
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

12-1-2008

A hierarchical group model for programming
sensor networks
James Horey

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Horey, James. "A hierarchical group model for programming sensor networks." (2008). https://digitalrepository.unm.edu/cs_etds/2

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/2?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

James Horey
Candidate

Computer Science
Department

This dissertation is approved, and it is acceptable in quality
and form for publication on microfilm:

Approved by the Dissertation Committee:

, Chairperson

Accepted:

Dean, Graduate School

Date

A Hierarchical Group Model for
Programming Sensor Networks

by

James Horey

B.A., Computer Science, Hendrix College, 2003

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2008

c©2008, James Horey

iii

Dedication

I dedicate this dissertation to my family; past, present, and future.

iv

Acknowledgments

This dissertation would not have been possible without the mentorship of my advisor
Arthur B. Maccabe. He has provided invaluable support as a teacher, research advisor,
and friend. Our early conversations have inspired and influenced much of this work. I’d
also like to thank Stephanie Forrest for our fruitful collaboration and her willingness to
include me in her research activities. I also like to acknowledge the other members of my
committee, Patrick Bridges and Wennie Shu for their feedback and support.

I feel privileged to have been a member of the Scalable Systems Laboratory at the
University of New Mexico. My labmates have often provided both academic support and
friendship. My wife, Alison Boyer, has continually encouraged me to do my best, and I
owe her more thanks than can be expressed in words.

Finally, I’d like to acknowledge my funding sources, Los Alamos National Laboratory
and the National Nuclear Security Agency.

v

A Hierarchical Group Model for
Programming Sensor Networks

by

James Horey

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2008

A Hierarchical Group Model for
Programming Sensor Networks

by

James Horey

B.A., Computer Science, Hendrix College, 2003

Ph.D., Computer Science, University of New Mexico, 2008

Abstract

A hierarchical group model that decouples computation from hardware can characterize

and aid in the construction of sensor network software with minimal overhead. Future sen-

sor network applications will move beyond static, homogeneous deployments to include

dynamic, heterogeneous elements. These sensor networks will also gain new users, in-

cluding casual users who will expect intuitive interfaces to interact with sensor networks.

To address these challenges, a new computational model and a system implementing the

model are presented. This model ensures that computations can be readily (re)assigned as

sensor nodes are introduced or removed. The model includes methods for communication

to accommodate these dynamic elements.

This dissertation presents a detailed description and design of a computational model

that resolves these challenges using a hierarchical group mechanism. In this model, com-

putation is tasked to logical groups and split into collective and local components that

communicate hierarchically. Local computation is primarily used for data production and

vii

publishes data to the collective computation. Similarly, collective computation is primar-

ily used for data aggregation and pushes results back to the local computation. Finally, the

model includes data-processing functions interposed between local and collective func-

tions and are responsible for data conversion.

This dissertation also presents implementations and applications of the model. Imple-

mentations include Kensho, a C-based implementation of the hierarchical group model,

that can be used for a variety of user applications. Another implementation, Tables,

presents a spreadsheet-inspired view of the sensor network that takes advantage of hier-

archical groups for both computation and communication. Users are able to specify both

local and collective functions that execute on the sensor network via the spreadsheet inter-

face. Applications of the model are also explored. One application, FUSN, provides a set

of methods for constructing filesystem-based interfaces for sensor networks. This demon-

strates the general applicability of the model as applied to sensor network programming

and management interfaces. Finally, the model is applied to a novel privacy algorithm to

demonstrate that the model isn’t strictly limited to programming interfaces.

viii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Application Workflow . 2

1.2 Current Programming Models . 4

1.2.1 Message Passing Models . 5

1.2.2 Restrictive Models . 6

1.2.3 Global System Models . 7

1.2.4 Limitations in Current Models 8

1.3 A Hierarchical Group-Based Model . 10

2 The Hierarchical Group Model 13

2.1 Key Abstractions . 13

2.1.1 Logical Groups . 16

ix

Contents

2.1.2 Hierarchical Task Assignment 17

2.1.3 Hierarchical Communication . 18

2.2 Kensho . 18

2.2.1 Group Implementation . 20

2.2.2 Task Implementation . 21

2.2.3 Communication Implementation 22

2.2.4 Evaluation . 25

2.3 Discussion . 30

3 Tables 32

3.1 Tables Workflow . 34

3.1.1 Mapping Hierarchical Groups to Spreadsheets 34

3.1.2 Pivot Tables . 35

3.1.3 Local Functions . 38

3.1.4 Collective Functions and Sheet Groups 41

3.2 Implementation . 45

3.3 Evaluation . 46

3.4 Discussion . 53

4 Applications of the Hierarchical Group Model 54

4.1 FUSN . 55

x

Contents

4.1.1 Architecture and Application Programming Interface 56

4.1.2 Implementation . 60

4.1.3 Filesystems . 62

4.1.4 Evaluation . 66

4.1.5 Discussion . 75

4.2 Privacy Applications . 76

4.3 Negative Survey . 77

4.3.1 Selecting a Negative Category 77

4.3.2 Reconstructing the Histogram 78

4.3.3 Implementation and Evaluation 80

4.3.4 Applications of the Negative Survey 83

4.3.5 Discussion . 87

4.4 Location Anonymity . 88

4.4.1 Anonymized Locations . 89

4.4.2 Evaluation . 97

4.4.3 Discussion . 103

5 Related Work and Conclusion 104

5.1 Related Work . 105

5.1.1 Computational and Communication Models 106

5.1.2 Programming Interfaces . 107

xi

Contents

5.1.3 Debugging and Management Interfaces 108

5.1.4 Privacy . 109

5.2 Future Work . 110

5.3 Conclusion . 114

References 116

xii

List of Figures

2.1 Organization of tasks in the hierarchical group model. 14

2.2 The Kensho architecture. 19

2.3 Kensho transport protocol. 20

2.4 Two local functions and a Kensho tasking function. 24

2.5 Two Kensho admission functions. 25

2.6 Photometer values over time using three different local functions. 26

2.7 Number of messages transmitted by different photometer applications. . 27

2.8 Messages transmitted with respect to logical group size. 28

2.9 Mote memory usage with respect to the number of logical groups. 29

2.10 Sensor node memory usage over time. 30

3.1 An empty pivot table. 35

3.2 Pivot table compilation. 36

3.3 A simple environmental monitoring application. 37

3.4 A pivot table requesting time data. 38

xiii

List of Figures

3.5 A simple Tables averaging application. 40

3.6 A Tables data monitoring application with a simple filter. 41

3.7 Function compilation in Tables. 42

3.8 A Tables mobile object tracking application. 43

3.9 A screenshot of using the sheet pane to organize the sensor network into

logical groups. 44

3.10 Results of the mobile object tracking application. 44

3.11 Structure of Tables pivot table replies. 47

3.12 Message transmission size with respect to the data queue size. 48

3.13 User latency with respect to the data queue size. 48

3.14 Number of messages transmitted with respect to the number of requested

data. 49

3.15 Sensor node memory consumption with respect to the amount of re-

quested data. 50

3.16 Sensor node memory consumption with respect to the number of func-

tions stored on the node. 51

3.17 Number of transmitted messages and latency with respect to the publica-

tion window size. 52

4.1 The FUSN architecture. 56

4.2 FUSN compilation architecture. 57

4.3 FUSN pre-processing function. 58

xiv

List of Figures

4.4 FUSN post-processing function. 58

4.5 FUSN failure model. 61

4.6 Matlab script using FUSN to interact with a sensor node. 62

4.7 Screenshot of a user tasking and debugging a script using FUSN. 64

4.8 Memory consumption of a single task file over time. 65

4.9 Latency of opening and reading a file in FUSN with respect to file size. . 67

4.10 Latency of opening and reading a file in FUSN with respect to transmis-

sion delay. 69

4.11 Latency of opening and reading a file in FUSN with respect to the number

of files. 70

4.12 Latency experienced by the user for several command-line tools. 70

4.13 Number of messages transmitted with respect to file size and different

compression levels. 71

4.14 Dynamic memory consumption with respect to file size. 72

4.15 Dynamic memory consumption of an executing task with respect to the

size of the intermediate files. 73

4.16 File latency of reading and writing files in FUSN with respect to the

number of concurrent accesses. 74

4.17 Reconstructed histograms using the negative survey. 79

4.18 Error in the reconstructed histogram with respect to the number of cate-

gories and samples. 81

xv

List of Figures

4.19 Number of sensors required to maintain a particular error with respect to

the number of categories. 82

4.20 Three speed distributions to characterize different traffic conditions. . . . 85

4.21 Classification accuracy for three traffic conditions. 86

4.22 Overview of the location anonymity encoding and querying algorithm. . 90

4.23 The location anonymity quadrant encoding scheme. 91

4.24 Hamming Distance properties after randomization. 93

4.25 Overview of the singleton negative database algorithm. 95

4.26 The number of matches in the location anonymity scheme with respect to r. 98

4.27 The number of matches in the location anonymity scheme as the geo-

graphic distance is increased with different values of r. 98

4.28 Maximum r value that generated matches for different distances in the

location anonymity scheme. 99

4.29 Frequency of solutions discovered by zChaff and their Hamming Dis-

tance from the original location. 101

4.30 Number of correct guesses for three strategies that attempt to obtain the

original location. 102

xvi

List of Tables

4.1 Summary of the FUSN API. 57

4.2 Functions supported by the FUSN task interpreter. 63

4.3 Static memory consumption of the tasking functions before and after

compression. 65

4.4 Binary size of Mantis OS applications and different FUSN filesystems. . 66

4.5 Examples of how quadrants in two extreme quadrant levels are encoded

in binary. 92

4.6 Location encoding in the quadrant representation. 93

4.7 Example of a singleton negative database. 95

xvii

Chapter 1

Introduction

Advances in micro electromechanical systems (MEMS) sensor technology, reliable low

power radios, and transistor density have fostered the creation of small-scale sensor de-

vices. These devices form a wireless network to exchange data, coordinate their actions

to sense the environment, and perform computation on environmental data. Sensors can

include: thermistors, photometers, accelerometers, magnetometers, barometers, humidity

detectors, microphones [82], and low-power cameras [84].

Distributed sensor networks have the potential to revolutionize disciplines that benefit

from large-scale, high resolution data collection, including the natural sciences (ecosys-

tem monitoring [70, 18], structural monitoring [48], geology [101], wildlife tracking [60]),

urban scenarios (traffic monitoring [23], local weather information), and emergency sce-

narios (alternative communication mechanisms, radiation monitoring [16] and prediction

[15]). Sensor networks provide opportunities to analyze data within the network, making

data collection more efficient and powerful.

The research challenge in sensor networks is to devise software and algorithms to co-

ordinate the exchange of relevant data between sensor nodes to produce useful information

[40]. Although this challenge resembles other distributed computing paradigms, there are

1

Chapter 1. Introduction

several key differences. First, unlike typical distributed systems whose primary purpose

is to perform some computation, the primary purpose of a sensor network is to collect

data and perform limited analysis on that data. Second, node resources, including power

and memory, are extremely scarce. Other resources, including radio communication and

flash access, consume large amounts of power and must be used sparingly. Similarly, soft-

ware must be optimized to minimize memory consumption. Finally, sensor networks are

tightly coupled to the physical environment. The difficulties in programming networked

resources, exacerbated by the unique sensor network traits, necessitate the use of high-

level computational models to program sensor networks.

1.1 Application Workflow

Programming models for sensor networks must be able to characterize the dynamic appli-

cation workflow found in sensor network applications. Although a wide variety of sensor

network applications have been proposed, most applications share a similar workflow and

can be broadly divided into three classes: data monitoring, event analysis, and personal

applications. These broad classes differ in the amount and type of data being collected,

the computation performed, and the communication structure.

1. Data monitoring applications - The purpose of these applications is to collect envi-

ronmental data in a particular geographic area. Such areas include remote natural

settings [70, 60, 97] or man-made settings, such as cities [75, 66]. Data include radio

frequency, temperature, humidity, and light levels. This data can, in turn, be used for

other applications such as animal behavior modeling [14] and structural monitoring

[64]. Since these applications are deployed for long periods of time, sensor nodes

often filter and compress data to reduce communication and storage requirements.

2. Event analysis applications - The purpose of these applications is to collect envi-

2

Chapter 1. Introduction

ronmental data and to classify events. Unlike data monitoring applications, users

of these applications are less interested in the raw data and more interested in the

analysis of the data. Analysis in such settings include determining traffic congestion

[57, 35], classifying noise and pollution levels [85], and measuring the density of

people in a particular area [1].

3. Personal applications - The purpose of these applications to collect data on the be-

havior of specific individuals and to communicate this data with other approved

people. Such data may include the location of the person (via GPS or wireless trian-

gulation), the health of the person (heart rate [71], diet [86]), and the online “status”

of the person (such as whether they are busy, travelling, etc. [74]). This data can

be used for personal or social purposes and can also be integrated into other ap-

plications. Because these applications may collect sensitive data, the data must be

anonymized [56] and secured before transmission.

Although these application classes differ in many respects, they share a common com-

putation and communication workflow. First, applications undergo a sampling phase in

which the relevant data is collected. The sampling phase is often periodic, although the

sampling periodicity may change over time. After sampling the relevant data, computation

is performed on the data. The computation either acts on the data directly or acts on data

from multiple sources. Finally, the results of the computation are communicated back to

some set of nodes or to the user.

A key difference between these sensor network applications is in when and where

the sampling and computation phases occur. For typical data monitoring applications, all

sensor nodes share the same sampling and computation routines. These routines do not

typically change over time. For event analysis and personal sensing applications, however,

the sampling and computation routines may change in the context of some external event.

For example, in an urban environment, sensors embedded in a collapsed building may

respond by suggesting safe routes out of the building. Similarly, for personal applications,

3

Chapter 1. Introduction

the sampling and computation routines may change depending on the particular activity

the person is engaged in. A programming model for sensor networks must accommodate

this dynamic application workflow. The model must be able to control when and where

the sampling and computation phases occur without unduly burdening the user.

1.2 Current Programming Models

The purpose of a programming model is to organize and abstract lower-level computa-

tional mechanisms. These abstractions facilitate the organization of various computational

elements and simplify the construction of applications. Although any particular computa-

tional model may start at a different “level” with different assumptions about the under-

lying mechanisms, the lowest levels often presented to system developers are hardware

registers and memory. Many of these hardware registers are used to keep track of the soft-

ware execution state, such as the location of the next executable machine statement. Since

there are only a limited number of registers and memory, system developers must often

manually specify how different concurrent executions are specified (often in the form of

an operating system process scheduler) using low-level languages such as assembly.

Above this layer, application developers interact with abstractions provided by the op-

erating system. Most operating systems provide an abstraction called a process. Depend-

ing on the memory abstraction, processes may be referred to as threads. Processes abstract

the notion of hardware registers and memory access. Application developers program in

higher level languages (such as C) and interact with variables and functions. Upon cre-

ating a process, the function associated with the process runs to completion. Translating

variable access and additional function invocations to lower-level memory and register ac-

cesses is done automatically by tools such as compilers and the operating system. Other

popular programming models include object-oriented programming, functional program-

ming and logic programming.

4

Chapter 1. Introduction

To resolve issues when moving to networked computers, single-machine computa-

tional models have been extended to include abstractions for networked communications

and networked tasking. Such models range from a completely message-driven scheme in

which processes are extended with methods to send and receive messages to providing a

virtual, single-machine view of a networked system. Other models in this spectrum in-

clude abstracting communication in narrow ways and rigidly tasking certain computation

to specific hardware. These models have been adapted for sensor networks, each with

several distinct strategies and benefits.

1.2.1 Message Passing Models

The most general computational model in sensor networks is the message passing model.

This is the model encouraged by stand-alone operating system environments, such as

TinyOS [54], SOS [52], Mantis OS [11], Contiki [34], and Maté [67]. Developers con-

struct individual applications that execute on the sensor nodes. These applications are

often constructed using a variant of the C programming language, such as NesC [46], and

are often either event-based [99] or thread-based. Applications executing on the sensor

nodes communicate with each other by explicitly sending messages to other nodes, and

responding to specific messages. Not all implementations equally support all message

types. For example, implementations using the Collection Tree Protocol [2] prevent indi-

vidual sensor nodes from sending messages directly to other sensor nodes. Instead, sensor

nodes must first transmit a message to the root of the routing tree, which can, in turn,

transmit a message to another sensor node.

The message passing model is the most flexible of the computational models, since the

model does little to restrict the types of computation that can be performed on the sensor

nodes. Sensor nodes can arrange themselves in arbitrary logical topologies, and can con-

sequently perform many types of collective operations. However, this flexibility comes at

5

Chapter 1. Introduction

the price of unnecessary complexity. The message passing model does not take advantage

of the common application workflow to simplify programming. Consequently, construct-

ing applications is often difficult in practice, since the developer must organize the sensor

network into the relevant logical topology, manually handle all message transmissions,

and coordinate the actions of all the computation occurring on the network. Finally, ap-

plications constructed using the message passing model are often fragile with respect to

network changes. Messages are often sent to specific sensor nodes; if these nodes fail or

disappear, the entire application may stop working. Similarly, it may be difficult to take

advantage of the appearance of new sensor nodes without extensive programming.

1.2.2 Restrictive Models

To address these programming difficulties, other models restrict the types of computa-

tion and communication that can be performed on the sensor network. By restricting the

behavior of the sensor network, these models can simplify the process of constructing

applications while restricting the range of applications that can be constructed. These

models may still contain explicit communication, but they often restrict the logical topolo-

gies. For example, local neighborhood systems such as Hood [102] and Abstract Regions

[69] provide a set of logical topologies, such as spanning tree or planar graph, that users

can choose from. Applications executing on sensor nodes, after choosing the appropriate

logical topology, can refer to data residing on nearby neighbors. Communication abstrac-

tions provided by local neighborhood models target specific applications that require local

neighborhood data. Other more prevalent communication patterns are not addressed by

these models. Finally, these models do not abstract the type of computation performed on

the network. Consequently, these models do not fully characterize application workflow.

Other models that restrict both communication and computation include tiered archi-

tectures, such as Tenet [49]. In these systems, the sensor network is explicitly defined into

6

Chapter 1. Introduction

discrete tiers. Each tier is responsible for a specific set of computations and communica-

tion must be between nodes of different tiers (often only between immediate tiers). Nodes

within a single tier cannot communicate directly with each other. In Tenet, the lowest tier

consists of the actual sensor nodes. These nodes can only execute programs constructed

using a limited programming language that includes sampling and filtering routines. The

nodes cannot execute arbitrary logic. In the tier above the sensors, the basestations can exe-

cute more advanced computation and can directly communicate with each other. This type

of strict tiered architecture simplifies programming by constricting both communication

and computation. However, the extreme inflexibility may limit implementation strategies

and ultimately affect the performance of the system.

1.2.3 Global System Models

Another method to address the limitations of the message-passing model is to provide

a virtual, whole-system view of the network. The whole-system model often eliminates

explicit communication altogether. Applications consist of a single logical program that

is automatically distributed over the sensor network. When the single global application

refers to distributed data, the data is automatically transferred to a designated node for

computation. Examples include Kairos [51], SpatialView [78], Regiment [77] and the

Declarative Sensor Network platform [26].

Although they afford many implementation strategies, these models can be difficult

to implement efficiently unless the end-user interface restricts the types of computation

performed by the sensor network. For this reason, Cougar [106] and TinyDB [68] impose

a relational database model. Users construct SQL-like queries which are compiled and

propagated to the sensor network. Responses are aggregated according to the query using

pre-defined aggregation functions. Although using pre-defined aggregation functions is

relatively straightforward, such systems do not provide convenient methods to construct

7

Chapter 1. Introduction

additional aggregation functions. Consequently, many event analysis applications are dif-

ficult to implement with these models.

1.2.4 Limitations in Current Models

Current computational models can be organized by whether they emphasize the sensor net-

work as a computational resource or as data resource. Models that emphasize computation

over data often ignore the workflow of existing sensor network applications. Developers

are forced to manually organize their code into sampling, computation, and communi-

cation phases. Although this can result in highly optimized code (in terms of memory

and network usage), the construction of more complex applications can become burden-

some. Similarly, the flexibility of these tools often makes the construction of higher level

end-user interfaces difficult. Finally, restrictive models that abstract communication fail

to abstract the organization of computational tasks in the sensor network. Consequently,

many sensor network applications remain difficult to construct using these models.

Models that emphasize data acquisition over computation, such as the relational data-

base models and the Tenet architecture, often simplify the programming process. Simple

end-user interfaces can easily be constructed for these systems, since the types of computa-

tion the user can define are strictly organized. However, such models often severely restrict

the type of computation that can be defined. This, in turn, limits the scope of possible ap-

plications. For example, many event analysis applications, such as object tracking, are

difficult to construct in most relational database models. Also, many of the computational

and communication restrictions hinder future implementation possibilities. Applications

written using such models may not be able to take advantage of future sensor nodes with

better computational capabilities.

Previous models fail to adequately characterize sensor network applications partly be-

cause these models were designed for earlier, more simple deployment scenarios. These

8

Chapter 1. Introduction

deployments were envisioned to consist primarily of large numbers of small, “mote” level

devices [61], such as the Berkeley Mica series of devices [53]. Deployments were also

to be static; once deployed, additional sensor nodes were not introduced into the system.

These networks were also envisioned to be largely autonomous; these networks were often

deployed in remote environments where accessibility and interaction was limited. Due to

these assumptions, applications were often created and controlled by a small set of ex-

pert users. End users, including application scientists, were not expected to reprogram the

sensor network.

In contrast newer deployments are expected to have a more dynamic workflow charac-

terized by the following set of traits:

• Heterogeneous and mobile hardware New sensor platforms, such as cellular phones

equipped with GPS and digital cameras will supplement traditional sensor platforms

[5]. Many of these devices will be mobile and interact with other devices to perform

a variety of tasks, such as fine-scale weather monitoring and prediction [9], traffic

monitoring [93], and emergency notifications [71].

• New environments Sensor networks will be deployed in a wider variety of settings,

including urban and personal environments such as workplaces [13], campuses, and

cities [75]. In these settings, multiple parties will be able to view and share data

collected by sensor networks [95], and to run multiple applications on a shared net-

work [50]. Within a city, these sensor networks may be distributed throughout public

buildings, streets, and people equipped with personal mobile devices.

• Different types of users Individuals will actively take part in the sensing environment

[17]; people will provide and consume data, and in certain circumstances program

the sensor nodes with new tasks. Not all of these people will be specifically trained

to program and manage sensor networks; instead many will be regular “citizen sci-

entists”, domain specialists, and policy managers.

9

Chapter 1. Introduction

These new traits necessitate the construction of a new programming model to help

users. This model has several requirements, including:

• Be able to capture the dynamic computational and communication workflow found

in sensor network applications.

