2,184 research outputs found

    Challenges in Developing a Collaborative Robotic Assistant for Automotive Assembly Lines

    Get PDF
    Industrial robots are on the verge of emerging from their cages, and entering the final assembly to work along side humans. Towards this we are developing a collaborative robot capable of assisting humans in the final automotive assembly. Several algorithmic as well as design challenges exist when the robots enter the unpredictable, human-centric and time-critical environment of final assembly. In this work, we briefly discuss a few of these challenges along with developed solutions and proposed methodologies, and their implications for improving human-robot collaboration

    Occupational health and safety issues in human-robot collaboration: State of the art and open challenges

    Get PDF
    Human-Robot Collaboration (HRC) refers to the interaction of workers and robots in a shared workspace. Owing to the integration of the industrial automation strengths with the inimitable cognitive capabilities of humans, HRC is paramount to move towards advanced and sustainable production systems. Although the overall safety of collaborative robotics has increased over time, further research efforts are needed to allow humans to operate alongside robots, with awareness and trust. Numerous safety concerns are open, and either new or enhanced technical, procedural and organizational measures have to be investigated to design and implement inherently safe and ergonomic automation solutions, aligning the systems performance and the human safety. Therefore, a bibliometric analysis and a literature review are carried out in the present paper to provide a comprehensive overview of Occupational Health and Safety (OHS) issues in HRC. As a result, the most researched topics and application areas, and the possible future lines of research are identified. Reviewed articles stress the central role played by humans during collaboration, underlining the need to integrate the human factor in the hazard analysis and risk assessment. Human-centered design and cognitive engineering principles also require further investigations to increase the worker acceptance and trust during collaboration. Deepened studies are compulsory in the healthcare sector, to investigate the social and ethical implications of HRC. Whatever the application context is, the implementation of more and more advanced technologies is fundamental to overcome the current HRC safety concerns, designing low-risk HRC systems while ensuring the system productivity

    Human-Robot Collaboration in Automotive Industry

    Get PDF
    Human–Robot Collaboration is a new trend in the field of industrial and service. Application of human-robot-collaboration techniques in automotive industries has many advantages on productivity, production quality and workers’ ergonomic; however, workers’ safety aspects play the vital role during this collaboration. Previously, the machine is allowed to be at automatic work only if operators are out of its workspace but today collaborative robots provide the opportunity to establish the human robot cooperation. In this thesis, efforts have been made to present innovative solutions for using human-robot collaboration to develop a manufacturing cell. These solutions are not only used to facilitate the operator working with collaborative robots but also consider the worker safety and ergonomic. After proposing different solutions for improving the safety of operations during the collaboration with industrial robots, the efficiency of the solutions is tested in both laboratory and virtual environments. In this research, firstly, Analytic Hierarchy Process (AHP) has been used as a potential decision maker to prove the efficiency of human-robot collaboration system over the manual one. In the second step, detailed task decomposition has been done using Hierarchical Task Analysis (HTA) to allocate operational tasks to human and robot reducing the chance of duty interference. In the International Organization of Standardization's technical specification 15066 on collaborative robot safety four methodologies have been proposed to reduce the risk of injury in the work area. The four methods implied in ISO/TS 15066 are safety-rated monitored stop (SMS), hand-guided (HG), speed and separation monitoring (SSM) and power force limiting (PFL). SMS method reduces the risk of operator’s injury by stopping the robot motion whenever the operator is in the collaborative workspace. HG method reduces the chance of operator’s injury by providing the possibility of having control over the robot motion at all times in the workstation using emergency system or enabling device. The SSM method determines the minimum protective distance between a robot and an operator in the collaborative workspace, below which the robot will stop any kind of motion and PFL method reduces the momentum of a robot in a way that contact between an operator and the robot will not cause any injury. After determining the requirements and specifications of hybrid assembly cell, few of the above-mentioned methods for evaluating the safety of human-robot-collaboration procedure have been tasted in the laboratory environment. Due to the lack of safety camera (sensors) in the laboratory workstation, the ISO methods such as SSM, that needs sensors in the workstation, have been modeled in virtual environment to evaluate different scenario of human-robot-interaction and feasibility of the assembly process. Implementing different scenarios of ISO methods in hybrid assembly workstation not only improves the operator safety who is in interaction with the collaborative robot but also improves the worker ergonomic during the performing of repetitive heavy tasks

    Computer Simulation of Human-Robot Collaboration in the Context of Industry Revolution 4.0

    Get PDF
    The essential role of robot simulation for industrial robots, in particular the collaborative robots is presented in this chapter. We begin by discussing the robot utilization in the industry which includes mobile robots, arm robots, and humanoid robots. The author emphasizes the application of collaborative robots in regard to industry revolution 4.0. Then, we present how the collaborative robot utilization in the industry can be achieved through computer simulation by means of virtual robots in simulated environments. The robot simulation presented here is based on open dynamic engine (ODE) using anyKode Marilou. The author surveys on the use of dynamic simulations in application of collaborative robots toward industry 4.0. Due to the challenging problems which related to humanoid robots for collaborative robots and behavior in human-robot collaboration, the use of robot simulation may open the opportunities in collaborative robotic research in the context of industry 4.0. As developing a real collaborative robot is still expensive and time-consuming, while accessing commercial collaborative robots is relatively limited; thus, the development of robot simulation can be an option for collaborative robotic research and education purposes

    Α Behavior Trees-based architecture towards operation planning in hybrid manufacturing

