2.6.3. [65] Assume that (λ∗, θ∗o) is Pareto solution of the model (2.27) and the outputs of
DMUo are increased from Y0 to β0 = Y0 + △Yo (△Yo ≩ 0).

Let (λ∗, α∗o) be a Pareto solution to the model (2.41) and if inputs of DMUo are increase to α∗ then ef-
ficiency score of the DMUo under new inputs and outputs remains unchanged θ(ϕ(αo, β∗o) = θ(Xo,Yo)

)
.

Theorem 2.6.4. [64]Let (λ∗, α∗o) be a weak Pareto solution to the model (2.41) such that α∗o > Xo and
if inputs of DMUo are increase to α∗ then efficiency score of the DMUo under new inputs and outputs
remains unchanged θ(ϕ(αo, β∗o) = θ(Xo,Yo)

)
.
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Chapter 3

Fuzzy DEA

3.1 Introduction

In this chapter, we will use the Enhanced Russell Graph Measure (ERM) proposed in Pastor et
al. [117], which, in the case of crisp data, is equivalent to the slacks-based measure of efficiency
(SBM) of Tone [137]. Although still a very active research field, the DEA methodology is very
well developed in the case of crisp data. There are, however, situations in which there is
uncertainty in the data. In this chapter, we apply DEA to fuzzy data. Most existing FDEA
approaches use a radial metric and an input or an output orientation. There are many situations,
however, in which both inputs and outputs should be improved and not necessarily in the same
proportions. In those cases, a non-radial and non-oriented approach, like the proposed fuzzy
ERM (FERM) model, is adequate. In this chapter an axiomatic approach to derive a Fuzzy PPS
(FPPS) is presented and a FERM model is proposed. Only a few researchers have attempted to
explicitly build a FPPS from the observations. Thus, Allahviranloo et al. [4] use the Extension
principle to define a FPPS while Raei Nojehdehi et al. [120] use a geometrical approach based
on t-norms.

As regards, FERM approaches, note that a fuzzy ranking approach is used in Jahanshahloo
et al. [78], Ahmady et al. [1], and Izadihah et al. [71]. Hsiao et al. [68] and Puri and Yadav
[119] use the α-level set approach of Kao and Liu [84] while Saati and Memariani [122] use the
α-level set approach of Saati et al. [121]. Chen et al. [36] also use α-cuts and the Extension
Principle. Both Hsiao et al. [68] and Chen et al. [36] also formulate a Fuzzy Super SBM model.
Wu et al. [145] proposed the α-level set FERM approach with undesirable outputs. Izadikhah
and Khoshroo [72] also considered undesirable outputs and proposed a possibility approach to
solve a super-efficiency FERM model. Finally, Azadi et al. [23]proposed a possibility approach
based on a multiplier ERM formulation.

The FERM approach proposed in this chapter uses polygonal fuzzy numbers, a LU-fuzzy
partial order, and an axiomatic derivation of the fuzzy PPS. With respect to polygonal fuzzy
numbers, Stefanini et al. [131] proposed using a uniform subdivision of the interval [0, 1]
to get a finite number of α-cuts. Báez et al. [24] study the polygonal fuzzy numbers as a
particular case of the parametric representation of fuzzy numbers with linear interpolation. As
an application of polygonal fuzzy numbers, Chen and Adam [34] has recently proposed a new
transformation-based weighted fuzzy interpolative reasoning method.

In this chapter, we consider polygonal fuzzy number to model or approximate inputs and
outputs. No ranking functions or expected values on the polygonal fuzzy numbers are needed
to formulate the corresponding crisp model. Another difference between the existing and
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the proposed FERM approach is that we compute a crisp efficiency score instead of a fuzzy
efficiency score. Fuzzy efficiency scores are more consistent with the fuzzy nature of the data
but the crisp efficiency scores are simpler to understand and apply for practitioners. In this
chapter, we have opted for crisp efficiency scores. Computing fuzzy efficiency scores using a
fully fuzzy approach and LU-fuzzy partial orders is also possible (e.g. Arana-Jiménez et al.
[14]) but the process is necessarily much more involved. In this paper, we have searched for a
compromise between fuzziness/information loss and simplicity.

Therefore, the contributions of the proposed approach are several. One of them is the use
of polygonal fuzzy numbers and a LU-fuzzy partial order. Another is the axiomatic derivation
of the fuzzy production possibility set that contains all the fuzzy operating points that are
deemed feasible. Using this fuzzy DEA technology, a simple fuzzy optimization model allows
computing a crisp efficiency score and a fuzzy target for each production unit. To solve the
proposed FERM model a crisp optimization model is formulated that, although in principle is
non-linear, can be appropriately linearized. In the end we have a simple and effective FDEA
approach for assessing the efficiency and projecting the production units.

3.2 Crisp production possibility set and ERM model

Let us consider a set of n DMUs. For j ∈ J = {1, . . . ,n}, each DMU j has m inputs X j =
(x1 j, . . . , xmj) ∈ Rm, produces s outputs Y j = (y1 j, . . . , ysj) ∈ Rs. In the classic Charnes et al.
[31] DEA model, the production possibility set (PPS) or technology, denoted by T, satisfies
axioms envelopment, free disposability, convexity, and scalability introduced in Subsection
2.5.1. According to the minimum extrapolation principle (see [28]), The DEA PPS, which
contains all the feasible input-output bundles, can be introduced. In this chapter, we express
the DEA PPS under constant-return to scale (CRS) introduced in Subsection 2.5.1.

As mentioned in Subsection 2.5.2, radial and non-radial DEA models are two models of
efficiency in DEA. In radial DEA models, there are the input-oriented models in which decrease
all the inputs of DMUo equi-proportionally without decreasing the outputs and the output-
oriented models in which increase all the outputs equi-proportionally without increasing the
inputs. In non-radial models, the reductions of inputs and outputs are not equi-proportional.
In this regard, let us recall the Russel Graph Measure (ERM) (2.35) as a non-radial DEA model
which combines the input and output Russel measures in an additive way.

3.3 Proposed fuzzy PPS and fuzzy ERM model

Let us consider a set of n DMUs, j ∈ J = {1, . . . ,n}, each DMU j has m inputs X̃ j = (x̃1 j, . . . , x̃mj) ∈
RPFNk × · · · × RPFNk = (RPFNk)m

+ , produces s outputs Ỹ j = (ỹ1 j, . . . , ỹsj) ∈ (RPFNk)s
+. Let us

consider the following axioms, which are analogous to axioms introduced in Subsection 2.5.1,
but considering fuzzy inputs and outputs and using the corresponding partial order introduced
in Definition 2.3.4:

(B1) Envelopment: (X̃ j, Ỹ j) ∈ T, for all j ∈ J.

(B2) Free disposability: (X̃, Ỹ) ∈ T, X̃′ � x̃, Ỹ′ � Ỹ, (X̃′, Ỹ′) ∈ (RPFNk)m+s
+ ⇒ (X̃′, Ỹ′) ∈ T.

(B3) Convexity: (X̃, Ỹ), (X̃′, Ỹ′) ∈ T, then α(X̃, Ỹ) + (1 − α)(X̃′, Ỹ′) ∈ T, for all α ∈ [0, 1].

28



(B4) Scalability: (X̃, Ỹ) ∈ T⇒ (αX̃, αỸ) ∈ T, for all α ∈ R+.

Following the minimum extrapolation principle, the fuzzy production possibility set is the
intersection of all sets that satisfy axioms (B1)-(B4).

TFDEA =

(X̃, Ỹ) ∈ (RPFNk)m+s
+ : X̃ �

n∑
j=1

λ jX̃ j, Ỹ �
n∑

j=1

λ jỸ j, λ j ≥ 0,∀ j

 ,
Theorem 3.3.1. Under axioms (B1), (B2), (B3) and (B4), TFDEA is the fuzzy production possibility set
that results from the minimum extrapolation principle.

Proof. Denote by Ttrue the result of the minimum extrapolation principle axioms (B1), (B2), (B3)
and (B4). To prove the theorem it is necessary to show that TFDEA = Ttrue. To this end, let us
divide the proof into two parts.
(i) Ttrue ⊆ TFDEA.
It is sufficient to prove that TFDEA satisfies (B1), (B2), (B3) and (B4), since this implies that
TFDEA contains the intersection of all sets that satisfies the previous axioms, and consequently
contains Ttrue. Therefore, let us check the axioms (B1), (B2), (B3) and (B4) by TFDEA.

• Check (B1). It is clear since, given j ∈ J, then (X̃ j, Ỹ j), with λ j = 1 and λ′i = 0, for all i′ , j,
satisfies conditions in TFDEA.

• Check (B2). Given (X̃, Ỹ) ∈ TFDEA, X̃′ � X̃, Ỹ′ � Ỹ, (X̃′, Ỹ′) ∈ (RPFNk)m+s
+ , we have to

prove that (X̃′, Ỹ′) ∈ TFDEA. By hypothesis, there exists λ ≧ 0 such that

X̃ �
n∑

j=1

λ jX̃ j, Ỹ �
n∑

j=1

λ jỸ j. (3.1)

Combining (3.1) with X̃′ � X̃, Ỹ′ � Ỹ, it follows that

X̃′ � X̃ �
n∑

j=1

λ jX̃ j, Ỹ′ � Ỹ �
n∑

j=1

λ jỸ j. (3.2)

Therefore, (X̃′, Ỹ′) ∈ TFDEA.

• Check (B4). Given (X̃, Ỹ) ∈ TFDEA, there exists λ ≧ 0 such that (3.1) holds. Given α ∈ R+,
define λ̄ = αλ = (αλ1, . . . , αλn) ≧ 0. It follows that (αX̃, αỸ) ∈ (RPFNk)m+s

+ and

αX̃ �
n∑

j=1

αλ jX̃ j =

n∑
j=1

λ̄ jX̃ j, αỸ �
n∑

j=1

αλ jỸ j =

n∑
j=1

λ̄ jỸ j.

Therefore, (αX̃, αỸ) ∈ TFDEA.

• Check (B3). Let us consider (X̃, Ỹ), (X̃′, Ỹ′) ∈ TFDEA, and α ∈ [0, 1]. By hypothesis, there
exist λ, λ′ ≧ 0 such that

X̃ �
n∑

j=1

λ jX̃ j, X̃′ �
n∑

j=1

λ′jX̃ j, (3.3)

Ỹ �
n∑

j=1

λ jỸ j, Ỹ′ �
n∑

j=1

λ′jỸ j. (3.4)
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Multiplying by α each side in the first fuzzy inequality in (3.3), by (1− α) each side in the
second fuzzy inequality in (3.3), and then combining the fuzzy inequalities, we get

αX̃ + (1 − α)X̃′ �
n∑

j=1

(αλ j + (1 − α)λ′j)X̃ j, (3.5)

Proceeding in a similar way with ỹ and ỹ′ and inequalities (3.4), we have

αỸ + (1 − α)Ỹ′ �
n∑

j=1

(αλ j + (1 − α)λ′j)Ỹ j, (3.6)

Define λ′′ = (λ′′1 , . . . , λ
′′
n ), with λ′′j = αλ j + (1− α)λ′j ≥ 0, for all j = 1, . . . ,n, and substitute

them in expressions (3.5) and (3.6). It follows that (αX̃ + (1 − α)X̃′, αX̃ + (1 − α)Ỹ′) =
α(X̃, Ỹ) + (1 − α)(X̃′, Ỹ′) ∈ TFDEA.

(ii) TFDEA ⊆ Ttrue.
We need to prove that every element of TFDEA belongs to Ttrue. To this purpose, consider
(x̃, ỹ) ∈ TFDEA, which means that there exists λ ≧ 0, λ ∈ Rn, such that

X̃ �
n∑

j=1

λ jX̃ j, Ỹ �
n∑

j=1

λ jỸ j. (3.7)

We have that (X̃ j, Ỹ j) ∈ Ttrue by (B1), for all j ∈ J. Then, by (B4), it follows that (λ jX̃ j, λ jỸ j) ∈ Ttrue,
for all j ∈ J. Reasoning by induction, let us prove that

(
s∑

j=1

λ jX̃ j,
s∑

j=1

λ jỸ j) ∈ Ttrue, s = 1, . . . ,n. (3.8)

• Check that in the case s = 1 it holds. This case is immediate since (X̃1, Ỹ1) ∈ Ttrue, and
then by (B3), (λ1X̃1, λ1Ỹ1) ∈ Ttrue .

• Check that if cases s ≤ t are true, this implies that the case s = t + 1 is also true. We

can write (
t+1∑
j=1

λ jX̃ j,
t+1∑
j=1

λ jỸ j) as the convex sum of two elements of Ttrue, multiplied by a

scalar. Define α = 0.5 and α′ = 2, then:

(
t+1∑
j=1

λ jX̃ j,
t+1∑
j=1

λ jỸ j) = (
t∑

j=1

λ jX̃ j,
t∑

j=1

λ jỸ j) + (λt+1X̃t+1, λt+1Ỹt+1)

= α′(α(
t∑

j=1

λ jX̃ j,
t∑

j=1

λ jỸ j) + (1 − α)(λt+1X̃t+1, λt+1Ỹt+1)).

Then, by (B3) and (B4) it follows that (
t+1∑
j=1

λ jX̃ j,
t+1∑
j=1

λ jỸ j) ∈ Ttrue, and therefore (3.8) holds.

As a consequence of (3.8), we have that (
n∑

j=1

λ jX̃ j,
n∑

j=1

λ jỸ j) ∈ Ttrue. Since (X̃, Ỹ) verifies (3.7), then

by (B2) we conclude that (X̃, Ỹ) ∈ Ttrue. Therefore, TFDEA ⊆ Ttrue and the proof is complete. □
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Given the above fuzzy production possibility set, we can present the following definition
of efficiency.

Definition 3.3.1. (X̃, Ỹ) ∈ TFDEA is said to be efficient if X̃′ � X̃, Ỹ′ � Ỹ =⇒ (X̃′, Ỹ′) = (X̃, Ỹ), for
all (X̃′, Ỹ′) ∈ TFDEA.

After the characterization result for the fuzzy PPS, given in Theorem 3.3.1, and in order
provide a measure for the efficiency of each DMU, we can formulate the following fuzzy ERM
(FERM) model, as an extension of the correponding crisp ERM model.

(FERM) RF(X̃o, Ỹo) = Min

1
m

m∑
i=1

θi

1
s

s∑
r=1

γr

(3.9)

s.t.
n∑

j=1

λ jx̃i j � θix̃io, i = 1, . . . ,m,

n∑
j=1

λ j ỹrj � γr ỹro, r = 1, . . . , s,

θi ≤ 1, γr ≥ 1, ∀i, r,
λ j ≥ 0, j = 1, . . . ,n.

where the different inputs x̃i j and outputs ỹrj belong to (RPFNk)+, i.e.

x̃i j = (x−i j0, x
−

i j1, . . . , x
−

i jk, x
+
i jk, . . . , x

+
i j1, x

+
i j0), i = 1, . . . ,M, j = 1, . . . ,N

ỹrj = (y−rj0, y
−

rj1, . . . , y
−

rjk, y
+
rjk, . . . , y

+
rj1, y

+
rj0), r = 1, . . . ,S, j = 1, . . . ,N

Note that one of the advantages of using k-polygonal fuzzy numbers is that you can have
all the flexibility you need for modeling the fuzzy input and output data and yet be able to
describe the whole membership function using a finite set of alpha values. Since the linear
combination of the observed inputs and outputs are also k-polygonal fuzzy numbers the above
feature also applies to the constraints of the proposed model (3.9). That is why, according to
Proposition 2.3.2, the following crisp model, which only considers a finite number of alpha
values, is equivalent to model which considers all alpha values.

The above model can be written in parameterized form as follows:
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RF(X̃o, Ỹo) = Min

1
m

m∑
i=1

θi

1
s

s∑
r=1

γr

(3.10)

s.t.
n∑

j=1

λ jx+i jl ≤ θix+iol, i = 1, . . . ,m, l = 0, . . . , k,

n∑
j=1

λ jx−i jl ≤ θix−iol, i = 1, . . . ,m, l = 0, . . . , k,

n∑
j=1

λ jy+rjl ≥ γry+rol, r = 1, . . . , s, l = 0, . . . , k,

n∑
j=1

λ jy−rjl ≥ γry−rol, r = 1, . . . , s, l = 0, . . . , k,

θi ≤ 1, γr ≥ 1, ∀i, r,
λ j ≥ 0, j = 1, . . . ,n.

Note that FERM inherits some ERM properties such as that 0 < RF
≤ 1, and that RF is units

invariant. Furthermore, it is not difficult to show that if DMUo is efficient then RF(X̃o, Ỹo) = 1.
However, as shown in Example 3.3.1, unlike in the crisp case, RF(X̃o, Ỹo) = 1 is not a sufficient
condition for efficiency. Hence, model (3.10) needs to be modified to correct this, as argued
below.

Example 3.3.1. This small and simple example aims to illustrate that RF(X̃o, Ỹo) = 1 does not imply the
efficiency of DMUo in the fuzzy case, as it occurs for the crisp model (2.35). Let us assume that there are
only two DMUs that consume a single input and produce a single output and that the two same output
value but different inputs. Specifically, let X̃1 = (x̃1), where x̃1 = (1, 1.75, 2.5, 3.5, 4.75, 6), X̃2 = (x̃2),
where x̃2 = (2, 3, 3, 3.5, 4.75, 6) and Ỹ1 = Ỹ2 = (ỹ). DMU1 is efficient, but DMU2 is not efficient since
it is clear that X̃1 � X̃2, Ỹ2 = Ỹ1, as it is directly derived from Figure 3.1, see left plot. However,
according to model (3.10), not only θ and γ are equal to one for both DMUs, but RF(X̃1, Ỹ1) = 1, and
RF(X̃2, Ỹ2) = 1. In fact, all convex combinations of the two DMUs have RF(X̃o, Ỹo) = 1, for o = 1, 2.
Therefore, an optimal value of unity for model (3.10) does not imply the efficiency of the DMU. Moreover,
among all the alternative optimal targets for DMU2, X̃target

2 = λ1X̃1 + λ2X̃2, only one is truly efficient,
namely X̃target

2 = X̃1, which corresponds to λ1 = 1 and λ2 = 0. Hence, model (3.10) is not an adequate
extension of the crisp case.

An initial attempt to solve this discrepancy between a ratio value RF(X̃o, Ỹo) = 1 and
the DMU’s efficiency characterization, as discussed in Example 3.3.1, might be to consider a
different variable θil and γrl, for each level l = 0, . . . , k, i.e.
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Figure 3.1: Consider two DMUs that consume a single input and produce a single and
unit output. The input of DMU1 and DMU2 are X̃1 = (1, 1.75, 2.5, 3.5, 4.75, 6), and X̃2 =
(2, 3, 3, 3.5, 4.75, 6), respectively. Left: DMU2 is clearly inefficient, X̃1 � X̃2, X̃1 , X̃2 and
they have the same output but when (3.10) is solved we get that θ = 1 and hence RF(X̃2, Ỹ2) = 1.
This is in contrast with the crisp case, where only efficient DMUs have an ERM efficiency
score equal to unity. Center: If the variables θl and γl are let free for each l−level, the issue
remains. Since the right limits of both X̃1 and X̃2 coincide, the solution of model (3.11) would
be θ0 = θ0.5 = θ1 = 1 and RF

m(X̃2, Ỹ2) = 1. Right: Using separate left and right variables θL
l

and θR
l , the modified (MFERM) model (3.12) computes RF

M(X̃2, Ỹ2) < 1 and thus indicates that
DMU2 is inefficient.

RF
m(X̃o, Ỹo) = Min

1
m(k + 1)

m∑
i=1

k∑
l=0

θil

1
s(k + 1)

s∑
r=1

k∑
l=0

γrl

(3.11)

s.t.
n∑

j=1

λ jx+i jl ≤ θilx+iol, i = 1, . . . ,m, l = 0, . . . , k,

n∑
j=1

λ jx−i jl ≤ θilx−iol, i = 1, . . . ,m, l = 0, . . . , k,

n∑
j=1

λ jy+rjl ≥ γrly+rol, r = 1, . . . , s, l = 0, . . . , k,

n∑
j=1

λ jy−rjl ≥ γrly−rol, r = 1, . . . , s, l = 0, . . . , k,

θil ≤ 1, γrl ≥ 1, ∀i, r, l,
λ j ≥ 0, j = 1, . . . ,n.

However, coming back to Example 3.3.1, the solution of model (3.11) for DMU2 input would
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be θ0 = θ0.5 = θ1 = 1, i.e., since the right limits for both X̃1 and X̃2 coincide, this leads to all
three θl (and γl) variables being equal to unity, and therefore to a modified (FERM) value
RF

m(X̃2, Ỹ2) = 1, which would be misleading as DMU2 is not efficient. See central plot of Figure
3.1.

We have checked that in a fuzzy framework, both efficient and inefficient DMUs could have
the same objective value of 1 for the straightforward extension of ERM model (3.10), or the
modified (3.11). For example if the upper/lower limits of the l−levels coincide, may lead to this
case. This motivates the inclusion of left and right variables {θL

l ; θR
l ; γL

l ; γR
l }, for each l−level.

(MFERM) RF
M(X̃o, Ỹo) = Min

1
2m(k + 1)

m∑
i=1

k∑
l=0

(θL
il + θ

R
il )

1
2s(k + 1)

s∑
r=1

k∑
l=0

(γL
rl + γ

R
rl)

(3.12)

s.t.
n∑

j=1

λ jx−i jl ≤ θ
L
ilx
−

iol, i = 1, . . . ,m, l = 0, . . . , k,

n∑
j=1

λ jx+i jl ≤ θ
R
il x
+
iol, i = 1, . . . ,m, l = 0, . . . , k,

n∑
j=1

λ jy−rjl ≥ γ
L
rly
−

rol, r = 1, . . . , s, l = 0, . . . , k,

n∑
j=1

λ jy+rjl ≥ γ
R
rly
+
rol, r = 1, . . . , s, l = 1, . . . , k,

θL
il, θ

R
il ≤ 1, i = 1, . . . ,m, l = 0, . . . , k,

γL
rl, γ

R
rl ≥ 1, r = 1, . . . , s, l = 0, . . . , k,

λ j ≥ 0, j = 1, . . . ,n.

The advantage of model (3.12) over (3.9) is that, as shown below in Theorem 3.3.2, it has
the efficiency indication property, i.e. RF

M(X̃o, Ỹo)=1 if and only if the DMUo is efficient.

Note that, by using separate left and right input reduction factors for each input and left
and right output expansion factors for each output, all feasible input reductions and output
increases are exhausted. Back to Example 3.3.1, not all the above variables θL

l and θR
l are equal

to one for the inefficient DMU2, and RF
M(X̃2, Ỹ2) < 1. This can be seen in the right panel of

Figure 3.1, which shows the optimal left and right values of the input reduction variables for
the different alpha values.

Despite the objective function of (3.12) is non linear, it is possible, following a similar
procedure to that proposed by Pastor et al. [117], to reformulate the problem and get an
equivalent problem with a linear objective function as follows:

1
β
=

1
2s(k + 1)

s∑
r=1

k∑
l=0

(γL
rl + γ

R
rl), λ

′

j = βλ j,

θ
′L
il = βθ

L
il, θ

′R
il = βθ

R
il , γ

′L
rl = βγ

L
rl, γ

′R
rl = βγ

R
rl, ∀ j, i, r, l.