• Preserve the simplicity of data-driven models while preserving the flexibility of

computation-driven models.

• Decouple computation and communication from specific nodes.

These requirements are not met by current programming models largely due to the inability

of these models to fully characterize the workflow of sensor network applications. By

characterizing the application workflow, the other goals can be more easily met.

1.3 A Hierarchical Group-Based Model

These requirements can be resolved by using a hierarchical, group-based mechanism (HG

model). A hierarchical group model can characterize sensor network applications by fo-

cusing on the data-centric workflow of the computation, and can aid in the construction of

future applications and tools. Applications constructed using this model can also exhibit

relatively low message overhead.

In this model, computation is tasked to logical groups consisting of a set of sensor

nodes, instead of individual nodes. Admission functions are used to determine whether a

sensor node has detected a particular phenomenon and whether a sensor node should join

a particular group. The admission functions are evaluated periodically, allowing group

membership to change over time. Computation is manually split, by the user, into collec-

tive and local components that communicate hierarchically. Local computation is primar-

ily used for data production, such as collecting sensor data, and publishing that data to

10

Chapter 1. Introduction

collective functions. Likewise, collective computation is primarily used for data aggrega-

tion and analysis and pushes results and commands back to the local computation. Finally,

the model also includes data-processing functions interposed between local and collective

functions and are responsible for data conversion.

By employing logical groups, the HG model provides a simple method to organize

the sensor network and assign tasks without worrying about the dynamic behavior of the

environment. The model is able to accommodate both existing application patterns and

future, more advanced application patterns using a simple set of computational primitives.

Importantly, the HG model integrates the basestation as part of the sensor network; besides

acting as conduit for the user to specify logical groups and task functions, the basestation

can also perform some of the computation associated with a logical group. Finally, logical

groups afford much room for different implementations. For example, the HG model does

not stipulate where local, collective, and data-processing functions should execute.

To demonstrate the efficacy of the model, this dissertation presents two implementa-

tions, Kensho and Tables (Chapters 2 and 3). Kensho implements the model as a C-based

library that can be integrated into current development environments. The implementa-

tion of logical groups is split between the sensor nodes and a more powerful basestation.

While the sensor nodes execute local computation, collective computation is executed on

the basestation. Consequently, communication occurs between the sensor nodes and the

basestation.

Tables is an alternative implementation of the hierarchical group model that presents

a spreadsheet inspired view of the sensor network. In Tables, users are able to construct

complex data queries and specify data-driven local and collective functions. These features

allow the user to create a wide range of applications using familiar graphical tools. Like

Kensho, local functions execute on sensor nodes while collective functions execute on the

basestation.

11

Chapter 1. Introduction

These particular implementation strategies do not preclude other implementations; for

example, future implementations may take advantage of heterogeneous hardware to opti-

mize the implementation of collective functions. A discussion of alternative implementa-

tion strategies is given in Chapter 5.

To evaluate the hierarchical group model with respect to application construction, a

management interface called FUSN is presented (Chapter 4). FUSN is a framework for

constructing filesystem-based interfaces for sensor networks. In these filesystem inter-

faces, sensor nodes are presented as directories containing a set of data files. Users can

then employ existing I/O libraries and tools to interact with sensor networks. Besides

being generally useful, FUSN demonstrates that the hierarchical group model is flexible

enough to accommodate very different workflows. In addition to FUSN, a set of novel

privacy preserving algorithms that conform to the hierarchical group model are presented.

Besides being useful in and of themselves, the algorithms demonstrate how very complex

data-processing can be implemented using Kensho.

12

Chapter 2

The Hierarchical Group Model

The hierarchical group model is a data-centric programming model for sensor networks

that includes support for flexible computation assignment and simplified communication.

Unlike previous programming models, the hierarchical group model is designed specifi-

cally to accommodate sensor network application workflow and includes abstractions that

are able to adapt to future hardware constraints. Using data-centric abstractions, the hier-

archical group model is uniquely capable of characterizing existing application workflow

while also aiding in the construction of future applications.

2.1 Key Abstractions

The hierarchical group model captures the sampling, computation, and communication

workflow by providing a set of novel tasking abstractions. Within a distributed environ-

ment, tasking can be defined as the process of mapping a set of computational units onto

a set of physical sensor nodes. Existing models treat tasking in one of two ways:

1. Implicitly: Systems such as TinyOS execute different code paths according to some

13

Chapter 2. The Hierarchical Group Model

Pre-
processing
Functions

compress_
encode

Local Computation

data filtering
data samling

Pu
bl

is
h

Collective Computation

data aggregation
data analysis

Pu
sh

Post-
processing
Functions

compress_
decode

Pu
sh

Pu
bl

is
h

Figure 2.1: Organization of tasks in the hierarchical group model. The hierarchical group
model consists of local tasks that communicate with collective tasks. Likewise, collective
tasks can communicate with local tasks. The user can also specify processing functions
that operate over the data.

state found on the node. These code paths, corresponding to a particular task, are

hardwired in the code itself.

2. Rigidly: Architectures such as Tenet specify a very rigid tasking scheme. Sensor

nodes execute certain types of tasks while more powerful basestations execute an-

other set of tasks.

Both implicit and rigid architectures couple the computation to a specific set of hard-

ware. This makes alternative implementations difficult. Similarly, such schemes make

both retasking and redeployment potentially more complicated. Retasking, the process

of remapping the set of functions according to some event, may require that some nodes

execute some code paths while others do not. Manually programming several alternative

code paths is difficult and error-prone. Similarly, manually programming redeployment

14

Chapter 2. The Hierarchical Group Model

scenarios, in which new sensor nodes are placed in an environment, is also complicated

and error-prone.

In order to properly abstract tasking and capture application workflow, the hierarchical

group model decouples computation from the set of sensor nodes that execute the compu-

tation. This is accomplished using the following key abstractions:

• Event-based logical groups

• Hierarchical group task assignments

• Hierarchical communication within groups

• Data processing functions within groups

Instead of assigning a particular task to a specific sensor node, the user assigns tasks

to logical groups. These logical groups are defined by external events and can include

multiple sensor nodes. By dealing with logical groups, the user can organize computation

around a set of dynamic events instead of individual sensor nodes. Tasks are split between

local and collective tasks. Local tasks are used primarily for data production, such as

sampling sensor data. After sampling, a local task can publish the data to collective tasks.

Likewise, collective tasks are used primarily for data aggregation and analysis. These

tasks can push results back to the local tasks. This organization abstracts the dominant

computational and communication pattern found in sensor network applications. Finally,

the model also includes data-processing functions that sit between local and collective

tasks and are responsible for data conversion. Figure 2.1 summarizes the organization of

tasks in a logical group.

Unlike other sensor network programming models, the hierarchical group model af-

fords different implementation strategies. By using logical groups and hierarchical com-

munication, the model allows local and collective tasks to be executed on different nodes

15

Chapter 2. The Hierarchical Group Model

without affecting the definition of the user application. For example, a very simple im-

plementation of the hierarchical group model may execute all tasks on a single, power-

ful basestation. Data would be periodically transmitted from the sensor network to the

basestation. Local and collective tasks would then operate over this data. Hierarchical

communication would consist of manipulating data locally. A purely basestation-based

implementation may be useful for sensor networks with extremely limited computation.

2.1.1 Logical Groups

A logical group consists of a set of sensor nodes that all detect a common event. For ex-

ample, all sensor nodes underneath a shadow may form a logical group. These groups,

in conjunction with the functions assigned to each group, functionally divide the sensor

network into different roles. These roles include simple tasks such as data collection and

complex tasks, such as object tracking. Currently, many systems [42, 90] implicitly de-

fine roles; sensor nodes are defined by the code they run. Logical groups allow users

to associate roles and tasks with events instead of specific sensor nodes. This abstraction

simplifies the implementation of sensor network applications while sufficiently decoupling

computation from sensor nodes.

In order to implement these dynamic aspects, groups are defined in the hierarchical

group model using an admission function. An admission function is a binary function,

unique to each group, that is executed by sensor nodes to determine group membership.

The ability to access the local storage and sensor devices allows membership in a group to

be defined by a wide array of data conditions. For example, a simple admission function

may read one or more sensor values, perform some simple computation on the data, and

return true if the result exceeds some threshold.

The admission function is run periodically, making logical groups dynamic. This is

useful in situations when sensor nodes must perform some computation only during the oc-

16

Chapter 2. The Hierarchical Group Model

currence of some specific event. For example, sensor nodes near a dangerous phenomenon

(such as a large fire) may need to calculate the proximity and intensity of the fire. Sim-

ilarly, sensor nodes may track the movement of objects using localized phenomena such

as changes in light level, radio interference, or magnetic properties. Tasks associated with

the group automatically stop running when the object moves away from the sensors.

2.1.2 Hierarchical Task Assignment

Task assignment is the process by which a set of functions is mapped to a set of sensor

nodes. By leveraging logical groups, functions are mapped to groups instead of specific

sensor nodes. This makes the system more robust to individual sensor node changes; as

new nodes are introduced into the network and old nodes are removed, the Hierarchical

Group model allows the system to remap the tasked functions onto alternative sensor nodes

associated with the group. Similarly, tasked functions stop executing when the sensor node

leaves the group.

The Hierarchical Group model provides two methods to task a group: collective and lo-

cal. Locally tasked functions operate on data produced by the individual group members

while collectively tasked functions operate over the data published by the group mem-

bers. This organization strongly suggests that local functions execute on individual sen-

sor nodes, while collective functions execute on one or more designated “leader” nodes.

However, the Hierarchical Group model does not specify exactly which implementation

strategy to pursue. These tasking abstractions are similar to the process of abstracting

for-loops with a functional map operation, where instead of applying the same function

iteratively to each data value, the function is applied to the entire list. Code that samples

and reports sensor data can be locally tasked to the appropriate group without specifying

individual sensor nodes. Similarly, instead of assigning code that aggregates data to run

on a pre-defined leader node, the user can specify that this code be tasked as a collective

17

Chapter 2. The Hierarchical Group Model

function.

2.1.3 Hierarchical Communication

By taking advantage of the hierarchical tasking scheme, the Hierarchical Group model

abstracts common communication patterns by ensuring that data is accessed and commu-

nicated strictly according to the task structure. Locally tasked functions communicate with

collective functions using a publish command. Collective functions, in turn, communicate

with local functions using a push command. Like other tiered architectures, local functions

one one sensor node cannot communicate directly with other local functions; instead, these

functions must use a combination of publish and push. These operations abstract many-to-

one and one-to-many communication patterns [25], and relieve the application developer

from dealing with complex communication protocols. Like hierarchical task assignment,

the HG model does not specify how hierarchical communication is to be implemented. So

long as applications are written within the context of this model and the API associated

with a particular implementation, the application will operate over different implementa-

tion strategies.

2.2 Kensho

Kensho is a C-based implementation of the hierarchical group model developed primarily

to validate and quantify the communication overhead associated with the model. Instead

of executing both local and collective tasks on the basestation, Kensho implements the

hierarchical group model by assigning local computation to the sensor network while as-

signing collective computation to more powerful basestations (Figure 2.2). This tiered

implementation ensures that both local and collective computation can be used to reduce

the overall number of message transmissions. However, this implementation also requires

18

Chapter 2. The Hierarchical Group Model

Local Tasks

THERM = [. . .]
PHOTO = [. . .]

Task Server

Tasking Commands
new_logical_ group
map_local

Collective Tasks
aggregate_data U

S
B

)))

Figure 2.2: The Kensho architecture. Locally tasked functions execute on the sensor
nodes, while collectively tasked functions execute on the basestation. The user interacts
through the basestation which accepts and executes tasking instructions.

more complex group management protocols (since the sensor nodes must maintain their

own state) along with more complex message protocols.

In order to provide this tiered implementation, Kensho consists of three major compo-

nents: a tasking runtime responsible for specifying groups and mapping computation that

executes on the basestation, a collective function interpreter executing on the basestation,

and a local function interpreter executing on individual sensor nodes. The local function

interpreter, besides evaluating the local functions, also manages the group state of the sen-

sors. Each set of components is implemented as a C-library and provides a C-based API.

Once the user has programmed the necessary tasking commands on the basestation, the

tasking program is compiled like a typical executable. Once executed, the tasking program

transmits the tasking commands to the sensor network. The implementation on the sensor

nodes is built using Mantis OS [11], a multi-threaded, preemptive operating system for

common sensor node platforms. Since Mantis does not currently support dynamic linking,

all function definitions, such as local tasks and admission functions, must be defined during

the static linking stage. The tasking server components are implemented as normal C-

libraries that can be linked to form an executable.

19

Chapter 2. The Hierarchical Group Model

Figure 2.3: The Kensho transport protocol. Commands are executed on the basestation
and transmitted to the sensor nodes. Sensor nodes, in turn, transmit publication data back
to the basestation.

Since most tasking servers do not come equipped with the proper radio to communi-

cate with the sensor nodes, communication between the basestation and sensor network

is performed using a mote “bridge”. The bridge is simply a sensor node is attached to a

basestation via USB. This node is responsible for relaying commands and data to and from

the sensor network. For wireless, tree-based routing protocols, the bridge also serves as

the root of the routing tree.

2.2.1 Group Implementation

In Kensho, logical groups are created using a C-based API. The primary function used is

the “new_logical_group” function. This function accepts an admission function identifier

and the suggested sampling rate for the admission function. The only requirement of

admission functions is that they are binary (can only return true or false). Since admission

functions are evaluated periodically, Kensho also provides a way to pass a “scratchpad”

to admission functions to maintain state. Currently, admission functions are identified by

searching through a designated file on the sensor nodes. These files contain the function

20

Chapter 2. The Hierarchical Group Model

definitions along with the unique function identifiers. In the future, these files will be

generated automatically.

Since the admission function must execute on the sensor nodes, the definition of the

admission function must be statically compiled and located on the sensor node. Once the

logical group is specified (and the tasking program is compiled and executed), the new

logical group command is propagated to all the nodes in the sensor network. Since any

node may join the logical group some time in the future, each node registers the potential

group and starts a thread to periodically evaluate the admission function.

When the admission function determines that the node should join the logical group,

the sensor node registers the group internally as “active”, searches for any local tasks

that were assigned to the group, and finally starts a thread for each of the assigned local

tasks. If, in the future, the sensor node leaves the group (the admission function returns

“false”), the group internally removes itself from the “active” list. Once activated, local

task threads are not completely stopped. Instead, the threads are paused and removed from

the execution queue so that they are not scheduled until the node rejoins the group. This

ensures that nodes that temporarily leave the group do not need to reinitialize all the local

tasks. In the future, once the sensor node has been removed from a group for a long period

of time, local tasks may be be completely stopped.

2.2.2 Task Implementation

Kensho provides two separate API calls for collective and local tasking, “map_local” and

“map_collective”. Both functions accept a unique function identifier and a unique group

identifier to which the function is assigned. These group identifiers are generated after

specifying a logical group. Like the admission functions, these functions must be stati-

cally defined and compiled for the sensor nodes. Once the tasking program is compiled

and executed, local task commands are propagated to the entire sensor network. Upon

21

Chapter 2. The Hierarchical Group Model

receiving a local task command, each sensor node must store and register the function.

A sensor node, upon joining the appropriate group, then creates a thread to execute the

assigned local tasks.

Collective tasks, unlike local tasks, do not execute on the sensor nodes. Instead, col-

lective tasks reside and execute on the basestation. This particular implementation has

several benefits. First, the strategy relieves the sensor network from dynamically choosing

the sensor node that will execute the collective task. Distributed election algorithms can

be complex and often involves complicated communication tradeoffs [10]. This strategy

also simplifies the routing strategy since a single routing tree rooted at the basestation can

be used for the entire sensor network. Finally, since many collective tasks may require

complex aggregation from multiple sensor nodes, executing the task on the basestation

may reduce the overall computation latency.

2.2.3 Communication Implementation

In Kensho, communication is accomplished by referring to named elements. This simpli-

fies the API while still conforming to the hierarchical group model. The communication

abstractions are provided using the “publish_data”, “push_data”, and “collect_data” func-

tion calls. These functions accept the name of the data along with the group identifier.

Since local tasks are executed on the sensor node while collective tasks are executed on

the basestation, “publish_data” transmits the data from the sensor network to the bases-

tation. Similarly, “push_data” transmits data from the basestation to the relevant sensor

nodes. Sensor nodes, upon receiving data, determines if they belong in the correct group

and then store the data appropriately.

Kensho currently relies on an underlying routing protocol to transport packets through-

out the sensor network. Although Kensho does not rely on the semantics of any specific

routing protocol, the protocol must provide the ability to route packets from a basestation

22

Chapter 2. The Hierarchical Group Model

to all nodes in the network, along with the ability to route packets from a sensor node back

to the basestation. The collection tree protocol [2, 44] (CTP) provides these features, along

with the ability to send messages to specific nodes, using a multi-root tree-based scheme.

CTP also provides a port-based demultiplexing scheme. Other routing schemes, including

MintRoute [105] also provide similar services and could have been used just as easily. For

the current implementation, Kensho employs a single-root routing tree and a single port.

The Kensho tasking server and the associated mote bridge serve as the root of the tree.

Currently, the transport protocol used between the sensor network and tasking server

uniquely tags each message as a tuple < grpid, sessionid, origin >. Overall, the Kensho

packet header is a total of 9 bytes with a maximum data payload of 40 bytes. In order to

minimize the number of transmissions due to the relatively low data payload, each data

vector is aggregated into as many data packets as possible. After sending all the relevant

data, the sender then transmits a metadata packet indicating the number of packets that

were transmitted, and the total number of bytes contained in the message. This is then

used to reconstruct the original data vector. Figure 2.3 illustrates the flow of messages

from the basestation to the sensor nodes.

In the case that a user application transmits a data object less than 40 bytes, only a

single transmission is made without any metadata packets. This is more common for mes-

sages sent by the basestation to the sensor nodes that usually consist of short commands.

Currently the transport protocol does not include any reliability or flow-control mecha-

nisms. Each node, upon issuing a “publish_data” command, immediately sends the packet

to CTP which queues and sends the packet after some random delay to avoid intra-path

interference. However, this scheme is insufficient and does not avoid queue overflow or

intra-path interference. Applications using Kensho must currently provide their own intra-

path interference prevention mechanism.

Unlike the other two function calls, “collect_data” is a blocking call used to retrieve

local data; collective tasks retrieve data resident on the basestation, while local tasks re-

23

Chapter 2. The Hierarchical Group Model

void local_fn_collect(void)
{
 . . .

 for(i = 0; i < 30; ++i) {
 all_data = collect_data(store, "PH", 1, last_time, TIMEOUT);

 container = (struct data_container*)all_data->head->data;
 last_time = container->time;

 memcpy(&data.data[data.size], &container->time, sizeof(uint16_t));
 data.size += sizeof(uint16_t);

 memcpy(&data.data[data.size], &container->data.i, sizeof(uint16_t));
 data.size += sizeof(uint16_t);
 }

 publish_data(group_id, "ph", &data);
}

void local_fn_sense(void)
{
 . . .

 for(;;) {
 dev_read(DEV_MSP_TSR, &photo, 2);
 add_data(store, "PH", sizeof(uint16_t), &photo, NUMBER_TYPE);

 mos_thread_sleep(SAMPLE_INTERVAL);
 }
}

int main(int argc, char** argv)
{
 . . .

 group = new_logical_group(ADMISSION_FN_ID, 256);
 map_local(group, LOCAL_FN_SENSE);
 map_local(group, LOCAL_FN_COLLECT);
 map_collective(group, COLLECTIVE_FN_COLLECT);
}

Figure 2.4: Two local functions and a Kensho tasking function. The local functions sample
the sensors, stores the results, and eventually publishes the data. The tasking function
specifies the logical group and maps functions to the group.

trieve data resident on the sensor node. If the user requests data that doesn’t exist, the

calling thread is blocked until the data is locally inserted (by another local process or by

the other communication mechanisms).

24

Chapter 2. The Hierarchical Group Model

uint8_t admission_fn_window(void* arg)
{
 . . .

 if(arg == NULL) {
 last_time = 0;
 arg = malloc(sizeof(uint16_t));
 }
 else memcpy(&last_time, arg, sizeof(uint16_t));

 avg = 0;
 group_id = my_group();

 all_data = collect_data(store, "PH", 3, last_time, TIMEOUT);

 for(temp = all_data->head; temp != NULL; temp = temp->next) {
 container = (struct data_container*)all_data->head->data;
 avg += container->data.i;
 }

 memcpy(arg, &container->time, sizeof(uint16_t));
 avg /= all_data->size;

 if(avg > 100)
 return TRUE;

 return FALSE;
}

uint8_t admission_fn_filter(void* arg)
{
 . . .

 dev_read(DEV_MSP_TSR, &photo, 2);

 if(photo > 100)
 return TRUE;

 return FALSE;
}

Figure 2.5: Two Kensho admission functions. The first admission function performs a
simple threshold-based filtering, while the second function calculates the average sensor
value before filtering.

2.2.4 Evaluation

In order to evaluate the current Kensho implementation and the hierarchical group model,

several applications using the described API were developed. These applications include

a simple data monitoring application that collects sensor data (photometer, thermistor, and

humidity) and transmits these data to a basestation on a periodic basis. This application

was then extended to include both simple and advanced filtering mechanisms.

Figure 2.4 illustrates three separate functions: the main function that creates the sensor

network group and assigns the local and collective tasks and two locally tasked functions.

25

Chapter 2. The Hierarchical Group Model

0 20 40 60 80

Time (seconds)

70

80

90

100

110

120

130

P
h

o
to

m
e
te

r
V

a
lu

e
Raw Data
Averaged
Compressed

Figure 2.6: Photometer values over time using three different local functions. The raw
strategy records and publishes photometer values without any processing. The average
strategy averages two photometer values and publishes this value. The compressed strat-
egy only records and publishes changes in slope.

The main function is relatively simple compared to the functions that actually perform

work, and can be defined independently of the other functions. This demonstrates how

Kensho and the Hierarchical Group model separate the tasking process from the function

definitions. The first locally tasked function simply reads photometer data using the Mantis

OS device interface and stores the data in a globally shared datastructure. The second local

task then reads the data using the “collect_data” function call and eventually publishes the

data. Although the application also tasks a collective function, the collective function

simply reads the published values and is omitted.

Figure 2.5 illustrates two different admission functions. The first is a simple filtering

function that reads a sensor value and returns true only when that value exceeds some

threshold. The second filtering function is more complex and averages the 3 most pre-

vious values and checks the average against some threshold value. Used in combination

with the main function and tasks, these function definitions constitute a complete Kensho

application.

