73,337 research outputs found

    A New Programming Model to Simulate Wireless Sensor Networks : Finding The Best Routing Path

    Get PDF
    Sensor networks provide a number of extensive programming challenges for Wireless Sensor Networks (WSNs) application programmers. Application developers have proposed various WSNs programming models to avoid these challenges and make WSN programming much easier. In this work we proposed a new programming model to find the best routing path in WSNs. Then we describe the initial design and the implementation of our proposed model and compare the results in different network topologies and evaluate the new model in terms of cost and accuracy

    A hierarchical group model for programming sensor networks

    Get PDF
    A hierarchical group model that decouples computation from hardware can characterize and aid in the construction of sensor network software with minimal overhead. Future sensor network applications will move beyond static, homogeneous deployments to include dynamic, heterogeneous elements. These sensor networks will also gain new users, including casual users who will expect intuitive interfaces to interact with sensor networks. To address these challenges, a new computational model and a system implementing the model are presented. This model ensures that computations can be readily reassigned as sensor nodes are introduced or removed. The model includes methods for communication to accommodate these dynamic elements. This dissertation presents a detailed description and design of a computational model that resolves these challenges using a hierarchical group mechanism. In this model, computation is tasked to logical groups and split into collective and local components that communicate hierarchically. Local computation is primarily used for data production and publishes data to the collective computation. Similarly, collective computation is primarily used for data aggregation and pushes results back to the local computation. Finally, the model includes data-processing functions interposed between local and collective functions that are responsible for data conversion. This dissertation also presents implementations and applications of the model. Implementations include Kensho, a C-based implementation of the hierarchical group model, that can be used for a variety of user applications. Another implementation, Tables, presents a spreadsheet-inspired view of the sensor network that takes advantage of hierarchical groups for both computation and communication. Users are able to specify both local and collective functions that execute on the sensor network via the spreadsheet interface. Applications of the model are also explored. One application, FUSN, provides a set of methods for constructing filesystem-based interfaces for sensor networks. This demonstrates the general applicability of the model as applied to sensor network programming and management interfaces. Finally, the model is applied to a novel privacy algorithm to demonstrate that the model isn\u27t strictly limited to programming interfaces

    Curracurrong: a stream processing system for distributed environments

    Get PDF
    Advances in technology have given rise to applications that are deployed on wireless sensor networks (WSNs), the cloud, and the Internet of things. There are many emerging applications, some of which include sensor-based monitoring, web traffic processing, and network monitoring. These applications collect large amount of data as an unbounded sequence of events and process them to generate a new sequences of events. Such applications need an adequate programming model that can process large amount of data with minimal latency; for this purpose, stream programming, among other paradigms, is ideal. However, stream programming needs to be adapted to meet the challenges inherent in running it in distributed environments. These challenges include the need for modern domain specific language (DSL), the placement of computations in the network to minimise energy costs, and timeliness in real-time applications. To overcome these challenges we developed a stream programming model that achieves easy-to-use programming interface, energy-efficient actor placement, and timeliness. This thesis presents Curracurrong, a stream data processing system for distributed environments. In Curracurrong, a query is represented as a stream graph of stream operators and communication channels. Curracurrong provides an extensible stream operator library and adapts to a wide range of applications. It uses an energy-efficient placement algorithm that optimises communication and computation. We extend the placement problem to support dynamically changing networks, and develop a dynamic program with polynomially bounded runtime to solve the placement problem. In many stream-based applications, real-time data processing is essential. We propose an approach that measures time delays in stream query processing; this model measures the total computational time from input to output of a query, i.e., end-to-end delay

    Curracurrong: a stream processing system for distributed environments

    Get PDF
    Advances in technology have given rise to applications that are deployed on wireless sensor networks (WSNs), the cloud, and the Internet of things. There are many emerging applications, some of which include sensor-based monitoring, web traffic processing, and network monitoring. These applications collect large amount of data as an unbounded sequence of events and process them to generate a new sequences of events. Such applications need an adequate programming model that can process large amount of data with minimal latency; for this purpose, stream programming, among other paradigms, is ideal. However, stream programming needs to be adapted to meet the challenges inherent in running it in distributed environments. These challenges include the need for modern domain specific language (DSL), the placement of computations in the network to minimise energy costs, and timeliness in real-time applications. To overcome these challenges we developed a stream programming model that achieves easy-to-use programming interface, energy-efficient actor placement, and timeliness. This thesis presents Curracurrong, a stream data processing system for distributed environments. In Curracurrong, a query is represented as a stream graph of stream operators and communication channels. Curracurrong provides an extensible stream operator library and adapts to a wide range of applications. It uses an energy-efficient placement algorithm that optimises communication and computation. We extend the placement problem to support dynamically changing networks, and develop a dynamic program with polynomially bounded runtime to solve the placement problem. In many stream-based applications, real-time data processing is essential. We propose an approach that measures time delays in stream query processing; this model measures the total computational time from input to output of a query, i.e., end-to-end delay

    Middleware for Wireless Sensor Networks: An Outlook

    Get PDF
    In modern distributed computing, applications are rarely built directly atop operating system facilities, e.g., sockets. Higher-level middleware abstractions and systems are often employed to simplify the programmer’s chore or to achieve interoperability. In contrast, real-world wireless sensor network (WSN) applications are almost always developed by relying directly on the operating system. Why is this the case? Does it make sense to include a middleware layer in the design of WSNs? And, if so, is it the same kind of software system as in traditional distributed computing? What are the fundamental concepts, reasonable assumptions, and key criteria guiding its design? What are the main open research challenges, and the potential pitfalls? Most importantly, is it worth pursuing research in this field? This paper provides a (biased) answer to these and other research questions, preceded by a brief account on the state of the art in the field
    • …
    corecore