(3.13)
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Reformulating (3.12) using (3.13), we have:

(LMFERM) RF
M(X̃o, Ỹo) = Min

1
2m(k + 1)

m∑
i=1

k∑
l=0

(θ
′L
il + θ

′R
il ) (3.14)

s.t.
1

2s(k + 1)

s∑
r=1

k∑
l=0

(γ
′L
rl + γ

′R
rl ) = 1,

n∑
j=1

λ′jx
−

i jl ≤ θ
′L
il x−iol, i = 1, . . . ,m, l = 0, . . . , k,

n∑
j=1

λ′jx
+
i jl ≤ θ

′R
il x+iol, i = 1, . . . ,m, l = 0, . . . , k,

n∑
j=1

λ′jy
−

rjl ≥ γ
′L
rl y−rol, r = 1, . . . , s, l = 0, . . . , k,

n∑
j=1

λ′jy
+
rjl ≥ γ

′R
rl y+rol, r = 1, . . . , s, l = 1, . . . , k,

θ
′L
il , θ

′R
il ≤ β, i = 1, . . . ,m, l = 0, . . . , k,

γ
′L
rl , γ

′R
rl ≥ β, r = 1, . . . , s, l = 0, . . . , k,

β > 0, λ′j ≥ 0, j = 1, . . . ,n.

The above optimization problem (LMFERM) is now a linear program whose feasibility
region and objective function are equivalent to those given in (3.12), with the change of variables
given in (3.13).

Theorem 3.3.2. (X̃, Ỹ) ∈ TFDEA is efficient if and only if RF
M(X̃, Ỹ)=1.

Proof. (i) Let us begin with the first part of the proof, that is, suppose that (X̃, Ỹ) ∈ TFDEA is
efficient and we have to prove that RF

M(X̃, Ỹ)=1. By contradiction, suppose that the statement
is not true, i.e. RF

M(X̃, Ỹ) < 1. Let (θ′, γ′, β, λ′) the optimal solution for (LMFERM), then let
(θ, γ, λ) the corresponding optimal solution of model (MFERM). There must exist l0 ∈ {0, . . . , k},
i0 ∈ {1, . . . ,m} and r0 ∈ {1, . . . , s} such that θL

i0l0
< 1 or θR

i0l0
< 1 or γL

r0l0
> 1 or γR

r0l0
> 1. For

the sake of simplicity, we continue the proof for the case θR
i0l0
< 1; the proof for the other

cases is similar. From the constrains of (MFERM), it follows that
n∑

j=1

λ jx−i jl ≤ θ
L
ilx
−

il ≤ x−il ,

n∑
j=1

λ jx+i jl ≤ θ
R
il x
+
il ≤ x+il ,

n∑
j=1

λ jy−rjl ≥ γ
L
rly
−

rl ≥ y−rl,
n∑

j=1

λ jy+rjl ≥ γ
R
rly
+
rl ≥ y+rl for all i, l. In particular,

n∑
j=1

λ jx−i0 jl0
< θL

i0l0
x−i0l0
≤ x−i0l0

. Therefore,
n∑

j=1

λ jX̃ j � X̃,
n∑

j=1

λ jỸ j � Ỹ, (
n∑

j=1

λ jX̃ j,
n∑

j=1

λ jỸ j) , (X̃, Ỹ),

with (
n∑

j=1

λ jX̃ j,
n∑

j=1

λ jỸ j) ∈ TFDEA, contradicting the assumption that (X̃, Ỹ) is efficient.

(ii) For the second part of the proof, let us consider that RF
M(X̃, Ỹ)=1 and we have to prove

that (X̃, Ỹ) ∈ TFDEA is efficient. To this matter, suppose the contrary, that is, that (X̃, Ỹ) is

35



not efficient. This means that there exists (X̃′, Ỹ′) ∈ TFDEA such that X̃′ � X̃, Ỹ′ � Ỹ and
(X̃′, Ỹ′) , (X̃, Ỹ). Then there exist i0 ∈ {1, . . . ,m} or r0 ∈ {1, . . . , s} such that x̃′i0 � x̃i0 and
x̃′i0 , x̃i0 , or ỹ′r0

� ỹr0 and ỹ′r0
, ỹr0 . For the sake of simplicity, we continue the proof for the

case x̃′i0 � x̃i0 and x̃′i0 , x̃i0 ; the proof for the other case is similar. It follows that there exists
l0 ∈ {0, . . . , k} such that [x̃

′
−

i0l0
, x̃
′+
i0l0

] � [x̃−i0l0
, x̃+i0l0

], [x̃
′
−

i0l0
, x̃
′+
i0l0

] , [x̃−i0l0
, x̃+i0l0

], and then x̃
′
−

i0l0
< x̃−i0l0

or
x̃
′+
i0l0
< x̃+i0l0

. Suppose that x̃
′
−

i0l0
< x̃−i0l0

. Then there exists δ < 1, δ ≥ 0, such that x̃
′
−

i0l0
≤ δx̃−i0l0

.
Since (X̃′, Ỹ′) ∈ TFDEA, then there exists λ ∈ Rn

+, with X̃ � X̃′ �
∑n

j=1 λ jX̃ j, Ỹ � Ỹ′ �
∑n

j=1 λ jỸ j,
that is,

∑n
j=1 λ jx−i0 jl0

≤ x̃
′
−

i0l0
≤ δx̃−i0l0

, i = 1, . . . ,m, l = 0, . . . , k. Define θ
′L
i0l0
= δ < 1, λ′ = λ,

and the remaining variables equal to one in (LMFERM). Then, such (θ′, γ′, β, λ′) is feasible for
(LMFERM), with 1

2m(k+1)
∑m

i=1
∑k

l=0(θ
′L
il +θ

′R
il ) < 1, contradicting the assumption that RF(X̃, Ỹ) = 1.

□

Besides, this model provides the targets (X̃target
o , Ỹtarget

o ) associated to a DMUo, given as

X̃target
o =

n∑
j=1

λ∗jX̃ j (3.15)

Ỹtarget
o =

n∑
j=1

λ∗jỸ j (3.16)

Note that above (MFERM) model, and equivalently model (LMFERM), computes the effi-
ciency score of a DMUo and this is indicated in the arguments of RF(X̃o, Ỹo). It can, however,
be used to project any feasible operating point (X̃, Ỹ) to compute its efficiency RF

M(X̃, Ỹ). This
will be useful for proving the following result.

Theorem 3.3.3. RF
M(X̃target

o , Ỹtarget
o ) = 1.

Proof. To prove the result, suppose the contrary, i.e. RF
M(X̃target

p , Ỹtarget
p ) < 1. Due to the way

(X̃target
p , Ỹtarget

p ) is computed there must exist an optimal solution (θ∗
′

, γ∗
′

, β∗
′

, λ∗
′

) for (LMFERM),
which derives an optimal solution (θ∗, γ∗, λ∗) of model (MFERM) and an optimal target of

DMUp given by X̃target
p =

n∑
j=1

λ∗jX̃ j and Ỹtarget
p =

n∑
j=1

λ∗jỸ j. Analogously, let (θ∗∗, γ∗∗, λ∗∗) be the

optimal solution of the (MFERM) model that projects (X̃target
p , Ỹtarget

p ). It follows that

RF
M(X̃target

p , Ỹtarget
p ) =

1
2m(k + 1)

m∑
i=1

k∑
l=0

(θ∗∗Lil + θ
∗∗R
il )

1
2s(k + 1)

s∑
r=1

k∑
l=0

(γ∗∗Lrl + γ
∗∗R
rl )

. (3.17)

Since θ∗∗Lil , θ
∗∗R
il ≤ 1, and γ∗∗Lrl , γ

∗∗R
rl ≥ 1 for all i, r, l, it is clear that RF

M(X̃target
p , Ỹtarget

p ) < 1 implies
that there must exist l0 ∈ {0, . . . , k}, i0 ∈ {1, . . . ,m} and r0 ∈ {1, . . . , s} such that θ∗∗Li0l0

< 1 or θ∗∗Ri0l0
< 1

or γ∗∗Lr0l0
> 1 or γ∗∗Rr0l0

> 1. For the sake of simplicity of this proof, we only consider the first case

θ∗∗Li0l0
< 1; the proof for the other cases is similar. Define θ

L
il = θ

∗L
il θ
∗∗L
il , θ

R
i = θ

∗R
il θ
∗∗R
il , γL

rl = γ
∗L
rl γ
∗∗L
rl

and γR
rl = γ

∗R
rl γ
∗∗R
rl for all i ∈ {1, . . . ,m}, r ∈ {1, . . . , s} and l ∈ {1, . . . , k}. It is clear that
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θ
L
il ≤ θ

∗L
il ≤ 1, θ

R
il ≤ θ

∗R
il ≤ 1, ∀i, l, θ

L
i0 < θ

∗L
i0
≤ 1, (3.18)

γL
rl ≥ γ

∗L
rl ≥ 1, γR

rl ≥ γ
∗R
rl ≥ 1 ∀r, l. (3.19)

Therefore, from definition of the target (3.15) and (3.16), and since (θ∗∗, γ∗∗, λ∗∗) is an optimal
solution of (MFERM) for (X̃target

o , Ỹtarget
o ), and for all i, r, l

n∑
j=1

λ∗∗j x−i jl ≤ θ
∗∗L
il xtarget−

iol = θ∗∗Lil

n∑
j=1

λ∗jx
−

i jl ≤ θ
∗∗L
il θ

∗L
il x−iol = θ

L
ilx
−

iol, (3.20)

n∑
j=1

λ∗∗j x−i jl ≤ θ
∗∗R
il xtarget−

iol = θ∗∗Ril

n∑
j=1

λ∗jx
−

i jl ≤ θ
∗∗R
il θ

∗R
il x−iol = θ

R
il x
−

iol, (3.21)

n∑
j=1

λ∗∗j y−rjl ≥ γ
∗∗L
rl ytarget−

rol = γ∗∗Lrl

n∑
j=1

λ∗jy
−

rjl ≥ γ
∗∗L
rl γ

∗L
rl y−rol = γ

L
rly
−

rol, (3.22)

n∑
j=1

λ∗∗j y−rjl ≥ γ
∗∗R
rl ytarget−

rol = γ∗∗Rrl

n∑
j=1

λ∗jy
−

rjl ≥ γ
∗∗R
rl γ

∗R
rl y−rol = γ

R
rly
−

rol, (3.23)

This implies that (θ, γ, λ∗∗) is a feasible solution of model (MFERM) for DMUo, which
combined with (3.18) and (3.19) implies that

1
2m(k + 1)

m∑
i=1

k∑
l=0

(θ
L
il + θ

R
il )

1
2s(k + 1)

s∑
r=1

k∑
l=0

(γL
rl + γ

R
rl)

<

1
2m(k + 1)

m∑
i=1

k∑
l=0

(θ∗Lil + θ
∗R
il )

1
2s(k + 1)

s∑
r=1

k∑
l=0

(γ∗Lrl + γ
∗R
rl )

= RF
M(X̃o, Ỹo), (3.24)

contradicting the assumption that (θ∗, γ∗, λ∗) is an optimal solution of (MFERM). This com-
pletes the proof.

□

In summary, extending the conventional ERM efficiency, the proposed MFERM approach
uses a linearizable, non-oriented, non-radial optimization model that exhausts all feasible
input reductions and output expansions at all l-levels, providing crisp efficiency scores (and
corresponding efficiency ranking) as well as fuzzy efficient targets.

3.4 Numerical examples

3.4.1 Triangular fuzzy numbers dataset

In order to illustrate the proposed fuzzy ERM model consider the dataset from Arya & Yadav
[20] shown in Table 3.1 and which correspond to 12 Community Health Centers (CHCs) in
Meerut district of Uttar Pradesh, India. The table shows the fuzzy input and output of each
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Table 3.2: FERM efficiency scores compared with some existing fuzzy SBM approaches.

DMU
Our approach (3.14) Arya & Yadav [20] Hsiao et al.[68] Izadikhah et al. (2017) [71]
RF

M(X̃o, Ỹo) rank SBMEo [SBML
o ,SBMU

o ]α=0 [SBML
o ,SBMU

o ]α=1 Interval efficiency rank

H1 1 1 1 [1, 1] 1 [0.84, 1.00] 3 (ρ1
0.628
> ρ5)

H2 1 1 1 [1, 1] 1 [0.88, 1.00] 2 (ρ2
0.564
> ρ1)

H3 1 1 1 [1, 1] 1 [0.89, 1.00] 1 (ρ3
0.523
> ρ2)

H4 0.33 11 1 [0.12, 1] 1 [0.30, 1.00] 7 (ρ4
0.64
> ρ9)

H5 0.834 6 1 [0.39, 1] 1 [0.73, 1.00] 4 (ρ5
0.695
> ρ8)

H6 0.441 8 1 [0.24, 1] 0.53 [0.42, 0.52] 9 (ρ6
0.572
> ρ11)

H7 0.414 10 1 [0.16, 1] 0.66 [0.36, 0.55] 11 (ρ7
0.536
> ρ12)

H8 1 1 1 [0.19, 1] 0.51 [0.39, 1.00] 5 (ρ8
0.572
> ρ12)

H9 0.602 7 1 [0.26, 1] 0.52 [0.44, 0.62] 8 (ρ9
0.719
> ρ6)

H10 0.3 12 1 [0.14, 1] 0.30 [0.26, 0.35] 12

H11 0.423 9 0.66 [0.22, 1] 0.50 [0.40, 0.51] 10 (ρ11
0.506
> ρ7)

H12 1 1 1 [0.32, 1] 1 [0.57, 0.76] 6 (ρ12
0.514
> ρ4)

DMU. The first input is the total sum of doctors and staff nurses while the second one is
the number of pharmacists. The two outputs correspond to the number of inpatients and
outpatients, respectively. All the inputs and outputs are given as triangular fuzzy numbers,
which correspond to k = 1 regular polygonal fuzzy numbers.

The efficiency RF
M(X̃o, Ỹo) of each DMUo, o = 1, . . . , 12, has been computed using (3.14), and

is shown in the second column of Tables 3.1 and 3.2. It can be seen that DMUs H1, H2, H3,
H8 and H12 are labelled efficient. In Table 4.2 we also add a ranking, based on this efficiency
measurement, so that this ranking can be compared with those of other methods. Efficient
DMUs are all ranked equal.

Table 3.1 shows the fuzzy targets computed for each DMU using (3.15) and (3.16). Due
to horizontal space constraints, the structure of the table is unusual in the sense that for each
DMU there are two rows, each showing the data and the results for each of the two inputs and
two outputs. Note that the target coincides with the observed data in the case of the efficient
DMUs and dominate it, in the sense of the partial order introduced in Definition 2.3.4, in the
case of inefficient DMUs.

For comparison purposes, Table 3.2 also shows the efficiency scores computed by other
approaches from the literature. The fourth column shows the SBMEo efficiency score computed
by the fuzzy SBM model of Arya & Yadav [20]. Note that their method labelled all DMUs as
efficient except one, namely H11. Thus, it seems that the proposed FERM approach has, at least
for this dataset, more discriminant power than this method. The fifth and sixth columns of
Table 3.2 correspond to the results of the Fuzzy SBM model of Chen et al. [36] and Hsiao et al.
[68]. Since they use fuzzy slack variables, their efficiency scores are fuzzy. The corresponding
α-cuts for α = 0, 1 levels are shown. Note that the FERM efficiency scores are within the
corresponding α = 0 cut for all DMUs.

Finally, the two last columns of Table 3.2 correspond to the Fuzzy ERM approach of
Izadikhah et al.[71], where a pair of models are used to generate upper and lower limits
of interval efficiency score, based on the enhanced Russell model applied to interval data. The
whole dataset is converted into intervals for applying this methodology, computing the nearest
weighted interval approximation of fuzzy numbers, with the weighting function (4a3, 4a3). We
use a preference degree measurement ρ j, see [71] for more details, to establish some partial
order between intervals and ranking the DMUs. In this case, although at first sight it appears
that this method has more discriminant power from [71], we also remark the different efficiency
interpretations. Izadikhah et al.[71] approach computes an efficiency score interval (converting
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or approximating all data to intervals). Whereas the proposed method is based on technical
efficiency within a fuzzy technology framework. According to the latter, the efficient DMUs
are characterised by RF

M(X̃o, Ỹo) = 1 (see Theorem 3.3.2). In this regard, we found in some
cases that efficient DMUs are ranked after inefficient ones by Izadikhah et al. [71] approach.
However, despite these differences, we see agreement between the results of both methods.
Thus, except for DMU 12, RF

M(X̃o, Ỹo) always lies within the corresponding efficiency score
interval. The level of agreement between the results of our approach and [71] has been tested
using a Wilcoxon signed-rank test, which is a non-parametric paired difference test for matched
pairs or dependent samples. With a p−value= 0.2146, we cannot reject the null hypothesis of
homogeneity, i.e. that the median difference is zero.

3.4.2 Modified dataset with 2−polygonal fuzzy numbers

In this subsection we illustrate the proposed approach with fuzzy data that are not triangular
fuzzy numbers. Actually, polygonal fuzzy numbers allow a great deal of flexibility in modelling
the uncertainty in the input and output data. To keep things simple, however, we will just
consider 2−polygonal fuzzy numbers, instead of triangular (1−polygonal). We have modified
the inputs and outputs of the DMUs for getting RPFN2 data. The modifications have been
randomly generated keeping the same closure, see Table 3.3.

As an example, Figure 3.2 shows the input/output data for DMU H4, as well as the
corresponding input and output targets. The black circles and solid lines show the ob-
served 2−polygonal fuzzy inputs and outputs. The MFERM targets are represented with
dashed lines and black squares. For example, for input 2, the corresponding variables are
{θL

2,0;θL
2,1;θL

2,2;θR
2,2;θR

2,1;θR
2,0} = {0.525; 0.849; 1.000; 1.000; 0.683; 0.445}. In the case of output 1,

the target support is significantly to the right of the observed data, implying a large inefficiency
as regards that output. For the other inefficient DMUs this separation between the targets and
observed data values are even greater and happens mainly for output 2.

In addition to the fuzzy input and output for the example in Subsection 3.4.2, Table 3.3
shows the corresponding MFERM efficiency scores. In general, they show an improvement
with respect to those of Example ??. The efficient or inefficient character of the DMUs remains
the same, but the inefficient DMUs have improved their efficiency. This is not guaranteed to
happen necessarily although it is not strange. That is because the use of a higher k−polygonal
fuzzy numbers leads to an increased number of constraints (and hence a smaller feasibility
region) in (PLFERM) model, which is a minimization problem.

The lower part of Table 3.3 also shows the computed MFERM targets. The efficient DMUs
Figure 3.1 are projected onto themselves. For the inefficient DMUs, as graphically shown in
Figure for DMU H4, the fuzzy targets always dominate the observed inputs and outputs and
sometimes by a large amount.

The interpretation of the fuzzy targets is similar to that of the fuzzy data from which
they derive. Thus, for each α-level, the corresponding α-cuts of the observed input and the
corresponding target can be compared, and the same occurs with the observed output and
the target output. The proposed approach guarantees that, for each α-level, the lower limit
of the target input is less than the lower limit of the observed input and that the upper limit
of the target input is less than the upper limit of the observed input. Moreover, the relative
difference between the two lower limits and between the upper limits must be at least the value
of the corresponding θL

il, θ
R
il , γ

L
rl or γR

rl variable computed by the model (LMFERM) (3.14), and
equations (3.13), which represents the maximum margin for improvement for that input or
output.
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Ỹ
1j

Ỹ
2j

H
1

1
(1

0
,1

0.
81

,1
3

,1
3.

04
,1

5
)

(3
,3

.1
2

,5
,5

.4
8

,8
)

(3
64

0
,3

64
0.

21
,3

65
0

,3
65

0.
43

,3
65

5
)

(1
34

13
0

,1
34

13
5.

68
,1

34
13

7
,1

34
14

2.
45

,
13

4
14

5
)

H
2

1
(1

0
,1

1.
7

,1
2

,1
3.

09
,1

4
)

(3
,4

.6
7

,5
,6

.1
2

,7
)

(4
15

0
,4

15
1.

64
,4

16
0

,4
16

5.
69

,4
17

0
)

(1
16

05
5

,1
16

06
1.

78
,1

16
06

2
,1

16
06

2.
42

,
11

6
06

8
)

H
3

1
(9

,1
0.

09
,1

2
,1

3.
68

,1
4

)
(2

,3
.6

9
,4

,4
.4

8
,5

)
(4

36
0

,4
36

5.
12

,4
37

0
,4

37
8.

88
,4

38
0

)
(9

4
06

0
,9

4
06

0.
14

,9
4

06
6

,9
4

06
6.

43
,9

4
07

2
)

H
4

0.
34

3
(6

,6
.6

9
,8

,1
0.

45
,1

1
)

(1
,1

,1
,1

.6
3

,3
)

(4
85

,4
86

.6
2

,4
92

,4
96

.9
4

,5
00

)
(2

4
32

0
,2

4
32

0.
38

,2
4

32
9

,2
4

33
0.

7
,2

4
33

5
)

H
5

0.
83

9
(8

,8
.5

,1
0

,1
0.

13
,1

3
)

(3
,3

.8
2

,4
,4

.1
8

,6
)

(2
46

0
,2

46
3.

42
,2

46
4

,2
46

8.
91

,2
47

0
)

(9
9

74
0

,9
9

74
3.

96
,9

9
74

8
,9

9
75

4.
3

,9
9

76
0

)
H

6
0.

45
8

(1
0

,1
0.

05
,1

1
,1

1.
62

,1
2

)
(2

,2
.3

8
,3

,3
.7

1
,4

)
(1

36
0

,1
36

4.
87

,1
36

8
,1

37
0.

22
,1

37
5

)
(4

9
39

5
,4

9
39

6.
58

,4
9

40
1

,4
9

40
7.

19
,4

9
41

0
)

H
7

0.
44

4
(9

,1
0

,1
0

,1
0

,1
2

)
(1

,2
,2

,2
,6

)
(1

05
5

,1
06

2
,1

06
2

,1
06

2
,1

07
0

)
(3

7
76

5
,3

7
77

2
,3

7
77

2
,3

7
77

2
,3

7
78

0
)

H
8

1
(9

,1
1

,1
1

,1
1

,1
5

)
(1

,4
,4

,4
,7

)
(1

29
5

,1
30

2
,1

30
2

,1
30

2
,1

31
0

)
(8

2
83

5
,8

2
84

1
,8

2
84

1
,8

2
84

1
,8

2
85

0
)

H
9

0.
62

5
(1

0
,1

2
,1

2
,1

2
,1

5
)

(2
,5

,5
,5

,7
)

(1
66

0
,1

67
1

,1
67

1
,1

67
1

,1
68

0
)

(1
00

59
0

,1
00

59
6

,1
00

59
6

,1
00

59
6

,1
00

60
5

)
H

10
0.