In Kensho, most applications consist of a set of local tasks (that collect and filter data),

26

Chapter 2. The Hierarchical Group Model

Raw Data Averaged Compressed Minimum
0

2

4

6

P
a
c
k
e
ts

Data
Commands

Raw Data Averaged Compressed Minimum
0

30

60

90

120

B
y
te
s

Data
Commands

Figure 2.7: Number of messages transmitted by different photometer applications. The
raw data implementation transmits the most data, while the compressed implementation
transmits the least. Compared to a minimum message model that assumes the transmission
of raw data but with little overhead, the compressed implementation uses the same number
of packet transmissions.

a publication phase (that transmits the data to a basestation), and a collective task (that

retrieves the published values and analyzes them). As such, the primary way to reduce the

number of transmissions is to use local functions to compress and filter data before trans-

mission. For example, Figure 2.6 illustrates the results of the three previously mentioned

applications. The first application fetches and publishes raw photometer data over time.

The second application averages 2 photometer values and publishes this average. Finally,

the third application keeps track of the changes in photometer values and publishes these

changes.

As Figure 2.7 illustrates, employing simple filtering mechanisms can drastically reduce

the number of messages transmitted without reducing the ability to reconstruct the origi-

nal data. In order to illustrate the amount of overhead associated with transmitting the raw

photometer values, the applications were also compared to the number of transmissions

it would take to transmit the raw values assuming minimal overhead. Even compared to

this lower bound, employing local filtering functions still reduces the number of transmis-

sions. By providing a straightforward way to construct and map local functions, Kensho

27

Chapter 2. The Hierarchical Group Model

0 2 4 6 8 10 12

Logical Groups Size

0

10

20

30

40

M
e
s
s
a
g

e
s
 T

ra
n

s
m

it
te

d
Maximum
Current
Minimum

Figure 2.8: Messages transmitted with respect to logical group size. Only active members
of logical groups publish messages to the basestation. As such, the number of messages
scale linearly with respect to logical group size.

application developers can easily switch between different local functions.

Besides using local functions to reduce message transmission, users can also assign

sensor nodes to logical groups. By doing so, only the activated sensor nodes transmit data

back to the basestation instead of all sensor nodes. As such, even if local tasks publish

all their sensor data, the number of transmitted messages scales with the size of logical

groups as opposed to scaling with the size of the entire sensor network (Figure 2.8). In the

future, alternative collective task implementations may reduce these values even further.

In Kensho, each sensor node can be a member of multiple logical groups. However, the

number of logical groups is constrained by the static memory for the admission functions,

the dynamic memory used for group membership data, and the memory used for stack

space for the admission function thread. In order to evaluate the different memory use,

the number of logical group commands the sensor node received was varied from 1 to 10.

Although the sensor node registered the logical group, the group was not activated.

As Figure 2.9 indicates, the static space used to store the admission functions consumes

the most memory. Although the definition size of these functions varies according to the

28

Chapter 2. The Hierarchical Group Model

1 2 3 4 5 6 7 8 9 10

Logical Groups

0

300

600

900

1200

1500

1800

B
y
te

s
Dynamic
Static
Stack

Figure 2.9: Mote memory usage with respect to the number of logical groups on a single
sensor node. Overall, the stack space allocated for threads grows faster than the dynamic
memory used by the functions. The static function size also consumes much space, al-
though that space is allocated from the program memory space.

complexity of the function, 120 bytes was chosen as typical (the size of the averaging

admission function shown earlier). Although the static size constitutes the largest use of

space, most sensor platforms have a relatively large amount of program space separate

from the data memory (48 kb for the TelosB). Besides the static space consumed by these

functions, the stack space allocated for each function thread also constitutes a major source

of data usage. Currently each function thread is statically initialized with a 128 byte stack.

In order to understand the memory use of a sensor node over time, dynamic memory

use and stack allocations were also measured during several important Kensho operations.

A new logical group was created and locally tasked with a single function. The sensor node

then joined the group and began executing the local task. As Figure 2.10 illustrates, the

sensor node allocates a relatively large amount of memory during the initialization stages.

It is during these stages that datastructures to hold local values (accessed by “collect_data”)

are allocated. Subsequently approximately 40 bytes are allocated for group and function

storage. As for stack space, Kensho initializes a thread for handling communication and

commands. Subsequently, a thread is also initialized to evaluate the admission function,

and eventually a thread is initialized for executing the local function.

29

Chapter 2. The Hierarchical Group Model

Init Store

Init Kensho

Global Grp

App Grp

M
ap Fn

Execute Fn

0

40

80

120

160

200

B
y
te
s

Dynamic

Init Kensho

App Grp

M
ap Fn

240

280

320

360

400

B
y
te
s

Stack

Figure 2.10: Sensor node memory usage over time. After dynamically allocating memory
for local data storage, dynamic memory allocation increases slowly for the other Kensho
operations. Most of the memory consumption comes from the allocation of stack space to
evaluate tasked functions.

2.3 Discussion

This chapter introduced the hierarchical group model, a programming model designed to

characterize sensor network applications and aid in their construction. The hierarchical

group model abstracts distributed tasking by using event-based logical groups. These log-

ical groups allow users to construct applications around dynamic events instead of specific

sensor nodes. Within these groups, sensor nodes can be tasked either locally or collec-

tively. Local and collective tasks allow users to abstract common computational patterns,

such as data sampling and aggregation. Finally, the hierarchical group model provides

communication between local and collective tasks, abstracting the dominant communica-

tion pattern found in sensor network applications.

This chapter also introduced Kensho, a C-based implementation of the hierarchical

group model. Kensho builds on a preemptive, threaded operating system and treats tasks

as threads. Local tasks execute on the sensor nodes, while collective tasks execute on the

30

Chapter 2. The Hierarchical Group Model

basestation. Local and collective tasks can then communicate using a hierarchical com-

munications API. Since the communication is between the sensor node and a basestation,

existing routing schemes (including tree-based schemes) can be used.

Although Kensho exposes a C-based interface, the hierarchical group model does not

strictly require the use of any particular language. It also does not require that the im-

plementation uses threads as the primary unit of computation. Although threads offer

a convenient abstraction for most computation, they are not necessarily optimal for every

application. For example, applications that respond to common events may benefit from an

event-based computation model. The hierarchical group model can be used in event-based

systems by tasking local event handlers and collective event handlers. Logical groups and

hierarchical communication would continue to play the same roles.

The next chapter examines an alternative implementation of the hierarchical group

model that employs data-driven functions as the underlying computational unit. These

functions, unlike threads, are automatically executed whenever data the function refers to

is updated. This is similar to event-driven computation, but where the events are defined

implicitly within the function. This implementation presents these functions within the

context of a spreadsheet programming environment for sensor networks. This serves to

demonstrate the flexibility of the hierarchical group model and how it can be applied to

different programming environments.

31

Chapter 3

Tables

As sensor network deployments encompass a wider array of environments and users, new

end-user interfaces will need to emphasize ease-of-use. Historically, creating, deploying,

and managing a sensor network application consisted of either hiring a set of experts or

using a pre-existing set of software. Hiring experts is potentially the most flexible but

also the most expensive strategy. This particular strategy is also unscalable, since the

number of potential applications may exceed the number of people qualified to construct

and manage such applications. Using pre-existing software is much more scalable, but not

very flexible. Adapting existing software for a new application may be difficult or in some

cases impossible.

In order to resolve these issues, end-user interfaces must be designed to allow users

to easily create and manage sensor network applications on their own. This can be ac-

complished by adapting existing software concepts, such as filesystems and spreadsheets,

and applying them to sensor networks. By adapting these concepts, users will be able to

transfer their existing knowledge base and skills. The challenge associated with adapting

pre-existing interfaces for programming sensor networks is to limit arbitrary interaction

(otherwise the interface becomes too complicated) while keeping the interface flexible

32

Chapter 3. Tables

enough to create many types of applications.

Prior work in this area, including the author’s initial work on a spreadsheet program-

ming interface [55] and subsequent work by Woo et al. [104], demonstrates the challenges

of this approach. For example, the work presented by Woo et al. lacks an integrated

programming model, thus limiting their interface to simple data collection. Their system

performs the computation centrally on the spreadsheet and does not provide a mechanism

to program the sensor nodes directly. Fortunately, the hierarchical group model provides

a foundation from which to adapt a spreadsheet interface for directly programming sensor

networks.

Tables is a spreadsheet inspired end-user interface that employs the hierarchical group

model to program sensor networks. By emphasizing a spreadsheet interface, Tables mini-

mizes the number of new concepts needed to program a sensor network. Spreadsheets are

familiar to many computer users and include advanced data manipulation functionality. In

a typical spreadsheet environment, such as Microsoft Excel, users are presented with data

placed along multiple axes (rows, columns, and sheets). The data can then be manipu-

lated by functions that operate over a range of cells. The output of the function can, in

turn, be consumed by additional functions. More recently, advanced spreadsheet applica-

tions also include functionality (pivot tables) to automatically organize data according to

user-specified parameters.

By exporting a spreadsheet environment and employing the the hierarchical group

model, Tables meets the following goals:

• Allow application specialists and casual users to easily create simple programs.

• Allow advanced users to create complex applications using the same set of con-

structs.

• Minimize the difficulty in learning the environment by re-using familiar concepts

33

Chapter 3. Tables

and interfaces.

3.1 Tables Workflow

Tables, by adopting the spreadsheet metaphor, emphasizes an interactive, iterative method

of programming. Data is collected from the sensor network and organized using a graphi-

cal tool called the pivot table. Once the data is viewed, the user has the option of inputting

functions that operate over that data. This function, in turn, is propagated to the sensor

network to either generate new data or filter existing data. Finally, the user can create a

new pivot table to view the updated data. This workflow encourages users to treat data

viewing as an integral part of the programming process. Similarly, this workflow is very

forgiving; during any step in this process, users are left with a functioning application.

3.1.1 Mapping Hierarchical Groups to Spreadsheets

Tables, like Kensho, uses the hierarchical group model to simplify sensor network pro-

gramming. However, instead of using threads as the underlying computational unit, Tables

uses spreadsheet-like functions that operate over sensor data. Like spreadsheet functions,

functions in Tables are automatically executed whenever dependent data changes. This

encourages a simple function-oriented programming method where users don’t need to

explicitly define control flow. Like Kensho, Tables also employs logical groups. However,

logical groups are not defined explicitly in Tables. Instead, logical groups are constructed

implicitly by requesting certain data and specifying functions over that data. These differ-

ences make transitioning from a thread-based model more difficult, but demonstrates the

general applicability of the hierarchical group model.

Finally, Tables also includes the ability to specify both local and collective functions.

In accordance with the hierarchical group model, local functions communicate with col-

34

Chapter 3. Tables

Figure 3.1: An empty pivot table. The user creates the pivot table by clicking and dragging
an item name from the sensor list to one of the four panes. The data pane specifies what
data to view, while the other panes specify how to organize the data. The user can also
optionally specify a recurrence.

lective functions using a “publish” mechanism. Unlike Kensho, however, communication

in Tables is implicit. The user does not explicitly define communication mechanisms.

Instead, by referring to specific data required by the function, the data is automatically

transmitted from the sensor nodes.

3.1.2 Pivot Tables

One of the key elements used in Tables is the pivot table. The pivot table provides a

miniature representation of the spreadsheet by which to construct and organize data queries

(Figure 3.1). This is an important element in Tables applications since this is the only way

to view data produced by the sensor network. Additionally, advanced features (such as

collective functions) can only be specified after using a pivot table.

The right hand side of the pivot table contains a list of data items that the user can

query. Users click and drag these data items to one of several panes to construct a query.

The panes are organized into one data pane and three metadata panes. These metadata

panes represent the standard spreadsheet axes (row, column, and sheet). The user specifies

which data to view by dragging a data item onto the data pane. Dragging an item onto

one of the metadata panes specifies how the items in the data pane are to be organized in

the spreadsheet. Each of these panes, with the exception of the sheet pane, can contain

35

Chapter 3. Tables

Compiled Query

Assemble Response

Timeout or user
input

Saved Pivot Table
Process query

Publish response

Push query

Figure 3.2: Pivot table compilation. The pivot table is first compiled and then transmitted
to the sensor network. Each sensor node executes a query processor that accepts the pivot
table and forms a response. The response is then transmitted back to the basestation.

multiple items.

All Tables applications start in a default state where each sensor node is preloaded

with the Tables runtime. By default, the Tables runtime periodically samples photometer,

thermistor, and humidity data. The default sampling rate is set to 1 second, although the

value can be changed. Each sensor data is stored separately in a circular buffer of some

known size. These sensor data items are also automatically listed in the pivot table data

items list. The pivot table data items list also contains additional sensor metadata such

as node ID and the available sensor types. As the user interacts with Tables and creates

functions that assign new data, the pivot table list will be automatically updated.

Once the user specifies a pivot table, the pivot table is compiled and propagated onto

the sensor network (Figure 3.2). Sensor nodes, upon receiving a pivot table request, will

36

Chapter 3. Tables

Figure 3.3: A simple environmental monitoring application. The user has requested to
view thermistor and photometer data. organized by the node ID, time, and the sensor type.
The layout of the response is governed by the specification of the pivot table. The pivot
table and associated response are updated according to the recurrence time.

construct an appropriate response and transmit the response back to the basestation. The

response consists of the entire queue of requested data along with the requested metadata.

Because the data queue may be large, the response is often split up into multiple packets.

After assembling all the responses from the sensor network, Tables organizes the responses

to a final view according to the original pivot table specification. Like a normal spreadsheet

environment, Tables lays the data out along a set of two dimensional tables (a sheet in

spreadsheet parlance).

Although the pivot table appears to be a simple tool, it can still be useful by itself.

The user can create a simple environmental monitoring application by simply dragging

the desired sensor data onto the data pane. Additionally the user can organize the sensor

data by node ID, time, and the name of the sensor by dragging these items on the metadata

panes. If the user wants to view the data periodically, the user can specify a recurrence

time. Doing so will result in a complete application as illustrated in Figure 3.3.

The pivot table is not limited to viewing sensor data. By clicking-and-dragging the time

37

Chapter 3. Tables

Figure 3.4: A pivot table requesting time data. The user has requested to view all times
associated with a particular photometer value. Every time index a particular photometer
value appears is displayed to the user. This can be used to determine when and how often
particular events occur.

value onto the data pane and the photometer value onto one of the metadata panes, the user

can request to view all times associated with a particular photometer value (Figure 3.4).

Subsequently, the time indexes when a particular photometer value appears are displayed

to the user. This can be used to determine when and how often particular events occur.

3.1.3 Local Functions

Tables, like more traditional programming environments, also allows users to construct

functions that operate over sensor data. These functions, in conjunction with pivot tables,

can be used to construct full-fledged applications. Like typical spreadsheet functions,

functions in Tables are data driven. The functions are automatically evaluated whenever

dependent data is updated. This, in turn, may generate additional data values that trigger

the evaluation of other functions.

Tables provides arithmetic functions, boolean operators, and vector functions. All

functions can operate over sensor data by simply referring to the name of the sensor device.

38

Chapter 3. Tables

For example, the string “Photometer” refers to the latest photometer value. Similarly,

functions can refer to other data items stored on the sensor node.

Vector functions, such as average, sum, and min, take a window size and the name of

the data to operate over. For example, users can specify that the sum function operates

over the last three thermistor values using the syntax “sum(3, Thermistor)”. This is not

ideal, however, since most spreadsheet users are accustomed to specifying the range using

syntax similar to: A5:A10. However this extension is not necessarily crucial and remains

a subject of future work.

In addition, Tables provides conditional functions that allow users to take different

actions depending on the results of other computation. Finally, Tables provides assignment

functions that generate new data. Upon evaluating an assignment function, Tables will

store the new value on the sensor node and update the pivot table list with the assigned

name. These values can also be used in other functions by referring to the assigned name.

The Tables programming model supports two types of functions: local and collective.

Local functions operate directly on the data produced by the sensor node. For example,

local functions may consist of data compression and filtering. Consequently, these func-

tions execute on the sensor nodes. Collective functions, on the other hand, operate over

data from multiple sensor nodes. Consequently, collective functions execute on the bases-

tation. Examples of these functions include aggregation and data classification.

Users create new functions by simply typing into an empty cell. Functions are desig-

nated local or collective depending on the sheet in which they are located. Like a standard

spreadsheet, each sheet in Tables has a name. By default, the Tables interface provides

a set of sheets with an exhaustive list of all node IDs. If the function is typed in a sheet

containing the name “Node = n”, where n is some node ID, the function is designated

local. Otherwise, if the sheet has a different name, the function is designated collective.

Once the user has created a local function, the function is compiled and transmitted

39

Chapter 3. Tables

Figure 3.5: A simple Tables averaging application. This application consists of a single
average function. The function is automatically evaluated whenever the photometer data
is updated. Afterwards the user can construct a pivot table to view the average photometer
data.

to the relevant node. The Tables interface provides a convenient menu item (“Fill”) that

allows users to quickly replicate the function across multiple sensor nodes. Once a sen-

sor node receives a function from the basestation, the sensor node stores and examines

the function for dependent data. For example the function “if(Photometer > 50) ...” de-

pends on the latest photometer data. This function is automatically evaluated whenever

the photometer data is updated.

Local functions can supplement simple monitoring applications by compressing and

filtering data on the sensor node. This allows the user to reduce the number of messages

transmitted back to the user. A simple application that stores an average of sensor node

is show in Figure 3.5. This averaged data is stored on the sensor node until a pivot table

requests the data.

Another application is illustrated in Figure 3.6. This application is more complex since

the user specifies a function that records changes in the photometer readings. The user

begins by first assigning the “PREV” variable. This causes the PREV variable to be stored

on the sensor node and listed in the pivot table. The user then specifies a function utilizing

a conditional-statement that tests for differences in the current and previous photometer

values. When the value exceeds a particular threshold, the previous value is updated and

stored on the sensor node. By requesting the previous values using a pivot table, the user

can reconstruct the photometer values.

40

Chapter 3. Tables

Figure 3.6: A Tables data monitoring application with a simple filter. The user first spec-
ifies basic filtering functions that record changes in the data. These data changes are
automatically stored on the sensor node. After letting these functions run for a time, the
user can specify a pivot table to retrieve these data changes.

3.1.4 Collective Functions and Sheet Groups

Tables also provides a method to construct collective functions. Collective functions, un-

like local functions, operate over a logical group of sensor nodes. In order to create a col-

lective function, the user types in the desired function in a sheet representing the desired

sensor nodes. For example, a sheet with the name “Node ID = 5” creates local functions.

However, a function in a sheet with the name “Sensor = τ” creates a collective function

since the sheet doesn’t identify a specific sensor node.

Sensor nodes where “Sensor” is equal to τ form a logical group that evaluates asso-

ciated collective functions. These constraints are formed using a pivot table. The user

simply clicks and drags the “Sensor” item onto the sheet pane. After evaluating the pivot

table, the Tables interface is populated with a set of sheets with differing “Sensor” values.

After typing in the function, the constraint “Sensor = τ” is transmitted to the sensor

network. Sensor nodes, upon receiving the constraint, store and evaluate the constraint.

This evaluation occurs whenever the constraint data (“Sensor”) is updated. If the sensor

node matches the constraint, the sensor node joins the logical group representing all nodes

that participate in the collective operation. Since the constraint is evaluated periodically,

sensor nodes are able to leave and join the logical group dynamically. Figure 3.7 summa-

41

Chapter 3. Tables

Compiled Function

Collective function dependencies

Publish dependencies

Local function

Execute local
function

Figure 3.7: Function compilation in Tables. After users specify a function, the function is
propagated to the sensor nodes. For local functions, the entire compiled function is trans-
mitted. For collective functions, only a description of the dependent data is transmitted.

rizes these events.

Since collective functions operate over logical groups, collective functions require data

from group members to be transmitted to the basestation. To accomplish this, the basesta-

tion associates a publication request with the logical group constraint. These publication

requests consists of a list of all dependent data. A sensor node, upon joining a logical

group, transmits dependent data to the basestation. The dependent data is automatically

retransmitted whenever the dependent data is updated on the sensor node.

The collective function, upon receiving dependent data from the logical group mem-

bers, operates over the received data. Since each group member continually transmits

updated values, the collective function is automatically re-evaluated with new data. This

automatic transmission and evaluation makes interacting with collective functions similar

to interacting with local functions.

Collective functions allow users to construct sophisticated applications that require

many-to-one communication. Unlike existing programming languages, all communica-

tion in Tables is implicit and specified by the interaction of pivot tables and functions.

42

Chapter 3. Tables

Figure 3.8: A Tables mobile object tracking application. This application uses every ele-
ment of the hierarchical group model. It first uses local functions to detect nearby objects,
pivot tables to form logical groups, and collective functions to calculate the centroid of the
object.

Users do not need to explicitly define transmission commands. This simplifies network

programming since users do not need to be aware of explicit message handling.

Although Tables relies on spreadsheet inspired tools and lacks explicit communication,

sophisticated applications, such as mobile object tracking, can be constructed with relative

ease. Mobile object tracking, unlike earlier monitoring examples, requires multiple pivot

tables and collective functions (Figure 3.8). The user begins by first specifying a set of

local functions that determine whether a sensor node is within range of the object. Upon

detecting the vehicle, a DETECTION variable and weighted locations are assigned.

After applying these functions to the sensor network, the user constructs a pivot table

specifying that the DETECTION values be placed along the sheet axis. This allows all

sensor nodes that have detected an object within range to share the same sheet (Figure

3.9). The user then specifies the centroid functions in the “DETECTION = 1” sheet This

43

Chapter 3. Tables

Figure 3.9: A screenshot of using the sheet pane to organize the sensor network into
logical groups. By clicking-and-dragging the DETECTION value onto the sheet pane,
sensor nodes organize themselves into a group that detected an object and a group that has
not detected an object. The user can also view additional data such as the time that sensor
nodes detected the object.

initiates the creation of a logical group (the sensor nodes within detection range of the

vehicle). The centroid function, in turn, requests the weighted location values from the

group members and calculates the centroids.

After allowing the application to run over a sufficient time period, the basestation will

Figure 3.10: Results of the mobile object tracking application. The circles indicate which
sensors are in the logical group as the object moves in a clockwise direction. The hori-
zontal line in the right figure represents the normalized path of the object, while the points
indicate how far from the actual object the centroid algorithm predicted the object to be.

44

Chapter 3. Tables

accumulate several centroid locations. These locations can be retrieved by creating a final

pivot table. Results from a simulated version of this application are illustrated in Figure

3.10. In the simulation, a vehicle starts at some random position and moves around in a

random manner. 25 sensor nodes are placed in 1 unit increments in a grid layout. When the

vehicle is within a predefined radius of a proximity sensor, the sensor registers a positive

value. By using just a few functions and pivot tables, Tables allows users to create an

application that normally requires explicit communication and coordination.

3.2 Implementation

Tables consists of a graphical interface residing on the user’s desktop and a runtime en-

vironment residing on the sensor nodes. The Tables interface is implemented as a cross-

platform Java application and has been tested on various Linux desktop environments.

