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ABSTRACT 

In the past decades, automation in the automobile production line has significantly 

increased the efficiency and quality of automotive manufacturing. However, in the 

automotive assembly stage, most tasks are still accomplished manually by human workers 

because of the complexity and flexibility of the tasks and the high dynamic unconstructed 

workspace. This dissertation is proposed to improve the level of automation in automotive 

assembly by human-robot collaboration (HRC).  

The challenges that eluded the automation in automotive assembly including lack 

of suitable collaborative robotic systems for the HRC, especially the compact-size high-

payload mobile manipulators; teaching and learning frameworks to enable robots to learn 

the assembly tasks, and how to assist humans to accomplish assembly tasks from human 

demonstration; task-driving high-level robot motion planning framework to make the 

trained robot intelligently and adaptively assist human in automotive assembly tasks.  

The technical research toward this goal has resulted in several peer-reviewed 

publications. Achievements include: 1) A novel collaborative lift-assist robot for 

automotive assembly; 2) Approaches of vision-based robot learning of placing tasks from 

human demonstrations in assembly; 3) Robot learning of assembly tasks and assistance 

from human demonstrations using Convolutional Neural Network (CNN); 4) Robot 

learning of assembly tasks and assistance from human demonstrations using Task 

Constraint-Guided Inverse Reinforcement Learning (TC-IRL); 5) Robot learning of 

assembly tasks from non-expert demonstrations via Functional Objective-Oriented 
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Network (FOON); 6) Multi-model sampling-based motion planning for trajectory 

optimization with execution consistency in manufacturing contexts.  

The research demonstrates the feasibility of a parallel mobile manipulator, which 

introduces novel conceptions to industrial mobile manipulators for smart manufacturing. 

By exploring the Robot Learning from Demonstration (RLfD) with both AI-based and 

model-based approaches, the research also improves robots’ learning capabilities on 

collaborative assembly tasks for both expert and non-expert users. The research on robot 

motion planning and control in the dissertation facilitates the safety and human trust in 

industrial robots in HRC. 
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CHAPTER 1

INTRODUCTION 

In this chapter, the motivation of this dissertation is presented at first. Then the 

challenges are summarized. Afterward, the conducted research and the corresponding 

contributions and impacts are discussed to clarify the research scope of this dissertation. 

Last but not the least, the organization of the dissertation is listed. 

1.1 Motivation 

Prototypes of industrial robots have been implemented in automotive 

manufacturing since the 1960s, which were started with performing spot-welding tasks. By 

the 1980s, billions of dollars were spent by companies worldwide to automate basic tasks 

in their assembly lines to improve efficiency, productivity, and competitiveness. 

Nowadays, industrial robots have been widely deployed in many aspects of automotive 

manufacturing, such as welding, gluing, material handling, and material transport. 

Although human involvement in manufacturing for the automotive industry has decreased 

dramatically in recent years, over 60% of automotive assembly tasks are still accomplished 

manually by human workers [1].  
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 Many early stages of automotive manufacturing, such as white body 

manufacturing, have achieved full automation with conventional industrial robots in a well-

constructed environment, where the robots are locked away in a fence that prohibiting 

access of humans as shown in Figure 1.1 (a). However, the automotive final assembly 

presents numerous challenges, such as significant variability of tools and parts, flexible 

tasks, and unstructured and dynamic environments shown in Figure 1.1 (b), that preclude 

direct automation via traditional fenced robotic work-cells. For example, different humans 

may have different preferences to complete the same work, which may require robots to 

adjust their speed or motions accordingly to adapt to humans’ preferences. Humans may 

be distracted and do not pay attention to the moving robots in the shared workspace, which 

may demand robots to stay alert and adjust the speed or even stop to ensure safety. The 

dissertation is motivated by addressing some of these challenges and facilitating the level 

of automation in automotive assembly by HRC. 

Figure 1.1. The environment of the automotive assembly line.  
Figure (a) is the manufacturing of the white body, which is fully automated by fenced robotic arms and 

well-constructed environment. Figure (b) is the final assembly process, which is usually a hybrid 
process involving both robots and humans in a unconstructed environment. 
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1.2 Challenges 

The challenges in our research would include the following: First, the lack of suitable 

robotic systems remains a challenge, especially a compact-size collaborative mobile 

manipulator that can handle the heavy payload. Secondly, online teaching and learning 

through human demonstration is not easy to achieve. Because of the flexible tasks and the 

uncertainty of human motions in a specific demonstration, the robot is required to abstract 

the common conceptions of the tasks based on only a few inconsistent demonstrations. 