30
3

(1
0

,1
6

,1
6

,1
6

,2
0

)
(2

,4
,4

,4
,6

)
(1

01
0

,1
01

8
,1

01
8

,1
01

8
,1

02
5

)
(6

4
34

5
,6

4
35

1
,6

4
35

1
,6

4
35

1
,6

4
36

0
)

H
11

0.
44

7
(9

,1
1

,1
1

,1
1

,1
4

)
(3

,5
,5

,5
,8

)
(1

50
0

,1
50

4
,1

50
4

,1
50

4
,1

51
0

)
(8

0
05

0
,8

0
05

6
,8

0
05

6
,8

0
05

6
,8

0
06

1
)

H
12

1
(5

,8
,8

,8
,1

0
)

(1
,4

,4
,4

,6
)

(1
96

0
,1

96
5

,1
96

5
,1

96
5

,1
97

2
)

(5
8

16
0

,5
8

16
7

,5
8

16
7

,5
8

16
7

,5
8

17
5

)

D
M

U
Fu

zz
y

in
pu

tt
ar

ge
ts

Fu
zz

y
ou

tp
ut

ta
rg

et
s

X̃
ta

rg
et

1p
X̃

ta
rg

et
2p

Ỹ
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Figure 3.2: Observed and target 2−polygonal fuzzy inputs and outputs for DMU H4 for
example in Section 3.4.2. The black circles and solid lines show the observed inputs, x̃14 and
x̃24, and outputs, ỹ14 and ỹ24. The corresponding targets, x̃target

i4 and ỹtarget
r4 , are represented

with black squares and dashed lines. To compute the MFERM input and output targets, the
observed data x̃i4 and ỹr4 are multiplied by the corresponding variables {θL

il;θ
R
il ;γ

L
rl;γ

R
rl}, at levels

l = 0, 1, 2, thus exhausting all possible input and output improvements. In the case of output
1, the support of the observed data and the MFERM target differ significantly, and hence the
x-axis has been broken (the gap is marked with two vertical lines).

Thus, for example, as indicated in Table 3.3 and shown in Figure 3.2, the 0.0-level interval
of input 1 of the observed DMU H4 is the interval [6, 11] while the 0.0-level interval for the
corresponding target is [2.19, 3.38]. Assuming that the units of that input refer to full-time
equivalents (FTE), the target indicates that, for that α−level, the minimum value of the variable
can be reduced 3.81 FTE and the maximum value can be reduced 7.62 FTE. The same reasons
that make the observed input uncertain and fuzzy apply to the corresponding target. The
proposed approach does neither ignore nor eliminate those reasons. What is clear is that, at
the 0.0-level, DMU H4 can reduce input 1 by at least 3.81 FTE. Note also the feasible reduction
for the 0.5-level (from [6.7, 10.45] to [2.43, 3.22]), and for the 1.0-level (from [8, 8] to [2.9, 2.9]).
Overall, {θL

1,0;θL
1,1;θL

1,2;θR
1,2;θR

1,1;θR
1,0} = {0.365; 0.364; 0.363; 0.363; 0.308; 0.307} for this input. As

it can be seen in Figure 3.2, something similar happens in the case of input 2, leading in this
case to {θL

1,0;θL
1,1;θL

1,2;θR
1,2;θR

1,1;θR
1,0} = {0.525; 0.849; 1.000; 1.000; 0.683; 0.445}. In the case of the

outputs, the interpretation is similar. Thus, for output 1, number of inpatients, the 0.0-level,
0.5-level and 1.0 level sets for corresponding observed and the target fuzzy numbers are [485,
500] vs. [1000.68, 1005.18], [486.62, 496.94] vs. [1001.65, 1004.75] and [492, 492] vs. [1003.05,
1003.05], respectively.
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Therefore, for DMU H4, the increase in the number of inpatients is apparent and significant,
as the value of the corresponding variables

{γL
1,0;γL

1,1;γL
1,2;γR

1,2;γR
1,1;γR

1,0} = {2.063; 2.058; 2.039; 2.039; 2.022; 2.010}

computed by model (3.14) and equations (3.13), attests.

By contrast, for output 2, the number of outpatients,

{γL
2,0;γL

2,0.5;γL
2,1;γR

2,1;γR
2,0.5;γR

2,0} = {1.0005; 1.0005; 1.0002; 1.0002; 1.0001; 1.000}

because the upper limit of one of the 0.0-set cannot be increased, as it can be seen in Figure 3.2.
This leads to the corresponding MFERM efficiency score shown in Table 5.1

RF
M(X̃H4, ỸH4) =

112 (0.365 + 0.364 + 0.363 + 0.363 + 0.308 + 0.307+
112 (2.063 + 2.058 + 2.039 + 2.039 + 2.022 + 2.010+

+0.525 + 0.849 + 1.0 + 1.0 + 0.683 + 0.445)
+2.010 + 1.0005 + 1.0005 + 1.0002 + 1.0002 + 1.0001 + 1.0)

=

= 0.343,

In summary, what the example in Section 3.4.2 illustrates is that the use of k−polygonal
fuzzy numbers provides all the flexibility that be needed to represent the uncertainty in the data
and that the proposed FERM approach can handle all those situations providing appropriate
efficiency scores and the corresponding fuzzy targets.

3.4.3 Case study: electric power distribution company

This numerical example is taken from Izadikhah et al. (2017) [71], where 17 Iranian suppliers of
self-supporting cable for Markazi Province Electric Power Distribution Company (MPEPDC)
in Iran are evaluated. There are 2 inputs, x1 = the overall suppliers ranking (ordinal variable)
and x2 = unit price by considering volume discount (interval type). Furthermore, there are
6 outputs: y1 = production capacity and y2 = financial potential, both of interval type, and
y3 = environmental standards and regulations, y4 = research and developments for eco-
design product, y5 = safety and health standards, and y6 = customer satisfaction. These
last four outputs are fuzzy triangular numbers (see cf. Tables 10 to 14 in Izadikak for more
details). Note that, since interval data [a1, a2] correspond with trapezoidal fuzzy numbers
x−0 , x

−

1 , x
+
1 , x
+
0 = (a1, a1, a2, a2), we model such type of data as (RPFN1)+. Recall also that the

triangular fuzzy outputs are particular cases of the trapezoidal ones, where x−1 = x+1 . We adopt
the same approximation of the ordinal input x1 as an interval as done in [71].

Table 3.4 shows the results of applying the proposed (PLFERM) model to this dataset, and
the comparison with the interval efficiency scores obtained by Izadikhah et al. (2017) [71]. The
proposed approach identifies nine DMUs as efficient DMUs. This relatively high number is
not surprising for a fuzzy problem with a such number of DMUs and variables. As already
discussed above in Section 3.4.2, obviating the differences between efficiency interpretations in
both methods, we find sufficient agreement since most RF

M(X̃p, Ỹp) fall within the corresponding
efficiency intervals. Moreover, if we apply a Wilcoxon signed-rank test of the results of our
approach and [71], we get a p−value= 0.285. This means that we cannot reject the null
hypothesis of homogeneity, i.e. that the median difference is equal to zero, which supports the
existence of sufficient agreement between both efficiency measurements. As in Subsection 3.4.1,
Izadikhah et al. (2017) [71] provides a ranking even between the efficient DMUs and, again, we
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Table 3.4: FERM efficiency scores compared to interval efficiencies and ranking from Izadikha-
het al. (2017) [71], corresponding to the Numerical example 3.4.3.

DMU
Our approach Izadikhah et al. (2017) [71]

RF
M(X̃o, Ỹo) Rank Interval efficiency Rank

1 0.598 13 [0.5,0.72] 6
2 0.309 16 [0.24,0.51] 16
3 0.498 14 [0.32,0.80] 8
4 1 1 [0.84,0.99] 2
5 1 1 [0.29,0.59] 15
6 1 1 [0.45,0.69] 7
7 1 1 [0.57,1] 3
8 0.657 12 [0.32,0.76] 10
9 1 1 [0.28,0.82] 9
10 1 1 [0.24,0.75] 13
11 0.898 10 [0.33,0.74] 11
12 1 1 [0.84,1] 1
13 1 1 [0.34,0.61] 14
14 1 1 [0.46,1] 4
15 0.256 17 [0.20,0.42] 17
16 0.679 11 [0.47,0.99] 5
17 0.354 15 [0.27,0.74] 12

find that in some cases efficient DMUs are ranked after inefficient ones. The proposed approach
is not able to discriminate between the efficient DMUs, but can easily rank the inefficient DMUs
just sorting by their RF

M(X̃p, Ỹp) value.

3.5 Conclusions

This chapter presents a new approach for efficiency assessment and target setting when the
input and output data are fuzzy. It is based on polygonal fuzzy numbers and LU-fuzzy partial
orders. First, from the observed fuzzy data, and using simple axioms analogous to the ones
considered in the crisp case, the fuzzy PPS containing all feasible operating points is inferred.
Based on this PPS a fuzzy ERM DEA model is proposed to compute, for each DMU, a crisp
efficiency score and a fuzzy target. The use of polygonal fuzzy numbers provides ample
flexibility for modeling the uncertainty in the data. In addition, the non-radial approach used,
which exhausts all possible input and output slacks, provides increased discriminant power.

The proposed approach has two main limitations. One is that it computes crisp efficiency
scores. The second one is that it does not work (i.e. it leads to unbounded solutions) when the
left limit of any input or output of a DMU is zero.

As regards topics for continuing this research, one is formulating a super-efficiency ap-
proach so that the efficient DMUs can be classified into extreme efficient and non-extreme
efficient and the former can be ranked. Another topic is fully fuzzy approach for comput-
ing fuzzy efficiency scores. Other interesting extensions of the proposed approach include
handling negative data and undesirable outputs given as fuzzy sets. Finally, a meaningful
comparison between fuzzy DEA and stochastic DEA is also due (see, e.g., Wanke et al. [142]).
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Chapter 4

Integer interval DEA

4.1 Introduction

As mentioned before, DEA was first introduced by Charnes et al. [31]. Then many researchers
have investigated this area of science, but integer interval DEA, DEA under uncertainty, has
not been worked until now. This chapter studies the situation when we have inputs and
outputs that are both integer and interval-valued, as mathematical modeling of the uncertainty
on integer data. To the best of our knowledge, the closest existing DEA approach is the
fuzzy integer DEA model of Kordrostami et al. [94], which extends the integer DEA model of
Jie et al. [81]. The approach proposed in this paper has numerous differences with respect to
Kordrostami et al. [94]. Thus, while [94] considers fuzzy integer data in our case the uncertainty
is modeled with interval integer data. While [94] uses a fuzzy ranking approach, which derives
a defuzzification of the data instead of fully keeping the fuzzy information given by the original
data, in the present approach we establish the order relation between the elements of the PPS
using interval orders, together with interval arithmetic. Also, while [94] uses a radial-oriented
approach, we use an additive, non-oriented approach. While [94] computes a crisp target,
we compute an integer interval target. More important, while [94] uses the integer PPS of
Kuosmanen and Kazemi Matin [98], we carry out an axiomatic derivation of a new integer
interval PPS. This PPS can be used as a base to derive, in a continuation of this research, a fuzzy
integer interval PPS, and a corresponding DEA model with fuzzy integer data using partial
orders and arithmetic on fuzzy sets.

4.2 Crisp production possibility set and slack-based measure

Let us consider a set of n DMUs. For j ∈ J = {1, . . . ,n}, each DMU j has m inputs X j =
(x1 j, . . . , xmj) ∈ Rm, produces s outputs Y j = (y1 j, . . . , ysj) ∈ Rs. In the classic Charnes et al.
[31] DEA model, the production possibility set (PPS) or technology, denoted by T, satisfies
the axioms Envelopment, Free disposability, Convexity, and Scability presented in Subsection
2.5.1.

Let us recall that following the minimum extrapolation principle (see [28]), the DEA PPS,
which contains all the feasible input-output bundles, is the intersection of all the sets that satisfy
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axioms and can be expressed as

TDEA =

(X,Y) ∈ Rm+s
+ : X ≥

n∑
j=1

λ jX j,Y ≤
n∑

j=1

λ jY j, λ j ≥ 0

 .
Also, a DMU o is said to be efficient if and only if for any (X,Y) ∈ TDEA such that X � Xo
and Y � Yo, then (X,Y) = (Xo,Yo). This can be determined solving the following normalized
slacks-based DEA model

(DEA) I(Xo,Yo) = Max
M∑

i=1

sx
i

xio
+

S∑
r=1

sy
r

yro
(4.1)

s.t.
N∑

j=1

λ jxi j ≤ xio − sx
i , i = 1, . . . ,M,

N∑
j=1

λ jyrj ≥ yro + sy
r , r = 1, . . . ,S,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

y
r ≥ 0, i = 1, . . . ,M, r = 1, . . . ,S.

where λ j, j = 1, . . . ,n, are the intensity variables used for defining the corresponding
efficient target of DMUo. The inefficiency measure I(Xo,Yo) is units invariant and non-negative.
Moreover, a DMUo is efficient if and only if I(Xo,Yo) = 0.

4.3 Proposed integer interval PPS and slack-based measure of inef-
ficiency

Let us consider a set of N DMUs. Each DMU j, with j ∈ J = {1, . . . ,N}, consumes M inputs
given by X j = (x1 j, . . . , xMj) ∈ (KZ+)M, with xi j = [xi j, xi j]Z ∈ KZ+ for i ∈ {1, . . . ,M}. Each DMU j

also produces S outputs given by Y j = (y1 j, . . . , ySj) ∈ (KZ+)S, with yrj = [yrj, yrj]Z ∈ KZ+

for r ∈ {1, . . . ,S}. Their continuous extensions are C(X j) =
(
C(x1 j), . . . ,C(xMj)

)
and C(Y j) =(

C(y1 j), . . . ,C(ySj)
)
, with C(xi j) = [xi j, xi j] ∈ KC, and C(yrj) = [yrj, yrj] ∈ KC, respectively.

Let us consider the following axioms, which are analogous to axioms introduced in Sub-
section 2.5.1, but considering integer interval inputs and outputs and using the corresponding
partial order introduced in Definitions 2.2.2 and 2.2.4:

(B1) Envelopment: (X j,Y j) ∈ T, for all j ∈ J.

(B2) Free disposability: (X,Y) ∈ T, (X′,Y′) ∈ (KZ+)M+S, such that X′ � X, Y′ � Y ⇒ (X′,Y′) ∈ T.

(B3) Convexity: (X,Y), (X′,Y′) ∈ T, α ∈ [0, 1], such that α(C(X),C(Y)) + (1 − α)(C(X′),C(Y′)) ∈
(KC→Z)M+S

⇒ (X′′,Y′′) = Zα(C(X),C(Y)) + (1 − α)(C(X′),C(Y′)) ∈ T.

(B4) Scalability: (X,Y) ∈ T,α ≥ 0, andα(C(X),C(Y)) ∈ (KC→Z)M+S
⇒ (X′′,Y′′) = Z(α(C(X),C(Y))) ∈

T.
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Theorem 4.3.1. Under axioms (B1), (B2), (B3) and (B4), the interval production possibility set that
results from the minimum extrapolation principle is

TIIDEA =

(X,Y) ∈ (KZ+)M+S : C(X) �
N∑

j=1

λ jC(X j),C(Y) �
N∑

j=1

λ jC(Y j), λ j ≥ 0,∀ j


Proof. Denote by Ttrue the result of the minimum extrapolation principle axioms (B1), (B2), (B3)
and (B4). To prove the theorem it is necessary to show that TFDEA = Ttrue. To this end, let us
divide the proof into two parts.
(i) Ttrue ⊆ TIIDEA.
It is sufficient to prove that TIIDEA satisfies (B1), (B2), (B3) and (B4), since this implies that
TIIDEA contains the intersection of all sets that satisfies the previous axioms, and consequently
contains Ttrue. Therefore, let us check the axioms (B1), (B2), (B3) and (B4) by TIIDEA.

• Check (B1). It is clear since, given j ∈ J, then (X j,Y j), with λ j = 1 and λ j′ = 0, for all j′ , j,
satisfies conditions in TIIDEA.

• Check (B2). Given (X,Y) ∈ TIIDEA, X′ � X, Y′ � Y, (X′,Y′) ∈ (KZ+)m+s, we have to prove
that (X′,Y′) ∈ TIIDEA. By hypothesis, there exists λ ≧ 0 such that

C(X) �
n∑

j=1

λ jC(X j), C(Y) �
n∑

j=1

λ jC(Y j). (4.2)

Combining (4.2) with X′ � X, Y′ � Y, it follows that

C(X′) � C(X) �
n∑

j=1

λ jC(X j), C(Y′) � C(Y) �
n∑

j=1

λ jC(Y j). (4.3)

Therefore, (X′,Y′) ∈ TIIDEA.

• Check (B3). Let us consider (X,Y), (X′,Y′) ∈ TIIDEA, and α ≥ 0, what means that there
exist λ, λ′ ≧ 0 such that

C(X) �
n∑

j=1

λ jC(X j), C(X′) �
n∑

j=1

λ′jC(X j), (4.4)

C(Y) �
n∑

j=1

λ jC(Y j), C(Y′) �
n∑

j=1

λ′jC(Y j). (4.5)

Multiplying by α each side in the first interval inequality in (4.4), by (1 − α) each side in
the second interval inequality in (4.4), and then combining the interval inequalities, we
get

αC(X) + (1 − α)C(X′) �
n∑

j=1

(αλ j + (1 − α)λ′j)C(X j), (4.6)

Proceeding in a similar way with y and y′ and inequalities (4.5), we have

αC(Y) + (1 − α)C(Y′) �
n∑

j=1

(αλ j + (1 − α)λ′j)C(Y j), (4.7)
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We can see that (αC(X) + (1 − α)C(X′), αC(Y) + (1 − α)C(Y′)) = α(C(X),C(Y)) + (1 −
α)(C(X′),C(Y′)). By hypothesis, α(C(X),C(Y)) + (1 − α)(C(X′),C(Y′)) ∈ (KC→Z)m+s. Define
λ′′ = (λ′′1 , . . . , λ

′′
n ), with λ′′j = αλ j + (1 − α)λ′j ≥ 0, for all j = 1, . . . ,n, and substitute them

in expressions (4.6) and (4.7). Then, it follows that (X′′,Y′′) = Z(α(C(X),C(Y)) + (1 −
α)(C(X′),C(Y′))) ∈ TIIDEA.

• Check (B4). Given (X,Y) ∈ TIIDEA, there exists λ ≧ 0 such that (4.2) holds. Given
α ∈ R+, and (αC(X), αC(Y)) ∈ (KC→Z)m+s, it follows that there exists Z((αC(X), αC(Y))) =
(αX, αY) ∈ (KZ+)m+s. Define λ̄ = αλ = (αλ1, . . . , αλn) ≧ 0. Then, multiplying by α each
side in the inequalities in (4.2),

C(αX) �
n∑

j=1

αλ jC(X j) =
n∑

j=1

λ̄ jC(X j), C(αY) �
n∑

j=1

αλ jC(Y j) =
n∑

j=1

λ̄ jC(Y j).

Therefore, (αX, αY) ∈ TIIDEA

(ii) TIIDEA ⊆ Ttrue.
We need to prove that every element of TIIDEA belongs to Ttrue. To this purpose, consider
(X,Y) ∈ TIIDEA, which means that there exists λ ≧ 0, λ ∈ Rn, such that

C(X) �
n∑

j=1

λ jC(X j), C(Y) �
n∑

j=1

λ jC(Y j), (4.8)

what is equivalent to say

[xi, xi] �
n∑

j=1

λ j[xi j, xi j] =
[ n∑

j=1

λ jxi j,
n∑

j=1

λ jxi j

]
, i = 1, . . . ,m, (4.9)

[yr, yr] �
n∑

j=1

λ j[yi j, yi j] =
[ n∑

j=1

λ jyi j,
n∑

j=1

λ jyi j

]
, r = 1, . . . , s. (4.10)

The relationships (4.9) and (4.10) imply

xi ≥

n∑
j=1

λ jxi j, xi ≥

n∑
j=1

λ jxi j, i = 1, . . . ,m, (4.11)

yr ≤

n∑
j=1

λ jyrj, yr ≤

n∑
j=1

λ jyrj, r = 1, . . . , s. (4.12)

Taking into account the inequalities given by (4.11) and (4.12), we consider the following two
cases:

• Suppose that there exists some index and some inequality, among those given by (4.11)
and (4.12), such that the inequality becomes equality. For the sake of simplicity, suppose
that the equality is verified for an inequality in the first group of (4.11), that is, there exists
i ∈ {1, . . . ,m} such that xi =

∑n
j=1 λ jxi j ∈ Z+. The latter implies that λ j ∈ Q+, for all j, with

Q ⊆ R the subset of rational numbers. Then, there exist u j, v j ∈ Z+, v j , 0, with u j a pair
number, such that λ j =

u j

v j
, for all j. Define v =

∏n
j=1 v j, and n j = vλ j ∈ Z+. We point out
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that n j is a pair number, that is, 0.5n j ∈ Z+, what is used in a next step in this proof. If we
multiply each side of the interval inequalities given in (4.8), then if follows

vC(X) �
n∑

j=1

n jC(X j), vC(Y) �
n∑

j=1

n jC(Y j). (4.13)

We have that (X j,Y j) ∈ Ttrue by (B1), for all j ∈ J. Since (n jX j,n jY j) and (0.5n jX j, 0.5n jY j) ∈
(KZ+)m+s, then, by (B4), it follows that (n jX j,n jY j) and (0.5n jX j, 0.5n jY j) ∈ Ttrue, for all
j ∈ J, and the relationships (4.13) can be written as

vX �
n∑

j=1

n jX j, vY �
n∑

j=1

n jY j. (4.14)

Following, and reasoning by induction, let us prove that( k∑
j=1

n jX j,
k∑

j=1

n jY j

)
∈ Ttrue, k = 1, . . . ,n. (4.15)

To this matter, first we check that in the case k = 1 it holds, such as it has been proved
before. Following, we check that if cases k ≤ t are true, this implies that the case k = t + 1
is also true. We can write (

∑t+1
j=1 n jX j,

∑t+1
j=1 n jY j) as the convex sum of two elements of

Ttrue, multiplied by a scalar. Define α = 0.5 and α′ = 2, then:( t+1∑
j=1

n jX j,
t+1∑
j=1

n jY j

)
=
( t∑

j=1

n jX j,
t∑

j=1

n jY j

)
+
(
nt+1Xt+1,nt+1Yt+1

)
= Z
(
α′
(
α
( t∑

j=1

n jC(X j),
t∑

j=1

n jC(Y j)
)
+

+ (1 − α)
(
nt+1C(Xt+1),nt+1C(Yt+1)

)))
.

Since

α
( t∑

j=1

n jC(X j),
t∑

j=1

n jC(Y j)
)
+ (1 − α)

(
nt+1C(Xt+1),nt+1C(Yt+1)

)
=

( t+1∑
j=1

0.5n jC(X j),
t+1∑
j=1

0.5n jC(Y j)
)
∈ (KC→Z)m+s,

then, by (B3), it follows that

Z
(
α
( t∑

j=1

n jC(X j),
t∑

j=1

n jC(Y j)
)
+ (1 − α)

(
nt+1C(Xt+1),nt+1C(Yt+1)

))
∈ Ttrue.

If it is multiplied by α′ = 2, then, by (B4), it follows that

α′
(
Z
(
α
( t∑

j=1

n jC(X j),
t∑

j=1

n jC(Y j)
)
+ (1 − α)

(
nt+1C(Xt+1),nt+1C(Yt+1)

)))
∈ Ttrue.