Tables assumes that all the sensor nodes have been equipped with the Tables runtime. The

Tables runtime is responsible for communication with the basestation, maintaining logical

groups, and interpreting local functions. In addition, Tables assumes that a “bridge” node

is connected to the basestation via USB. This bridge node simply relays packets to and

from the basestation.

Tables requires the execution of local functions on sensor nodes. This is accomplished

using a function interpreter on the sensor node. Functions are compiled into a simple

bytecode on the basestation, propagated to the sensor nodes, and interpreted by the sensor

nodes. This approach is straightforward and can be implemented in most operating system

environments. However, virtual machine environments [67] or operating systems that fea-

ture dynamic binary linking [52, 33] can also be used to optimize function interpretation.

The sensor nodes were configured with 2048 bytes of dynamically allocatable memory

(heap size). Although many sensor network applications are configured to use only static

45

Chapter 3. Tables

memory, the implementation of local functions was simplified with the use of a small

amount of dynamic memory. The sensor nodes were also configured to periodically col-

lect thermistor, photometer, and humidity data and to store these results in separate data

queues. During data transmission, the packet payload was limited to 40 bytes. Although

the version of Mantis OS used reserves a maximum of 64 bytes for packets, much of the

space is used for routing and transport headers.

Communication between the graphical interface and sensor nodes is implemented us-

ing CTP. In order to avoid interference from multiple transmitting sensor nodes, messages

are transmitted separately for each sensor node. For example, pivot tables are sent sepa-

rately to each sensor node. The pivot table request is not transmitted to the next node until

the entire response is collected (or a timeout expires). Additionally, each sensor node that

relays a packet waits a short time (200 ms in Mantis OS) before retransmission to avoid

intra-path interference. In the future, a reliable transport protocol, such as Flush [63], will

be integrated to handle intra-path interference.

3.3 Evaluation

Applications written in Tables have a very different workflow than typical sensor network

applications. Instead of constructing a monolithic application, users construct a set of

pivot tables and data driven functions that communicate implicitly. Consequently, the main

overhead associated with Tables is in the number of messages transmitted for the various

operations. This overhead also affects user latency. For example, complex pivot tables

typically transmit more data and take longer to reconstruct. In addition, the interactive

workflow makes memory consumption an important issue in Tables.

In order to evaluate the relative efficiency of using pivot tables, the number of messages

transmitted during a pivot table operation was measured. One of the main things that affect

46

Chapter 3. Tables

Figure 3.11: Structure of Tables pivot table replies. Each data item is described by a data
identifier and includes a single data point. The data item also includes a list of metadata
items. These metadata items are, in turn, described by a data identifier and data point.

the number of messages for a pivot table response is the size of the data queues stored on

the sensor nodes. Each set of data items (such as thermistor data) are stored in separate

data queues. Upon receiving a pivot table requesting specific data, the sensor node will

fetch the entire data queue. Additionally, each data item in the queue is tagged with the

relevant metadata item (Figure 3.11). Since each data item may contain a different number

of metadata items, Tables must, at times, explicitly transmit the number of metadata items

attached to each data item. However, in the case that all data items have the same number

of metadata descriptions, Tables will omit this information.

The sensor node data queue sizes were increased from 5 to 50 in increments of 5. For

each data queue size, a pivot table was constructed that requested all sensor data organized

by ID, time, and sensor type. The total size of this pivot table was 11 bytes. For 50 data

items, Tables transmitted between 34 and 38 messages, depending on whether the meta-

data description count was sent for every data item list (Figure 3.12). Currently, redundant

metadata items are not compressed and hence account for the number of messages. Com-

47

Chapter 3. Tables

0 10 20 30 40 50 60

Queue Size

0

400

800

1200

1600

B
y
te

s

Unoptimized
Optimized

0 10 20 30 40 50 60

Queue Size

0

10

20

30

40

P
a
c
k
e
ts

Unoptimized
Optimized

Figure 3.12: Message transmission size with respect to the data queue size. The unopti-
mized data assume the number of metadata associated with each data element may be a
different length, and include an explicit list length for each data element. The optimized
version reduces the message size when all the metadata lists are the same size.

pressing the metadata descriptors is a subject of future work.

For user latency measurements, latencies incurred using the USB and CTP communi-

cation backends were measured while varying the sensor node data queue size. For CTP,

the node was placed one hop away from the bridge. Overall, the latency incurred by the

CTP backend is much greater than the USB backend (Figure 3.13). This is partially be-

0 10 20 30 40 50 60

Queue Size

0

2000

4000

6000

8000

10000

L
a
te

n
c
y
 (

m
s
)

USB Latency
CTP Latency

Figure 3.13: User latency with respect to the data queue size. Tables uses two communi-
cation methods: USB and a wireless routing protocol (abbreviated CTP). The data queue
size determines the number of data elements transmitted back to the basestation. As such,
the latency increases for both communication methods.

48

Chapter 3. Tables

0 2 4 6 8 10 12

Requested Data

0

Tr
a
n

s
m

is
s
io

n
 S

iz
e

0 2 4 6 8 10 12

Requested Data

0

1

2

3

4

5
N

u
m

 M
e
s
s
a
g

e
s

Figure 3.14: Number of messages transmitted with respect to the number of requested data.
The user increases the number of requested data by filling the pivot table with the names
of more and more data. Since data is tightly packed into as few messages as possible, the
number of packets transmitted follows a step-wise function.

cause each CTP transmission must delay a short period of time before transmitting the

message to avoid intra-path interference (200 ms in Mantis OS). In total, the user waits

approximately 8 − 10 seconds to receive data when the queue is set to the maximum size

of 50 using the CTP backend.

In order to measure the effect of pivot table complexity on the number of message

transmissions, the number of transmitted messages was recorded while varying the number

of metadata items in a pivot table. For this test, the queue size was set to 5. Pivot tables

were iteratively created with each iteration increasing the number of requested metadata

from 1 to 11 items. Overall, an increase in every 2 to 3 metadata items resulted in an

additional packet. For the most complex pivot table (with 11 metadata items) the number

of transmissions increased from a single packet to 4 packets (Figure 3.14). Although this

increase is potentially large (especially for recurrent pivot tables), most pivot tables are

expected to request very few metadata items. The actual pivot table always took a single

packet (less than 17 bytes for a pivot table with 11 metadata items).

49

Chapter 3. Tables

0 2 4 6 8 10 12

Requested Data

6
8

10
12
14
16
18
20
22

M
o
te

 M
e
m

o
ry

 U
s
e

Figure 3.15: Sensor node memory consumption with respect to the amount of requested
data. Requests do not consume very much memory even for large requests.

Besides network measurements, the sensor nodes are also restricted by the amount

of available memory. The amount of memory the sensor node consumed for each data

queue size was measured. The sensor node consumes 284 bytes for small queue sizes and

consumes up to approximately a kilobyte for 50 values (half of the total heap size). Since

other operations, such as responding to pivot tables, also consume memory, users should

not configure much larger data queue sizes.

When a sensor node receives a pivot table request, the node must allocate memory

to store the request and to construct the reply. Although the memory allocation is tran-

sient (the memory is released immediately after transmitting the reply), every data item

and metadata item associated with the reply is reallocated. This is necessary since the

reply structure can be complex. However, even with these additional allocations, memory

increases modestly from approximately 10 to 20 bytes (Figure 3.15).

Another major source of memory consumption are local functions stored on the sen-

sor nodes. For each local function, the sensor node determines the data dependencies

and registers the function with the appropriate data queues. Upon sampling some data,

all functions that depend on that data are interpreted. In order to investigate the mem-

ory consumption with respect to the number of local functions, up to 9 vector functions

with a single dependency were stored. 9 independent vector functions that do not share

any data dependencies were also stored. As Figure 3.16 shows each vector function con-

50

Chapter 3. Tables

0 2 4 6 8 10

Num Functions

0

50

100

150

200

250

300

M
e
m

o
ry

 U
s
e

Independant
Dependant

Figure 3.16: Sensor node memory consumption with respect to the number of functions
stored on the node. Independent functions are functions that do not share any data depen-
dencies. As such, these functions consume more memory than dependent functions, which
all share the same data dependency.

sumes 34 bytes if it contains a new data dependency and 28 bytes if using an existing data

dependency. Most real applications use a combination of both types of functions.

Currently for collective functions dependent data is transmitted from the sensor nodes

to the basestation. Normally a sensor node would transmit each new data element. How-

ever, doing so may transmit a large number of messages since each data element mo-

nopolizes an entire packet. In order to conserve the number of messages transmitted, we

investigated the effects of batching the dependent data before publication. For any given

publication window size, n, the sensor node collected n data values before transmitting.

Overall this significantly decreases the number of messages transmitted (Figure 3.17(a)).

However, latency experienced by the user is not uniformly decreased. Although la-

tency decreases due to fewer messages, latency may also increase due to unnecessary data

sampling. Since most collective functions operate over multiple data (say 10), the collec-

tive function must wait for the right number of data before it can be evaluated. However,

transmitting more data than necessary increases the initial latency since the sensor node

must spend additional time sampling and filling up the publication window. As Figure

3.17(b) illustrates, the initial latency can increase for large window sizes. However, after

the initial evaluation, the additional data is counted towards the next evaluation.

51

Chapter 3. Tables

0 2 4 6 8 10 12

Window Size

0

2

4

6

8

10

12

N
u

m
b

e
r

o
f

M
e
s
s
a
g

e
s

(a) By modestly increasing the window size, the user can signif-
icantly reduce the number of messages transmitted, conserving
the amount of energy.

0 2 4 6 8 10 12

Window Size

10

20

30

40

50

L
a
te

n
c
y
 (

s
e
c
o
n

d
s
)

(b) Latency decreases with fewer messages, but can also in-
crease since the sensor node must wait for additional data sam-
ples to fill the publication window even if the collective function
does not require it.

Figure 3.17: Number of transmitted messages and latency with respect to the publication
window size.

Although applications written in lower level languages may be more efficient, Tables

targets users that may have difficulty constructing such optimized applications. Instead,

Tables offers an interactive programming environment that allows users to construct com-

plex applications using simple tools at the cost of modest overhead. Additionally, future

implementations of Tables may employ optimizations, such as optimizing pivot table re-

quests, to further reduce the overhead.

52

Chapter 3. Tables

3.4 Discussion

Although Kensho simplifies sensor network programming by directly implementing the

hierarchical group model, the barriers to programming are still relatively high for many

users. Tables, a graphical programming environment for sensor networks, lowers the bar-

rier to entry using a variety of spreadsheet-inspired tools. By combining pivot tables with

various functions, users can specify both local and collective computation. This is made

possible by modeling the communication and computation tasking according to the hierar-

chical group model. Unlike Kensho, Tables employs data-driven functions as the compu-

tational unit. This simplifies programming and adheres to expected spreadsheet semantics.

Communication between local and collective functions is implicit with the necessary data

being published automatically. Logical groups are also defined implicitly by using pivot

tables to organize data along the sheet dimension.

Currently Tables allows users to specify node-specific local functions. Although the

hierarchical group model does not explicitly define such behavior, this was necessary in

order to preserve simple spreadsheet semantics. This behavior can be emulated within

the hierarchical group model by treating node ID as a type of sensor data. Logical groups

consisting of a single node can then be created using this unique sensor data. Although not

ideal, this demonstrates that the hierarchical group model can be used to replicate many

node-centric models.

Although Tables implements its own version of the hierarchical group model, it is

possible to also use Kensho as the underlying communications and tasking library. Much

of the protocol remains the same due to their common computational model. However,

Kensho explicitly assumes that the underlying computational unit is a Mantis OS thread.

Although threads can be adapted for interpretting Tables functions, this may introduce

additional memory and computational overhead.

53

Chapter 4

Applications of the Hierarchical Group

Model

Kensho, and the underlying hierarchical group model, not only characterizes standard sen-

sor network applications, but also aids in the construction of more complex sensor net-

work software. Two examples include sensor network management software and privacy-

preserving algorithms that can be integrated into existing applications. Both sets of soft-

ware, programming interfaces and privacy algorithms, are important emerging aspects in

sensor networks. As sensor networks become more prevalent in both academic and every-

day use, users will expect intuitive tools to interface with sensor networks. Users will also

expect sensor network applications to conform to strict privacy requirements. Unlike stan-

dard applications, these examples may exhibit more complex communication patterns, and

by conforming to the hierarchical group model, they can be made to integrate into other

sensor network scenarios.

54

Chapter 4. Applications of the Hierarchical Group Model

4.1 FUSN

As sensor networks become more widely used by the public, new tools will need to be de-

veloped that allow these users to easily manage sensor networks. While tools like Tables

aid in the development of new applications, casual use and inspection may require still sim-

pler tools. FUSN (pronounced “fusion”) is a framework to construct filesystem interfaces

for sensor networks. FUSN is not a single filesystem interface that users interact with.

Instead, FUSN consists of an API and associated set of mechanisms that allow system

developers to implement virtual filesystems similar to the Unix /proc and /sys filesystems.

FUSN employs FUSE [3] to create a POSIX-style filesystem and includes mechanisms to

automatically handle all communication between the sensor network and filesystem host.

By exposing the sensor network as a virtual filesystem, system developers retain the free-

dom to construct complex applications, while ensuring that end-users are able to manage

and interact with the sensor network in a familiar manner.

End users interact with FUSN-based filesystems by mounting the filesystem, and using

common tools such as ls, cat, and echo to view and update data, organize groups of sensors,

and control access to data. Similarly, other software can use existing file I/O libraries to

interact with the sensor network. This allows users to construct prototype sensor network

applications in more familiar programming environments such as Matlab. Using FUSN

debugging, application prototyping, and file viewing become commonplace. Unlike pre-

vious tools that were designed specifically for sensor networks [27], FUSN allow users to

leverage a large body of existing software originally designed for filesystems. Also, FUSN

does not limit interaction to existing tools. As new tools for filesystems develop, they can

be applied to sensor networks as well.

55

Chapter 4. Applications of the Hierarchical Group Model

Sensor Network

THERM = [. . .]
PHOTO = [. . .]

Filesystem Server

/s0
 /THERM
 /PHOTO
/s1
 /THERM
 /PHOTO

Filesystem Server

/s0
 /THERM
 /PHOTO
/s1
 /THERM
 /PHOTO

Sensor Network

THERM = [. . .]
PHOTO = [. . .]

End User Client

/fisn
 /network0
 /network1

NFS

FUSNFUSN

Figure 4.1: The FUSN architecture. FUSN consists of a filesystem server that translates
filesystem commands into sensor network operations. The filesystem server, in turn, may
export additional networking services. Sensor nodes collect data and communicate with
the filesystem server.

4.1.1 Architecture and Application Programming Interface

The FUSN architecture consists of two main components: the filesystem server and the

FUSN runtime executing on the sensor nodes. These components are organized in a tiered

fashion to facilitate implementation using Kensho (Figure 4.1). Currently, the sensor net-

work must be physically contiguous and it communicates with one filesystem server. The

filesystem server is assumed to be more powerful (typically a PC-class device) than the

sensor nodes and handles most of the complicated filesystem processing. Sensor nodes,

on the other hand, are assumed to be mote-class devices that can only handle minimal

processing. This tiered organization is used in other sensor network architectures [49]

and provides several benefits, including reduced code complexity and potential memory

savings on the sensor nodes. This tiered organization also conveniently matches the hier-

archical group computation organization, simplifying implementation.

The filesystem server is primarily responsible for presenting a filesystem interface to

56

Chapter 4. Applications of the Hierarchical Group Model

Programming Interface Operation Description
linked_list list_data() List names of data on sensor node
linked_list read_data(name) Reads content of specified data item
uint8_t write_data(name, buffer) Writes new content to the specified data item
uint8_t delete_data(name) Deletes the specified data item

Table 4.1: Summary of the FUSN API. The user can construct new filesystem interfaces by
implementing these functions. Communication between the sensor nodes and filesystem
server is handled automatically.

Processing Functions

run_length_encode
run_length_decode

comma_delimited_decode

Data Functions

list_data
read_data
write_data

FUSE

USB 802.15.4

Figure 4.2: FUSN compilation architecture. Processing functions execute on the filesys-
tem server while data functions execute on the sensor nodes. This tiered organization
matches most sensor network application characteristics and simplifies implementation.

the user. After the user initiates a specific filesystem command, the supplied path is re-

solved to a sensor node and a file name. This file name is then sent to the sensor node

with the relevant command. In turn, the FUSN runtime on the sensor node responds to

the command by supplying the requested data. Otherwise, applications executing on the

sensor nodes do not directly interact with the FUSN runtime. Ultimately, the filesystem

server retrieves the data and converts it to the necessary filesystem data structures. Be-

sides presenting the filesystem interface, the filesystem server may also export services

such as NFS. This enables users to manage a confederation of sensor networks by adding

a internet-level tier to the architecture.

57

Chapter 4. Applications of the Hierarchical Group Model

struct fusn_proc_info pre_processor(struct linked_list* input,
 struct fuse_file_info* fi,
 struct linked_list* data)
{
 input_data = (struct fusn_output_buffer*)input->head->data;
 buf = (char*)input_data->data;

 for(cmd_size = 0, i = 0; i < input_data->size; ++i) {
 if(buf[i] != ' ' && buf[i] != '\n' && buf[i] != '\t')

command[cmd_size++] = buf[i];
 }
 command[cmd_size++] = '\0';

 input_data->size = cmd_size;
 memcpy(input_data->data, command, cmd_size);

 info.data = input;
 info.file_info = fi;

 return info;
}

Figure 4.3: FUSN pre-processing function. Pre-processing functions execute on the
filesystem server before the data is sent to the sensor network. This can be used to perform
data conversion tasks, such as sanitizing data.

struct linked_list* post_processor(char* file,
 struct linked_list* data)
{
 for(temp = data->head; temp != NULL; temp = temp->next) {
 user_data = (struct fisn_data_vector*)temp->data;
 sprintf(itoa_string, "%d", *(uint16_t*)user_data->data);

 user_data->size = strlen(itoa_string);
 memcpy(user_data->data, itoa_string, user_data->size);
 }

 return data_items;
}

Figure 4.4: FUSN post-processing function. Post-processing functions also execute on the
filesystem server over data recently received from the sensor network. This can be used to
convert raw sensor data into a more appropriate format for the user.

58

Chapter 4. Applications of the Hierarchical Group Model

In keeping with the tiered organization, FUSN provides a split API that allows develop-

ers to specify which functionality executes on the sensor network and which functionality

executes on the filesystem server. As illustrated in Figure 4.2, “data-oriented” functions

execute on the sensor nodes, while “processing” functions execute on the filesystem server.

This enables the filesystem developer to optimize the interface for reduced memory con-

sumption and message transmission.

The data-oriented functions specify where and how the data presented to the user is

generated (Table 4.1). Currently, the user is expected to implement the list_data and

read_data functions (for a read-enabled filesystem) and write_data and delete_data (for

a write-enabled filesystem). The read_data function accepts the name of the file the user

has requested and returns a list of data. Similarly, the list_data function simply returns

a list of file names to expose to the user. It should be noted that the data constructed in

these functions are not restricted to raw sensor data and can include application specific

data. For example, the filesystem developer can choose to export memory consumption

data using these functions. Also, communication between the filesystem server and the

sensor network is automatically handled; the developer simply constructs the list of data

to be transmitted.

The write_data function accepts the name of the file and the data to be written. It also

includes parameters to accommodate truncations and appends. This data can be stored

on the sensor node or be used by the filesystem developer to control devices. Currently

FUSN does not provide interfaces to explicitly control file attributes or permissions. File

attributes, such as file sizes and modification dates, are calculated automatically by the

filesystem server. Similarly, file modes and permissions are stored and handled automati-

cally by the filesystem server.

In order to provide a flexible way to implement functionality on the filesystem server,

FUSN provides a pre-processing and post-processing API. Pre-processing functions are

used to transform input provided by the end user before sending to the sensor network.

59

Chapter 4. Applications of the Hierarchical Group Model

This can be used for example to sanitize or compress input (Figure 4.3). Similarly, post-

processing functions are used to transform data provided by the sensor network before

presenting it to the user. This can be used for example to calibrate raw sensor values or

transform a list of integers into a comma-delimited text file (Figure 4.4).

Processing functions can also be used in combination. For example, one of the filesys-

tem interfaces developed employs a parsing pre-processor and an equivalent unparsing

post-processor. This allows the filesystem interface to export the illusion that the sensor

nodes stores the unparsed data while reducing the memory consumed by the sensor nodes.

Finally, FUSN provides support to stack pre- and post-processing functions, enabling mul-

tiple data transformations.

Using both the data-oriented functions and processing functions, the user is able to

create a wide array of different filesystem interfaces. However, FUSN currently has two

major limitations. First, FUSN does not support the creation of links (usually created

using the ln command). Besides complicating the possible semantics of the filesystem,

links are often not used in file I/O operations. Second, FUSN assumes that directories

represent either sensor nodes or groups of sensor nodes. Although it is possible to use

pre-processing functions to emulate a data directory, such as “directory containing sensor

nodes equipped with thermistors”, this is currently cumbersome.

4.1.2 Implementation

The FUSN runtime is implemented on the TelosB motes using the Kensho library. The

Kensho runtime is used for communication between the sensor node and the FUSN bases-

tation and is also used for local tasking. Currently, advanced features such as logical

groups are not used. Each sensor node is loaded with an application statically linked with

the FUSN runtime. This runtime is executed as a local task, allowing the main applica-

tion logic to remain simple. The FUSN runtime responds to messages from the filesystem

60

Chapter 4. Applications of the Hierarchical Group Model

Figure 4.5: FUSN failure model. FUSN will report a non-existent file error if the sensor
node is disconnected during a read or write operation.

server, executes the user-specified data functions, and transmits the data back to the filesys-

tem server.

FUSE, a user-space filesystem module that simplifies the construction of Unix filesys-

tems, is used to construct the filesystem presentation. FUSE provides a user-level API

similar to the Posix file I/O API. By constructing functions that conform to this API, users

are able to construct full-fledged filesystems. Like native filesystems, FUSE filesystems

can be mounted anywhere in the filesystem tree; programs designed to interact with the

filesystem do not distinguish between native and FUSE filesystems. FUSE is currently

available for Linux, FreeBSD, and Mac OS X.

The FUSE filesystem server communicates and tasks the sensor network using the

Kensho communication methods. When a particular filesystem request is made, the rel-

evant FUSN function is invoked and a message is constructed that is “pushed” to the

sensor network. The sensor nodes are locally tasked with the relevant FUSN local runtime

threads and responds to the messages. These responses are, in turn, “published” back to

the filesystem server. However, unlike other Kensho applications, FUSN does not employ

collective tasks. This is primarily because FUSE itself is an event-driven system where

user actions (such as typing in ls) invokes certain event handlers (the FUSE functions).