    Get PDF
    In modern manufacturing, the capability of process scheduling and task allocation is a major feature for the proper organization of complex production schedules. More particularly, the case of human-robot collaboration within assembly lines is considered as a quite challenging field, where an efficient process scheduling can reduce products’ delivery times, increasing in parallel its quality. The purpose of this paper is to propose an approach focusing on operation planning for Human-Robot Collaborative processes that consist of many tasks and multiple resources, such as the assembly of large-scale parts. The implementation of the Human-Robot Operation Planning (HROP) module is presented, which aim at the allocation of multiple operations between multiple and different types of resources. This development’s main pillar is a dynamic decision-making logic that combines both constraints, that exclude resources from the evaluation, as well as mathematical criteria, that provide finally a specific solution. The HROP particularity is that it is developed under the Behavior Trees (BT) architecture. For the validation of the proposed approach, a case study under a real industrial environment of the automotive industry is presented, based on the assembly of large-scale parts, such as buses, in a hybrid cell of both human operators and multi-type robots

    Human-Robot Collaboration in Automotive Assembly

    Get PDF
    In the past decades, automation in the automobile production line has significantly increased the efficiency and quality of automotive manufacturing. However, in the automotive assembly stage, most tasks are still accomplished manually by human workers because of the complexity and flexibility of the tasks and the high dynamic unconstructed workspace. This dissertation is proposed to improve the level of automation in automotive assembly by human-robot collaboration (HRC). The challenges that eluded the automation in automotive assembly including lack of suitable collaborative robotic systems for the HRC, especially the compact-size high-payload mobile manipulators; teaching and learning frameworks to enable robots to learn the assembly tasks, and how to assist humans to accomplish assembly tasks from human demonstration; task-driving high-level robot motion planning framework to make the trained robot intelligently and adaptively assist human in automotive assembly tasks. The technical research toward this goal has resulted in several peer-reviewed publications. Achievements include: 1) A novel collaborative lift-assist robot for automotive assembly; 2) Approaches of vision-based robot learning of placing tasks from human demonstrations in assembly; 3) Robot learning of assembly tasks and assistance from human demonstrations using Convolutional Neural Network (CNN); 4) Robot learning of assembly tasks and assistance from human demonstrations using Task Constraint-Guided Inverse Reinforcement Learning (TC-IRL); 5) Robot learning of assembly tasks from non-expert demonstrations via Functional Objective-Oriented Network (FOON); 6) Multi-model sampling-based motion planning for trajectory optimization with execution consistency in manufacturing contexts. The research demonstrates the feasibility of a parallel mobile manipulator, which introduces novel conceptions to industrial mobile manipulators for smart manufacturing. By exploring the Robot Learning from Demonstration (RLfD) with both AI-based and model-based approaches, the research also improves robots’ learning capabilities on collaborative assembly tasks for both expert and non-expert users. The research on robot motion planning and control in the dissertation facilitates the safety and human trust in industrial robots in HRC

    The social construction of human-robot co-work by means of prototype work settings

    Get PDF
    Whether we look at Europe, the USA or Japan, in many areas in the world new possibilities of employing robotic systems in work settings essentially rely on direct collaborative interaction be-tween human workers and collaborative robots leading to new distributions of agency between them and making available robotic operations as resources for performing different forms of work, work which otherwise would remain out of reach for robotic automation for the time being. In this paper we introduce our concepts of studying the social construction of these collaborative work settings and the distribution of agency, accordingly. Referring to the basic idea of actor-network theory that technology in use should be analysed in a symmetrical manner, treating all the human and nonhuman entities involved as actors, our concept of distributed agency goes beyond actor-network theory in that it introduces the notion of gradualised action, which allows distinguishing between different levels of distributed agency. Therefore, we can precisely describe, in which way and to what extent activities and actor positions are delegated to robot co-workers or remain with its human counterpart. For analysing how the distribution of agency between human and robot co-workers is socially constructed in different stages, first in laboratory settings and then in increas-ingly realistic real-world settings, we interpret the spectrum of manifestations of human-robot col-laboration as prototypically realised scenarios at different stages of elaboration. In doing so we introduce the current state of collaborative robots in the areas of industrial production and care work as they represent contrastive cases: In industrial production collaborative robots are the next step in a long-standing history of robotic automation whereas in care work the new robots are also the first robots to be employed there. We believe that in both fields a perspective on collaborative work between humans and robots as a socio-technical constellation is helpful in order to be able to identify new distributions of work tasks

    Anthropocentric-based robotic and autonomous systems: assessment for new organisational options

    Get PDF
    Text based on the paper presented at the Conference "Autonomous systems: inter-relations of technical and societal issues" held at Monte de Caparica (Portugal), Universidade Nova de Lisboa, November, 5th and 6th 2009 and organized by IET-Research Centre on Enterprise and Work InnovationResearch activities at European level on the concept of new working environments offers considerable attention to the challenges of the increased competencies of people working together with automated technologies. Since the decade of 1980 the development of approaches for the humanization of work organization, and for the development of participative organizational options induced to new proposals related to the development of complex and integrated automated systems. From such parallel conceptual development emerged the concept of “anthropocentric robotic systems” and quickly it covered also other fields of automation. More recently, the debate also covers issues related to working perception of people dealing with autonomous systems (e.g. Autonomous robotics) in tasks related to production planning, to programming and to process control. In fact, today one can understand the wider use of the anthropocentrism concept of production architectures, when understanding the new quality of these systems. In this chapter the author analyses the evolution of these issues related to governance of ICT applied to manufacturing and industrial services in research programmes strengthening very much the ‘classical’ concept of anthropocentric-based systems. It is emerging a new value of the intuitive capacities and human knowledge in the optimization and flexibilization of the manufacturing processes. While this would be a pre-condition to understand the human-robot communication needs, there is also a need to take into consideration the qualitative variables in the definition and design of robotic systems, jobs and production systems.Project CRUP/DAAD on “Technology Assessment of Autonomous Robotics” of FCT-UNL and ITAS-KI
    • 

    corecore