Thus,
(∑t+1

j=1 n jX j,
∑t+1

j=1 n jY j

)
∈ Ttrue, and therefore (4.15) holds. As a consequence of

(4.15), we have that
(∑n

j=1 n jX j,
∑n

j=1 n jY j

)
∈ Ttrue. Since (vX, vY) satisfies (4.14), then it

also satisfies (4.13). Then, by (B2), we have that (vX, vY) ∈ Ttrue. And since 1
v (vX, vY) =

(X,Y) ∈ (KZ+)m+s, then, by (B2), it follows that (X,Y) ∈ Ttrue.
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• Suppose that there exists no index and inequality, among those given by (4.11) and (4.12),
such that the inequality becomes equality. In such a case, all inequalities are sharp, and
it is not difficult to see that there exists δ > 0, small enough, such that

xi >
n∑

j=1

(λ j + δ)xi j, xi >
n∑

j=1

(λ j + δ)xi j, i = 1, . . . ,m, (4.16)

yr <
n∑

j=1

(λ j + δ)yrj, yr <
n∑

j=1

(λ j + δ)yrj, r = 1, . . . , s. (4.17)

We choose λ′j ∈ (λ j, λ j + δ) ∩Q+ , ∅, for j ∈ {1, . . . ,n}. Then, from (4.11), (4.12), (4.16) and
(4.17), it follows

xi >
n∑

j=1

λ′jxi j, xi >
n∑

j=1

λ′jxi j, i = 1, . . . ,m, (4.18)

yr <
n∑

j=1

λ′jyrj, yr <
n∑

j=1

λ′jyrj, r = 1, . . . , s. (4.19)

In particular,

xi ≥

n∑
j=1

λ′jxi j, xi ≥

n∑
j=1

λ′jxi j, i = 1, . . . ,m, (4.20)

yr ≤

n∑
j=1

λ′jyrj, yr ≤

n∑
j=1

λ′jyrj, r = 1, . . . , s. (4.21)

Reasoning as above, we conclude that (X,Y) ∈ Ttrue. Therefore, TFDEA ⊆ Ttrue and the proof
is complete. □

After the characterization result for the TIIDEA given in Theorem 4.3.1, we can formulate the
following integer interval DEA (IIDEA) model, which is a slacks-based measure of inefficiency,

(IIDEA) I(Xo,Yo) = Max
M∑

i=1

sx
i + sx

i

xio + xio
+

S∑
r=1

sy
r + sy

r

yro + yro
(4.22)

s.t.
N∑

j=1

λ jC(xi j) � C(xio) − C(sx
i ), i = 1, . . . ,M,

N∑
j=1

λ jC(yrj) � C(yro) + C(sy
r ), r = 1, . . . ,S,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

y
r ∈ KZ+, i = 1, . . . ,M, r = 1, . . . ,S.

where it is assumed that all inputs xi j = [xi j, xi j]Z, and outputs yrj = [yrj, yrj]Z are non-
negative integer intervals and belong to KZ+, ∀i, j, r.
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Let us denote a feasible solution for (IIDEA) as (sx∗, sy∗,λ∗), where sx∗ = (sx∗
1 , . . . , s

x∗
M) ∈

(KZ+)M, sy∗ = (sy∗
1 , . . . , s

y∗
S ) ∈ (KZ+)S, and λ∗ = (λ∗1, . . . , λ

∗

N) ∈ RN. We will deal directly with
(IIDEA) model, without any ranking function. Note that its objective function is a real number,
i.e. I(Xo,Yo) ∈ R .

Definition 4.3.1. A DMUo is said to be efficient if and only if (X,Y) ∈ TIIDEA, x � Xo and Y � Yp
implies (X,Y) = (Xp,Yp).

Given the above integer-interval (IIDEA) model (4.22), efficient DMUs have a null ineffi-
ciency measure, i.e.

Theorem 4.3.2. If DMUo is efficient, then I(Xo,Yo) = 0.

Proof. Suppose that I(Xo,Yo) > 0, with (sx∗, sy∗,λ∗) an optimal solution for (IIDEA). Let x∗ =
(x∗1, . . . , x

∗

M) ∈ (KZ+)M, where x∗i = xio − sx∗
i = [xio − sx∗

i , xio − sx∗
i ]Z for each i = 1, . . . ,M. And let

y∗ = (y∗1, . . . , y
∗

S) ∈ (KZ+)S, defined as y∗r = yro + sy∗
r = [yro + sy∗

r , yro + sy∗
r ]Z for r = 1, . . . ,S. By the

model constraints,

C(X∗) �
N∑

j=1

λ∗jC(X j) and C(Y∗) �
N∑

j=1

λ∗jC(Y j)

and hence, (X∗,Y∗) ∈ TIIDEA. It is clear also that X∗ � Xo and Y∗ � Yo.

If I(Xo,Yo) > 0, then (sx∗, sy∗) , 0, i.e., sx∗ � 0, with sx∗
i0
, 0 for some i0, or/and sy∗ � 0, with

sy∗
r0
, 0 for some r0. In the first case, it must happen that sx∗

i0
> 0 and therefore X∗ � Xo, with

X∗ , Xo. This means that (X∗,Y∗) ∈ TIIDEA, X∗ � Xo,X∗ , Xo, and Y∗ � Yo, which implies that
DMUo is not efficient, reaching a contradiction. Analogously, we also reach a contradiction for
the second case. □

To solve (IIDEA) model at its current stage (4.22), we take into account the arithmetic op-
erations (Definition 2.2.3 and order relations (Definition 2.2.4) defined in the previous section.
Therefore, the Integer Interval Data Envelopment Analysis problem (IIDEA) can be reformu-
lated or parameterized as
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(PIIDEA) I(Xo,Yo) = Max
M∑

i=1

sx
i + sx

i

xio + xio
+

S∑
r=1

sy
r + sy

r

yro + yro
(4.23)

s.t.
N∑

j=1

λ jxi j ≤ xio − sx
i , i = 1, . . . ,M,

N∑
j=1

λ jxi j ≤ xio − sx
i , i = 1, . . . ,M,

N∑
j=1

λ jyrj ≥ yro + sy
r , r = 1, . . . ,S,

N∑
j=1

λ jyrj ≥ yro + sy
r , r = 1, . . . ,S,

sx
i ≤ sx

i , i = 1, . . . ,M,

sy
r ≤ sy

r , r = 1, . . . ,S,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

x
i , s

y
r , s

y
r ∈ Z+, i = 1, . . . ,M, r = 1, . . . ,S.

The first four sets of constraints are just the corresponding transformation of the in-
puts/outputs constraints from model (4.22), given the order relation for integer intervals,
Definition 2.2.4. The fifth and sixth set of constraints ensure the slacks sx

i = [sx
i , s

x
i ]Z+ and

sy
r = [sy

r , s
y
r ]Z+ are integer intervals KZ+ .

The relationship between the (IIDEA) and (PIIDEA) solutions is demonstrated in the fol-
lowing proposition.

Proposition 4.3.1. (sx∗, sy∗,λ∗) with sx∗
∈ (KZ+)M, sy∗

∈ (KZ+)S and λ∗ ∈ RN
+ is an optimal solution

of (IIDEA) if and only if its corresponding components or parameterization (sx∗
1 , s

x∗
1 , . . . , s

x∗
M, s

x∗
M, s

y∗
1 , s

y∗
1 , . . . ,

sy∗
S , s

y∗
S λ
∗

1, . . . , λ
∗

N), with λ∗j ∈ R+, j = 1, . . . ,N, sx∗
i , s

x∗
i ∈ Z+, i = 1, . . . ,M, and sy∗

r , s
y∗
r ∈ Z+ for

r = 1, . . . ,S, is an optimal solution of (PIIDEA).

Proof. The constraint in (IIDEA) (4.22) are equivalent to the constraint conditions in (PIIDEA)
(4.23), given Definitions 2.2.3 and 2.2.4. The rest of the proof is straightforward. □

Although Theorem 4.3.2 establishes it as a necessary condition, a null inefficiency measure,
i.e. I(Xo,Yo) = 0, is not sufficient to guarantee the efficiency of DMU j in the integer intervals
case, as it happens in the crisp model (4.1). This can be seen in the following example.

Example 4.3.1. Consider six DMUs that consume two different inputs and produce a constant amount
of output. Figure 4.1 shows the inputs of these DMUs, that produce a single and constant output.
Therefore, by decreasing each input we move towards the efficiency frontier, represented with a thick
grey line and delimited by DMUs 1, 2, and 6. As data are integer intervals, the inputs of each DMU are
the set of integer points within such integer intervals,shown in the Figure with different shaped symbols

52



Input 1

In
pu

t 2

10 11 12 13 14 15 16 17 18 19 20 21

4

5

6

7

8

9

10

●

●

●

●

●

DMU 1
DMU 2
DMU 3
DMU 4
DMU 5
DMU 6

Figure 4.1: Consider these six DMUs that consume two inputs and produce a single constant
output (see Example 4.3.1). The data are integer intervals and the set of integer points cor-
responding to each DMU is represented using different shaped symbols (see legend). The
thick grey line represents the efficiency frontier. In this small example we can observe the
different classes of DMUs in terms of their efficiency characterization. According to Defini-
tion 4.3.1, DMU1, DMU2 and DMU6 (plotted with filled points) are efficient while the rest of
DMUs are not efficient. While the inefficiency scores of the former are null, I(X3,Y3) > 0 and
I(X5,Y5) > 0. Note that although DMU4 is not efficient (X1,6 � X1,4, X1,6 , X1,4) its inefficiency
score I(X4,Y4) = 0. It is an example of weakly efficient DMU (see Definition 4.3.2), and this is
why it is necessary a second phase for a correct efficiency characterization.

(filled points are used for the efficient DMUs). In this small example, we can observe the different classes
of DMUs in terms of their efficiency characterization. Note that DMU3 and DMU5 have non-zero
slacks for both inputs and thus I(X3,Y3) > 0 and I(X5,Y5) > 0. According to Theorem 4.3.2, they
are inefficient. On the contrary, DMU1, DMU2, DMU4 and DMU6 have zero slacks for both inputs,
and hence I(X1,Y1) = 0, I(X2,Y2) = 0, I(X4,Y4) = 0 and I(X6,Y6) = 0. But this does not imply
that these DMUs are efficient in the integer intervals framework. According to Definition 4.3.1, it is
clear that DMU1, DMU2 and DMU6 are efficient. However, DMU4 is not efficient, since X1,6 � X1,4,
X2,6 = X2,4 and Y6 = Y4, as it can be observed in Figure 4.1. Therefore, in order to exhaust all possible
input and output slacks, a phase II is required to determine the efficiency character of the DMUs with
null inefficiency measure I(Xo,Yo). This is performed by model (4.24) below, which uses additional
integer-valued specific left and right slack variables, Lx, Rx, Ly and Ry. These variables allows us to
detect if there still exists some remaining slack, for any input or output, that can be removed. The optimal
solution of model (4.24) for DMU4 has a non-zero objective function value H(X4,Y4) > 0, which tells
us that DMU4 is not efficient but weakly efficient (see Definition 4.3.2).

Therefore, given an optimal solution for (4.23) (sx∗, sy∗,λ∗) , we can formulate the following
Phase II model to exhaust all remaining input and output slacks.
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(PIIDEA)2 H(Xo,Yo) = Max
M∑

i=1

(Lx
i + Rx

i ) +
S∑

r=1

(Ly
r + Ry

r ) (4.24)

s.t.
N∑

j=1

λ jxi j ≤ xio − sx∗
i − Rx

i , i = 1, . . . ,M,

N∑
j=1

λ jxi j ≤ xio − sx∗
i − Lx

i , i = 1, . . . ,M,

N∑
j=1

λ jyrj ≥ yro + sy∗
r + Ly

r , r = 1, . . . ,S,

N∑
j=1

λ jyrj ≥ yro + sy∗
r + Ry

r , r = 1, . . . ,S,

λ j ≥ 0, j = 1, . . . ,N,

Lx
i ,R

x
i ,L

y
r ,R

y
r ∈ Z+, i = 1, . . . ,M, r = 1, . . . ,S.

Theorem 4.3.3. Given a DMUp with I(Xo,Yo) = 0, then H(Xo,Yo) = 0 if and only if DMUo is efficient.

Proof. If I(Xo,Yo) = 0, for a maximizing problem with non-negative variables, it is clear that

sx
i = sx

i = sy
r = sy

r = 0, ∀i and ∀r. Moreover, if H(Xo,Yo) = 0 as well, owing to similar

reasoning, this implies that all the variables Lx
i ,R

x
i ,L

y
r ,R

y
r are equal to zero, for all i = 1, . . . ,M,

and r = 1, . . . ,S. Now let us assume that DMUo is not efficient. This means that there exist
(x∗, y∗) ∈ TIIDEA such that X∗ � Xo and Y∗ � Yo, with (X∗,Y∗) , (Xo,Yo). I.e., x∗i0 � xi0p, x∗i0 , xi0p
for some i0 ∈ {1, . . . ,M}, or y∗r0

� yr0p, y∗r0
, yr0p for some r0 ∈ {1, . . . ,S}. In the first case, by

Definition 2.2.4, as either x∗i0 < xi0p or x∗i0 < xi0p, we can compute a new feasible solution for

(PIIDEA)2, such that Rx∗
i0
= xi0p − x∗i0 > 0 or Lx∗

i0
= xi0p − x∗i0 > 0. Its feasibility holds since

(x∗, y∗) ∈ TIIDEA, i.e.

N∑
j=1

λ jxi0 j ≤ xi0p − sx∗
i0
− Rx∗

i0
= x∗i0

N∑
j=1

λ jxi j ≤ xi0p − sx∗
i0
− Lx∗

i0
= x∗i0 .

In this way we have reached a contradiction, since we have found a feasible solution with an
objective function value larger than the supposed optimal value H(Xo,Yo) = 0. For the second
case, we also reach a contradiction with a similar reasoning, just defining a new solution with
Ly∗

r0
= yr0o − y∗r0

> 0 or Ry∗
r0
= yr0o − y∗r0

> 0. Therefore, if I(Xo,Yo) = 0, and H(Xo,Yo) = 0 then
DMUo is efficient.

Finally, to proof that the efficiency of a DMUo implies both I(Xo,Yo) = 0 and H(Xo,Yo) = 0,
we only need to proof the latter since the necessary condition I(Xo,Yo) = 0 was established
in Theorem 4.3.2. Now let us suppose the opposite, H(Xo,Yo) > 0. Then we can compute
(X∗,Y∗) ∈ TIIDEA such that X∗ � Xo and Y∗ � Yo, with (X∗,Y∗) , (Xo,Yo), as follows. We have
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four possibilities, Lx
i0
> 0, or Rx

i0
> 0 for some i0 ∈ {1, . . . ,M}, or, Ly

r0
> 0, or Ry∗

r0
> 0 for some

r0 ∈ {1, . . . ,S}. For the two first cases, let Y∗ = Yp, and x∗i = xio for all i ∈ {1, . . . ,M}, with i , i0.
And x∗i0 = xi0p − sx∗

i0
−Rx

i0
, x∗i0 = xio − sx∗

i − Lx
i0

. Then, X∗ � Xo and Y∗ � Yo, with (X∗,Y∗) , (Xo,Yo),

which is a contradiction to the fact that DMUp is efficient. Analogously, for the other two

cases, let X∗ = Xo, and Y∗r = yro for all r ∈ {1, . . . ,S}, with r , r0. And y∗r0
= yr0p − sy∗

r0
− Ly

r0
,

y∗r0
= yr0p−sy∗

r0
−Ry

r0
. Again, X∗ � Xo and Y∗ � Yo, with (X∗,Y∗) , (Xo,Yo), which is a contradiction

to the fact that DMUo is efficient. □

Let (sx∗, sy∗,λ∗) be the optimal solution for (4.23) and let (Lx∗,Rx∗,Ly∗,Ry∗,λ∗∗) the optimal
solution for (4.24) for a given DMUo, we can compute its input and output targets Xtarget

o and
Ytarget

o as

xtarget
io = xio − sx∗

i − Rx∗
i , xtarget

io = xio − sx∗
i − Lx∗

i , i = 1, . . . ,M, (4.25)

ytarget
ro = yro + sy∗

r + Ly∗
r , ytarget

ro = yro + sy∗
r + Ry∗

r , r = 1, . . . ,S. (4.26)

Theorem 4.3.4. (Xtarget
o ,Ytarget

o ) is efficient.

Proof. By the constraints of (4.24), it follows that (Xtarget
o ,Ytarget

o ) ∈ TIIDEA. Suppose that
(Xtarget

o ,Ytarget
o ) is not efficient. Then, there must exist (X′,Y′) ∈ TIIDEA such that X′ � Xtarget

o and
Y′ � Ytarget

o , with (X′,Y′) , (Xtarget
o ,Ytarget

o ). This implies that for some λ′ ≥ 0,

C(X′) �
N∑

j=1

λ′jC(X j), C(Y′) �
N∑

j=1

λ′jC(Y j),

which is equivalent to

x′i ≥
N∑

j=1

λ′jxi j, x′i ≥
N∑

j=1

λ′jxi j, i = 1, . . . ,M,

y′r ≤
N∑

j=1

λ′jyrj, y′r ≤
N∑

j=1

λ′jyrj, r = 1, . . . ,S.

Besides,

x′i ≤ xtarget
ip x′i ≤ xtarget

ip i = 1, . . . ,M,

y′r ≥ ytarget
rp y′r ≥ ytarget

rp r = 1, . . . ,S.

where at least one of these inequalities is strict for some i0 ∈ {1, . . . ,M} or r0 ∈ {1, . . . ,S}, since
(X′,Y′) , (Xtarget

o ,Ytarget
o ).
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Combining the above constraints, it follows that

N∑
j=1

λ′jxi j ≤ xip − sx∗
i − Rx∗

i ,
N∑

j=1

λ′jxi j ≤ xip − sx∗
i − Lx∗

i , i = 1, . . . ,M,

N∑
j=1

λ′jyrj ≥ yrp + sy∗
r + Ly∗

r ,
N∑

j=1

λ′jyrj ≥ yrp + sy∗
r + Ry∗

r , r = 1, . . . ,S,

where at least one of these inequalities is strict for some i0 ∈ {1, . . . ,M} or r0 ∈ {1, . . . ,S}.
Therefore, there exists some δL

i0
, δR

i0
, ϵLr0
, ϵRr0
∈ Z+, where at least one of them is non-zero, such

that

N∑
j=1

λ′jxi0 j ≤ xi0p − sx∗
i0
− Rx∗

i0
− δR

i0
,

N∑
j=1

λ′jxi0 j ≤ xi0p − sx∗
i0
− Lx∗

i0
− δL

i0
,

N∑
j=1

λ′jyr0 j ≥ yr0p + sy∗
r0
+ Ly∗

r0
+ ϵLr0

,
N∑

j=1

λ′jyr0 j ≥ yr0p + sy∗
r0
+ Ry∗

r0
+ ϵRr0

,

If we define the new variables for the corresponding sharp constraints, as

Lx∗∗
i0
= Lx∗

i0
+ δL

i0
, Rx∗∗

i0
= Rx∗

i0
+ δR

i0
; Lx∗∗

i = Lx∗
i , Rx∗∗

i = Rx∗
i i = 1, . . . ,M, i , i0

Ly∗∗
r0
= Ly∗

r0
+ ϵLr0

, Ry∗∗
r0
= Ry∗

r0
+ ϵRr0

; Ly∗∗
r = Ly∗

r , Ry∗∗
r = Ry∗

r r = 1, . . . ,S, r , r0

then (Lx∗∗,Rx∗∗,Ly∗∗,Ry∗∗,λ′) would be a feasible solution in (4.24) with a larger objective
function value than the supposed optimum, which implies a contradiction.

□

Definition 4.3.2. For each DMU o, o ∈ {1, . . . ,N}, consider the inefficiency measurements I(Xo,Yo)
computed in the (IIDEA), and H(Xo,Yo) obtained in Phase II, (PIIDEA)2 . We say that the DMU o is

(i) efficient if I(Xo,Yo) = 0 and H(Xo,Yo) = 0 ,

(ii) weakly efficient if I(Xo,Yo) = 0 and H(Xo,Yo) > 0 ,

(iii) inefficient if I(Xo,Yo) > 0.

4.4 Extension to the hybrid data scenario

Consider the hybrid scenario in which, in addition to integer interval data, there exist some
inputs or outputs that are given as continuous intervals. Then, and following Lozano and
Villa [111], we can partition each index set into two subsets; one for continuous variables,
and another for integer variables. In this manner, for input and output variables, we have
OX = OXI

∪ OXNI, OY = OYI
∪ OYNI, respectively, where OX = {1, . . . ,M} and OY = {1, . . . ,S}.

So, inputs xi j = [xi j, xi j]Z ∈ KZ+ , for all i ∈ OXI, and xi j = [xi j, xi j] ∈ KC+ , for all i ∈ OXNI; and

outputs yrj = [yrj, yrj]Z ∈ KZ+ for all r ∈ OYI, and yrj = [yrj, yrj] ∈ KC+ for all r ∈ OYNI.
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The model (IIDEA) becomes as follows, under the consideration of a hybrid interval DEA.

(HIDEA) I(Xo,Yo) = Max
M∑

i=1

sx
i + sx

i

xio + xio
+

S∑
r=1

sy
r + sy

r

yro + yro
(4.27)

s.t.
N∑

j=1

λ jC(xi j) � C(xio) − C(sx
i ), i ∈ OXI,

N∑
j=1

λ jxi j � xio − sx
i , i ∈ OXNI,

N∑
j=1

λ jC(yrj) � C(yro) + C(sy
r ), r ∈ OYI,

N∑
j=1

λ jyrj � yro + sy
r , r ∈ OYNI,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

y
r ∈ KZ+, i ∈ OXI, r ∈ OYI.

sx
i , s

y
r ∈ KC+, i ∈ OXNI, r ∈ OYNI.

To solve (HIDEA) model (4.27), we consider its following parameterization, which can be
considered as the Phase I of the solution method.

(PIHIDEA) I(Xo,Yo) = Max
M∑

i=1

sx
i + sx

i

xio + xio
+

S∑
r=1

sy
r + sy

r

yro + yro
(4.28)

s.t.
N∑

j=1

λ jxi j ≤ xio − sx
i , i ∈ OX,

N∑
j=1

λ jxi j ≤ xio − sx
i , i ∈ OX,

N∑
j=1

λ jyrj ≥ yro + sy
r , r ∈ OY,

N∑
j=1

λ jyrj ≥ yro + sy
r , r ∈ OY,

sx
i ≤ sx

i , i ∈ OX,

sy
r ≤ sy

r , r ∈ OY,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

x
i , s

y
r , s

y
r ∈ Z+, i ∈ OXI, r ∈ OYI,

sx
i , s

x
i , s

y
r , s

y
r ≥ 0, i ∈ OXNI, r ∈ OYNI.
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As it can be seen, the only difference with respect the corresponding model (4.23) is the
that only the slacks of the integer inputs and outputs are forced to be integer. The slacks of the
other inputs and outputs are considered continuous variables.

Given (sx∗, sy∗,λ∗), optimal solution for (4.28), we proceed with the phase II of the method.

(PHIDEA)2 H(Xo,Yo) = Max
M∑

i=1

Lx
i + Rx

i +

S∑
r=1

Ly
r + Ry

r (4.29)

s.t.
N∑

j=1

λ jxi j ≤ xio − sx∗
i − Rx

i , i ∈ OX,

N∑
j=1

λ jxi j ≤ xio − sx∗
i − Lx

i , i ∈ OX,

N∑
j=1

λ jyrj ≥ yro + sy∗
r + Ly

r , r ∈ OY,

N∑
j=1

λ jyrj ≥ yro + sy∗
r + Ry

r , r ∈ OY,

λ j ≥ 0, j = 1, . . . ,N,

Lx
i ,R

x
i ,L

y
r ,R

y
r ∈ Z+, i ∈ OXI, r ∈ OYI,

Lx
i ,R

x
i ,L

y
r ,R

y
r ≥ 0, i ∈ OXNI, r ∈ OYNI.