However, the Kensho functions can be used even in non-threaded environments. After the

61

Chapter 4. Applications of the Hierarchical Group Model

function readsensors(path)
 while(true)
 sensor_light = dlmread(strcat(path, '/s0/PHOTO'))

 plot(sensor_light, 'mo')

 pause(2)
 end
end

Figure 4.6: Matlab script using FUSN to interact with a sensor node. The script is able to
read the photometer value from the sensor node by issuing a standard dlmread call. FUSN
automatically transmits the relevant data and formats it in a comma-delimited form.

FUSE functions perform a “collect” to receive the data, the appropriate FUSN processing

functions are applied.

In the case that packets are not received by the filesystem server, FUSN translates

networking errors into appropriate file I/O errors. Filesystem failure and recovery has been

extensively studied [88, 65, 58], and many of these ideas may be applicable for sensor

networks. However, currently FUSN employs a simple failure and availability model.

For a directory listing command, FUSN will simply not list the file. For data retrieval

commands, FUSN will report a file with zero size if the file has already been opened,

otherwise it will report a non-existent file error (Figure 4.5).

4.1.3 Filesystems

In order to evaluate the efficacy of the FUSN API, two different filesystems were imple-

mented. Both filesystems specify pre and post-processing steps to reduce data communi-

cation and allow users to control the behavior of the application using write commands.

The first filesystem exposes each sensing device (photometer, thermistor, and humidity)

and LED device as a file. Each sensor node continually collects sensor data and stores the

data in a limited size buffer. The basic filesystem employs a post-processing function that

62

Chapter 4. Applications of the Hierarchical Group Model

Task Command Task Operation
sample(IN, OUT, SAMPLES, RATE) Collects input and stores in output
classify(IN, OUT, OP, THRESH) Classifies input and store results in output
stat(IN, OUT, OP, SAMPLES) Performs statistics and store results in output
stamp(IN1, IN2, OUT) Appends values and stores the result in output

Table 4.2: Functions supported by the FUSN task interpreter. Functions include methods
to sample sensor data, perform statistics on the data, and classify the data. Users are able
to task the sensor node by writing these functions into a standard text file.

transform the list of integer values into a comma-delimited text file. This conversion helps

users to view data in a form that most data analysis programs understand. For example,

the user is able to use the Matlab dlmread function without modification to read in the

sensor data (Figure 4.6).

The basic filesystem also allows users to interact with the LED devices by reading and

issuing appropriate commands. Upon starting the basic filesystem, all the LEDs are initial-

ized to the off state. In each LED file, the user will be presented with a text file containing

the string OFF. By writing a command, such as ON or TOGGLE to the appropriate LED

file, the user is able to control the state of the LEDs. The basic filesystem employs a pre-

processing function that automatically removes whitespaces, and adds null-terminators

when necessary. Although simple, this basic filesystem is functional as a data logging

mechanism and serves to help filesystem developers construct more complex filesystems.

Besides the basic filesystem, a more sophisticated command-and-control filesystem

was constructed that includes a simple task interpreter. These tasks are inspired by the

Tenet tasking library [49]. Like the original Tenet tasking library, the command-and-

control filesystem provides a set of simple functions that can be chained together to per-

form a particular task. Currently four functions (Table 4.2) are provided, a subset of the

original Tenet tasks. Each function accepts at least one input file and an output file. It per-

forms a specific operation over the input and places the result in the output. For example,

63

Chapter 4. Applications of the Hierarchical Group Model

Figure 4.7: Screenshot of a user tasking and debugging a script using FUSN. The user is
able to copy a text file containing the script to the relevant sensor node directory. After
entering the name of the script to the TASK file, the sensor node begins to interpret the
script. The task then generates intermediate files (A, B, C, and D) that contain debugging
information.

the sample task continuously reads the input file at a specified rate and collects a specified

number of samples. It then takes these samples and places them in the output file. This

can be used to sample various sensor devices. Besides sample, none of the other functions

execute continuously.

Users invoke the task interpreter by creating a file listing the functions that constitute

the task. The user must also append the name of that file to a file called “TASKS”. The

TASKS file simply lists all the tasks the sensor node must execute. These files must reside

in the sensor node directory that is supposed to execute those tasks. All files can be created

using a normal text editor or using echo and cp commands (Figure 4.7). The task inter-

preter monitors the task control file for new tasks and automatically begins interpreting the

task functions. Currently, each task is interpreted as a separate Mantis thread. As tasks are

interpreted, users can view the intermediate input and output files used by the tasks.

Figure 4.8 illustrates the dynamic memory consumption of a complex task containing

all four functions. Each intermediate file contains the four most recent values. This aids

in debugging since the user has access to a history of values. The memory consumption

increases after the task file is loaded and begins execution. The task only begins collecting

64

Chapter 4. Applications of the Hierarchical Group Model

0 20 40 60 80 100 120

Time (seconds)

0

500

1000

1500

2000

M
e
m

o
ry

 C
o
n

s
u

m
p

ti
o
n

 (
b

y
te

s
)

Figure 4.8: Memory consumption of a single task file over time. The sensor node ini-
tially allocates memory for storing the task and generating intermediate data structures.
Afterwards, the task interpreter maintains a steady state.

Task Command Text Size Binary Size
sample(TIME, A, 1, 2048) 22 bytes 14 bytes
classify(A, B, ABOVE, 32) 25 bytes 15 bytes
stat(B, C, AVG, 3) 19 bytes 13 bytes
stamp(MEM, C, D) 16 bytes 11 bytes

Table 4.3: Static memory consumption of the tasking functions before and after com-
pression. The uncompressed function stores the entire function verbatim, while the com-
pressed function stores an intermediate representation that remove superfluous tokens.
This results in a decrease in memory use of over 20%.

data after 30 seconds, after which the memory consumption remains relatively constant.

Since the goal of the tasking filesystem is to demonstrate how to integrate FUSN with a

programming environment, the system was not optimized for minimal memory consump-

tion or runtime overhead.

In order to lower static memory usage and minimize the computational overhead, the

command-and-control filesystem employs both a pre-processing parsing step, and a post-

processing unparsing step. In the parsing step, the filesystem server tokenizes and parses

the task text file. The result is then sent to the sensor node for evaluation, saving the sensor

node from parsing the text itself. On average, this reduces static memory consumption by

65

Chapter 4. Applications of the Hierarchical Group Model

Program Text Size Data + BSS Size
blink_led 13372 bytes 1592 bytes
sense_and_forward 15030 bytes 1702 bytes
basic filesystem 33804 bytes 6298 bytes
tasking filesystem 36276 bytes 6338 bytes

Table 4.4: Binary size of Mantis OS applications and different FUSN filesystems. Al-
though FUSN filesystems consume more static text and data than typical Mantis OS ap-
plications, complex filesystems only modestly increase the text and data size.

approximately 35% (Table 4.3). Similarly, when the user requests to view the task file, the

sensor node transmits the compressed parsed form. The host automatically re-creates the

textual form of the file and displays it to the user. This is all done automatically; from the

user’s perspective the text files appear to reside on the sensor nodes.

4.1.4 Evaluation

FUSN filesystems, unlike typical applications, can serve multiple purposes (such as data

sampling or tasking). As such, these filesystems tend to have larger binaries, which may

affect future work with respect to dynamic binary linking. However, as Table 4.4 illus-

trates, the text size of these filesystems is only modestly more than that of a simple “sense

and forward” program packaged with Mantis OS. However, FUSN filesystems do consume

more global data than typical Mantis OS applications. This is something that ultimately

affects the total amount of memory available to applications (examined later in this sec-

tion). However, constructing more advanced filesystems, such as the tasking filesystem,

does not substantially increase the text or data size over simple FUSN filesystems.

Another key overhead associated with FUSN is sensor node memory consumption

and message cost. In order to evaluate these costs, latency and memory measurements

were gathered using the USB communications backend. This was done to disentangle

66

Chapter 4. Applications of the Hierarchical Group Model

0 50 100 150 200 250 300

File Size (bytes)

0.00

0.05

0.10

0.15

0.20

0.25

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
e
c
)

Read
Runlength (0%)
Runlength (25%)
Runlength (50%)
Runlength (75%)

Figure 4.9: The latency of opening and reading a file with respect to file size. The file was
compressed in various proportions using runlength encoding. Compressing the file less
than 50% resulted in higher latency due to the time to compress the data.

the overhead associated with the wireless protocol from that of FUSN. From the user’s

perspective, the CTP and USB backends only differ in the perceived latency of certain I/O

operations.

Besides the basic and tasking filesystems, a runlength filesystem was implemented

to study the effects of computation and communication delay on end-user latency. The

runlength filesystem generates and encodes a list of values at specified compression rates

using runlength encoding. The runlength encoding algorithm replaces a set of contigu-

ously identical values with a preamble specifying the number of times the value appears

along with the value itself. This encoding scheme works best in scenarios where sensor

values may not change for several collection periods. The encoding takes place on the

sensor node while decoding takes place on the filesystem server as a post-processing func-

tion. A simple read filesystem that simply generates data but does not employ runlength

encoding was also developed for comparison.

67

Chapter 4. Applications of the Hierarchical Group Model

File Latency

Using the runlength and read filesystems, the latency of opening, reading, and closing a

file was measured. The data sent by the sensor nodes consisted of a set of integer values

compressed at various levels. The host then decompressed and transformed these values

into a set of a comma-delimited numbers using a post-processing function. All tests were

performed on the host executing a simple Ruby script. This script consists of an open

command followed by a readline command to read the data.

As Figure 4.9 illustrates, latency for the smallest files (containing 10 values) for all

filesystems was approximately 6 ms. The latency as the number of integer values in the

file is increased (increments of 10 up to 250 values) was also measured. Each data point is

an average over 10 independent trials. Error bars showing standard deviation at each data

point were very small (tens of microseconds) and are not visible.

Surprisingly, the latency of the read filesystem, without runlength encoding, was con-

sistently lower than the runlength filesystems that encoded with low compression rates.

Runlength encoding confers a latency advantage with compression rates of approximately

75%. This is because there are two primary sources of latency: the latency involved in

the transmission of a packet over the medium (USB in this particular case) and the latency

associated with the runlength encoding computation. For USB, the latency involved in

the runlength encoding is greater than the latency in the actual message transmission. As

such, the end-user does not perceive a latency reduction until the number of messages is

significantly reduced.

Although the USB communications latency is currently small, I performed tests that

investigated the perceived end-user latency when the communication latency is increased.

This can happen, for example, when the wireless link between two sensor nodes is very

poor and CTP sends multiple retransmissions. In order to measure these effects, an artifi-

cial delay in the transmission function was introduced. The sensor node was programmed

68

Chapter 4. Applications of the Hierarchical Group Model

0 10 20 30 40 50 60 70 80

Delay (ms)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
e
c
)

Read
Runlength (25%)
Runlength (50%)
Runlength (75%)

Figure 4.10: The latency of opening and reading a file as the transmission delay is in-
creased. Transmission delay is used to emulate the effects of different communication
methods. The runlength compressed files have lower latency over modest increases in
transmission delay.

to transmit 250 values at specified compression rates. The artificial delay was increased

from 0 to 72 ms in increments of 8 ms. The test was performed ten times and all values

were averaged.

As Figure 4.10 illustrates, even a small amount of delay lowers the overall end-user

latency when using runlength encoding. As expected, as the artificial delay increases, the

latency difference in compression rates becomes more substantial. Using this information,

filesystem developers can choose the appropriate amount of compression to use in any

particular application scenario for minimal end-user latency.

Besides measuring the latency to read large amounts of data from a file, the latency to

open and read a small file multiple times was measured. The read and runlength filesys-

tems exposed a single file of 10 values that was read by the host sequentially multiple

times. As Figure 4.11 illustrates, latency increases linearly with the number of times the

file is read. Overall, latency increases much faster than reading a single large file with an

equivalent amount of data. This is due primarily to the overhead of sending and receiving

FUSN file request packets and the inability to compress a large number of values on the

69

Chapter 4. Applications of the Hierarchical Group Model

0 5 10 15 20 25 30

Num Files (10 bytes each)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
e
c
)

Figure 4.11: The latency of opening and reading a file with respect to number of files. The
latency increases linearly since data across files are not compressed.

sensor node. From this data, it is evident that filesystem developers should preferentially

use few files of larger size, rather than many files of smaller size.

Finally, the total latency overhead of common command-line programs, such as ls and

cat, was measured using the basic filesystem. Even though the semantics of each pro-

gram are simple, each program may make multiple filesystem calls, increasing their total

ls cat cp rm mkdir
0.000

0.200

0.400

0.600

0.800

1.000

L
a
te

n
c
y
 (

s
e
c
)

Warm
Cold

Figure 4.12: End-user latency experienced by the user for several command-line tools.
The cold bar times are recorded after the first invocation of the command-line program.
Afterwards, the file metadata is cached. Subsequent invocations of the command-line
program produces the warm bars. Most command-line programs take less than a second
to complete.

70

Chapter 4. Applications of the Hierarchical Group Model

0 50 100 150 200 250 300

File Size (bytes)

0

1

2

3

4

5

6

7

8

9

10

N
u

m
 M

e
s
s
a
g

e
s

Basic
Runlength (25%)
Runlength (50%)
Runlength (75%)
Mantis OS

Figure 4.13: Number of messages transmitted by a sensor node with respect to file size
and different compression levels. Compressing the data by 25% reduces the number of
messages transmitted by 1. The number of messages transmitted is a step-function since
the data packet may not contain the maximum amount of data.

latency. These filesystem calls are often redundant (multiple calls to get the file attributes).

Although the filesystem server caches much of the metadata information, FUSN can be

further optimized in this regard.

For these tests, both the latencies before the metadata was cached (cold latency) and

after the metadata is cached (warm latency) were measured. The cold latencies were mea-

sured by mounting the filesystem and immediately executing the command-line program.

Similarly, the warm latencies were measured by first performing an ls in the sensor node

directory before executing the command-line program. Performing an ls in a directory

requests the necessary metadata for each file, allowing the filesystem server to cache the

relevant information. Overall, command-line programs that retrieve file attributes often

(such as ls) have the highest difference between cold and warm latencies (Figure 4.12).

For most programs the cold latency is about twice the warm latency, although most pro-

grams complete in less than a second even with cold caches.

71

Chapter 4. Applications of the Hierarchical Group Model

0 50 100 150 200 250 300

File Size (bytes)

0

100

200

300

400

500

600

700

800

M
e
m

o
ry

 U
s
e

(b
y
te

s
)

Read
Runlength (0%)
Runlength (25%)
Runlength (50%)
Runlength (75%)

Figure 4.14: Dynamic memory consumption with respect to file size for multiple filesys-
tems. For small file sizes and low compression rates, the compressed filesystems may
consume more memory compared to a non-compressed filesystem due to the structure of
runlength encoding.

Sensor Node Overhead

In order to quantify the overhead associated with the sensor node, the total number of

messsages the sensor nodes transmit was measured during read operations along with the

dynamic memory consumption of the filesystem. Besides affecting file latency, the number

of messages also affects the energy consumption of the sensor node. The sensor node was

equipped with both the basic and runlength filesystems. The number of integer values in

the file being read was varied from 10 to 250 values in increments of 10. After a read

request, the sensor node transmits all the requested values, and finally sends a completion

packet indicating the number of packets the host should have received. As Figure 4.13

illustrates, the number of messages transmitted is a step-wise function of the compression

rate employed by the filesystem. These steps reflect the number of messages that can fit

into a single packet (a maximum of 64 bytes).

To measure dynamic memory consumption, the dynamic memory allocator was sup-

plemented with FUSN to display the amount of allocated heap space as a file. The sensor

nodes were loaded with the runlength and read filesystems, and file sizes were varied from

72

Chapter 4. Applications of the Hierarchical Group Model

6 8 10 12 14 16 18 20 22

History Size

800

1200

1600

2000

2400

M
e
m

o
ry

 C
o
n

s
u

m
p

ti
o
n

 (
b

y
te

s
)

Figure 4.15: Dynamic memory consumption of an executing task with respect to the size of
the intermediate files. A larger history size aids in debugging, but also increases memory
usage linearly.

10 to 250 bytes. As Figure 4.14 illustrates, the runlength filesystem consumes more mem-

ory than the read filesystem at low compression rates. This is because the read filesystem

allocates a single large array of the appropriate size and stores all values in that array. The

runlength filesystem, however, must allocate a list of runlength preambles. Each preamble

either consists of a compressed value, or an array of discontiguous values. As the com-

pression rate is increased (to over 50%), the runlength filesystem must allocate fewer and

fewer preambles and ultimately consumes less memory than the read filesystem.

Unlike the other filesystems, the task filesystem is designed to allow users to debug

running programs by viewing intermediate files. These intermediate files can be config-

ured to contain multiple historical values. For example, by issuing a read command, the

user can view the n most previous values, where n is the history size. However, as Figure

4.15 shows, increasing the size of the intermediate file in the task filesystem decreases the

amount of available memory for the interpreter.

73

Chapter 4. Applications of the Hierarchical Group Model

0 2 4 6 8 10 12

Concurrent Users

0

0.2

0.4

0.6

0.8

1

1.2

L
a
te

n
c
y
 (

s
e
c
)

Read Test
Write Test

Figure 4.16: File latency of reading and writing files with respect to the number of con-
current accesses. For concurrent reads, the time to complete all reads scale approximately
linearly. However, the variance also increases indicating that some reads must wait a
longer time. Writes exhibit a similar pattern.

Concurrent Access

FUSN filesystems also allow multiple users to concurrently access the filesystem. In order

to minimize the time spent locking on the sensor node, locking is implemented on the

host. Each sensor node interface has its own lock so that users accessing two different

sensor nodes do not conflict. Currently, adaptive flow control mechanisms are not used

(relevant for the CTP communications backend), although all read and write commands

are processed by a sensor node before sending another command.

A concurrent read and write test was constructed to evaluate the effectiveness of the

locking strategy. Both tests were executed on the host as Ruby scripts. For the read test,

sensor nodes were loaded with the read filesystem containing a file with 10 values. Sim-

ilarly, for the write test, the sensor nodes were equipped with a filesystem containing an

empty file that appended values to that file. On the host, the number of concurrent threads

that attempted to access the files was varied. As Figure 4.16 illustrates, the latency to com-

plete a read and write operation increases linearly on average up to ten users. However,

the standard deviation also increases with the number of users, indicating lock contention.

74

Chapter 4. Applications of the Hierarchical Group Model

However, it should be noted that such a high number of concurrent accesses will be un-

common for most deployment scenarios.

4.1.5 Discussion

Fully integrating computing resources as filesystem resources was initially explored in the

Plan 9 operating system [80]. In Plan 9, all resources are mapped as files. For example,

networking protocols, such as TCP/IP are mapped as a set of files that can be controlled

using standard read and write operations. Although originally designed for standard dis-

tributed systems, Tilak [96] and Pisupati et al. [81] explored directly porting the Plan 9

protocols and interface to sensor networks. As a consequence, applications employ the

filesystem interface as a programming model, with the limitations found in other message

passing models.

FUSN, on the other hand, employs the hierarchical group model as the underlying pro-

gramming model and uses Kensho to implement filesystem interfaces. These filesystems

are end-user management and tasking interfaces. Users can interact with sensor networks

using existing I/O libraries without understanding the complex protocols that drive the

sensor network. Similarly, existing applications that interact with the filesystem, includ-

ing many command-line programs, can use FUSN filesystems to manage and interact with

the sensor network.

Although FUSN filesystems are very different from Tables and the hierarchical group

model, FUSN can still take advantage of the hierarchical group model to simplify imple-

mentation. Several local tasks are assigned to all sensor nodes. These tasks respond to

various FUSN commands. Communication is handled via the Kensho “push”, “publish”,

and “collect” functions. Although FUSN does not employ collective tasks, the FUSN

filesystem server can still access data published by the local tasks. FUSN does not employ

logical groups (outside the primary global group). Although users can construct groups

75

Chapter 4. Applications of the Hierarchical Group Model

of sensor nodes (by creating directories and moving sensor nodes into these directories),

these groups are primarily organizational and not necessarily functional. As such, group

membership information resides completely on the filesystem server.

FUSN, like Tables, also requires node-specific communication. In FUSN, sensor nodes

are represented as directories that contain various files. As such, FUSN must send mes-

sages and commands to specific nodes. Although the hierarchical group model discour-

ages node-specific communication, this was necessary in order to preserve filesystem se-

mantics. Even with additional node-specific communication requirements, FUSN demon-

strates that the hierarchical group model is useful for applications with very different in-

teraction models.

4.2 Privacy Applications

Many sensor networks in social settings will require new privacy and confidentiality guar-

antees in order to protect individual participants [92, 95, 86]. Unfortunately, privacy and

confidentiality issues have not been adequately addressed in sensor networks for at least

two reasons. First, many applications, such as environmental data monitoring, may not

have strong privacy requirements. Second, implementing traditional forms of data pro-

tection on sensor nodes requires relatively complex communication and computation. For

example, although recent research has demonstrated that encryption is possible on sen-

sor nodes [79, 100], the relative overhead remains imposing. Key distribution remains

challenging [36] and may require a complex message passing protocol.

In order to address these issues, new privacy-preserving algorithms for sensor networks

are necessary. These algorithms, besides protecting data, should also conform to the hi-

erarchical group model. This ensures that the overall design and implementation of the

algorithm can be integrated into other existing applications. Two algorithms that address

76

Chapter 4. Applications of the Hierarchical Group Model

two broad classes of applications are presented. The first algorithm, the negative survey, is

designed for anonymous data collection from a large number of sensor nodes (primarily in

urban scenarios). The data is used to create a histogram, which is then reported back to the

sensor nodes. The second algorithm focuses on individual privacy and is designed to pro-

tect location data (usually collected via GPS). Although designed for different scales and

applications, both algorithms take advantage of negative representations of data. By doing

so, the algorithms conform to the communication and computational patterns described by

the hierarchical group model, simplifying implementation.

4.3 Negative Survey

The negative survey consists of a set of protocols that enable anonymous data collection

[56]. These protocols and the discussion regarding their information-theoretic characteris-

tics were originally detailed in [37] and are replicated here for completeness. Confidential

information is protected by ensuring that sensor nodes, instead of transmitting their actual

data, transmit a data value that was not collected. The basestation then uses these negative

samples to reconstruct a histogram of the actual data. These protocols are computationally

simple and do not increase communication overhead relative to the original application.

4.3.1 Selecting a Negative Category

Every sensor node chooses from the same set of categories, and independently determines

what data to transmit back to the basestation. The algorithm used by the sensor node

selects data from a finite set of discrete data values. For many applications, such as traffic

monitoring, these data values represent mutually exclusive and exhaustive categories. For

example, categories for traffic monitoring would consist of speed increments (0− 9 mph,

10 − 20 mph, etc). When discussing the node protocol, the terms categories and data

77

Chapter 4. Applications of the Hierarchical Group Model

values are used interchangeably.

Each node in the sensor network occasionally receives a query requesting data. Upon

receiving a query, the node first identifies the initial category p. Instead of transmitting

p to the basestation, the node selects another category uniformly at random and transmits

this category. More precisely, let U be the set of all categories. The node then chooses a

category uniformly at random from the set U −{p}. In this way, nodes are said to transmit

negative values. If the sensor node transmits p, the original category, the node is said to be

participating in a positive survey.

If an adversary intercepts a transmission from a sensor node, he or she learns only

a category that the sensor node did not record. Assuming that there are more than two

categories, the protocol preserves a high degree of privacy by making it difficult to cor-

rectly guess the actual category which was sensed. The node protocol is computationally

simple and does not increase communication overhead because the number of messages

transmitted remains the same compared to a positive survey.

4.3.2 Reconstructing the Histogram

Once the sensor nodes transmit the negative values, the basestation reconstructs the origi-

nal frequency distribution. In order to do this, the basestation must know both the number

of sensor nodes and the set of categories used by the nodes. Given t categories and n

sensor nodes, the basestation receives Ri replies for category i from the sensor network.

The basestation then estimates Ai, the actual number of nodes that belong in category i.

In order to calculate Ai for all i, the basestation uses the equation:

Ai =
∑

j 6=i (Rj −
∑

k 6=i,j Cj,k)

where Ci,j is the expected number of sensor nodes in category j that report i.

78

Chapter 4. Applications of the Hierarchical Group Model

Figure 4.17: Reconstructed histograms with the corresponding actual histogram for three
distributions. Each trial used twelve categories and 6000 sensor nodes. The negative
survey is able to capture the general shape of the histograms for all three distributions.

Since each sensor node transmits one of the other categories, the probability of select-

ing another category is 1
(t−1)

Using this, the equation is simplified to

Ai = n−Ri(t− 1).

Using this function, the basestation is able to reconstruct the histogram of original

values by iterating over all i categories.

79

Chapter 4. Applications of the Hierarchical Group Model

4.3.3 Implementation and Evaluation

The negative survey has been implemented in both a simulation environment (using Mat-

lab) and on the TelosB sensor platform using the Kensho programming interface. The

simulation implementation was used in order to evaluate the accuracy and applicability of

the negative survey reconstruction method. This was necessary since the number of sensor

nodes used in the negative survey tests was very large.

Several parameters, including the number of sensor nodes, the number of categories

used in the survey, and the distribution of the data (positive) values, were varied and tested

to evaluate the conditions under which the negative survey performed well. Sensor nodes

were restricted to choose only a single category per query. This restriction is an example of

the tradeoff between protecting the confidentiality of a node’s data values and the ability

of the basestation to reconstruct the data. This tradeoff can be managed for particular

applications by varying the number of sensor nodes participating in the survey and varying

the number of categories each sensor node transmits.

Reconstruction tests were evaluated against pre-selected distributions; each node was

assigned a random variable drawn from that distribution, which indicated its positive cat-

egory. The simulation ran the node protocol on each sensor, transmitted the negative data,

and then ran the basestation protocol to reconstruct the distribution. Three different dis-

tributions were used: normal, exponential, and uniform. The uniform distribution chooses

each category with uniform probability between 0 and 1. Each test was run with twelve

categories and 6000 sensor nodes. The results were normalized and compared against the

original distribution using the following root mean-square error (RMSE) test:

RMSE =
√∑n

i=1(positive(i)− negative(i))2

As Figure 4.17 illustrates, the reconstructed histogram matches the original distribu-

tion well for all three distributions. However, the negative survey occasionally generates

80

Chapter 4. Applications of the Hierarchical Group Model

Figure 4.18: Error in the reconstructed histogram with respect to the number of categories
and samples. The error increases with the number of categories. As the number of sensor
nodes is increased, the error initially decreases quickly and subsequently decreases at a
slower rate.

frequencies less than zero. These values arise when the expected contribution for a par-

ticular category exceeds the actual reported total for that category. This is a statistical

artifact; as the number of samples is increased the number of frequencies less than zero

will decrease.

Varying the Number of Categories and Samples

In order to understand the effects of the number of categories and samples on error, tests

were conducted that varied the number of sensor nodes participating in the survey, and

the number of categories from which each sensor node must choose. Intuitively, the error

is expected to decrease as the number of samples increases, assuming a constant number

of categories. In addition, the error is expected to increase as the number of categories is

increased since the number of choices for the sensor node also increases.

Six thousand sensor nodes were used for the first test. The number of categories was

varied from 4 to 204 in increments of 2. This test was run independently ten times and

results were averaged from all ten runs. This test was run using the normal, uniform,

81

Chapter 4. Applications of the Hierarchical Group Model

Figure 4.19: As the number of categories is increased, the number of sensor nodes needed
to maintain a constant RMSE also increases. Each point represents a RMSE value within
a ±.008 range of the desired RMSE value.

and exponential distributions. Figure 4.18 shows that error increases with the number of

categories in a near-linear fashion for all three distributions.

For the second test, the reconstruction accuracy was compared against the number of

sensor nodes. Sensor nodes were simulated to choose from 14 categories while the number

of nodes varied from 100 to 6000 in increments of 100. Again, this test was run using the

normal, uniform, and exponential distributions. The resultant error was averaged from

ten independent runs. Figure 4.18 shows that the error falls off quickly as the number of

samples is increased and then levels off.

In order to compare the error associated with the negative survey to a baseline sampling

error, a simple positive survey with 14 categories was tested where the number of sensor

nodes was varied from 100 to 6000. RMSE was used to characterize the difference between

the positive survey histogram and the actual histogram. As expected, the error quickly

decreases to zero for both the normal and exponential distributions as the number of sensor

nodes was increased (data not shown). Although the error associated with the uniform

82

Chapter 4. Applications of the Hierarchical Group Model

distribution also decreases, it does not reach zero due to the nature of the distribution.

Given a target RMSE, the relation between the number of categories and the number

of sensor nodes was tested. This information is useful for applications where a tolerable

error threshold is known beforehand. In Figure 4.19, the number of sensor nodes needed

to maintain a target RMSE is plotted while increasing the number of categories. This was

done for target RMSE values between 0.1 − 0.8 in increments of 0.1. As the number of

categories increases, the number of samples to maintain a desirable RMSE value must

also increase. All three distributions (normal, exponential, and uniform) behave similarly.

This implies that an application can use one method for maintaining a constant accuracy

without necessarily knowing the distribution of the data ahead of time.

4.3.4 Applications of the Negative Survey

The negative survey is appropriate for applications in which the distribution of data is

important rather than specific answers from sensor nodes. For example, an application in

which users want to know how busy a restaurant is could aggregate discrete location data

(such as a city block) provided by individual users’ mobile phones.

Another potential sensor network application requiring anonymization is automobile

traffic monitoring [35, 57]. Traffic monitoring is used in major cities, for example, to make

decisions regarding street layouts. It can also be used to identify bottlenecks due to traffic

signals. Traffic monitoring could also be useful for individuals. Some road intersections

may be congested, while others may be frequented by dangerous drivers. By monitoring

traffic conditions, individual drivers could avoid roads with problematic conditions.

Although aggregated information about traffic could be useful, both for individuals and

traffic engineers, most drivers would naturally be reluctant to have their driving monitored

for fear of legal or insurance repercussions. If, however, the privacy of individuals could be

guaranteed, then the larger community could benefit from aggregated information without

83

Chapter 4. Applications of the Hierarchical Group Model

loss of individual privacy. Similar considerations constrain the collection of health infor-

mation in epidemiological settings. Although privacy enhancing databases address some

concerns, they generally require the individual to trust that his or her information will be

sanitized in a way that protects privacy.

In the traffic monitoring example, the negative survey is used to provide end-to-end

anonymity to individual drivers. Observers monitoring the traffic would still have access to

the real traffic distribution. Assuming that each vehicle is equipped with a speed sensor, the

speed sensor records the current speed of the host vehicle and the actual speed limit of the

road on which the vehicle is traveling (provided possibly by a basestation located near the

road). The basestation collects the sensor data and performs the histogram reconstruction

within a locally constrained area, e.g., a single intersection or section of roadway. Each

sensor contains a list of pre-determined categories. For this application, each category

represents a set of relative speeds above and below the speed limit. An example with six

categories is given below:

1. 10+ mph over the speed limit

2. 5 - 9 mph over the speed limit

3. 0 - 4 mph over the speed limit

4. 0 - 4 mph under the speed limit

5. 5 - 9 mph under the speed limit

6. 10+ mph under the speed limit

In order to determine the proper category, each sensor node takes the difference be-

tween its current speed and the known speed limit and chooses a category according the

node protocol. The sensor node then transmits this negative value to the basestation.

84

Chapter 4. Applications of the Hierarchical Group Model

Figure 4.20: Three speed distributions to characterize different traffic conditions. Normal
traffic is represented by a normal distribution. Traffic in which a few vehicles travel faster
than most is represented by a bi-modal distribution. Congested traffic is represented an
approximate uniform distribution with a long tail.

The basestation, in turn, receives data from all the sensors and reconstructs the his-

togram. After constructing the histogram, the basestation classifies the histogram into one

of three traffic behaviors. Each traffic behavior is distinguished by a canonical speed distri-

bution (illustrated in Figure 4.20). These speed distributions attempt to capture congested,

safe, and fast traffic behaviors. For this application all traffic is assumed to obey one of

these three behaviors.

A safe speed distribution is characterized by a normal curve centered in the 0 - 4 mph

category. A congested speed distribution is characterized by a skewed-normal curve that

leans towards the categories under the speed limit. Finally, the fast distribution is a bi-

modal curve. The larger mode represents speeds centered near the 0 - 4 mph category,

while the smaller mode is centered near the faster speeds. These speed distributions were

derived from real-world patterns [32].

The simulation recorded the average classification accuracy with respect to the num-

85

Chapter 4. Applications of the Hierarchical Group Model

Figure 4.21: Classification accuracy for three traffic conditions. Each point is the percent
of correct classifications over ten trials. The classification performs well for all three traffic
distributions with over 3000 samples.

ber of vehicles participating in the survey. The accuracy was measured as the ratio of the

number of correct classifications to the total number of classifications over ten indepen-

dent runs. The number of vehicles was varied from 100 to 10000 in increments of 100.

Each sensor had access to 12 speed categories similar to the example with 6 categories.

The experiment was run once for each of the speed distributions. Within a single exper-

iment, the actual speed distribution remained constant. After the basestation constructed

the histogram, the negative survey results were compared to the three canonical speed dis-

tributions using a modified RMSE test. The comparison that yielded the lowest RMSE

value was chosen as the actual speed distribution. Results of this test are shown in Figure

4.21. In order to validate the algorithm, the same test was conducted using a positive sur-

vey protocol. 100% accuracy was observed using the positive histogram for all settings.

86

Chapter 4. Applications of the Hierarchical Group Model

Therefore, any error is due to the inaccuracy of the reconstructed histogram.

The classification scheme performed well for all three speed distributions. On average,

classification accuracy reaches 80% with 3000 readings. Increasing the number of vehicles

increased accuracy to over 90% and eventually to 100%. More complex classification

algorithms could increase the accuracy (or the number of categories could be reduced)

to improve accuracy in settings with a low number of vehicles. However, 4000 − 6000

vehicles in a traffic area is consistent with typical highway and interstate flow1. These

results illustrate the kind of data rates that would be appropriate for a negative survey

approach.

The purpose of this application scenario is not to demonstrate a real-world classifica-

tion algorithm for traffic monitoring. Real-world deployments would likely include more

kinds of traffic behaviors and use more sophisticated classification algorithms. The appli-

cation does show, however, that a negative survey could supplement existing applications

to increase anonymity.

4.3.5 Discussion

Urban applications that present aggregate information have the potential to be widely use-

ful. However these applications risk revealing private information while performing the

aggregation. In order to address this issue, the negative survey employs a simple, but ef-

fective mechanism to anonymize confidential information. Sensor nodes, instead of trans-

mitting the raw sensor data, transmit the complement of the data. The basestation, using

these negated values, constructs a histogram of the original data. Other issues, such as

security against malicious adversaries, are not explicitly addressed by the negative survey

and are dealt with complementary techniques [19, 83].

Another set of algorithms with similar goals to the negative survey are the data pertur-

1http://www.mrcog-nm.gov/maps_on-line.htm

87

Chapter 4. Applications of the Hierarchical Group Model

bation algorithms proposed by Agrawal et al[12] and more recently by Zhang et al[107].

Their technique perturbs the original data set with random noise drawn from a known dis-

tribution. This perturbed data is then used to reconstruct the original distribution (often

using Bayes Theorem).

In contrast to the negative survey, the data perturbation algorithms assume that the data

and the additive noise are drawn from a continuous domain. The negative survey assumes

the opposite: the data and locations are drawn from a set of discrete values. Although raw

sensor data approximates continuous data, many applications classify sensor data into a

few discrete categories (such as walking, running, driving, etc) [74]. By integrating with

such applications, the negative survey can provide anonymity to these classifications.

Because the sensor nodes can perform the anonymization step independently, all com-

putation and communication can be sufficiently described using the hierarchical group

model. The local protocol is implemented as a Kensho local task, while the basestation

protocol is implemented as a collective task. Commands and anonymized data are imple-

mented using the standard Kensho communication functions. Since the negative survey is

described so well by the hierarchical group model, other applications written in Kensho

that require aggregate anonymization will be able to integrate the negative survey with

little additional work.

4.4 Location Anonymity

As more devices become integrated with location sensors, location-aware applications will

become ubiquitous. Location services will be provided by many different types of sensors

including GPS, WiFi triangulation, and cellular tower identification. Applications include

cars that provide accurate driving directions, phones that notify users of nearby friends [7],

and cameras that automatically “geotag” the location of a picture. Although useful, these

88

Chapter 4. Applications of the Hierarchical Group Model

applications have a privacy cost. For example, applications designed to help locate friends

could be used to track users without their knowledge.

Similar technology can be used for more intrusive forms of monitoring. For example,

several states have recently passed a version of “Jessica’s Law” [6], including California’s

Proposition 83, that mandates that released or paroled sex offenders wear ankle bracelets

equipped with GPS units. Similar proposals have been made for monitoring the locations

of taxicabs in large cities. The GPS monitors record the location of the parolee periodi-

cally. These records can then later be correlated against a set of known crime locations

by a parole officer. In the event that the parolee is near a suspect area, the correlation can

be used evidence of wrong-doing. This example provides more information to the parole

officer (every location the person visits) than what is needed to determine if the person was

near the scene of a crime or to determine if a banned location was visited. Although we

may not have much sympathy for protecting the privacy of a convicted sex offender, it is

easy to imagine extensions to workplace monitoring or to parental monitoring of children.

Like the negative survey, the approach taken for these problems is simply not to store

or transmit the actual location, but to use a representation that allows the correlation be-

tween different locations to be computed without compromising the actual location. Since

the devices only store the negative representation of the location, the possibility of com-

promising private information is minimized.

4.4.1 Anonymized Locations

The anonymization algorithm allows a user Alice’s location to remain hidden, while en-

suring that a query of the form “Was Alice at Location X at Time Y?” can be answered

correctly. The query will return the correct answer with high probability even if Alice

is not exactly at the location but close. The algorithm accomplishes this by processing

and storing location data using an encoding in which geographically close locations are

89

Chapter 4. Applications of the Hierarchical Group Model

Storing Location algorithm:

INPUT: location l
OUTPUT: Negative database, NDB, that stores l

0. q = quadrant_encoding(l)
1. q' = obfuscate(q)
2. NDB = new_singleton(q')

Querying Location algorithm:

INPUT: location l and negative database NDB
OUTPUT: Boolean, m,indicating whether l is
contained NDB

0. q = quadrant_encoding(l)
1. q' = obfuscate(q)
2. m = check_membership(q', NDB)

Figure 4.22: Overview of the encoding and querying algorithm. The encoding process
takes in a location value and outputs a negative database containing a randomized repre-
sentation of the location.

close in Hamming Distance and geographically distant locations are not. The algorithm

requires several steps, outlined in Figure 4.22. Given a location l, the algorithm first maps

the location to the quadrant encoding to achieve the Hamming Distance property; it then

randomizes l in a special way that preserves the Hamming Distance property. This is to

ensure that l cannot be easily obtained by an adversary. Finally, the randomized value is

stored in a singleton negative database, so that queries can be answered correctly even if

the exact location isn’t presented (fuzzy matching). After creating the negative database,

the original location value is discarded.

Quadrant Encoding

The system starts with a GPS value in the standard US government data format [4]. Since

the algorithm focuses on latitude and longitude queries, additional information such as

altitude are discarded. Afterwards, the latitude and longitude are mapped to a quadrant

encoding similar to a Quad Tree [41]. In the quadrant encoding, the total area is divided

into four equal quadrants. Each of these quadrants are in turn recursively subdivided into

90

Chapter 4. Applications of the Hierarchical Group Model

Figure 4.23: The geographic quadrant encoding scheme. The geographic area is recur-
sively subdivided into four quadrants. During each recursion step, the location is placed
one of the four quadrants.

higher resolution quadrants (Figure 4.23). This recursion is continued until the maximum

resolution of the location device is reached (approximately 3 meters for GPS). At each

recursion step (referred to as a quadrant level), the location is placed within one of the

quadrants. The quadrant number is then recorded to encode the location. In the United

States, it takes approximately 18 quadrant levels to cover a typical state. Smaller states take

approximately 16 quadrant levels. Typical cities take approximately 14 quadrant levels,

while smaller cities takes less than 13 quadrant levels.

Binary Representation

After converting a location to a list of quadrant values, the quadrant values are converted

to a binary representation. In contrast to a naïve encoding, the binary encoding must

have the property that two geographically close locations encode to two binary strings

with low Hamming Distance (Hamming Distance measures the number of differing bits).

This ensures that two nearby locations have a higher probability of matching in a negative

database.

91

Chapter 4. Applications of the Hierarchical Group Model

Quadrant Low Level High Level
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 1 0 0 0 0
2 0 1 1 1 1 1 0 0 0 0 1 1 1 1
3 1 1 0 0 0 0 1 1 1 1 1 1 1 1

Table 4.5: EExamples of how quadrants in two extreme quadrant levels are encoded in
binary. The binary representations of the lowest quadrants have a Hamming Distance of 1
between any pair of quadrants. The highest quadrants have a Hamming Distance of 8.

This property is ensured by making the following observation: two geographically

close locations will have a nearly identical list of quadrant values. Since the quadrant

encoding algorithm is recursive, two nearby locations will share the same quadrant values

for the higher quadrant levels (i.e. the same city), but differ for the lower quadrant levels

(i.e. different neighborhoods). This observation is put to use in our encoding scheme

such that lower quadrant levels are encoded differently than higher quadrant levels. In a

lower quadrant level, the binary values of the four quadrants are constructed so that the

Hamming Distance between any pair of quadrants is 1. Similarly, for higher quadrant

levels, the quadrant binary values are constructed with a Hamming Distance of 8. Figure

4.5 illustrates the binary values of each of the four quadrants in both the lower and higher

quadrant levels.

For the purposes of evaluating the system, the lowest three quadrant levels were des-

ignated (corresponding to a resolution of approximately 12 meters) as the lower quadrant

levels, while the rest were designated as the higher quadrant levels. Using this binary en-

coding, two nearby locations will have a maximum Hamming Distance of 3 (since they

can only differ in the first three quadrant levels). However, two far locations will have

a minimum Hamming Distance of 8 (since they must differ in at least one of the higher

quadrant levels).

92

Chapter 4. Applications of the Hierarchical Group Model

Close Close Rand Medium Medium Rand Far Far Rand
0.1

1

10

100

H
a
m

m
in

g
 D

is
ta

n
c
e

Figure 4.24: Hamming Distance properties after randomization. Locations close to the
stored location are close in Hamming Distance, both before and after the randomization
step. Columns labeled rand in the figure correspond to the randomized representation.
Close locations vary only in the lowest level quadrant (approx. 3 meters); Medium loca-
tions vary in the second and third quadrant levels; and Far locations vary in the highest
level quadrant.

Quadrants HD Encoding Randomized
2 2 0 01 01 000000000000 11 00 110111110110
3 2 3 11 01 000011111111 01 01 100000101000
1 2 1 10 01 111111110000 01 01 001010010000

Table 4.6: Location encoding in the quadrant representation. The Quadrants column
shows the original recursive encoding, beginning with the highest level quadrant. The
second column shows the Hamming Distance encoding, as described in the text, and the
third column shows the randomized encoding described in the text.

Randomization Step

Encoded locations are randomized before being stored on the device. This is done to make

it difficult for adversaries to obtain the original locations. However, the randomization

step must also ensure that the Hamming Distance properties of the encoded locations are

preserved.

The Hamming Distance property is preserved by randomizing two nearby locations

using the same pseudo-random seed. Since two nearby locations will share a high-level

93

Chapter 4. Applications of the Hierarchical Group Model

quadrant value, the algorithm uses the first high quadrant level value as the seed. Af-

terwards, the algorithm generates a pseudo-random binary string and XORs the encoded

location with that string. Since two nearby locations use the same random seed, they will

generate the same pseudo-random binary string. As such, the results of the XOR opera-

tion on the two nearby locations will only differ in the places where the original encoded

locations differed, thus preserving the Hamming Distance property.

As Figure 4.24 illustrates, the randomization scheme successfully preserves the Ham-

ming Distance property. The Hamming Distance between two close locations is approx-

imately 1 before and after randomization. The Hamming Distance between two distant

locations, however, is nearly two orders of magnitude more before and after randomiza-

tion. Figure 4.6 illustrates a complete example of quadrant values after being encoded and

randomized.

Singleton Negative Database

After the previous two steps, the algorithm produced a string that represents a single ge-

ographic location using the quadrant encoding and subsequent randomization. The next

step is to support fuzzy retrievals, by which a query such as “Was Alice at Location X?”

will with high probability return a positive answer, if Alice is geographically close to X.

This is accomplished using a data structure known as a negative database [39, 38].

Negative databases, unlike normal (positive) databases, store a compact representation

of the complement of the data. Specifically, given a binary record s chosen from some

finite set U (U is the universe of all possible records), negative databases store a set of

records that form a subset of U − s. This subset is compressed by expressing the negative

database over the alphabet {0, 1, ∗} where ∗ is known as the “don’t care” symbol, that

matches either a 0 or 1 symbol in a given bit position.