Given a DMUo with I(Xo,Yo) = 0, then H(Xo,Yo) = 0 if and only if DMUo is efficient. In
other words, a DMUo is efficient if and only if both I(Xo,Yo) = 0 and H(Xo,Yo) = 0.

Let (sx∗, sy∗,λ∗) be the optimal solution of (4.28), and Lx∗,Rx∗,Ly∗,Ry∗,λ∗∗ the optimal
solution of (4.29) for a given DMUo, then we can compute its input and output targets Xtarget

o

and Ytarget
o as

xtarget
io = xio − sx∗

i − Rx∗
i , xtarget

io = xio − sx∗
i − Lx∗

i , i ∈ OX, (4.30)

ytarget
ro = yro + sy∗

r + Ly∗
r , ytarget

ro = yro + sy∗
r + Ry∗

r , r ∈ OY. (4.31)

4.5 Numerical experiments

4.5.1 Small illustrative case

Let us go back to the small dataset of Example 4.3.1 again to illustrate the proposed approach
step by step, as well as the need for Phase II for the efficiency characterization and the com-
putation of the targets. Recall that there are six DMUs, with two inputs and a single constant
output (see Table 4.1). All the variables are assumed to be integer intervals.
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Table 4.1: Data for Case 4.5.1

DMU (j) 1 2 3 4 5 6
x1 j (11, 13) (14, 15) (16, 17) (18, 20) (19, 20) (18, 19)
x2 j (8, 10) (6, 7) (7, 8) (4, 7) (6, 7) (4, 7)
y1 j (10, 10) (10, 10) (10, 10) (10, 10) (10, 10) (10, 10)

Table 4.2: Results for Phases I & II, and DMU efficiency status classification for Case 4.5.1.

DMU 1 2 3 4 5 6

Ph
as

e
I I(Xo,Yo) 0.00 0.00 0.25 0.00 0.26 0.00

sx
1 (0, 0) (0, 0) (2, 2) (0, 0) (5, 5) (0, 0)

sx
2 (0, 0) (0, 0) (1, 1) (0, 0) (0, 0) (0, 0)

sy
1 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Ph
as

e
II

H(Xo,Yo) 0 0 0 1 0 0
Lx

1 0 0 0 1 0 0
Rx

1 0 0 0 0 0 0
Lx

2 0 0 0 0 0 0
Rx

2 0 0 0 0 0 0
Ly

1 0 0 0 0 0 0
Ry

1 0 0 0 0 0 0
Xtarget

1 (11, 13) (14, 15) (14, 15) (18, 19) (14, 15) (18, 19)
Xtarget

2 (8, 10) (6, 7) (6, 7) (4, 7) (6, 7) (4, 7)
Ytarget

1 (10, 10) (10, 10) (10, 10) (10, 10) (10, 10) (10, 10)
Eff. Status efficient efficient inefficient weakly efficient inefficient efficient

Among these six DMUs, there are three classified as efficient, two inefficient, and one
weakly efficient case, as established in Definition 4.3.2. Below we show, using DMU 1 as an
example, the model solved and the results of the phases of the proposed approach.

Phase I: The corresponding (PIIDEA) (4.23) problem for DMU1 is

I(X1,Y1) = Max
sx

1 + sx
1

11 + 13
+

sx
2 + sx

2

8 + 10
+

sy
1 + sy

1

10 + 10

s.t.
11λ1 + 14λ2 + 16λ3 + 18λ4 + 19λ5 + 18λ6 ≤ 11 − sx

1
13λ1 + 15λ2 + 17λ3 + 20λ4 + 20λ5 + 19λ6 ≤ 13 − sx

1

 i = 1

8λ1 + 6λ2 + 7λ3 + 4λ4 + 6λ5 + 4λ6 ≤ 8 − sx
2

10λ1 + 7λ2 + 8λ3 + 7λ4 + 7λ5 + 7λ6 ≤ 10 − sx
2

 i = 2

10λ1 + 10λ2 + 10λ3 + 10λ4 + 10λ5 + 10λ6 ≥ 10 + sy
1

10λ1 + 10λ2 + 10λ3 + 10λ4 + 10λ5 + 10λ6 ≥ 10 + sy
1

 r = 1

sx
i ≤ sx

i i = 1, 2,

sy
1 ≤ sy

1

λ j ≥ 0, j = 1, . . . , 6,

sx
i , s

x
i , s

y
1 , s

y
1 ∈ Z+ i = 1, 2

The optimal solution of the above Linear Program (LP) is (sx∗, sy∗,λ∗) = sx∗
1 = 0, sx∗

1 = 0, sx∗
2 = 0,
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sx∗
2 = 0, sy∗

1 = 0, sy∗
1 = 0, λ∗1 = 1, λ∗2 = 0, λ∗3 = 0, λ∗4 = 0, λ∗5 = 0, λ∗6 = 0. As I(X1,Y1) = 0, it is a

candidate to be an efficient DMU, but we cannot be sure yet. To confirm its efficiency status
we need to solve the Phase II model below.

Phase II: Given the solution obtained in Phase I for DMU1, specifically the slacks (sx∗, sy∗),
the corresponding (PIIDEA)2 model (4.24) is formulated as

H(X1,Y1) = Max Lx
1 + Rx

1 + Lx
2 + Rx

2 + Ly
1 + Ry

1

s.t.
11λ1 + 14λ2 + 16λ3 + 18λ4 + 19λ5 + 18λ6 ≤ 11 − Rx

1
13λ1 + 15λ2 + 17λ3 + 20λ4 + 20λ5 + 19λ6 ≤ 13 − Lx

1

}
i = 1

8λ1 + 6λ2 + 7λ3 + 4λ4 + 6λ5 + 4λ6 ≤ 8 − Rx
2

10λ1 + 7λ2 + 8λ3 + 7λ4 + 7λ5 + 7λ6 ≤ 10 − Lx
2

}
i = 2

10λ1 + 10λ2 + 10λ3 + 10λ4 + 10λ5 + 10λ6 ≥ 10 + Ry
1

10λ1 + 10λ2 + 10λ3 + 10λ4 + 10λ5 + 10λ6 ≥ 10 + Ly
1

}
r = 1

λ j ≥ 0, j = 1, . . . , 6,

Lx
i ,R

x
i ,L

y
r ,R

y
r ∈ Z+, i = 1, 2, r = 1.

The optimal solution of the above LP problem is (Lx∗,Rx∗,Ly∗,Ry∗,λ∗∗) = (Lx∗
1 = 0,Rx∗

1 =

0,Lx∗
2 = 0,Rx∗

2 = 0,Ly∗
1 = 0,Ry∗

1 = 0, λ∗∗1 = 1, λ∗∗2 = 0, λ∗∗3 = 0, λ∗∗4 = 0, λ∗∗5 = 0, λ∗∗6 = 0). The left
and right slack variables Lx

i ,R
x
i ,L

y
r ,R

y
r represent the potential improvements that may remain

and correspond to moving, if possible, towards the efficiency frontier. Only for efficient DMUs
these variables are all null, as it happens for DMU1.

In this case, the corresponding input and output targets, as per (4.25) and (4.26), coincide
with those of the observed DMU, i.e.

xtarget
11 = x11 − sx∗

1 − Rx∗
1 = 11 − 0 − 0 = 11, xtarget

11 = x11 − sx∗
1 − Lx∗

1 = 13 − 0 − 0 = 13,

xtarget
21 = x21 − sx∗

2 − Rx∗
2 = 8 − 0 − 0 = 8, xtarget

21 = x21 − sx∗
2 − Lx∗

2 = 10 − 0 − 0 = 10,

ytarget
11 = y11 + sy∗

1 + Ly∗
1 = 10 + 0 + 0 = 10, ytarget

11 = y11 + sy∗
1 + Ry∗

1 = 10 + 0 + 0 = 10.

As it can be seen in Table 4.2, in the case of DMU4, the solution of the Phase I is I(X4,Y4) = 0,
similar to what happens for DMU1, DMU2 and DMU6. Unlike them, however, for DMU4, the
Phase II solution Lx

1 = 1 and H(X4,Y4) = 1 indicates that the upper limit of the first input of
DMU4 can be feasibly reduced by one unit and hence DMU4 is not efficient.

4.5.2 Larger real-world application

In this section, we take a real problem, which not only is bigger but also includes both integer
and continuous variables. This case may be found more often than the pure integer one in the
real world.

The dataset considered comes from Majid Azadi et al. [23]. The original data are given as
triangular fuzzy numbers. To adapt them as intervals we have considered the corresponding
zero α−levels. The DMUs correspond to 26 suppliers of raw materials with four crisp inputs
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Table 4.3: Phase I results for Case 4.5.2. This is a hybrid problem. The second input and both
outputs are integer, whereas the other three inputs are continuous.

o I(Xo,Yo)
Input slacks intervals Output slacks intervals

sx
1 sx

2 sx
3 sx

4 sy
1 sy

2
1 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )
2 2.29 ( 0.44 , 0.44 ) ( 0 , 0 ) ( 6.70 , 6.70 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 75 , 75 )
3 1.21 ( 0.00 , 0.00) ( 1 , 1) ( 40.09 , 40.09 ) ( 0.00 , 0.00 ) ( 0 , 6 ) ( 59 , 62 )
4 1.37 ( 0.00 , 0.00 ) ( 53 , 53 ) ( 0.00 , 0.00 ) ( 12.06 , 12.06 ) ( 0 , 2 ) ( 78 , 79 )
5 0.56 ( 169.13 , 169.13) ( 0 , 0 ) ( 2.37 , 2.37 ) ( 0.10 , 0.10 ) ( 0 , 10 ) ( 33 , 37 )
6 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )
7 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )
8 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )
9 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )
10 1.91 ( 0.05 , 0.05 ) ( 39 , 39 ) ( 7.19 , 7.19 ) ( 0.08 , 0.08 ) ( 0 , 0 ) ( 143, 143 )
11 1.03 ( 18.42 , 18.42 ) ( 0 , 0 ) ( 21.92 , 21.92 ) ( 26.45 , 26.45 ) ( 0 , 0 ) ( 0 , 0 )
12 1.14 ( 0.00 , 0.00 ) ( 21 , 21 ) ( 0.19, 0.19 ) ( 16.16, 16.16 ) ( 0 , 7 ) ( 67 , 70 )
13 1.37 ( 142.78 , 142.78 ) ( 60 , 60 ) ( 0.00 , 0.00 ) ( 15.82 , 15.82 ) ( 0 , 4 ) ( 58 , 59 )
14 2.31 ( 0.00 , 0.00 ) ( 24 , 24 ) ( 5.98 , 5.98 ) ( 52.49 , 52.49 ) ( 0 , 0 ) ( 152 , 152 )
15 3.61 ( 0.00 , 0.00 ) ( 110 , 110 ) ( 10.36 , 10.36 ) ( 36.90 , 36.90 ) ( 0 , 0 ) ( 158 , 158 )
16 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )
17 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )
18 6.94 ( 0.00 , 0.00 ) ( 141 , 141 ) ( 13.97 , 13.97 ) ( 27.17 , 27.17 ) ( 0 , 13 ) ( 311 , 315 )
19 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )
20 2.79 ( 0.02 , 0.02 ) ( 92 , 92 ) ( 36.33 , 36.33 ) ( 03.16 , 3.16 ) ( 20 , 24 ) ( 200 , 202 )
21 1.96 ( 0.00 , 0.00 ) ( 56 , 56 ) ( 28.37 , 28.37 ) ( 38.25, 38.25 ) ( 0 , 0 ) ( 74 , 74 )
22 0.00 ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0.00 , 0.00 ) ( 0.00 , 0.00 ) ( 0 , 0 ) ( 0 , 0 )
23 2.14 ( 0.00 , 0.00 ) ( 56 , 56 ) ( 13.03 , 13.03 ) ( 24.06, 24.06 ) ( 0 , 16 ) ( 210 , 216 )
24 0.95 ( 0.04 , 0.04 ) ( 62 , 62 ) ( 19.74 , 19.74 ) ( 0.09 , 0.09 ) ( 0 , 0 ) ( 38 , 38 )
25 3.90 ( 29.81 , 29.81 ) ( 91, 91 ) ( 0.03 , 0.03 ) ( 2.52 , 2.52 ) ( 36 , 45 ) ( 252 , 255 )
26 1.35 ( 0.06,0.06 ) ( 58,58) ( 11.52,11.52) ( 18.33,18.33 ) ( 0,4 ) ( 50,52 )

and two integer interval outputs. The inputs are the economic criteria given by the total cost
of shipments (TC), and the number of shipments per month (NS) and the social criteria given
by the eco-design cost (ED) and the cost of work safety and labor health (CS). Except for the
NS input, the rest of the inputs are continuous variables. The two outputs are the number of
shipments to arrive on time (NOT) and the number of bills received from the supplier without
errors (NB). Both outputs are integer interval variables.

The results from the Phase I, model (4.28) (see 4.4), are shown in Table 4.3. The results of
the Phase II model (4.29), as well as the input and output targets, which are interval variables,
and the corresponding efficiency status are given in Table 4.4. As we can see in the table, all
DMUs are classified as either efficient or inefficient, i.e., there are no weakly efficient DMUs in
this case.

Table 4.5 compares the results of the proposed approach with the inefficiency scores and
the corresponding targets when the integrality of the integer variables is ignored. These results
correspond to relaxing the integrality of the corresponding input and output slacks in models
(4.28) and (4.29), which are the hybrid equivalent of models (4.23) and (4.24). Because they
are relaxations of the original models, they can compute slightly higher inefficiency scores.
However, we claim that those results are not valid because they correspond to targets that, as
shown in Table 4.5, do not always respect the integer character of some of the variables (the
second input, and the two outputs in the current instance). On the contrary, the proposed
approach considers both the integer and the interval-valued character of those variables.

For the sake of comparison, Table 4.6 also includes the results when other existing ap-
proaches are applied, in particular Kordrostami et al. [94], which also considers a hybrid case
of integer and continuous variables. As we discussed before, these authors consider fuzzy
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data, whereas we consider that the uncertainty is given in terms of interval data. To apply their
models we consider interval data as a particular case of trapezoidal fuzzy data (a, b, c, d), when
a = b and c = d. We do not include the results from their alternative model (3.9), since they are
the same in the case of interval data.

As before discussed, Among the main differences between our approach and Kordrostami
et al. [94], we mentioned that Kordrostami et al. [94] use a fuzzy ranking approach and get crisp
targets (see last columns of Table 4.6), while we use integer interval arithmetic and compute
integer interval targets. In addition, they use a radial oriented approach (while we apply an
additive, non-oriented approach) and they use the integer PPS of Kuosmanen & Matin [98]
(while we use a specific integer interval PPS).

In spite of these differences, analysing the results of both approaches, we can check that they
are in good agreement. In particular, the corresponding efficient characterisations coincide.
Thus, the efficient DMUs identified by the proposed approach, with both inefficient null values
I(Xo,Yo) = H(Xo,Yo) = 0, have also an efficiency score of 1 with the Kordrostami et al. approach.
And those inefficient DMUS, with I(Xo,Yo) > 0, have an efficiency score less than the unity.
Also, the Spearman rank-order correlation coefficient between both approaches is ρ = −0.91.
Finally, regarding the targets for the efficient DMUs for the second input variables, which are
not interval since the original input data was not interval, they coincide with Kordrostami
et al.’s targets. Moreover, the integer (non-interval) output targets from Kordrostami et al.’s
model are contained within the integer interval targets computed from the proposed approach.

4.6 Conclusions

This chapter presents a new integer and interval-valued DEA approach and associated slacks-
based measure of inefficiency. It requires solving two crisp linear optimization models that
allow the computation of the corresponding input and output targets, as well as determining
the efficiency status of each DMU. Computational experiments have been presented to validate
the proposed approach.

It has been shown that a null value of the Phase I inefficiency score is a necessary but not
sufficient condition for efficiency, i.e. the Phase I model cannot discriminate between efficient
and weakly efficient DMUs. This is analogous to what happens with radial DEA models in
crisp cases although it does not happen in the slacks-based case. This highlights the differences
between crisp and interval data scenarios. Hence the need for the Phase II model, which also
provides efficient input and output targets.

The proposed approach can handle data that are simultaneously uncertain and integer.
Existing interval DEA approaches do not consider integer data and, conversely, integer DEA
approaches assume crisp data. Although at the cost of requiring interval arithmetic and
relational operators, with a higher number of constraints in its parameterization form, the
proposed approach is able to address the joint integer interval scenario. It does so in a rigorous
way, defining the corresponding integer interval PPS, its corresponding efficient subset, and
finally, formulating the models that compute the inefficiency scores and the efficient targets.

As regards potential research directions, we envisage extending the proposed integer inter-
val arithmetic and LU-partial order approach to the data case with fuzzy integer intervals. The
approach should be non-oriented and guarantee efficient (i.e. non-dominated) fuzzy targets.
As a first step, the fuzzy integer interval DEA technology needs to be axiomatically derived.
Another interesting line of research, often neglected in the fuzzy DEA literature, is that of
applying this type of approaches to real-world situations.
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Table 4.6: Inefficiency measurements (Phases I and II) for Case 4.5.2, compared to the Efficiency
score and integer input and output targets from Kordrostami et al. [94], see their model (3.8).

proposed approach Kordrostami et al. [94]
o I(Xo,Yo) H(Xo,Yo) Xtarget

2 Ytarget
1 Ytarget

2 Efficiency Xtarget
2 Ytarget

1 Ytarget
2

1 0.00 0 (251, 251) (199, 239) (76, 90) 1.00 251 219 83
2 2.29 4 (164, 164) (156, 193) (105, 117) 0.95 155 173 64
3 1.21 0 (197, 197) (203, 249) (137, 154) 0.93 177 223 85
4 1.37 0 (165, 165) (167, 209) (163, 178) 0.84 151 187 92
5 0.56 0 (178, 178) (197, 247) (196, 214) 0.95 169 217 170
6 0.00 0 (142, 142) (129, 169) (129, 143) 1.00 142 149 136
7 0.00 0 (149, 149) (193, 233) (111, 125) 1.00 149 213 118
8 0.00 0 (172, 172) (134, 174) (250, 264) 1.00 172 154 257
9 0.00 0 (135, 135) (184, 224) (58, 72) 1.00 135 204 65
10 1.91 1 (134, 134) (114, 153) (231, 245) 0.83 143 133 95
11 1.03 6 (121, 121) (130, 165) (154, 167) 0.96 116 145 160
12 1.14 0 (183, 183) (195, 242) (157, 174) 0.85 172 215 97
13 1.37 0 (152, 152) (156, 200) (197, 212) 0.78 154 176 146
14 2.31 0 (165, 165) (129, 169) (249, 263) 0.79 129 149 104
15 3.61 8 (107, 107) (91, 125) (228, 240) 0.53 91 105 75
16 0.00 0 (158, 158) (193, 233) (45, 59) 1.00 158 213 52
17 0.00 0 (124, 124) (107, 147) (271, 285) 1.00 124 127 278
18 7.20 0 (166, 166) (142, 195) (357, 375) 0.49 137 162 53
19 0.00 0 (138, 138) (122, 162) (173, 187) 1.00 138 142 180
20 2.79 0 (146, 146) (126, 173) (319, 335) 0.60 140 128 126
21 1.96 1 (161, 161) (151, 190) (165, 178) 0.91 141 170 97
22 0.00 0 (203, 203) (104, 144) (271, 285) 1.00 203 124 278
23 2.05 0 (236, 236) (185, 241) (353, 373) 0.77 179 205 150
24 0.95 2 (123, 123) (114, 152) (216, 229) 0.89 141 132 184
25 3.90 0 (151, 151) (130, 179) (330, 347) 0.63 110 114 85
26 1.35 0 (160, 160) (173, 217) (163, 179) 0.80 163 193 120
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Chapter 5

Fuzzy integer DEA

5.1 Introduction

In this chapter, fuzzy DEA approach that can handle continuous and integer data, i.e., variables
that are constrained hybrid fuzzy data, is presented.

As mentioned before, Kordrostami et al. [94] is first introduced the integer DEA model of Jie
et al. [81]. Then, we extend our previous work in Arana-Jimenez et al. [18] from interval integer
DEA to fuzzy integer DEA. We consider that inputs and outputs can be either trapezoidal fuzzy
integer numbers (TFZ) or trapezoidal (real-valued) fuzzy numbers (tFC). While [94] applies
the crisp integer PPS of Kuosmanen and Kazemi Matin [98], we define a new hybrid fuzzy
PPS. More importantly, different from [94], which uses a fuzzy ranking approach, in this paper,
we introduce a new partial order relationship using hybrid fuzzy orders, along with hybrid
fuzzy arithmetic. Also, while [94] uses a radial input-oriented approach, we use an additive,
non-oriented approach and while [94] calculates a crisp target, the approach proposed in this
paper aims at a fuzzy target.

5.2 Crisp production possibility set and slacks-based additive model

Let us assume a set of n DMUs, j ∈ J = {1, . . . ,n}, in which each DMU j consume m inputs
X j = (x1 j, . . . , xmj) ∈ Rm to produces s outputs Y j = (y1 j, . . . , ysj) ∈ Rs. In the conventional (i.e.
crisp) DEA approach ([31]), the production possibility set (PPS) or DEA technology, defined
by T, is derived using axioms Envelopment, Free disposability, Convexity, and Scalability
introduced in Subsection 2.5.1.

Let us recall that the DEA PPS can be mathematically expressed as

TDEA =

(X,Y) ∈ Rm+s
+ : X ≥

n∑
j=1

λ jX j,Y ≤
n∑

j=1

λ jY j, λ j ≥ 0

 .
Also, a certain DMU0 is said to be efficient if and only if it is non-dominated, i.e. if for any
(X,Y) ∈ TDEA such that X � Xo and Y � Yo, then (X,Y) = (Xo,Yo). This can be checked solving
the normalized slacks-based additive model 4.1.
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5.3 Proposed fuzzy integer PPS and slacks-based fuzzy integer DEA
model

Arana-Jiménez et al. [18] studied the hybrid scenario for interval inputs and outputs, that is,
with integer and continuous interval data. As an extension of integer intervals to fuzzy integer
numbers, we can consider the hybrid scenario, containing both trapezoidal fuzzy integer
numbers (TFZ) and trapezoidal fuzzy numbers (TFC). Following Lozano and Villa [111], each
index set is separated into two subsets, one of them for integer numbers and another for
continuous numbers. OXI and OXNI are the index sets for fuzzy integer input variables and
fuzzy input variables, respectively and OYI and OYNI are the index sets for fuzzy integer output
variables and fuzzy output variables, respectively, with |OXI

|+|OXNI
| = m, |OYI

|+|OYNI
| = s, OX =

OXI
∪OXNI = {1, . . . ,m}, OY = OYI

∪OYNI = {1, . . . , s}. Consider inputs X = (XI,XNI) and outputs
Y = (YI,YI), such that (X,Y) = (XI,XNI,YI,YNI) ∈ (TFZ)|O

XI
|
× (TFC)|O

XNI
|
× (TFZ)|O

YI
|
× (TFC)|O

YNI
|.