Esponda et al. show how to construct negative databases that are hard-to-reverse [39,

94

Chapter 4. Applications of the Hierarchical Group Model

INPUT: A binary string s
Integers l and k
Floating point numbers 0 < q < 1 and
r > 0

OUTPUT: A negative database, NDB, that does
not match s

0. Let n ← l * r, initialize NDB = {}
1. Repeat
2. Select k distinct positions, γ,

uniformly at random from [0, l – 1]
3. Create a string z of length l and set

z[γ] = s[γ]
Set the remaining positions to *,the
“don't-care” symbol

4. Repeat
5. For each position i in γ
6. Complement the value of z[i]

with probability q
7. Until at least one value has been

changed
8. Add z to NDB
9. Until |NDB| ≥ n

Figure 4.25: Overview of the singleton negative database algorithm. The singleton algo-
rithm accepts a binary string and creates a negative database containing that binary string.

38], i.e. given a negative database,NDB, as input, it is computationally intractable to infer

the original (positive) data. In this work, negative databases created using the algorithm

are relatively easy-to-reverse. This algorithm, informally known as the singleton algorithm

Original Record NDB
0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 * * 1 * * * * 0 * * * 0 * * * *

* * 0 * * * 1 0 * * * * * * * *
* * * * * * * * 1 1 * * * 0 * *
* * * * 0 * * 1 * * 0 * * * * *
1 * * * * * 1 * 0 * * * * * * *

Table 4.7: Example of a singleton negative database. The negative database consists of
multiple entries (records). * characters are “don’t cares” that match either a 1 or 0. The
database is constructed such that the Original Record fails to match any of the entries in
the negative database, and the only other records that fail to match are guaranteed to be
within close Hamming Distance. Parameters of the algorithm determine the probability of
these additional records occurring and what their Hamming Distance will be.

95

Chapter 4. Applications of the Hierarchical Group Model

(Figure 4.25), generates a negative database by iteratively creating an entry that does not

match the original record in at least one bit position. The algorithm depends on a user

supplied parameter k that specifies the number of explicit bits in each NDB entry. The

algorithm then chooses k random locations within the record, randomly flips those location

values, and fills the rest of the entry with ∗ symbols. The total number of entries is a

product of a “difficulty” parameter r and the length of the original record l. An example

of a negative database with five entries is shown in Figure 4.7.

Fuzzy Location Querying

After storing the location in a negative database, the original location is discarded. After

this step, a user can query the negative database to determine if a particular location is

stored in the negative database. In order to query for a particular location, the user must

first convert the desired location using the encoding and obfuscation scheme described

earlier. Afterwards, the encoded location, s, is compared to the negative database.

The singleton algorithm creates multiple record entries (superfluous strings) within a

singleNDB, and all the extra entries are guaranteed to be within close Hamming Distance

of the original (singleton) record. The definition of close is governed by the parameters r

and q. An interplay between q and r determines how difficult the NDB will be to reverse

and how many superfluous strings will go unmatched by NDB.

Location s is said to be in NDB if s matches at least one of the entries. A match

between s and an entry is determined bitwise by checking that the value at each bit position

is either identical or a ∗. Similarly, since NDB represents the entries not in DB, s can be

said to be in the original database if it doesn’t match any of the entries in NDB. Because

each NDB encodes a single location, the system must create a separate NDB for each

timestamped location. Thus, querying for a particular location is linear in the size of the

NDB and the total number of timestamped locations.

96

Chapter 4. Applications of the Hierarchical Group Model

The singleton NDB has the property that an encoded location s with a low Hamming

Distance (relative to the location stored in NDB) will have a higher probability of not

matching any entry in the negative database. This property, known as fuzzy matching,

was first described by Jia [59]. Combined with the Hamming Distance property described

for the quadrant encoding, fuzzy matching ensures that two geographically close locations

will have a high probability of matching compared to locations that are farther apart.

4.4.2 Evaluation

The performance of the method was first studied by examining its accuracy at storing and

querying for specific locations. The difficulty of “reversing” the actual location stored in

the negative database was also examined. In both cases, a simulation was used to deter-

mine that the approach is useful under a wide range of parameter values while remaining

difficult to break.

The algorithm contains several parameters: r (related to reversal difficulty), k (the

number of specified bits in a NDB entry), and q (the number of quadrant levels encoded

by each location). For all tests performed k = 3 and q = 16. Because r affects both

the size of the negative database and the expected number of fuzzy matches, r was varied

across a range of values.

Accuracy

Because r controls the number of entries in the NDB, the probability of matching one of

theNDB entries given an input location increases with r. To measure this effect, a random

location was generated, encoded, and stored in an NDB. Three additional test locations

were generated to query against the NDB. The first test location, close, was generated to

differ only in the lowest quadrant level (and hence shares all other quadrant levels). This

97

Chapter 4. Applications of the Hierarchical Group Model

0 1 2 3 4 5 6

r

0

20

40

60

80

100

P
e
rc

e
n

ta
g

e
 M

a
tc

h
e
d

Close
Medium
Far

Figure 4.26: The number of matches with respect to r. Each plotted point is the number
of matches over 100 runs for different values of r. The close values are for locations that
differ in the lowest quadrant level to the stored location. The medium values differ in the
second and third quadrant levels, while the far values differ in the ninth quadrant level.
The number of matches for close and medium values are high for small values of r and
decreases with r.

corresponds to a separation of approximately 3 meters. The second test location, medium,

differed in the lowest three quadrant levels. Finally, the third test location, far, differed in

one of the high quadrant levels (corresponding to approximately 768 meters).

Each test location was queried against the negative database. If the location did not

match any entry, the result was labeled as a match. This test was performed for multiple

0 2 4 6 8 10 12 14 16 18

Quadrant Levels

0

20

40

60

80

100

P
e
rc

e
n

ta
g

e
 M

a
tc

h
e
d

r = 0.5
r = 1.0
r = 1.5
r = 2.0

Figure 4.27: The number of matches as the geographic distance is increased with different
values of r. Each plotted point is the number of matches for locations that differ in the
indicated quadrant level. The number of matches quickly decreases after a short distance
for all values of r. This measures the geographic resolution of the method.

98

Chapter 4. Applications of the Hierarchical Group Model

Actual Close Medium Far

0

1

2

3

4

5

6

M
a
x
im

u
m

 M
a
tc

h
e
d

 R

Figure 4.28: Maximum r value that generated matches for different distances. This result
can be used to iteratively estimate the distance a guess is from the actual location.

values of r (0.5 to 5.5 in increments of 0.5). The total number of matches for each location

over 100 trials was recorded. Since each trial involved generating a new set of random

locations, the number of matches corresponds to the probability of a random location of a

particular geographic distance matching the negative database.

As expected, the proportion of matches decreased as r was increased (Figure 4.26).

This trend occurred for both close and medium locations. Close locations have nearly a

90% match rate when r is set to 0.5. However, the rate decreases to approximately 50%

when r is increased to 5.5. A similar trend is observed for the medium distance locations.

For far locations, there were no matches for any values of r, indicating those distances

were simply too far to generate any false positives. This result shows that the r parameter

can be used to to control query resolution. For applications that demand highly accurate

locations, r should be set to relatively high values. For applications that do not demand

such accuracy, r could be set to smaller values.

The maximum r value that maintained a correct match for the close and medium lo-

cations were also examined. As Figure 4.28 illustrates, for close locations, most matches

occurred when r was set to less than 3.5. Above r = 3.5, matches became unreliable.

Similarly, for medium distance locations, most matches occurred when r was set to less

than 1. For far distance locations, the number of matches was negligible regardless of the

99

Chapter 4. Applications of the Hierarchical Group Model

r value. Since the maximum number of NDB entries (determined by the r parameter)

that match varies with distance, this result can be used to iteratively estimate the distance

a particular guess is from the actual location.

The number of matches with respect to geographic distance was also compared while

keeping r constant. Like the previous test, a random location was generated, encoded, and

stored in a negative database. Test locations were generated to query against the negative

database. The random test locations were generated so that each successive location was

farther from the original record stored in the negative database (measured by the number

of differing quadrant level values). This test was performed 100 times.

As Figure 4.27 illustrates, the number of matches is relatively high when the locations

are close (differing only in the first and second quadrant levels). However, the number of

matches drops quickly as the number of differing quadrant levels increases. This occurs

for all values of r tested. This indicates that geographic distance plays a much larger role

than r in determining the number of matches. This is in accordance with the original goals

of the application since two far locations should not register a match.

Ease of Reconstructing the Original Data

Besides storing location data accurately, the difficulty of reconstructing the original loca-

tion stored in the negative database was assessed. The reversal difficulty has two compo-

nents. The first is by storing the location in a negative database. Although the singleton

algorithm was not optimized to maximize reversal difficulty, the negative database ensures

that any successful reversal generates only an approximate stored location (because of

superfluous strings). The second component is the randomization step described earlier,

which prevents the adversary from obtaining the original location.

Although a precise characterization of reversal difficulty in this setting is left for fu-

ture work, the effectiveness of these two components are quantified. First, the negative

100

Chapter 4. Applications of the Hierarchical Group Model

42 44 46 48 50 52 54 56 58 61

Hamming Distance

0

2

4

6

8

10

12

14

16

18

P
e
rc

e
n

ta
g

e
 M

a
tc

h
e
d

r = 0.5

41 43 45 47 49 51 53 55 57 59

Hamming Distance

0

2

4

6

8

10

12

14

16

18

P
e
rc

e
n

ta
g

e
 M

a
tc

h
e
d

r = 1.0

38 40 42 44 46 48 50 52 54 56 58 60 62 66

Hamming Distance

0

2

4

6

8

10

12

14

16

18

P
e
rc

e
n

ta
g

e
 M

a
tc

h
e
d

r = 2.0

Figure 4.29: Frequency of solutions discovered by zChaff and their Hamming Distance
from the original location. Most matches occur between a Hamming Distance of 45 and
55 indicating that the obtained solutions are not much better than random guessing.

database is reversed using zChaff, an efficient 3SAT solver [8, 73]. zChaff, although

originally designed for 3SAT, can operate over negative databases by first converting the

negative database representation to a 3SAT problem. Reversing the negative database cor-

responds to solving a particular 3SAT instance.

For this test a copy of the original location was retained before the randomization

step. After reversing the negative database, the randomized location stored in the negative

database was compared to the original location (measured by Hamming Distance). This

101

Chapter 4. Applications of the Hierarchical Group Model

Quad 1 Quad 2 Quad 3 Quad 4
0.00

0.10

0.20

0.30

0.40

0.50

G
u

e
s
s
e
d

 C
o
rr

e
c
tl

y

Least Strategy
Greatest Strategy
Random Strategy

Figure 4.30: Number of correct guesses for three strategies that attempt to obtain the
original location. Neither of the Hamming Distance strategies (least and greater) do better
than the random strategy.

was done for 100 trials and across multiple values of r (Figure 4.29). For all values of r,

locations estimated by zChaff had Hamming Distances between 35 and 60 with a mode

near 45 to 55. This corresponds to a Hamming Distance of approximately half the number

of total bits in the encoded location, indicating the estimated solution has a sufficient

number of randomized bits.

Three different algorithms were used to evaluate the possibility of undoing the ran-

domization step. The algorithms relied on the observation that for any given quadrant

level, the encoding (before the randomization step) for each of the four quadrants is deter-

ministic and known. The first algorithm, then, compared the randomized encoding for a

given quadrant level with each of the four possible non-randomized encodings. The one

closest to the randomized encoding (measured by Hamming Distance) was chosen as the

quadrant. The second algorithm employed the same strategy, but instead chose the quad-

rant that had the highest Hamming Distance with the randomized quadrant level. Finally,

a strategy that randomly selected one of the four quadrants was employed as a null model.

All three strategies were run 100 times. As Figure 4.30 illustrates, the randomization

method is robust to both Hamming Distance strategies. Since there are four quadrants

in each level, random guessing only guessed correctly 25% of the time. Neither strategy

102

Chapter 4. Applications of the Hierarchical Group Model

performed better than random guessing for most quadrant levels.

4.4.3 Discussion

Location-awareness is becoming an important feature in many social and safety applica-

tions. The features that make these applications useful, however, also increase the possibil-

ity of privacy violations. This section discussed a technique to encode and store locations

such that the location data is hidden but can still be queried. Using a unique quadrant en-

coding scheme and a negative database, users can query for approximate locations without

revealing all the locations a person has visited.

Both of the anonymization techniques discussed in this chapter employ local compu-

tation, hierarchical communication, and collective computation. The hierarchical group

model was successfully applied since these anonymization techniques do not require any

complicated key-exchange protocol. For the location anonymity technique, all sensor

nodes were locally tasked with a GPS sampling function. This sampling function peri-

odically collects, encodes, and stores a GPS value. In order to query for a location, the

basestation issues a push with the relevant command to the sensor nodes.

Since the anonymization algorithms conform to the hierarchical group model, these

algorithms can be easily integrated into other applications that employ the hierarchical

group model (either via Kensho or Tables). Due to the simplicity of tasking functions in

Kensho, existing applications can locally task these algorithms so that different logical

groups can be made to share data anonymously. This demonstrates the flexibility of the

hierarchical group model in accommodating sensor network oriented privacy algorithms.

103

Chapter 5

Related Work and Conclusion

The hierarchical group model is a way to abstract tasking and communication in sensor

networks to simplify the construction of user applications. This simplification, however,

does not unduly restrict the complexity of user applications. Using Kensho and Tables,

users can define complex applications and algorithms. Additionally, by appropriately

abstracting the process of tasking, the hierarchical group model lends itself to different

implementation strategies. However, like all computational models, there are certain be-

haviors that are difficult to specify and implement. For the hierarchical group model and

associated implementations of the model, computation that requires complex peer-to-peer

coordination amongst the sensor nodes remains difficult to implement. However, it is im-

portant to note that such computation is not common for sensor networks. For applications

that do require such coordination, other programming models must be used.

Currently there are two different instantiations of the hierarchical group model: Ken-

sho and Tables. Both feature local and collective tasking, hierarchical communication,

and logical groups. However, Kensho is a C-based system that uses threads as the under-

lying computational model. Tables, on the other hand, provides a data-driven functional

model that interprets short functions whenever dependent data is created or changed. Al-

104

Chapter 5. Related Work and Conclusion

though the systems are fairly different in their actual usage, the types of applications users

can create on these systems are approximately the same since they share an underlying

computational model.

For users not comfortable with a thread-based or data-driven approach, other under-

lying computational models, such as event-driven systems like TinyOS, can be adapted

for use in the hierarchical group model. In that implementation, local tasks would consist

of a set of event handlers that execute on the sensor node. Collective tasks, meanwhile,

can be implemented as event-handlers that execute on more powerful basestations. These

collective event-handlers would execute upon receiving messages from the local handlers.

Communication between these tasks would obey the same hierarchical push / publish strat-

egy. Finally, logical groups can be implemented using a strategy similar to the Tables im-

plementation. By registering the admission function to the dependent data, the function

can be activated as an event handler. The hierarchical group model affords many different

underlying strategies. The choice between a thread-based or event-based implementation

is largely determined by programming preferences. Fundamentally, these strategies com-

bined with the hierarchical group model can implement the similar applications.

5.1 Related Work

The material presented in this dissertation is related to previous work in computational

and communication models. Several of these models have already been examined in this

dissertation. Additional models used in other computational settings are examined in this

section. Additional programming environments for sensor networks that include elements

of different models and that focus on specific applications are also examined. Finally, dif-

ferent approaches to privacy and security are compared to the negative survey and negative

database for their applicability in sensor network applications.

105

Chapter 5. Related Work and Conclusion

5.1.1 Computational and Communication Models

Many of the computational models explored in sensor networks have an origin in high

performance and distributed computing. Typically these computational environments have

very different goals from sensor networks. High performance applications are often used

to simulate some computationally demanding process (atomic reactions, biological pro-

cesses, etc). Consequently early work on computational models focused on maximizing

performance. One of the most popular communication models is the Message Passing In-

terface (MPI) [45]. MPI, like the hierarchical group model, provides support for a variety

of different communication patterns, including collectives and point-to-point communica-

tion. This communication takes place within MPI groups. However, unlike the hierarchi-

cal group model, MPI groups are static and describe processes instead of nodes. In that

way, MPI is similar to other sensor network messaging models such as the TinyOS active

message model.

The recent trend towards massively multi-core architectures, has led to models that also

attempt to simplify programming in large-scale systems. These models, like the sensor

network models, also abstract communication patterns [28] and provide a whole-system

view [47]. This problem is made more difficult since, unlike sensor networks, communi-

cation and computation patterns are difficult to generalize across most high performance

applications [24].

Applications with regular communication patterns, however, can take advantage of

MapReduce [31], a restrictive programming model developed for large-scale data pro-

cessing at Google 1. In MapReduce, user defined map functions operate over key-value

pairs and generate intermediate data pairs. The system automatically partitions the data

and maps computation over a set of physical compute nodes. Similarly, user defined re-

duce functions operate over a list of data and produce a shorter list of data (often a single

1www.google.com

106

Chapter 5. Related Work and Conclusion

value). This programming model is similar to the hierarchical group model in that func-

tions are defined without explicitly specifying where these functions execute. However,

the semantics of local and collective tasks differ from the map and reduce operations. Re-

duce functions, however, may be adapted to serve as intermediate processing functions in

the hierarchical group model.

5.1.2 Programming Interfaces

As previously discussed, most programming models fit into one of three classes (message-

based, restrictive, and global). However, models that target specific applications can in-

clude different elements of these three classes. For example, EnviroTrack [10] uses mech-

anisms similar to logical groups. EnviroTrack, however, is designed primarily for mobile

object tracking applications. As such, the tasking and communication abstractions are not

as general as those provided by the hierarchical group model.

Another system, SINA [90], automatically clusters sensor nodes based on power level

and geographic proximity. However, clusters that rely on other attributes, such as shared

sensor values, can only be defined implicitly. Römer et al. have explored frameworks for

role assignment in sensor networks [87]. Although role assignment and tasking are related

subjects, the hierarchical group model operates at a lower level in the software stack and

provides complementary services.

Finally agent-based systems, such as Agilla [43, 42], offer advantages over existing

message-based models by substituting messages containing data with messages contain-

ing computation (i.e. agents). However, these abstractions replace the underlying compu-

tational abstraction (events, threads, and functions) without abstracting common compu-

tational and communication structures prevalent in sensor network applications. As such

the hierarchical group model can provide additional support to these systems to simplify

tasking and programming.

107

Chapter 5. Related Work and Conclusion

5.1.3 Debugging and Management Interfaces

Exploratory work has been performed on debugging and management interfaces for sensor

networks. These interfaces are also used to collect and view data from the sensor network.

Unlike Kensho and Tables, these interfaces often lack an underlying programming model.

As a consequence, these systems provide only rudimentary programming capabilities. For

example, MoteView [98] is a graphical interface in which users can only manipulate exist-

ing application parameters. Other similar web based tools include Microsoft SensorWeb

[76] and SensorBase [20]. Besides data management, these tools also provide online col-

laboration features.

Marionette [103] is a more advanced debugging system that provides interactive de-

bugging support for TinyOS programs. Users are able to probe for data values and invoke

functions on the sensor node. This system can also be used to prototype applications.

Marionette transports debugging values from the sensor node to the basestation, which in

turn executes the code that normally runs on the sensor node. Although useful for debug-

ging TinyOS programs, Marionette does not fundamentally alter the TinyOS programming

model. Other systems that target TinyOS include Viptos [22] and TOSDev [72]. These

systems act primarily as a development environment for NesC.

Finally, recent work by the Arch Rock Corporation includes tools for incorporating

sensor networks into existing network infrastructures [30]. Their software allows users

to manage and debug a sensor network using existing network analysis tools, such as

ping and traceroute, using an intermediate TCP/IP proxy. While their work emphasizes

integrating sensor networks into existing network namespaces, their work does not include

new programming methods. Instead users are expected to program with existing TinyOS-

based tools.

108

Chapter 5. Related Work and Conclusion

5.1.4 Privacy

An important element in urban sensor network applications is the need to protect confi-

dential data. As previously discussed, both the negative survey and the negative database

provide protection mechanisms within the constraints of the hierarchical group model.

In this section, additional privacy-preserving algorithms are described and analyzed with

respect to the hierarchical group model.

Data privacy is usually achieved with cryptographic techniques [94, 91]. Recent work

shows that it is possible to use encryption techniques on existing sensor platforms [100,

62]. However, the computational costs are still relatively large. Also many of the proposals

rely on key distribution [36]. Complex key distribution protocols often do not share the

same communication patterns as the rest of the sensor network application. This makes

integration into existing applications difficult.

Secure multiparty computation algorithms allow nodes to compute any function of

many variables without each node knowing the inputs of the other nodes [89]. For instance,

secure multiparty algorithms can be used to calculate the average salary of a group of

people without the individuals learning the actual salary of each person. These algorithms,

however, require cryptographic methods and often require synchronized communication.

In general, cryptographic systems do not integrate well into existing sensor network

programming models, largely due to the complexity of key distribution protocols. Al-

though most applications have a regular hierarchical communication structure, many key

distribution protocols require complex local communication. Consequently, developing

new protocols alongside applications may be difficult. In contrast, algorithms that share

the same communication structure as applications, such as the negative survey and the

location anonymity algorithm, are much easier to integrate into application frameworks.

There has also been recent work on generic privacy frameworks. AnonySense [29]

is designed for use with personal devices (such as phones) within urban areas. The sys-

109

Chapter 5. Related Work and Conclusion

tem includes a tasking language that specifies the type of data to be collected from these

devices, and anonymizes “reports” using a MIX network [21]. However, their work is

concerned with anonymizing the source of the data and does not address the data itself.

Consequently, it is unclear how their tasking language can be used within the context of

other programming environments.

Recent work on participatory, urban sensing addresses the need for application specific

privacy concerns [85, 95]. In this scheme, specified servers would act to sanitize sensitive

data in application specific ways. For example, the resolution of location data could be

reduced depending on the application and the user. These schemes, however, do not exploit

the ability for sensor nodes to protect confidential data.

5.2 Future Work

Future work in this area includes possible extensions to the hierarchical group model and

new implementation strategies for collective tasks. Currently in Kensho and Tables col-

lective tasks execute on the basestation, while local tasks execute on the sensor nodes.

This is true regardless of the size and topology of the sensor network. Although this is

a straightforward implementation of collective tasks, the hierarchical group model does

not preclude alternative implementations. There are several possible implementations to

explore in the future. For example, new implementations can focus on reducing collective

task latency or the total number of message transmissions. This can be accomplished by

executing the collective tasks inside the sensor network. There several possible strategies

to accomplish this, some of which are enumerated here.

1. Local leaders: In this scheme, sensor nodes that detect an event would initially

contact the basestation with routing information. This routing information would

then be used to select a leader that is able to intercept all publish messages within

110

Chapter 5. Related Work and Conclusion

the existing routing scheme. Ideally, the selected leader would also be closer to the

phenomenon (in terms of hop count) than the basestation. This leader would stop

forwarding the publish messages and perform the collective computation. Since the

leader is closer to the event, the number of total message transmissions would be

lower. However, this scheme assumes that the underlying routing structure is stable

and an appropriate sensor node can be found.

2. Pre-selected leaders: In this scheme, a number of sensor nodes are selected during

the initialization stage to serve as leaders. A sensor node, upon detecting an event,

will transmit a publish message towards the basestation. If there is a pre-selected

leader along the routing path, the leader will intercept the message and execute the

collective task. In the case that a leader is not found along the routing path, the

basestation will eventually receive the message and act as a default leader. This

particular scheme avoids the problem of having to dynamically elect a leader. As

long as there are enough pre-selected leaders, most events will be covered by a

nearby leader. However, it is possible that two sensor nodes that are geographically

nearby may contact two different leaders due to the underlying routing structure.

3. Multiple routing: In the other two schemes, the underlying routing structure was

used to determine the leader of a logical group. In this scheme, sensor nodes be-

longing to a logical group would elect a new local leader. This is accomplished by

first listening for appropriate leader beacons, and then starting an election in the case

that a beacon is not heard. The elected leader, in turn, will create a new routing tree

for that particular logical group. This scheme ensures that even if the underlying

routing structure changes, most publish and push messages will reach the correct

destination. However, this scheme involves a relatively complex election and group

construction phase that increases the initial latency and transmission count.

These in-network leader schemes can also integrate heterogeneous sensor nodes. Lead-

ers that are more computationally powerful or have a wider communication range may

111

Chapter 5. Related Work and Conclusion

serve as better leaders. Besides lowering latency and reducing the number of transmis-

sions, alternative implementations can also focus on fault-tolerance. For example, instead

of having a single leader (either the basestation or sensor node), the implementation may

use multiple sensor nodes to share collective tasks. By scheduling certain collective tasks

to certain sensor nodes, the overall lifetime of each leader can be extended (since each

leader is performing fewer operations). Similarly, if a few of the leaders fail, only a subset

of the collective tasks will fail. Other multiple leader strategies include only having a sin-

gle leader at any one time but scheduling these duties across multiple sensor nodes. Such

a scheme would ensure that collective operations continue to function even as potential

leaders fail. These multi-leader schemes, however, assume that there are either several

collective tasks that need to be scheduled or that a basestation is inaccessible (since per-

forming the computation on the basestation is most likely the safest strategy).

Finally, new implementations can also focus on data redundancy. Sensor nodes, upon

collecting data, would selectively distribute this data over a subset of the sensor network.

This ensures that if a collective task requests data from a malfunctioning sensor node, the

data can be found in other locations. Even when the sensor nodes do not malfunction,

preemptively distributing data may result in lower collective task latency. If a sensor node

can predict how often some data will be requested, the data can be pushed closer to the

root of the routing tree to ensure that the collective task receives the data with fewer hops.

Besides typical sensor network environments, the hierarchical group model can also

be adapted for other computational settings. For example, both passive and active ra-

dio frequency identification devices (RFID) can be used in many sensing environments.

However, these devices are more constrained than typical sensor platforms with very little

memory and computational capability. As a consequence, even storing and executing local

tasks may exceed the abilities of such hardware. In that case, the hierarchical group imple-

mentation would need to move local tasks to more capable machines such as a basestation.

The RFID devices would simply transmit the data they sense. So long as applications em-

112

Chapter 5. Related Work and Conclusion

ploy a standard API, such as Kensho, the application would be oblivious to where the

actual computation took place.

Other environments, such as mobile personal devices (phones or ultra-portable com-

puters) have more memory, computational capability, and communication range than typi-

cal sensor platforms. These devices may also operate over a larger area and use the internet

as the default communications network. The hierarchical group model can also be adapted

for these devices. Phones can be equipped with local tasks that communicate with collec-

tive tasks via the internet These collective tasks, in turn, would execute on various internet

servers. Logical groups would be used to dictate when and where these devices operate.

Once application developers construct a sensor network application using the hierar-

chical group model, the developer must still decide which collective task implementation

to use. This decision will depend on the characteristics of the environment along with ap-

plication requirements. For example, applications using computationally limited devices

may choose to execute all tasks (local and collective) on the basestation. Other applica-

tions may only have a limited bandwidth connecting the basestation to the sensor network.

For these applications both collective and local tasks should execute on the sensor net-

work to minimize communication. An important topic to explore in the future is whether

these application requirements and environmental constraints can be used to automatically

select the appropriate hierarchical group implementation.

The environmental model used to describe environmental constraints should include a

description of the major components (such as the sensor nodes and basestation). These

components include memory, computational capability, and storage capabilities. The

model should also include the availability of links between major components and de-

scribe the bandwidth, latency, and costs associated with these links. The application re-

quirements should include quality-of-service requirements, cost and data storage require-

ments, and expected monetary budgets. Given these requirements, a mapping system can

take advantage of the hierarchical group model to decide where to execute collective and

113

Chapter 5. Related Work and Conclusion

local tasks. For example, if the application developer specifies that all the data collected

by the sensor network should be permanently stored, the system should find a hardware

component that is able to store all the data (perhaps by transmitting all the data back to the

basestation).

Although the hierarchical group model accurately characterizes many sensor network

applications, the model does not consider the statistical confidence of collected data. For

example, when the user collects photometer data, the accuracy and confidence of that data

is not returned. For collective tasks that benefit from such information (such as object

tracking), the user must implement these functions manually. Integrating accuracy and

confidence into the data communication mechanisms may benefit many applications. By

combining these mechanisms with user supplied confidence requirements, the system may

also be able to operate more efficiently (perhaps by limiting the logical group size). How-

ever, these mechanisms must be implemented carefully, since accuracy and confidence are

often application specific.

5.3 Conclusion

This dissertation introduced the hierarchical group model. In this model, computation is

tasked to logical groups and split into collective and local components that communicate

hierarchically. Local computation is primarily used for data production and publishes

data to the collective computation. Similarly, collective computation is primarily used

for data aggregation and pushes results back to the local computation. These abstractions

decouple computation from hardware and can characterize and aid in the construction of

sensor network software with minimal overhead.

To validate the hierarchical group model, this dissertation introduced two implemen-

tations of the model. Kensho is a C-based implementation of the hierarchical group

114

Chapter 5. Related Work and Conclusion

model that can be used for a variety of user applications. Another implementation, Ta-

bles, presents a spreadsheet-inspired view of the sensor network that takes advantage of

hierarchical groups for both computation and communication. Users are able to specify

both local and collective functions that execute on the sensor network via the spreadsheet

interface.

This dissertation also introduced several applications that use the hierarchical group

model to organize computation and communication. One application, FUSN, provides a

set of methods for constructing filesystem-based interfaces for sensor networks. Another

set of applications included novel privacy algorithms that use negative representations of

data to anonymize data collection and preserve location anonymity.

Future sensor network applications will move beyond static, homogeneous deploy-

ments to include dynamic, heterogeneous elements. These sensor networks will also gain

new users, including casual users who will expect intuitive interfaces to interact with sen-

sor networks. The hierarchical group model and the associated implementations of the

model address these challenges and bring sensor networks closer to the realm of practical

scientific tools.

115

References

[1] Citysense: http://www.sensenetworks.com/citysense.php.

[2] Collection tree protocol: http://www.tinyos.net/tinyos-2.x/doc/txt/tep123.txt.

[3] Filesystem in userspace: http://fuse.sourceforge.net/.

[4] GGA: http://aprs.gids.nl/nmea.

[5] http://campaignr.com/.

[6] Jessica’s law: http://en.wikipedia.org/wiki/jessica’s_law.

[7] Mologogo: http://www.mologogo.com.

[8] Princeton: zchaff. http://ee.princeton.edu/ËIJchaff/zchaff.php.

[9] Weather underground: http://www.wunderground.com.

[10] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George, L. Gu,
T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood.
Envirotrack: Towards an environmental computing paradigm for distributed sensor
networks. In International Conference on Distributed Computing Systems (ICDCS),
2004.

[11] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, and R. Han.
Mantis: System support for multimodal networks of in-situ sensors. In Workshop
on Wireless Sensor Networks and Applications (WSNA), 2003.

[12] R. Agrawal and R. Srikant. Privacy-preserving data mining. In ACM SIGMOD
Conference on Management of Data, 2000.

116

References

[13] K. Ara, N. Kanehira, D. O. Olguin, B. N. Waber, T. Kim, A. Mohan, P. Gloor,
R. Laubacher, D. Oster, A. S. Pentland, and K. Yano. Sensible organizations:
Changing our businesses and work styles through sensor data. Journal of Infor-
mation Processing (Information Processing Society of Japan), 16(April), 2008.

[14] T. Berger-Wolf, S. Sheikh, B. DasGupta, M. Ashley, I. Caballero, W. Chaovalit-
wongse, and S. L. Putrevu. Reconstructing sibling relationships in wild populations.
Bioinformatics, 23(13):49–56, 2007.

[15] S. M. Brennan, A. M. Mielke, and D. C. Torney. Radioactive source detection by
sensor networks. IEEE Transactions on Nuclear Science, 52:813–819, 2005.

[16] S. M. Brennan, A. M. Mielke, D. C. Torney, and A. Maccabe. Radiation detection
with distributed sensor networks. IEEE Computer, 34:57–59, 2004.

[17] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. B.
Srivastava. Participatory sensing. In Workshop on World-Sensor-Web (SenSys),
2006.

[18] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat moni-
toring: Application driver for wireless communications technology. In ACM SIG-
COMM Workshop on Data Communications in Latin America and the Caribbean,
2001.

[19] H. Chan, A. Perrig, and D. Song. Secure hierarchical in-network aggregation in
sensor networks. In International Conference on Computer and Communications
Security (CCS), 2006.

[20] K. Chang, N. Yau, M. Hansen, and D. Estrin. Sensorbase.org - a centralized repos-
itory to slog sensor network data. In Euro-American Workshop on Middleware for
Sensor Networks (EAWMS - DCOSS), 2006.

[21] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

[22] E. Cheong, E. A. Lee, and Y. Zhao. Viptos: a graphical development and simulation
environment for tinyos-based wireless sensor networks. In ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2005.

[23] S. Y. Cheung, S. C. Ergen, and P. Varaiya. Traffic surveillance with wireless mag-
netic sensors. In 12th World Congress on Intelligent Transport Systems, 2005.

[24] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov. Characteristics of work-
loads used in high performance and technical computing. In International Confer-
ence on Supercomputing (ICS), 2007.

117

References

[25] D. Chu, K. Lin, A. Linares, G. Nguyen, and J. Hellerstein. Sdlib: A sensor network
data and communications library for rapid and robust application development. In
Information Processing in Sensor Networks (IPSN), 2006.

[26] D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis, S. Shenker, and I. Stoica.
The design and implementation of a declarative sensor network system. In ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2007.

[27] M. Colagrosso, W. Simmons, and M. Graham. Demo abstract: Simple sensor syn-
dication. In ACM Conference on Embedded Networked Sensor Systems (SenSys),
2006.

[28] UPC Consortium. UPC language specifications, v1.2, lbnl-59208. Technical report,
Lawrence Berkeley National Lab, 2005.

[29] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and N. Triandopoulos.
Anonysense: An architecture for privacy-aware urban sensing. In International
Conference on Mobile Systems, Applications, and Services (MobiSys), 2008.

[30] A. R. Corporation. A sensor network architecture for the ip enterprise. In Informa-
tion Processing in Sensor Networks (IPSN), 2007.

[31] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
2004.

[32] P. P. Dey, S. Chandra, and S. Gangopadhaya. Speed distribution curves under mixed
traffic conditions. Journal of Transportation Engineering, 132, 2006.

[33] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time dynamic linking for
reprogramming wireless sensor networks. In ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), 2006.

[34] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible operating
system for tiny networked sensors. In IEEE International Conference on Local
Computer Networks (LCN), 2004.

[35] S. C. Ergen, S. Y. Cheung, P. Varaiya, R. K. ler, and A. Haoui. Demonstration:
Wireless sensor networks for traffic monitoring. In IPSN, 2005.

[36] L. Eschenauer and V. D. Gligor. A key-management scheme for distributed sensor
networks. In ACM Conference on Computer and Communications Security (CCS),
2002.

[37] F. Esponda. Negative surveys. ArXiv Mathematics e-prints, Aug 2006.

118

References

[38] F. Esponda. Hiding a needle in a haystack using negative databases. In Information
Hiding, 2008.

[39] F. Esponda, E. S. Ackley, P. Helman, H. Jia, and S. Forrest. Protecting data privacy
through hard-to-reverse negative databases. International Journal of Information
Security, 6(6), 2007.

[40] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges:
scalable coordination in sensor networks. In International Conference on Mobile
Computing and Networking (MobiCom), 1999.

[41] R. Finkel and J. Bentley. Quad trees: A data structure for retrieval on composite
keys. Acta Informatica, 4(1):1–9, 1974.

[42] C.-L. Fok, G.-C. Roman, and C. Lu. Mobile agent middleware for sensor networks:
An application case study. In Information Processing in Sensor Networks (IPSN),
2005.

[43] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and flexible deployment
of adaptive wireless sensor network applications. In International Conference on
Distributed Computing Systems (ICDCS), 2005.

[44] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis. Four-bit wireless link estima-
tion. In Hot Topics in Networks (HotNets), 2007.

[45] M. P. I. Forum. Mpi: A message-passing interface standard. International Journal
of High Performance Computing Applications, 8(3):165–414, 1994.

[46] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesc
language: A holistic approach to networked embedded systems. In Programming
Language Design and Implementation (PLDI), 2003.

[47] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam.
PVM: Parallel Virtual Machine A Users’ Guide and Tutorial for Network Parallel
Computing. MIT Press, Cambridge, Massachusetts, 1994.

[48] L. Girod, M. Lukac, V. Trifa, and D. Estrin. The design and implementation of
a self-calibrating distributed acoustic sensing platform. In ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2006.

[49] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira, D. Estrin,
R. Govindan, and E. Kohler. The tenet architecture for tiered sensor networks.
In ACM Conference on Embedded Networked Sensor Systems (SenSys), 2006.

119

References

[50] R. Govindan. The quest for a general-purpose sensing system. In Keynote: Work-
shop on Embedded Networked Sensors (EmNets), 2007.

[51] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor
networks using kairos. In International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2005.

[52] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. Sos: A dynamic
operating system for sensor nodes. In International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2005.

[53] J. Hill and D. Culler. A wireless embedded sensor architecture for system-level
optimization. Technical report, University of California - Berkeley, 2002.

[54] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. Sys-
tem Architecture Directions for Networked Sensors. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2000.

[55] J. Horey, P. Bridges, A. Maccabe, and A. Mielke. Work-in-progress: The design
of a spreadsheet interface. In Information Processing in Sensor Networks (IPSN),
2005.

[56] J. Horey, M. Groat, S. Forrest, and F. Esponda. Anonymous data collection in
sensor networks. In International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services (Mobiquitous), 2007.

[57] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Bal-
akrishnan, and S. Maadden. Cartel: A distributed mobile sensor computing system.
In ACM Conference on Embedded Networked Sensor Systems (SenSys), 2006.

[58] L. B. Huston and P. Honeyman. Disconnected operation for afs. In Mobile &
Location-Independent Computing Symposium (MLCS), 1993.

[59] H. Jia. What Makes NP-Complete Problems Hard? PhD thesis, University of New
Mexico, 2007.

[60] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein. Energy-
Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experience
with ZebraNet. In Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), 2002.

[61] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: mobile net-
working for s̈mart dust.̈ In International Conference on Mobile Computing and
Networking (MobiCom), 1999.

120

References

[62] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer security architecture
for wireless sensor networks. In ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2004.

[63] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis, S. Shenker, and
I. Stoica. Flush: a reliable bulk transport protocol for multihop wireless networks.
In ACM Conference on Embedded Networked Sensor Systems (SenSys), 2007.

[64] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon.
Health monitoring of civil infrastructures using wireless sensor networks. In Infor-
mation Processing in Sensor Networks (IPSN), 2007.

[65] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file system.
ACM Transactions on Computer Systems, 10(1):3–25, 1992.

[66] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi. Mobeyes:
Smart mobs for urban monitoring with a vehicular sensor network. In IEEE Wireless
Communications, 2006.

[67] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for Sensor Networks. In
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS), 2002.

[68] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an acqui-
sitional query processing system for sensor networks. ACM Transaction Database
Systems, pages 122–173, 2005.

[69] G. Mainland and M. Welsh. Programming sensor networks using abstract regions.
In Symposium on Networked Systems Design and Implementation (NSDI), 2004.

[70] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless
Sensor Networks for Habitat Monitoring. In Workshop on Wireless Sensor Networks
and Applications (WSNA), 2002.

[71] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton. Codeblue: An ad hoc sensor
network infrastructure for emergency medical care. In International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2004.

[72] W. P. McCartney and N. Sridhar. Tosdev: a rapid development environment for
tinyos. In ACM Conference on Embedded Networked Sensor Systems (SenSys),
2006.

[73] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an efficient sat solver. In Design Automation Conference (DAC), 2001.

121

References

[74] M. Mun, D. Estrin, J. Burke, and M. Hansen. Parsimonious mobility classification
using gsm and wifi traces. In Workshop on Embedded Networked Sensors (HotEm-
Nets), 2008.

[75] R. Murty, G. Mainland, I. Rose, A. R. Chowdhury, A. Gosain, J. Bers, and
M. Welsh. Citysense: A vision for an urban-scale wireless networking testbed.
In IEEE International Conference on Technologies for Homeland Security, 2008.

[76] S. Nath, J. Liu, and F. Zhao. Sensormap for wide-area sensor webs. IEEE Computer
Magazine, 40(7):90–93, 2007.

[77] R. Newton, G. Morrisett, and M. Welsh. The regiment macroprogramming system.
In Information Processing in Sensor Networks (IPSN), 2007.

[78] Y. Ni, U. Kremer, and L. Iftode. Spatial views: Space-aware programming for
networks of embedded systems. In Workshop on Languages and Compilers for
Parallel Computing, 2003.

[79] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. Spins: Security pro-
tocols for sensor networks. In International Conference on Mobile Computing and
Networking (MobiCom), 2001.

[80] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and
P. Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–254, Sum-
mer 1995.

[81] B. Pisupati and G. Brown. Poster: File system framework for organizing sensor
networks. In Symposium on Applied Computing (SAC), 2006.

[82] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support
system. In ACM International Conference on Mobile Computing and Networking
(MobiCom), 2000.

[83] B. Przydatek, D. Song, and A. Perrig. Sia: Secure information aggregation in sensor
networks. In ACM Conference on Embedded Networked Sensor Systems (SenSys),
2003.

[84] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin, and M. Srivas-
tava. Cyclops: In situ image sensing and interpretation in wireless sensor networks.
In ACM Conference on Embedded Networked Sensor Systems (SenSys), 2005.

[85] S. Reddy, G. Chen, B. Fulkerson, S. J. Kim, U. Park, N. Yau, J. Cho, M. Hansen,
and J. Heidemann. Sensor-internet share and search: Enabling collaboration of
citizen scientists. In Workshop for Data Sharing and Interoperability - IPSN, 2007.

122

References

[86] S. Reddy, A. Parker, J. Hymanv, J. Burke, M. Hansen, and D. Estrin. Image brows-
ing, processing, and clustering for participatory sensing: Lessons from a dietsense
prototype. In Workshop on Embedded Networked Sensor (EmNets), 2007.

[87] K. Römer, C. Frank, P. J. Marrón, and C. Becker. Generic role assignment for
wireless sensor networks. In ACM SIGOPS European Workshop, 2004.

[88] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C.
Steere. Coda: A highly available file system for a distributed workstation environ-
ment. IEEE Transactions on Computers, 39(4):447–459, April 1990.

[89] B. Schneier. Applied Cryptography Second Edition. John Wiley and Sons, Inc.,
1996.

[90] P.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor Information Networking
Architecture and Applications. IEEE Personel Communication Magazine, August
2001.

[91] E. Shi, J. Bethencourt, H. Chan, D. Song, and A. Perrig. Multi-dimensional range
query over encrypted data. In IEEE Security and Privacy Symposium (SP), 2007.

[92] E. Shi and A. Perrig. Designing secure sensor networks. IEEE Wireless Communi-
cations, 2004.

[93] S. Y. C. Sinem Coleri and P. Varaiya. Sensor networks for monitoring traffic. In
Allerton Conference on Communication, Control and Computing, 2004.

[94] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on en-
crypted data. In ACM on Computer and Communications Security (CCS), 2000.

[95] M. Srivastava, M. Hansen, J. Burke, A. Parker, S. Reddy, T. Schmid, K. Chang,
G. Saurabh, M. Allman, V. Paxson, and D. Estrin. Network system challenges
in selective sharing and verification for personal, social, and urban-scale sensing
applications. In Workshop on Hot Topics in Networks (HotNets), 2006.

[96] S. Tilak, B. Pisupati, K. Chiu, G. Brown, and N. Abu-Ghazaleh. A file system
abstraction for sense and respond systems. In Workshop on End-to-End, Sense-
and-respond Systems, Applications, and Services (EESR), 2005.

[97] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Daw-
son, P. Buonadonna, D. Gay, and W. Hong. A macroscope in the redwoods. In ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2005.

[98] M. Turon. Mote-view: A sensor network monitoring and management tool. In
Workshop on Embedded Networked Sensors (EmNets), 2005.

123

References

[99] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:
A mechanism for integrated communication and computation. ACM SIGARCH
Compututer Architecture News, 20(2):256–266, 1992.

[100] H. Wang, B. Sheng, and Q. Li. Elliptic curve cryptography-based access control in
sensor networks. International Journal of Security and Networks.

[101] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh. Monitoring vol-
canic eruptions with a wireless sensor network. In European Workshop on Wireless
Sensor Networks, 2005.

[102] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a neighborhood abstrac-
tion for sensor networks. In International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys), 2004.

[103] K. Whitehouse, G. Tolle, J. taneja, C. Sharp, S. Kim, J. Jeong, J. Hui, P. Dutta,
and D. Culler. Marionette: Using rpc for interactive development and debugging
of wireless embedded networks. In Information Processing in Sensor Networks
(IPSN), 2006.

[104] A. Woo, S. Seth, T. Olson, J. Liu, and F. Zhao. A spreadsheet approach to pro-
gramming and managing sensor networks. In Information Processing in Sensor
Networks (IPSN), 2006.

[105] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable
multihop routing in sensor networks. In ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

[106] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query Processing in
Sensor Networks. In ACM SIGMOD Conference, 2002.

[107] S. Zhang, J. Ford, and F. Makedon. Deriving private information from randomly
perturbed ratings. In Siam Conference on Data Mining, 2006.

124

	University of New Mexico
	UNM Digital Repository
	12-1-2008

	A hierarchical group model for programming sensor networks
	James Horey
	Recommended Citation

	tmp.1469198166.pdf.M_zdN