Let us suppose a set of n DMUs, j ∈ J = {1, . . . ,n}, in which every DMU j consumes m inputs
denoted by X j = (x1 j, . . . , xmj) ∈ (TFZ)|O

XI
|
× (TFC)|O

XNI
|, with xi j = (xi j1, xi j2, xi j3, xi j4)Z ∈ TFZ

for i ∈ OXI, xi j = (xi j1, xi j2, xi j3, xi j4) ∈ TFC for i ∈ OXNI and produces s outputs denoted by
Y j = (y1 j, . . . , ysj) ∈ (TFZ)|O

YI
|
× (TFC)|O

YNI
|, with yrj = (yrj1, yrj2, yrj3, yrj4))Z ∈ TFZ for r ∈ OYI,

yrj = (yrj1, yrj2, yrj3, yrj4)) ∈ TFC for r ∈ OYNI.

As an extension of the axioms given in [18] for integer intervals, let us introduce the
following axioms, which correspond to axioms introduced in Subsection 2.5.1, but considering
fuzzy integer inputs and outputs and utilizing the corresponding partial orders introduced in
Definitions 2.3.4 and 2.3.7. Recall that T represents the PPS, i.e. the DEA technology (fuzzy
integer DEA technology in this case), which contains all the feasible operating points.

(B1) Envelopment: (X j,Y j) ∈ T, for all j ∈ J.

(B2) Free disposability: (X,Y), (X̂, Ŷ) ∈ T, such that X̂ � X, Ŷ � Y ⇒ (X̂, Ŷ) ∈ T.

(B3) Convexity: (X,Y), (X̂, Ŷ) ∈ T, ϵ ∈ [0, 1], such that ϵ(C(XI),XNI,C(YI),
YNI)+ (1− ϵ)(C(X̂I), X̂NI,C(ŶI), ŶNI) ∈ (TFC→Z)|O

XI
|
× (TFC)|O

XNI
|
× (TFC→Z)|O

YI
|
× (TFC)|O

YNI
|

⇒ ( ˆ̂X, ˆ̂Y) = (Z(ϵC(XI)+ (1− ϵ)C(X̂I)), ϵXNI + (1− ϵ)X̂NI,Z(ϵC(YI)+ (1− ϵ)C(ŶI)), ϵYNI + (1−
ϵ)ŶNI) ∈ T.

(B4) Scalability: (X,Y) ∈ T, ϵ ≥ 0, and ϵ(C(XI),XNI,C(YI),YNI) ∈ (TFC→Z)|O
XI
|
× (TFC)|O

XNI
|
×

(TFC→Z)|O
YI
|
× (TFC)|O

YNI
|
⇒ ( ˆ̂X, ˆ̂Y) = (Z(ϵC(XI)), ϵXNI,Z(ϵC(YI)),

ϵYNI)) ∈ T

In a similar manner, as an extension of the PPS given in [18] for integer intervals, let us
introduce the following fuzzy integer production possibility set:

TFIDEA =
{
(X,Y) = (XI,XNI,YI,YNI) ∈ (TFZ)|O

XI
|
× (TFC)|OXNI

| × (TFZ)|O
YI
|
× (TFC)|O

YNI
| ,

s.t.
(
C(XI),XNI

)
�

N∑
j=1

λ j

(
C(XI

j),X
NI
j

)
, and

(
C(YI),YNI

)
�

N∑
j=1

λ j

(
C(YI

j),Y
NI
j

)
, λ j ≥ 0,∀ j

}
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Associated to TFIDEA, the following fuzzy integer DEA (FIDEA) model, which is an extension
of the slacks-based additive model (4.1), is proposed:

(FIDEA) I(Xo,Yo) = Max
m∑

i=1

sx
i1 + sx

i2 + sx
i3 + sx

i4

xio1 + xio2 + xio3 + xio4
+

s∑
r=1

sy
r1 + sy

r2 + sy
r3 + sy

r4

yro1 + yro2 + yro3 + yro4
(5.1)

s.t.
n∑

j=1

λ jC(xi j) � C(xio) − C(sx
i ), i ∈ OXI,

n∑
j=1

λ jxi j � xio − sx
i , i ∈ OXNI,

n∑
j=1

λ jC(yrj) � C(yro) + C(sy
r ), r ∈ OYI,

n∑
j=1

λ jyrj � yro + sy
r , r ∈ OYNI,

λ j ≥ 0, j = 1, . . . ,n,

sx
i , s

y
r ∈ TFZ+ , i ∈ OXI, r ∈ OYI,

sx
i , s

y
r ∈ TFC+ , i ∈ OXNI, r ∈ OYNI.

A feasible solution for (FIDEA) is denoted by (sx∗, sy∗,λ∗), where sx∗ = (sx∗
1 , . . . , s

x∗
n ) ∈

(TFZ)|O
XI
|
× (TFC)|O

XNI
|, sy∗ = (sy∗

1 , . . . , s
y∗
s ) ∈ (TFZ)|O

YI
|
× (TFC)|O

YNI
|, and λ∗ = (λ∗1, . . . , λ

∗
n) ∈ Rn.

Moreover, its objective function is a real number, i.e. I(Xo,Yo) ∈ R .

Definition 5.3.1. A DMUo is efficient if and only if (X,Y) ∈ TFIDEA, X � Xo and Y � Yo implies
(X,Y) = (Xo,Yo).

Efficient DMUs have a null inefficiency measure in the FIDEA model (5.1) , i.e.

Theorem 5.3.1. If DMUo is efficient, then I(Xo,Yo) = 0.

Proof. Assume that I(Xo,Yo) > 0, with (sx∗, sy∗,λ∗) an optimal solution for (FIDEA). Let X∗ =
(x∗1, . . . , x

∗
m) ∈ (TFZ)|O

XI
|
× (TFC)|O

XNI
|, where x∗i = xio − sx∗

i = xio1 − sx∗
i4 , xio2 − sx∗

i3 , xio3 − sx∗
i2 , xio4 − sx∗

i1
for each i = 1, . . . ,m. And let y∗ = (y∗1, . . . , y

∗
s) ∈ (TFZ)|O

YI
|
× (TFC)|O

YNI
|, where y∗r = yro + sy∗

r =

(yro1 + sy∗
r1 , yro2 + sy∗

r2 , yro3 + sy∗
r3 , yro4 + sy∗

r4) for each r = 1, . . . , s.

By the model constraints,

(C(XI∗),XNI∗) �
n∑

j=1

λ∗j(C(XI
j),X

NI
j ),

(C(YI∗),YNI∗) �
n∑

j=1

λ∗j(C(YI
j),Y

NI
j ).

and therefore, (X∗,Y∗) ∈ TFIDEA. Also, X∗ � Xo and Y∗ � Yo.

If I(Xo,Yo) > 0, then (sx∗, sy∗) , 0, i.e., sx∗ � 0 and sy∗ � 0 but sx∗
i0
, 0 for some i0,

or/and sy∗
r0
, 0 for some r0. In the first case, it must happen that sx∗

i04 > 0 and hence X∗ � Xo, with
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X∗ , Xo. Therefore, as per Definition 5.3.1, DMUo is not efficient, thus incurring in contradiction.
Similarly, in the second case, it must happen that sy∗

r01 > 0 and hence Y∗ � Yo, with Y∗ , Yo,
implying, as per Definition 5.3.1, that DMUo is not efficient, which is a contradiction. □

Let us rewrite the above model in parameterized form by utilizing the arithmetic operations
and partial order relations defined in the previous section as follows:

(PFIDEA) I(X0,Y0) = Max
m∑

i=1

sx
i1 + sx

i2 + sx
i3 + sx

i4

xio1 + xio2 + xio3 + xio4
+

s∑
r=1

sy
r1 + sy

r2 + sy
r3 + sy

r4

yro1 + yro2 + yro3 + yro4
(5.2)

s.t.
n∑

j=1

λ jxi jk ≤ xiok − sx
i(5−k), i ∈ OX, k = 1, 2, 3, 4,

n∑
j=1

λ jyrjk ≥ yrok + sy
rk, r ∈ OY, k = 1, 2, 3, 4,

sx
ik ≤ sx

i(k+1), i ∈ OX, k = 1, 2, 3,

sy
rk ≤ sy

r(k+1), r ∈ OY, k = 1, 2, 3,

sx
ik, s

y
rk ∈ Z+, i ∈ OXI, r ∈ OYI, k = 1, 2, 3, 4,

sx
ik, s

y
rk ∈ R+, i ∈ OXNI, r ∈ OYNI, k = 1, 2, 3, 4,

λ j ≥ 0, j = 1, . . . ,n.

The first two sets of constraints are just the transformation of the corresponding input and
outputs constraints from the model (5.1), according to the partial order relations for fuzzy
integer numbers, considering in Definition 2.2.4. The third and fourth of constraints certify
that the slacks are trapezoidal fuzzy numbers (integer or continuous, depending on the index
set).

The following proposition represents the relationship between the (FIDEA) and (PFIDEA)
solutions.

Proposition 5.3.1. (sx∗, sy∗,λ∗) with sx∗
∈ (TFZ)|O

XI
|
× (TFC)|O

XNI
|, sy∗

∈ (TFZ)|O
YI
|
× (TFC)|O

YNI
|

and λ∗ ∈ RN
+ is an optimal solution of (FIDEA) if and only if its corresponding parameterization

(sx∗
11, s

x∗
12, s

x∗
13, s

x∗
14 · · · s

x∗
m1, s

x∗
m2, s

x∗
m3, s

x∗
m4, s

y∗
11, s

y∗
12, s

y∗
13, s

y∗
14 · · · s

y∗
s1 , s

y∗
s2 ,

sy∗
s3 , s

y∗
s4 , , λ

∗

1, . . . , λ
∗
n) is an optimal solution of (PFIDEA).

Proof. Definitions 2.3.4 and ?? imply that the constraint sets in (FIDEA) (5.1) are equivalent to
the constraint sets in (PFIDEA) (5.2). The rest of the proof is straightforward. □

Although a null inefficiency score, i.e. I(Xo,Yo) = 0, is a necessary and sufficient condition
in the crisp model (4.1), it is not sufficient to guarantee the efficiency of DMUo in the fuzzy
integer case. Theorem 5.3.1 only establishes it as a necessary condition. Therefore, given an
optimal solution for (5.2) (sx∗, sy∗,λ∗), we need to formulate the following Phase II model to
exhaust all remaining input and output slacks.
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(PFIDEA)2 H(X0,Y0) = Max
m∑

i=1

vx
i1 + vx

i2 + vx
i3 + vx

i4

xio1 + xio2 + xio3 + xio4
+

s∑
r=1

vy
r1 + vy

r2 + vy
r3 + vy

r4

yro1 + yro2 + yro3 + yro4
(5.3)

s.t.
n∑

j=1

λ jxi jk ≤ xiok − sx∗
i(5−k) − vx

i(5−k), i ∈ OX, k = 1, 2, 3, 4,

n∑
j=1

λ jyrjk ≥ yrok + sy∗
rk + vy

ik, r ∈ OY, k = 1, 2, 3, 4,

vx
ik, v

y
rk ∈ Z+, i ∈ OXI, r ∈ OYI, k = 1, 2, 3, 4,

vx
ik, v

y
rk ∈ R+, i ∈ OXNI, r ∈ OYNI k = 1, 2, 3, 4,

λ j ≥ 0, j = 1, . . . ,n.

Theorem 5.3.2. Given a DMUo with I(Xo,Yo) = 0, then H(Xo,Yo) = 0 if and only if DMUo is efficient.

Proof. For a maximizing problem with non-negative variables like (5.2), if I(Xo,Yo) = 0 then
sx∗

i1 = sx∗
i2 = sx∗

i3 = sx∗
i4 = sy∗

r1 = sy∗
r2 = sy∗

r3 = sy∗
r4 = 0, for all i ∈ OX, and r ∈ OY. For the same reason, if

H(Xo,Yo) = 0 then vx∗
i1 = vx∗

i2 = vx∗
i3 = vx∗

i4 = vy∗
r1 = vy∗

r2 = vy∗
r3 = vy∗

r4 = 0, for all i ∈ OX, and r ∈ OY.

Now let us assume that DMUo is not efficient. That means that there exists (X∗,Y∗) ∈ TFIDEA
such that X∗ � Xo and Y∗ � Yo with (X∗,Y∗) , (Xo,Yo), implying that x∗i0 � xi0o and y∗r0

� yr0o

and x∗i0 , xi0o for some i0 ∈ OX, or y∗r0
, yr0o for some r0 ∈ OY. In any case, we can obtain a new

feasible solution of (PFIDEA)2 (v̂x, v̂y,λ) such that

v̂x
ik = xiok − x∗ik ≥ 0 i ∈ OX, k = 1, 2, 3, 4,

v̂y
rk = y∗rk − yrok ≥ 0 r ∈ OY, k = 1, 2, 3, 4.

The feasibility of this solution of model (PFIDEA)2 holds since (X∗,Y∗) ∈ TFIDEA, and
therefore, there exist λ j ≥ 0, j = 1, . . . ,n such that

n∑
j=1

λ jxi jk ≤ xiok − sx∗
i(5−k) − v̂x

i(5−k) = x∗ik i ∈ OX, k = 1, 2, 3, 4,

n∑
j=1

λ jyrjk ≥ yrok + sy∗
rk + v̂y

rk = y∗rk r ∈ OY, k = 1, 2, 3, 4.

Moreover, the objective function of this feasible solution is

m∑
i=1

v̂x
i1 + v̂x

i2 + v̂x
i3 + v̂x

i4

xio1 + xio2 + xio3 + xio4
+

s∑
r=1

v̂y
r1 + v̂y

r2 + v̂y
r3 + v̂y

r4

yro1 + yro2 + yro3 + yro4
> 0

Thus, we have found a feasible solution with an objective function value larger than the
supposed optimal value H(Xo,Yo) = 0, thus reaching a contradiction. □

Let (sx∗, sy∗,λ∗) be the optimal solution for (5.2) and let (vx∗,vy∗,λ∗∗) be the optimal solution
for (5.3) for a given DMUo. we can calculate the corresponding fuzzy input and output targets
Xtarget

o and Ytarget
o as
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xtarget
iok = xiok − sx∗

i(5−k) − vx∗
i(5−k), i ∈ OX, k = 1, 2, 3, 4, (5.4)

ytarget
rok = yrok + sy∗

rk + vy∗
rk , r ∈ OY, k = 1, 2, 3, 4. (5.5)

Theorem 5.3.3. (Xtarget
o ,Ytarget

o ) is efficient.

Proof. (Xtarget
o ,Ytarget

o ) ∈ TFIDEA by the constraints of (5.3). Assume that (Xtarget
o ,Ytarget

o ) is not
efficient. Then, there exists (X̂, Ŷ) ∈ TFIDEA such that X̂ � Xtarget

o and Ŷ � Ytarget
o , with (X̂, Ŷ) ,

(Xtarget
o ,Ytarget

o ). This implies that there exist λ̂ j ≥ 0, j = 1, . . . ,n such that

(C(X̂I), X̂NI) �
n∑

j=1

λ̂ j(C(XI
j),X

NI
j ),

(C(ŶI), ŶNI) �
n∑

j=1

λ̂ j(C(YI
j),Y

NI
j ).

which is equivalent to

x̂ik ≥

n∑
j=1

λ̂ jxi jk, i ∈ OX, k = 1, 2, 3, 4,

ŷrk ≤

n∑
j=1

λ̂ jyrjk, r ∈ OY, k = 1, 2, 3, 4.

Moreover,

x̂ik ≤ xiok, i ∈ OX, k = 1, 2, 3, 4,
ŷrk ≥ yrok, r ∈ OY, k = 1, 2, 3, 4.

with at least one of the above inequalities holding strict. It follows that

n∑
j=1

λ̂ jxi jk ≤ xiok − sx∗
i(5−k) − vx∗

i(5−k) i ∈ OX, k = 1, 2, 3, 4,

n∑
j=1

λ̂ jyrjk ≥ yrok + sy∗
rk + vy∗

rk r ∈ OY, k = 1, 2, 3, 4.

with, again, at least one of the inequalities holding strict. Defining

vx∗∗
i(5−k) = xiok − sx∗

i(5−k) −

n∑
j=1

λ̂ jxi jk ≥ vx∗
i(5−k) i ∈ OX, k = 1, 2, 3, 4,

vy∗∗
rk =

n∑
j=1

λ̂ jyrjk − yrok − sy∗
rk ≥ vy∗

rk r ∈ OY, k = 1, 2, 3, 4.
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Since at least one of the above inequalities holds strict, we would have a feasible solution of
model (5.3), namely (vx∗∗,vy∗∗, λ̂), with a larger objective function value than the supposed
optimum, which is a contradiction.

□

Definition 5.3.2. Given the optimal objective function values I(Xo,Yo) of model (5.2) and H(Xo,Yo) of
model (5.3), DMUo is

(i) efficient if I(Xo,Yo) = 0 and H(Xo,Yo) = 0 ,

(ii) inefficient if I(Xo,Yo) > 0 or H(Xo,Yo) > 0,

(iii) weakly efficient if I(Xo,Yo) = 0 and H(Xo,Yo) > 0.

Observe from the previous definition that if a given a DMUo is not efficient, then I(Xo,Yo)+
H(Xo,Yo) > 0, which is consistent with Theorem 5.3.2. Furthermore, this suggest ranking the
DMUs based on their overall efficiency score I(Xo,Yo) +H(Xo,Yo).

5.4 Numerical experiments

In order to illustrate the proposed Fuzzy integer DEA approach, let us consider the dataset from
Majid Azadi et al. [23], which involves 26 DMUs (suppliers of raw materials). There are four
crisp inputs and two fuzzy integer outputs. The crisp inputs are the total cost of shipments
TC, the number of shipments per month NS, the eco-design cost ED, and the cost of work
safety and labour health CS. The NS input is an integer variable, while the rest of the inputs
are continuous variables. Of the two fuzzy outputs, one output is the number of shipments to
arrive on time, NOT, and the other is the number of bills received from the supplier without
errors, NB. Both outputs are given as triangular fuzzy integer numbers, which are a particular
case of trapezoidal fuzzy integer numbers where a2 = a3. Similarly, any crisp data a can be
regarded as (a, a, a, a) ∈ TFC or TFZ. .

Note that the same dataset was used and adapted in our previous work for the Integer
Interval DEA approach (see [18]), using the support of the fuzzy triangular numbers as the
corresponding integer interval output data. As indicated in the Introduction section, the current
work represents the extension from integer interval data to integer fuzzy numbers, which are
more powerful for modelling the uncertainty in real-world problems.

Note also that we have changed a bit the original dataset. Specifically, for the first half of
the DMUs, we picked randomly the points a2 and a3 between the original extremes a1 and a4
of the outputs, i.e. keeping the same closure. All the input data remain unchanged, as well as
the outputs, for the remaining DMUs 15 to 26, for comparison purposes. The reason for these
changes is that all the triangular fuzzy numbers the original data given by Majid Azadi et al.[23]
were symmetric, i.e.in a2 = a3 = (a1 + a4)/2. In that case, as it was expected, the inefficient score
I(Xo,Yo) obtained when we applied the proposed model for fuzzy integer numbers (FIDEA)
(5.1), is essentially the same as the one computed by the Integer Interval DEA model (IIDEA)
proposed in our previous work [18]. Of course, the Integer Interval DEA model (IIDEA) is
not able to handle fuzzy integer data nor to compute fuzzy integer targets, as the proposed
fuzzy integer DEA (FIDEA) approach. Therefore, the original data were modified to highlight
the potential of this more general approach. Actually, trapezoidal fuzzy numbers allow more
flexibility in modeling the uncertainty in the input and output data than just intervals. And we
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Table 5.1: Input and output data of the numerical example based on [23]. This is a hybrid
problem in which the second input is integer (and crisp) and both outputs are trapezoidal
fuzzy integer numbers (TFZ). The label of those three variables are highlighted in bold. The
other three inputs are continuous (and crisp). The crisp variables can be regarded as a particular
case of trapezoidal fuzzy numbers where a1 = a2 = a3 = a4.

o Input data Output data
X1 X2 X3 X4 Y1 Y2

1 316 251 61 18 ( 199 , 219 , 229 , 239 ) ( 76 , 80 , 85 , 90 )
2 281 164 45 21 ( 153 , 173 , 183 , 193 ) ( 28 , 30 , 35 , 42 )
3 309 198 83 40 ( 203 , 213 , 223 , 243 ) ( 78 , 83 , 87 , 92 )
4 291 218 37 45 ( 167 , 177 , 187 , 207 ) ( 85 , 90 , 95 , 99 )
5 597 178 52 29 ( 197 , 217 , 227 , 237 ) ( 163 , 170 , 173 , 177 )
6 341 142 19 33 ( 129 , 140 , 150 , 169 ) ( 129 , 133 , 138 , 143 )
7 475 149 74 18 ( 193 , 210 , 220 , 233 ) ( 111 , 115 , 120 , 125 )
8 254 172 53 35 ( 134 , 154 , 164 , 174 ) ( 250 , 257 , 260 , 264 )
9 328 135 83 47 ( 184 , 200 , 210 , 224 ) ( 58 , 63 , 68 , 72 )
10 310 173 41 16 ( 113 , 130 , 140 , 153 ) ( 88 , 92 , 97 , 102 )
11 321 121 57 45 ( 125 , 145 , 155 , 165 ) ( 153 , 160 , 160 , 167 )
12 329 204 38 53 ( 195 , 205 , 215 , 235 ) ( 90 , 95 , 100 , 104 )
13 475 212 32 42 ( 156 , 170 , 180 , 196 ) ( 139 , 143 , 148 , 153 )
14 259 189 56 85 ( 129 , 149 , 149 , 169 ) ( 97 , 97 , 104 , 111 )
15 274 217 38 51 ( 85 , 105 , 105 , 125 ) ( 68 , 75 , 75 , 82 )
16 264 158 25 35 ( 193 , 213 , 213 , 233 ) ( 45 , 52 , 52 , 59 )
17 327 124 32 16 ( 107 , 127 , 127 , 147 ) ( 271 , 278 , 278 , 285 )
18 429 307 57 49 ( 142 , 162 , 162 , 182 ) ( 46 , 53 , 53 , 60 )
19 262 138 25 31 ( 122 , 142 , 142 , 162 ) ( 173 , 180 , 180 , 187 )
20 385 238 74 22 ( 106 , 126 , 126 , 146 ) ( 119 , 126 , 126 , 133 )
21 249 217 69 72 ( 150 , 170 , 170 , 190 ) ( 90 , 97 , 97 , 104 )
22 337 203 27 33 ( 104 , 124 , 124 , 144 ) ( 271 , 278 , 278 , 285 )
23 365 292 85 71 ( 185 , 205 , 205 , 225 ) ( 143 , 150 , 150 , 157 )
24 296 185 49 18 ( 112 , 132 , 132 , 152 ) ( 177 , 184 , 184 , 191 )
25 428 242 39 22 ( 94 , 114 , 114 , 134 ) ( 78 , 85 , 85 , 92 )
26 327 218 43 48 ( 173 , 193 , 193 , 213 ) ( 113 , 120 , 120 , 127 )
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Table 5.2: Efficiency scores and slacks (TFZ or tFC) from Phase I. The second input is an integer
(crisp) variable, the other three inputs are continuous (crisp) and both outputs are trapezoidal
fuzzy integer numbers TFZ. The crisp variables can be regarded as the particular case of
trapezoidal fuzzy numbers where a1 = a2 = a3 = a4.

DMUo I(Xo,Yo)
Input slacks Output slacks

sx
1 sx

2 sx
3 sx

4 sy
1 sy

2
1 0 0 0 0 0 ( 0 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 0 )
2 1.71 0.36 0 4.81 0 ( 0 , 0 , 0 , 3 ) ( 54 , 54 , 54 , 54 )
3 1.22 0 1 40.09 0 ( 0 , 6 , 6 , 6 ) ( 59 , 60 , 60 , 62 )
4 1.35 0 53 0.12 12.11 ( 0 , 2 , 2 , 2 ) ( 76 , 76 , 76 , 78 )
5 0.46 162.62 0 0.28 0.38 ( 0 , 0 , 0 , 12 ) ( 26 , 26 , 26 , 30 )
6 0 0 0 0 0 ( 0 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 0 )
7 0 0 0 0 0 ( 0 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 0 )
8 0 0 0 0 0 ( 0 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 0 )
9 0 0 0 0 0 ( 0 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 0 )
10 1.74 0 32 5.34 0.03 ( 0 , 0 , 0 , 4 ) ( 134 , 134 , 134 , 135 )
11 0.7 0 0 10.3 23.14 ( 0 , 0 , 0 , 5 ) ( 0 , 0 , 0 , 0 )
12 1.12 0 21 0.19 16.16 ( 0 , 6 , 6 , 7 ) ( 66 , 66 , 66 , 70 )
13 1.33 142.38 59 0 15.42 ( 0 , 0 , 0 , 6 ) ( 54 , 54 , 54 , 56 )
14 2.34 0 24 5.98 52.49 ( 0 , 0 , 0 , 0 ) ( 152 , 152 , 152 , 152 )
15 3.61 0 110 10.36 36.9 ( 0 , 0 , 0 , 0 ) ( 158 , 158 , 158 , 158 )
16 0 0 0 0 0 ( 0 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 0 )
17 0 0 0 0 0 ( 0 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 0 )
18 7.2 0 141 13.97 27.17 ( 0 , 6 , 7 , 13 ) ( 311 , 313 , 313 , 315 )
19 0 0 0 0 0 ( 0 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 0 )
20 2.8 0.02 92 36.33 3.16 ( 20 , 23 , 23 , 27 ) ( 200 , 201 , 201 , 202 )
21 1.96 0 56 28.37 38.25 ( 0 , 0 , 0 , 0 ) ( 74 , 74 , 74 , 74 )
22 0 0 0 0 0 ( 0 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 0 )
23 2.07 0 58 16.47 24.04 ( 7 , 15 , 23 , 23 ) ( 184 , 187 , 190 , 190 )
24 0.95 0.04 62 19.74 0.09 ( 0 , 0 , 0 , 0 ) ( 38 , 38 , 38 , 38 )
25 3.89 29.81 91 0.03 2.52 ( 36 , 40 , 40 , 45 ) ( 252 , 253 , 253 , 255 )
26 1.35 0.06 58 11.52 18.33 ( 0 , 2 , 2 , 4 ) ( 50 , 51 , 51 , 52 )

check that not only the resulting efficiency scores are different, but also they tend to be lower
when comparing the results of (FIDEA) with those of (IIDEA).

Tables 5.2 and 5.3 show the results from Phase I, model (5.2), and Phase II, model (5.3),
together with the computed targets, (5.4) and (5.5), respectively. The corresponding efficiency
status, given also in Table 5.3, coincide with those of the (IIDEA) model. All DMUs are classified
as either efficient or inefficient, and there are no weakly efficient DMUs in this example. As
regards the ranking of the DMUs provided by the proposed approach this is based on the
overall efficiency score I(Xo,Yo) +H(Xo,Yo).

For the sake of comparison, Table 5.4 shows the efficiency score and (crisp) targets of the
Integer Fuzzy DEA approach of Kordrostami et al. [94] versus the efficiency scores and the
(fuzzy) targets computed by the proposed approach. Note that we only show the integer input
and output targets. The efficient DMUs identified by the two approaches coincide although
the ranking of the inefficient DMUs differ. Recall that Kordrostami et al. [94] use a radial
oriented approach based on the integer PPS of Kuosmanen & Matin [98]. As opposed to that,
we apply an additive, non-oriented approach based on a specific fuzzy integer PPS. Despite
these differences, analysing the results of both approaches, we can check that the results are
in good agreement (the Spearman rank-order correlation coefficient is ρ = 0.923). As regards
the targets, for the second (crisp) input variable, they are similar, although Kordrostami et al.
[94] provide smaller values in general. More important, the fuzzy character of the targets of
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Figure 5.1: Observed input and output data versus their corresponding targets for two ineffi-
cient DMUs. Observed data are plotted in black colour while targets are shown in red colour.

the proposed approach maintain the uncertainty originally present in the fuzzy data and, in
addition, they are usually higher than those Kordrostami et al. [94].

Figure 5.1 compares the observed input and output data versus the corresponding targets,
as per Equations (5.4) and (5.5), for two inefficient DMUs. The data and the targets are plotted
in black and red, respectively. Note how for the input variables the target inputs are lower than
the observed data while the opposite occurs for the output variables.

Figure 5.2 graphically shows the target computation process using the results of Phases I
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Figure 5.2: Target computation process, using the solutions of Phase I and Phase II, for DMU
11. sy∗

1 = (0, 0, 0, 5), vy∗
1,1 = 9, vy∗

1,2 = 6, vy∗
1,3 = 0, vy∗

1,4 = 0, sy∗
2 = (0, 0, 0, 0), vy∗

2,1 = 1, vy∗
2,2 = 0, vy∗

2,3 = 1,
vy∗

2,4 = 0.

and II. The first approximation is obtained by the computation of the fuzzy slacks in (5.2). The
result of adding these Phase I output slacks sy∗

r ∈ TFZ+ to the observed output yrj is plotted in
blue color. The final output targets are plotted in red color. These output targets are computed
using Equation (5.5), i.e. adding to the observed output not only the Phase I output slacks sy∗

r
but also the vy∗

rk ∈ Z+ variables from the optimal solution of the Phase II model (5.3). As it
can be seen, Phase II checks if there still any remaining reduction (for inputs) or increase (for
outputs). Those improvements are computed by the corresponding input and output slack
variables vx

ik and vy
rk, k = 1, 2, 3, 4.

Finally, for completeness and illustration purposes, in order to fully understand how the
proposed approach works let us consider an additional weakly efficient DMU′, plotted in Figure
5.3. This is constructed based on the efficient DMU1 in the following way. DMU′ has the same
inputs as DMU1, i.e. X′ = X1, but the outputs have been slightly reduced so that with Y′ � Y1 ,
and Y1 , Y′. More specifically, if y′r = (y′r,1, y

′

r,2, y
′

r,3, y
′

r,4) and y1,r = (y1,r,1, y1,r,2, y1,r,3, y1,r,4), with
r = 1, 2, then y′r,k < y1,r,k for k = 1, 2, and y′r,k = y1,r,k for k = 3, 4. Thus, I(X′,Y′) = 0 because the
Phase I model (5.2) cannot find any non-null fuzzy slacks that would improve DMU′ within
the fuzzy integer PPS. The Phase II model (5.3), however, checks that there are some possible
increases in the vy

rk outputs slacks for k = 1, 2, leading to H(X′,Y′) > 0. Hence, DMU′ is labeled
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Figure 5.3: The weakly Efficient DMU’ (grey colour) versus the efficient DMU1 that dominates
it (black colour). The inputs of both are the same, X′ = X1, but Y′ � Y1, Y1 , Y′. I(X′,Y′) = 0 but
H(X′,Y′) = vy∗

1,1+vy∗
1,2+vy∗

2,1+vy∗
2,2 = (199−150)+(219−210)+(76−50)+(80−70) = 49+9+26+10 = 94.

Therefore, it is not possible to add non null output slacks sy∗
r ∈ TFZ+ , but it is still possible to

shift to the right some of the fuzzy output parameters so as to improve the efficiency of DMU’.
The target is indeed DMU1. As in Figure 4.1, we only represent the integer points within each
α-level.

as weakly efficient as per Definition 5.3.2.

5.5 Conclusions

In this chapter, a general fuzzy integer DEA approach is presented to assess and rank the
efficiency of the DMUs. Conventional integer DEA approaches do not consider uncertainty
while, with the exception of Kordrostami et al. [94], existing fuzzy DEA approaches do not
consider fuzzy integer variables. The proposed approach considers a hybrid scenario that
may involve trapezoidal fuzzy integer numbers (TFZ) and trapezoidal fuzzy numbers (TFC).
As an extension of the integer PPS given in [18], a fuzzy integer PPS is derived using fuzzy
integer arithmetic and fuzzy integer partial orders. Once the corresponding FIDEA technology
is established, a non-oriented slacks-based fuzzy integer DEA model is proposed. This allows
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not only computing efficiency scores but also efficient fuzzy targets.

The proposed approach involves two phases because, unlike in the crisp case, in the fuzzy
DEA scenario a null inefficiency score of the Phase I, i.e., I(X0,Y0) = 0, does not imply efficiency,
being a necessary but not sufficient condition. In other words, the phase I model can not
distinguish between efficient and weakly efficient DMUs. The efficient fuzzy integer targets
are actually computed by the Phase II model.

We have applied the proposed approach to a numerical dataset with both crisp and fuzzy
integer variables. The efficiency scores and DMU ranking of the proposed approach are
compared with those of the radial, input-oriented approach of Kordrostami et al. [94]. Unlike
Kordrostami et al. [94], however, the proposed approach is able to compute efficient input and
output targets.

Regarding future research, a first step would extend the existing fuzzy integer arithmetic
and partial orders to polygonal fuzzy integer numbers, which are more general than trapezoidal
fuzzy integer numbers and thus allow more flexibility for modeling the uncertainty in the
input and output data. Also, other types of DEA models, for example involving undesirable
outputs, non discretionary variables, or multiple processes (so-called network DEA) ought to
be developed.
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Chapter 6

Inverse DEA

6.1 Introduction

This chapter is to consider inverse DEA with non-radial slacks-based measure, which has more
properties of radial models, on integer interval framework. We consider the following question:
"If the output of DMUo increases such that its inefficiency score is not less than t-percent, how
much should the input of DMUo increase?" As explained before, Zhang and Cui in [153] propose
a non-radial inverse DEA model with crisp data, supposing that the overall efficiency score
remains unchanged, covering all radial and non-radial measures that are monotonous. In other
words, they introduced a basic form of all inverse DEA models because monotonicity is one of
the main properties of DEA measures.

6.2 Inverse DEA models with crisp data

Let us assume a set of N DMUs in which each DMU j, j ∈ J = {1, . . . ,N}, consume M inputs
X j = (x1 j, . . . , xMj) ∈ RM to produces S outputs Y j = (y1 j, . . . , ySj) ∈ RS. In the classic Charnes et
al. [31] DEA model, the production possibility set (PPS) or technology, defined by T, satisfies
in the axioms Envelopment, Free disposability, Convexity, Scalability introduced in Subsection
2.5.1. According to the minimum extrapolation principle in [28] and these axioms, the DEA
PPS is defined. The DEA PPS under constant-return to scale (CRS) is presented in this paper.

Let us recall, a DMUo is said to be efficient if and only if for any (X,Y) ∈ TDEA such that
X ≦ Xo and Y ≧ Yo, then (X,Y) = (Xo,Yo). Let us recall that this can be got solving the following
normalized slacks-based DEA model .
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(DEA) I∗(Xo,Yo) = Max
M∑

i=1

sx
i

xio
+

S∑
r=1

sy
r

yro
(6.1)

s.t.
N∑

j=1

λ jxi j ≤ xio − sx
i , i = 1, . . . ,M,

N∑
j=1

λ jyrj ≥ yro + sy
r , r = 1, . . . ,S,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

y
r ≥ 0, i = 1, . . . ,M, r = 1, . . . ,S.

Where λ j, j = 1, . . . ,N, are the intensity variables used for defining the corresponding
efficient target of DMUo. A DMUo is efficient if and only if I∗(Xo,Yo) = 0.

Now, the following question is considered based on investigations carried out in previous
literature. If the outputs of DMUo increase, how much should the inputs of the DMUo increase
to decrease the inefficiency score of DMUo to the amount of t-percent. The aim of the question
is to calculate the minimum increase of input (α∗o) if the output of DMUo increase from Yo to
βo = Yo + △Yo, where △Yo ≩ 0 provided that the inefficiency score of DMUo decrease to the
amount of t-percent. In fact,

α∗o = (α∗1o, α
∗

2o, ..., α
∗

Mo)t = Xo + △Xo, △ Xo ≩ 0.

Furthermore, we consider that the new DMU belongs to the technology. For the sake of
simplicity, assume that the new DMU represents DMUo. After modification of inputs and
outputs, the following model is presented to estimate the inefficiency of the new DMU:

(DEA) I∗(α∗o, βo) = Max
M∑

i=1

sx
i

α∗io
+

S∑
r=1

sy
r

βro
(6.2)

s.t.
N∑

j=1

λ jxi j ≤ α
∗

io − sx
i , i = 1, . . . ,M,

N∑
j=1

λ jyrj ≥ βro + sy
r , r = 1, . . . ,S,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

y
r ≥ 0, i = 1, . . . ,M, r = 1, . . . ,S.

Definition 6.2.1. (1) If the optimal values of the model (6.1) and (6.2) are equal, it is said to be the
inefficiency score remains unchanged; that is, I∗(α∗o, β0) = I∗(Xo,Yo).
(2) If the optimal values of the model (6.1) are less than model (6.2), it is said to be the inefficiency score
decrease to the amount of t-percent; that is, I∗(α∗o, β0) = (1 − t)I∗(Xo,Yo).

To solve the above question, the following Multiple Objective Non-Linear Programming
(MONLP) is considered:

82



(MONLP) Min (α1o, ..., αMo) (6.3)

s.t.
N∑

j=1

λ jxi j ≤ αio − sx
i , i = 1, . . . ,M,

N∑
j=1

λ jyrj ≥ βro + sy
r , r = 1, . . . ,S,

M∑
i=1

sx
i

αio
+

S∑
r=1

sy
r

βro
= (1 − t)I∗

αio ≥ xio, i = 1, . . . ,M,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

y
r ≥ 0, i = 1, . . . ,M, r = 1, . . . ,S.

Where I∗ is the optimal value of the model (6.1) and 0 ≤ t ≤ 1, note that when t = 1,
I∗(α∗o, βo) = 0, which means the new DMU is efficient and when t = 0, I∗(α∗o, βo) = I∗(Xo,Yo).
Therefore, when t increases, the inefficiency score decreases.

Definition 6.2.2. (see [153]). Let (λ∗, α∗0, s
x∗, sy∗) be a feasible solution to the model (6.3). (λ∗, α∗0, s

x∗, sy∗)
is said to be a Pareto (efficient) solution to the model (6.3) if there isn’t feasible solution (λ, α0, sx, sy) of
(6.3) such that αio ≤ α∗io for all i = 1, 2, ...,M and αio < α∗io for at least one i.

Definition 6.2.3. (see [153]). Let (λ∗, α∗0, s
x∗, sy∗) be a feasible solution to the model (6.3). (λ∗, α∗0, s

x∗, sy∗)
is said to be a weakly Pareto (weakly efficient) solution to the model (6.3) if there isn’t feasible solution
(λ, α0, sx, sy) of (6.3) such that αio ≤ α∗io for all i = 1, 2, ...,M.

There are different methods to generate weakly Pareto (weakly efficient) solutions of MOLP
and MONLP. One of the most usual methods is weighted sum problems (see [9] and [10]).
Following formulation is this type of optimization problem. Given MONLP (6.3) and w =

(w1,w2, · · · ,wM) ∈ RM, wi > 0 ,
M∑

i=1

wi = 1, We define the related sum problem as follows.

(MONLP)w Min
M∑

i=1

wiαio (6.4)

s.t.
N∑

j=1

λ jxi j ≤ αio − sx
i , i = 1, . . . ,M,

N∑
j=1

λ jyrj ≥ βro + sy
r , r = 1, . . . ,S,

M∑
i=1

sx
i

αio
+

S∑
r=1

sy
r

βro
= (1 − t)I∗,

αio ≥ xio, i = 1, . . . ,M,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

y
r ≥ 0, i = 1, . . . ,M, r = 1, . . . ,S.
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Theorem 6.2.1. Assume that I∗(Xo,Yo) be the inefficiency score of DMUo under the monotonous mea-
sure in the model (6.1) and the outputs of DMUo are increased from Y0 to β0 = Y0 + △Yo (△Yo ≦ 0).

(1) Let (λ∗, α∗o, sx∗, sy∗) be a Pareto solution to the model (6.3) then inefficiency score of the DMUo
under new inputs and outputs decrease to the amount of t-percent.
(2) Conversely, let (λ∗, α∗o, sx∗, sy∗) be a feasible solution to the problem (6.3). If the inefficiency score of
the new DMU decreases to the amount of t-percent, then (λ∗, α∗o, sx∗, sy∗) must be a Pareto solution to
the model (6.3).

Note that there is a similar resulting. If the input of DMUo increases, how much should the
output of DMUo increase to decrease to the amount of t-percent the inefficiency score of DMUo.
In other words, we calculate I∗(αo, β∗o).

6.3 Inverse DEA models with integer and continuous interval data

In this section, the non-radial slacks-based model is extended to an integer interval framework,
which is considered by Arana-Jimenez et al. [18]. In other words, we provide the question,
which is mentioned in previous sections, in the presence of integer interval data using a non-
radial slacks-based model.

Let us assume a set of N DMUs, j ∈ J = {1, . . . ,N}, in which each DMU j consumes M
inputs denoted by X j = (x1 j, . . . , xMj) ∈ (KZ+)M, with xi j = [xi j, xi j]Z ∈ KZ+ for i ∈ {1, . . . ,M}

to produces S outputs denoted by Y j = (y1 j, . . . , ySj) ∈ (KZ+)S, with yrj = [yrj, yrj]Z ∈ KZ+

for r ∈ {1, . . . ,S}. Their continuous extensions are C(X j) =
(
C(x1 j), . . . ,C(xMj)

)
∈ (KC+)M and

C(Y j) =
(
C(y1 j), . . . ,C(ySj)

)
∈ (KC+)S.

Let us consider the following axioms, which are corresponding to axioms introduced in Sub-
section 2.5.1, but considering integer fuzzy inputs and outputs and utilizing the corresponding
partial order introduced in Definitions 2.2.2 and 2.2.4:

(B1) Envelopment: (X j,Y j) ∈ T, for all j ∈ J.

(B2) Free disposability: (X,Y) ∈ T, (X′,Y′) ∈ (KZ+)M+S, such that X′ � X, Y′ � Y ⇒ (X′,Y′) ∈ T.

(B3) Convexity: (X,Y), (X′,Y′) ∈ T, α ∈ [0, 1], such that α(C(X),C(Y)) + (1 − α)(C(X′),C(Y′)) ∈
(KC→Z)M+S

⇒ (X′′,Y′′) = Zα(C(X),C(Y)) + (1 − α)(C(X′),C(Y′)) ∈ T.

(B4) Scalability: (X,Y) ∈ T,α ≥ 0, andα(C(X),C(Y)) ∈ (Kc→z)M+S
⇒ (X′′,Y′′) = Z(α(C(X),C(Y))) ∈

T.

Theorem 6.3.1. Under axioms (B1), (B2), (B3) and (B4), the interval production possibility set that
results from the minimum extrapolation principle is

TIFDEA =

(X,Y) ∈ (KZ+)M+S : C(X) �
N∑

j=1

λ jC(X j),C(Y) �
N∑

j=1

λ jC(Y j), λ j ≥ 0,∀ j

 .
After the characterization result for the TIIDEA given in Theorem 6.3.1, the following integer

interval DEA (IIDEA) model, which is a slacks-based measure of inefficiency, can be extended
from the non-radial slacks-based model.
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(IIDEA) II∗(Xo,Yo) = Max
M∑

i=1

sx
i + sx

i

xio + xio
+

S∑
r=1

sy
r + sy

r

yro + yro
(6.5)

s.t.
N∑

j=1

λ jC(xi j) � C(xio) − C(sx
i ), i = 1, . . . ,M,

N∑
j=1

λ jC(yrj) � C(yro) + C(sy
r ), r = 1, . . . ,S,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

y
r ∈ KZ+, i = 1, . . . ,M, r = 1, . . . ,S,

where inputs xi j and outputs yrj belong to KZ , i.e.,

xi j = [xi j, xi j]Z, i = 1, . . . ,M, j = 1, . . . ,N,

yrj = [yrj, yrj]Z, r = 1, . . . ,S, j = 1, . . . ,N.

A feasible solution for (IIDEA) is denoted by (sx∗, sy∗,λ∗), where sx∗ = (sx∗
1 , . . . , s

x∗
M) ∈ (Kz)M,

sy∗ = (sy∗
1 , . . . , s

y∗
S ) ∈ (Kz)S, and λ∗ = (λ∗1, . . . , λ

∗

N) ∈ RN. Moreover, (IIDEA) model will deal
directly without any ranking function. Also, its objective function is a real number, i.e.
II(Xo,Yo) ∈ R .

Definition 6.3.1. A DMUo is considered to be efficient if and only if (x, y) ∈ TIFDEA, x � Xo and
y � Yo implies (x, y) = (Xo,Yo).

Theorem 6.3.2. If DMUo is efficient, then II(Xo,Yo) = 0.

Arana-Jimenez et al. [18] extended the previous axioms, interval production possibility set,
and result to the hybrid data scenario, that is, with integer and continuous integer data. The
extended and corresponding non-radial slacks-based model is the following:
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(HIDEA) II∗(Xo,Yo) = Max
M∑

i=1

sx
i + sx

i

xio + xio
+

S∑
r=1

sy
r + sy

r

yro + yro
(6.6)

s.t.
N∑

j=1

λ jC(xi j) � C(xio) − C(sx
i ), i ∈ OXI,

N∑
j=1

λ jxi j � xio − sx
i , i ∈ OXNI,

N∑
j=1

λ jC(yrj) � C(yro) + C(sy
r ), r ∈ OYI,

N∑
j=1

λ jyrj � yro + sy
r , r ∈ OYNI,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

y
r ∈ KZ+, i ∈ OXI, r ∈ OYI,

sx
i , s

y
r ∈ KC+, i ∈ OXNI, r ∈ OYNI,

with OXI and OXNI the index sets for integer input variables and continuous input variables,
respectively, OYI and OYNI the index sets for integer output variables and continuous output
variables, respectively, with XI + XNI = M, YI + YNI = S, OX = OXI

∪ OXNI = {1, . . . ,M},
OY = OYI

∪OYNI = {1, . . . ,S}. Let us write the above model in parameterized form as follows:
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(PHIDEA) II∗(Xo,Yo) = Max
M∑

i=1

sx
i + sx

i

xio + xio
+

S∑
r=1

sy
r + sy

r

yro + yro
(6.7)

s.t.
N∑

j=1

λ jxi j ≤ xio − sx
i , i ∈ OX,

N∑
j=1

λ jxi j ≤ xio − sx
i , i ∈ OX,

N∑
j=1

λ jyrj ≥ yro + sy
r , r ∈ OY,

N∑
j=1

λ jyrj ≥ yro + sy
r , r ∈ OY,

sx
i ≤ sx

i , i ∈ OX,

sy
r ≤ sy

r , r ∈ OY,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

x
i , s

y
r , s

y
r ∈ Z+, i ∈ OXI, r ∈ OYI,

sx
i , s

x
i , s

y
r , s

y
r ≥ 0, i ∈ OXNI, r ∈ OYNI.

The first four sets of constraints are just the corresponding transformation of the in-
puts/outputs constraints from the model (6.6), with regard to the partial order relation for
integer interval numbers, considering in Definition 2.2.4. The two last constraints certify the
integer and continuous slacks. Therefore, it is not difficult to derive the following proposition,
which establishes the relationship between the (HIDEA) and (PHIDEA) solutions.

Proposition 6.3.1. (sx∗, sy∗,λ∗) with sx∗
∈ (KZ+)XI

∗ (KC)XNI,XI + XNI = M, sy∗
∈ (KZ+)YI

∗

(KC)YNI,YI+YIN = S and λ∗ ∈ RN
+ is an optimal solution of (HIDEA) if and only if its corresponding

components or parameterization (sx∗
1 , s

x∗
1 , . . . , s

x∗
M, s

x∗
M, s

y∗
1 , s

y∗
1 , . . . , s

y∗
S , s

y∗
S λ
∗

1, . . . , λ
∗

N), with λ∗j ∈ R+, j =

1, . . . ,N, sx∗
i , s

x∗
i , s

y∗
r , s

y∗
r ∈ Z+ for i ∈ OXI, r ∈ OYI and sx∗

i , s
x∗
i , s

y∗
r , s

y∗
r ∈ R+ for i ∈ OXNI, r ∈ OYNI, is

an optimal solution of (PHIDEA).

In this new framework with integer and continuous interval data, we reconsider the inverse
DEA concept from the classic concept under continuous crisp data. It is known that, in general,
given a real number, it is not guaranteed that one can attain such a real number utilizing an
arithmetic combination of a finite collection of integer numbers. The latter makes that, in
general, given β0 an increase of a Y0, there exists no α0 an increase of X0 such that inefficiency
II∗(X0,Y0) or a given t-percent of it is attained, i.e., II∗(α0, β0) = (1 − t)II∗(X0,Y0). Furthermore,
transformations of a formulation of DEA problems via change of variables are, in general, not
consistent with the integer condition of the original variables; that is, the result of a transformed
integer variable is not necessarily an integer. In this regard, if one follows the procedure
proposed by Zhang and Ciu [153] applied to our hybrid DEA model using a variable, with
the division between variables, then an integer variable becomes a non necessarily integer
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variable. These remarks make us approach the question of inverse DEA as follows. The aim
of the question is to estimate the minimum increase of input, (α∗o), if the output of DMUo
increases from Yo to βo, such the new DMU is given by (α∗o, β) belongs to the technology, and its
inefficiency score of is not less than t-percent. Here, α∗o = (α∗1o, α

∗

2o, ..., α
∗

Mo) ∈ (KZ+)XI
∗ (KC)XNI,

α∗o � X0, β∗o = (α∗1o, β
∗

2o, ..., β
∗

So) ∈ (KZ+)YI
∗ (KC)YNI, β0 � Y0. After these previous considerations,

the following slacks-based model estimate the inefficiency of the new DMU:

(PHIDEA) II∗(α∗o, βo) = Max
M∑

i=1

sx
i + sx

i

α∗io + α
∗

io

+

S∑
r=1

sy
r + sy

r

βro + βro
(6.8)

s.t.
N∑

j=1

λ jxi j ≤ α
∗

io − sx
i , i ∈ OX,

N∑
j=1

λ jxi j ≤ α∗io − sx
i , i ∈ OX,

N∑
j=1

λ jyrj ≥ βro + sy
r , r ∈ OY,

N∑
j=1

λ jyrj ≥ βro + sy
r , r ∈ OY,

sx
i ≤ sx

i , i ∈ OX,

sy
r ≤ sy

r , r ∈ OY,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

x
i , s

y
r , s

y
r ∈ Z+, i ∈ OXI, r ∈ OYI,

sx
i , s

x
i , s

y
r , s

y
r ≥ 0, i ∈ OXNI, r ∈ OYNI.

To solve integer interval problem, the following (IP) problem is established:

(IP) Min (α1o, , ..., αMo) (6.9)

s.t. (αo, βo) ∈ T,

αo � Xo,

II∗(αo, βo) ≥ (1 − t)II∗.

Definition 6.3.2. Let α∗o ∈ (KZ+)XI
∗ (KC)XNI be a feasible solution to the model (6.9). It is said to

be an interval Pareto solution to the model (6.9) if there isn’t feasible solution αo of (6.9) such that
αo � α∗o, αo , α∗o.

Definition 6.3.3. Let α∗o ∈ (KZ+)XI
∗ (KC)XNI be a feasible solution to the model (6.9). It is said to be

an interval weakly Pareto solution to the model (6.9) if there isn’t feasible solution αo of (6.9) such that
αo � α∗o.

After parametrization of (IP), the following (MONLP) is established:
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(MONLP) Min (α1o, α1o, ..., αMo, αMo) (6.10)

s.t.
N∑

j=1

λ jxi j ≤ αio − sx
i , i ∈ OX,

N∑
j=1

λ jxi j ≤ αio − sx
i , i ∈ OX,

N∑
j=1

λ jyrj ≥ βro + sy
r , r ∈ OY,

N∑
j=1

λ jyrj ≥ βro + sy
r , r ∈ OY,

M∑
i=1

sx
i + sx

i

αio + αio
+

S∑
r=1

sy
r + sy

r

βro + βro
≥ (1 − t)II∗,

αio ≥ xio, i ∈ OX,

αio ≥ xio, i ∈ OX,

sx
i ≤ sx

i , i ∈ OX,

sy
r ≤ sy

r , r ∈ OY,

αio ≤ αio, i ∈ OX,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

x
i , s

y
r , s

y
r ∈ Z+, i ∈ OXI, r ∈ OYI,

sx
i , s

x
i , s

y
r , s

y
r ≥ 0, i ∈ OXNI, r ∈ OYNI,

αio, αio ∈ Z+, i ∈ OXI,

αio, αio ≥ 0, i ∈ OXNI,

where II∗ is the optimal value of model (6.7) and 0 ≤ t ≤ 1.

Given MONLP (6.10) and w = (w1,w2, · · · ,w2M) ∈ R2M, wi > 0 ,
2M∑
i=1

wi = 1, we introduce the

following related sum problem.
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(MONLP)w Min
2M∑
i=1

wiαio (6.11)

s.t.
N∑

j=1

λ jxi j ≤ αio − sx
i , i ∈ OX,

N∑
j=1

λ jxi j ≤ αio − sx
i , i ∈ OX,

N∑
j=1

λ jyrj ≥ βro + sy
r , r ∈ OY,

N∑
j=1

λ jyrj ≥ βro + sy
r , r ∈ OY,

M∑
i=1

sx
i + sx

i

αio + αio
+

S∑
r=1

sy
r + sy

r

βro + βro
≥ (1 − t)II∗,

αio ≥ xio, i ∈ OX,

αio ≥ xio, i ∈ OX,

sx
i ≤ sx

i , i ∈ OX,

sy
r ≤ sy

r , r ∈ OY,

αio ≤ αio, i ∈ OX,

λ j ≥ 0, j = 1, . . . ,N,

sx
i , s

x
i , s

y
r , s

y
r ∈ Z+, i ∈ OXI, r ∈ OYI,

sx
i , s

x
i , s

y
r , s

y
r ≥ 0, i ∈ OXNI, r ∈ OYNI,

αio, αio ∈ Z+, i ∈ OXI,

αio, αio ≥ 0, i ∈ OXNI.

Let us pointed out that the previous problem is a mixed- integer nonlinear optimization
problem, which is NP-hard, in general. To deal with it and compute examples (following), on
the one hand, we include penalties on integer variables in the objective function, following a
proposal used in [15] and [102], among others. Then, we apply the R-package called "nloptr",
which used methods based on gradients to provide a solution. From now on, and for the
sake of simplicity, we use a similar notation to refer to vector interval solutions of (IP) and
their parameterizations as real vector solutions of (MONLP). In this regard, for instance, αo =
(α1o, α1o, ..., αMo, αMo) can be interpreted as a vector of intervals or as a vector of real numbers,
depending on the problem at hand. The inequality relationships are used according to the
previous interpretation, being � for intervals, and ≦ for vectors of real numbers, for instance.

The following theorem represents the relationship between the (IP) and (MONLP) solutions.

Theorem 6.3.3. α∗o ∈ (KZ+)XI
∗(KC)XNI,XI+XNI =M is an interval Pareto solution of (IP) if and only

if there existλ∗ ∈ RN
+ , sx∗

∈ (KZ+)XI
∗(KC)XNI,XI+XNI =M and sy∗

∈ (KZ+)YI
∗(KC)YNI,YI+YNI =
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S such that the corresponding parameterization of (λ∗,α∗o, sx∗, sy∗), (λ∗1, . . . , λ
∗

N, α
∗

1o, α
∗

1o, . . . , α
∗

Mo, α
∗

Mo, s
x∗
1 ,

sx∗
1 , . . . , s

x∗
M, s

x∗
M, s

y∗
1 , s

y∗
1 , . . . , s

y∗
S , s

y∗
S ), is a Pareto solution of (MONLP).

Proof. (i) Suppose that α∗o is an interval Pareto solution of (IP). It implies that, if one considers
the related optimization problem to calculate II∗(α∗o, βo), then there exist λ∗ ∈ RN

+ , sx∗
∈ (KZ+)XI

∗

(KC)XNI,XI + XNI =M and sy∗
∈ (KZ+)YI

∗ (KC)YNI,YI + YNI = S such that

II∗(α∗o, βo) =
M∑

i=1

sx∗
i + sx∗

i

α∗io + α
∗

io

+

S∑
r=1

sy∗
r + sy∗

r

βro + βro
≥ (1 − t)II∗.

The latter means that (λ∗,α∗o, sx∗, sy∗), in its parameterization form, is a feasible solution of
(MONLP). Now, reasoning by contradiction, suppose that(λ∗,α∗o, sx∗, sy∗) is not a Pareto so-
lution of (MONLP), which implies that there exists (λ∗∗,α∗∗o , sx∗∗, sy∗∗) a feasible solution of
(MONLP) such that α∗∗o ≦ α∗o, α∗∗o , α∗o. Therefore, (α∗∗o , βo) ∈ T, α∗∗o ≧ Xo and

II∗(α∗∗o , βo) =
M∑

i=1

sx∗∗
i + sx∗∗

i

α∗∗io + α
∗∗

io

+

S∑
r=1

sy∗∗
r + sy∗∗

r

βro + βro
≥ (1 − t)II∗.

In consequence, we have that α∗∗o is a feasible solution of (IP), with α∗∗o ≦ α∗o, α∗∗o , α∗o, what is a
contradiction with α∗o is an interval Pareto solution of (IP).

(ii) Suppose that (λ∗1, . . . , λ
∗

N, α
∗

1o, α
∗

1o, . . . , α
∗

Mo, α
∗

Mo, s
x∗
1 , s

x∗
1 , . . . , s

x∗
M, s

x∗
M, s

y∗
1 , s

y∗
1 , . . . , s

y∗
S , s

y∗
S ) is Pareto

solution of (MONLP). From the problem (6.10), we derive

II∗(α∗o, βo) =
M∑

i=1

sx∗
i + sx∗

i

α∗io + α
∗

io

+

S∑
r=1

sy∗
r + sy∗

r

βro + βro
≥ (1 − t)II∗.

Then (α∗o, βo) ∈ T, α∗o � Xo, that is, α∗o is a feasible solution of (IP). Proceeding by contradiction,
suppose α∗o is not an interval Pareto solution of (IP), i.e. there exists α∗∗o feasible for (IP),
with α∗∗o � α∗o, α∗∗o , α∗o. Since α∗∗o is feasible solution of (IP), it implies that there exists
(λ∗∗1 , . . . , λ

∗∗

N, α
∗∗

1o, α
∗∗

1o, . . . , α
∗∗

Mo, α
∗∗

Mo, s
x∗∗
1 , s

x∗∗
1 , . . . , s

x∗∗
M ,

sx∗∗
M , s

y∗∗
1 , s

y∗∗
1 , . . . , s

y∗∗
S , s

y∗∗
S ) feasible solution of (MONLP), with α∗∗o ≦ α∗o, α∗∗o , α∗o, what is a

contradiction with α∗o Pareto solution of (MONLP).

□

As a consequence of the previous theorem, we have the following one that shows that the
above integer interval (MONLP) can be used for input level estimation.

Theorem 6.3.4. Assume that II∗ is the inefficiency score of DMUo in the model (6.7) and the output of
DMUo are increased from Y0 to β0 = (β1o, β1o, β2o, β2o, ..., βSo, βSo) = Y0 + △Yo, △Yo ≩ 0.

(1) Let (λ∗1, . . . , λ
∗

N, α
∗

1o, α
∗

1o, . . . , α
∗

Mo, α
∗

Mo, s
x∗
1 , s

x∗
1 , . . . , s

x∗
M, s

x∗
M, s

y∗
1 , s

y∗
1 , . . . , s

y∗
S , s

y∗
S ) be a Pareto solu-

tion to the model (6.10), then the inefficiency score of DMUo under new inputs and outputs is not less
than t-percent.

(2) Conversely, if the new DMUo belongs to the technology, and the inefficiency score of the new
DMUo is not less than t-percent, then there existλ∗, sx∗, sy∗ such that (λ∗1, . . . , λ

∗

N, α
∗

1o, α
∗

1o, . . . , α
∗

Mo, α
∗

Mo,

91



sx∗
1 , s

x∗
1 , . . . , s

x∗
M, s

x∗
M, s

y∗
1 , s

y∗
1 , . . . , s

y∗
S , s

y∗
S ) is a feasible solution for (MONLP). Furthermore, if any decrease

in the input α∗o of the new DMUo in the Pareto sense makes not fulfill the previous conditions, then it
follows that α∗o is a Pareto solution of (MONLP).

Proof. If (λ∗1, . . . , λ
∗

N, α
∗

1o, α
∗

1o, . . . , α
∗

Mo, α
∗

Mo, s
x∗
1 , s

x∗
1 , . . . , s

x∗
M, s

x∗
M, s

y∗
1 , s

y∗
1 , . . . , s

y∗
S , s

y∗
S ) is a Pareto solu-

tion of the problem (MONLP), then by Theorem 6.3.3 it follows that (λ∗,α∗o, sx∗, sy∗) is interval
Pareto solution of (IP), and then II∗(α∗o, βo) ≥ (1− t)II∗. Therefore, (1) is proof. Conversely, if the
inefficiency score of DMUo is not less than t-percent, II∗(α∗o, βo) ≥ (1−t)II∗, it means that (α∗o, βo) is
feasible for (IP), and there exist λ∗, sx∗, sy∗ such that (λ∗1, . . . , λ

∗

N, α
∗

1o, α
∗

1o, . . . , α
∗

Mo, α
∗

Mo, s
x∗
1 , s

x∗
1 , . . . ,

sx∗
M, s

x∗
M, s

y∗
1 , s

y∗
1 , . . . , s

y∗
S , s

y∗
S ) is a feasible solution of (MONLP). Furthermore, since (α∗o, βo) is feasi-

ble for (IP) and there aren’t α∗∗o � α∗o, α∗∗o , α∗o then α∗o is an interval Pareto solution of (IP), and
then, by Theorem 6.3.3, is a Pareto solution of (MONLP).

□

6.4 Numerical experiments

In this section, we introduce a problem that contains both integer and continuous vari-
ables. The data set coming from Zhang and Cui [153] are shown in Table 6.1. There are
12 DMUs. Every DMU consume three inputs and produce two outputs. The first input
and the second output are continuous, and the other data are integer. Firstly, we calcu-
late the inefficiency score of the model (6.7). It is indicated in Table 6.2. Then due to
the dependency between DEA and MONLP, we can relate inverse DEA mode into single
objective programming by means of weighted problems. To illustrate the example, the re-
sult is shown for DMU1 and DMU2 in Table 6.3 and Table 6.4 for three values, respec-
tively. In Table 6.3, we increase the output of DMU1 from Y1 = ([67, 67], [751, 751]) to
β1 = ([80, 85], [780, 850]) and put t = 0.3. After solving the model (6.10) by using weighted
sum problem, w = (0.2, 0.3, 0.1, 0.2, 0.1, 0.1), we can get α∗1 = ([350.00, 350.11], [47, 47], [13, 13]).
According to the the model (6.8), II(∗1, β1) = 1.01 which is not less than (1 − t)II∗(X1,Y1) =
0.994. Also, if we increase from Y1 = ([67, 67], [751, 751]) to β1 = ([70, 73], [760, 770]) and
put t = 0.3, a Pareto solution for MONLP will be α∗1 = ([350.00, 350.00], [47, 47], [13, 13]),
which means the inefficiency score is not less than (1 − t)II∗(X1,Y1) = 0.994. In addition,
again we increase from Y1 = ([67, 67], [751, 751]) to β1 = ([67, 70], [760, 765]) and put t = 0.3
and get α∗1 = ([350.00, 350.00], [47, 47], [13, 13]) that is not less than (1 − t)II∗(X1,Y1) = 0.994.
Also, in table 4, we consider the problem for the outputs of DMU2 and get new inputs.
For example, when we increase Y2 = ([70, 76], [608, 620]) to β2 = ([80, 85], [620, 630]), we
calculate α∗2 = ([304.73, 304.75], [35, 38], [14, 14]) that the inefficiency score of new DMU is
not less than (1 − t)II∗(X2,Y2) = 0.259. Also, After changing Y2 = ([70, 76], [608, 620]) to
β2 = ([72, 78], [619, 625]), we get α∗2 = ([298.00, 299.11], [35, 38], [14, 14]) which II∗(α∗2, β2) is
not less than (1 − t)II∗(X2,Y2) = 0.259. Finally, we increase Y2 = ([70, 76], [608, 620]) to
β2 = ([75, 78], [610, 622]), and a pareto solution will be α∗2 = ([298.00, 299.11], [35, 38], [14, 14])
which the inefficiency score of new DMU is not less than (1 − t)II∗(X2,Y2) = 0.259.
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Table 6.3: Results of inverse slacks-based model for DMU1, w = (0.2, 0.3, 0.1, 0.2, 0.1, 0.1) and
t = 0.3

optimal value, slacks and inputs β1 = ([80, 85], [780, 850]) β1 = ([70, 73], [760, 770]) β1 = (67, 70, 760, 765)
α1 ([350.00, 350.11], [47, 47], [13, 13]) ([350.00, 350.00], [47, 47], [13, 13]) ([350.00, 350.00], [47, 47], [13, 13])

I∗(α∗, β) 1.01 1.58 1.63
optimal value 191.76 191.70 191.74

sx
1 [0.00, 6.00] [31.15, 34.74] [30.80, 32.53]

sx
2 [1, 1] [1, 1] [1, 1]

sx
3 [3, 6] [3, 6] [3, 6]

sy
1 [1, 2] [1, 2] [1, 2]

sy
2 [1.00, 2.00] [17.12, 17.30] [20.55, 21.55]

Table 6.4: Results of inverse slacks-based model for DMU2, w = (0.2, 0.3, 0.1, 0.2, 0.1, 0.1) and
t = 0.3

optimal value, slacks and inputs β2 = ([80, 85], [620, 630]) β2 = ([72, 78], [619, 625]) β2 = ([75, 78], [610, 622])
α2 ([304.73, 304.75], [35, 38], [14, 14]) ([298.00, 299.11], [35, 38], [14, 14]) ([298.00, 298.97], [35, 38], [14, 14])

I∗(α∗, β) 0.65 0.89 0.91
optimal value 176.05 165.19 165.06

sx
1 [0.00, 0.00] [0.00, 2.00] [0.00, 2.00]

sx
2 [1, 1] [1, 1] [1, 1]

sx
3 [2, 3] [2, 3] [2, 3]

sy
1 [1, 2] [1, 2] [1, 2]

sy
2 [1.00, 2.00] [1.00, 2.00] [1.00, 2.00]

6.5 Conclusions

In this chapter, we present a new inverse DEA problem on the non-radial slacks-based model
with an integer and continuous data set. The main question on inverse DEA on the input
estimation has been discussed. in this regard, we use Pareto solutions of the MONLP to
determine sufficient and necessary conditions of input estimation. It is shown that in this new
framework, with integer and continuous interval data, it is not guaranteed when Yo increase to
βo, there is an increase of Xo such that I∗(αo, βo) = (1− t)I∗(Xo,Yo), what happens with crisp data.
This is of difference between crisp and interval data. Therefore, the method can be applied to
increase inputs for a slacks-based model such that the inefficiency score of DMUo is not less
than t-percent. Necessary and sufficient conditions are established for each DMU with integer
and interval variables. The present work establishes the first response to inverse DEA under
integer interval-type uncertainty on data, which is an important step to address a future study
under fuzzy data, which will lead our future research.
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Chapter 7

Conclusions

This study has presented several new approaches for efficiency assessment when inputs and
outputs are interval and fuzzy. We consider these approaches as follows.

The first approach presents a new study for efficiency assessment and target setting when
the input and output data are fuzzy. It is based on polygonal fuzzy numbers and LU-fuzzy
partial orders. From the observed fuzzy data, and using simple axioms analogous to the
ones considered in the crisp case, the fuzzy PPS containing all feasible operating points is
inferred. Based on this PPS a fuzzy ERM DEA model is proposed to compute, for each
DMU, a crisp efficiency score and a fuzzy target. The second approach can handle data that
are simultaneously uncertain and integer. Existing interval DEA approaches do not consider
integer data and, conversely, integer DEA approaches assume crisp data. Although at the cost
of requiring interval arithmetic and relational operators, with a higher number of constraints
in its parameterization form, the proposed approach is able to address the joint integer interval
scenario. It does so in a rigorous way, defining the corresponding integer interval PPS, its
corresponding efficient subset, and finally, formulating the models that compute the inefficiency
scores and the efficient targets. Another proposed approach considers a hybrid scenario that
may involve trapezoidal fuzzy integer numbers (TFZ) and trapezoidal fuzzy numbers (TFC).
As an extension of the integer PPS given in [18], a fuzzy integer PPS is derived using fuzzy
integer arithmetic and fuzzy integer partial orders. Once the corresponding FIDEA technology
is established, a non-oriented slacks-based fuzzy integer DEA model is proposed. This allows
not only computing efficiency scores but also efficient fuzzy targets. Finally, a new inverse
DEA problem on the non-radial slacks-based model with integer and continuous data set is
presented. The main question on inverse DEA on the input estimation has been discussed.

All in all, the contribution of this work is vast. Addressing the gap in the literature of
DEA and inverse DEA with integer interval and fuzzy integer data. Using polygonal fuzzy
numbers provides sample flexibility for modeling the uncertainty in the data and the non-radial
approach, which exhausts all possible input and output slacks, provides increased discriminant
power.

As regards potential research directions, this work establishes the first response to inverse
DEA under integer interval-type uncertainty on data, which is an important step to address a
future study under fuzzy data, which will lead our future research. Also, a first step would
extend the triangular fuzzy integer arithmetic and partial orders to polygonal fuzzy integer
numbers, which are more general than trapezoidal fuzzy integer numbers and thus allow
more flexibility for modeling the uncertainty in the input and output data. Also, other types
of DEA models, for example involving undesirable outputs, non discretionary variables or
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multiple processes (so-called network DEA) ought to be developed. Another interesting line
of research, often neglected in the interval and fuzzy DEA literature, is that of applying this
type of approache to real-world situations, e.g. manufacturing, healthcare, or transportation,
in which there may be uncertainty in the input and output data.
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