Thirdly, it is not easy to make robots adaptively assist human workers in the shared 

workspace. Human workers can get tired, can make mistakes, and can have personal 

preferences, which means robots will need to correctly react to some untrained situations 

only base on environment sensing and intelligently decision-making strategy. Finally, all 

these components in this complicated system need to be carefully designed with system 

thinking and make sure they are closely connected to and work properly with each other. 

1.3 Contributions 

This dissertation is proposed to improve the level of automation in automotive 

assembly by HRC. Facets of this problem are explored including the novel collaborative 

robotic systems for HRC in automotive assembly contexts, robot learning capabilities that 

enable robots to learn the assembly tasks and how to assist humans to accomplish assembly 

tasks from human demonstration, and task-driven high-level robot motion planning 

framework to make the trained robot assist human intelligently and adaptively in the 

collaborative process of automotive assembly applications. 
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In Chapter 3, the design of a collaborative lift assist robot for automotive assembly 

is proposed. Comparing to the conventional lift assist mechanism and the commercial-off-

the-shelf mobile manipulators in the market, the proposed design of the parallel mobile 

manipulator has a compact size, unlimited workspace, high task flexibility, intuitive 

human-robot interaction, and can handle the heavy payload. The research demonstrates the 

feasibility of a parallel mobile manipulator, which introduces novel conceptions to 

industrial mobile manipulators for smart manufacturing. 

By exploring the Robot Learning from Demonstration (RLfD) with both AI-based 

and model-based approaches, the research also improves robots’ learning capabilities on 

collaborative assembly tasks for both expert and non-expert users. In Chapter 4, a graph-

based approach is proposed to model the object placing tasks in assembly. The proposed 

approach eliminates the pre-define parameters for tasks and makes the robot can learn 

object placing tasks from human demonstrations. To further enable robots to assist humans 

Figure 1.2. Contributions of the dissertation. 
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in more complicated assembly tasks, in Chapter 5, An AI-based approach is proposed to 

enable robots to learn the assembly process and assist humans in assembly tasks using 

convolutional neural networks (CNN). The proposed approach makes robots assist humans 

actively in low-precision and high-strength jobs with easy-to-use human demonstrations. 

Also, it eliminates the complexity of the assembly task modeling and system setup. In 

Chapter 6, a model-based approach is proposed to enable robots to learn assembly task 

constraints and human preferences and then assist humans in the collaboration. The robot 

can not only repeat the demonstrated tasks but also actively assist humans according to 

their preferences in larger geometry scale tasks from a few rounds of small-scale human 

demonstrations. The proposed approach improves the task scalability and reduces the 

requirements of training data and computational efforts comparing to the conventional 

inverse reinforcement learning (IRL) approaches. In Chapter 7, a graph-based approach is 

proposed to enable robots to learn assembly tasks from non-expert demonstrations. The 

proposed approach enables robots to learn assembly tasks from imperfect demonstrations 

and then find optimal solutions for the demonstrated tasks. 

In Chapter 8, a multi-model sampling-based motion planning framework is 

proposed to generate predictable, efficient, and consistent robot motions via the popular 

sampling-based motion planning algorithms. A cost-function-based trajectory optimization 

algorithm is proposed in the framework, which considers the predictability, efficiency, 

manipulability, and safety in trajectory optimization. A constraint-guided and similarity-

based motion planning algorithm is proposed to improve the consistency of the robot 
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motions. The research on robot motion planning and control in the dissertation facilitates 

the safety and human trust in industrial robots in HRC. 

1.4 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 discusses the related work and 

summaries the research gaps. Chapter 3 presents the research work on collaborative robotic 

systems, which provides a design and evaluation of a novel parallel mobile manipulator for 

heavy-payload lift assistance in automotive assembly. Chapter 4 to Chapter 7 introduce the 

research on robot learning from demonstration for automotive assembly, which includes 

the learning of object placing tasks in assembly, the learning and assistance generation for 

assembly tasks via both model-based and AI-based approaches, and the learning of 

assembly tasks from non-expert human demonstration. Chapter 8 provides the research 

work on human-centered robot motion planning in automotive assembly. Finally, the 

conclusions and future work are discussed in Chapter 9. 
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CHAPTER 2

RELATED WORK 

2.1 Introduction 

According to the challenges presented in automotive assembly lines, many research 

works have been conducted to improve the level of automation in the final assembly of 

automotive manufacturing. Instead of achieving full automation directly, human-robot 

collaboration is identified as one of the potential solutions for the automation of automotive 

assembly. Different aspects of HRC in manufacturing, such as collaborative robotic 

systems, improvement of robot learning capability, and robot motion planning and control, 

are widely investigated in the past decades. A review of the related work in these three 

fields is presented in this chapter.  

2.2 The State-of-the-art of Collaborative Robotic Systems 

The conception of the collaborative robots was introduced by J. Edward Colgate and 

Michael Peshkin [2], which is intended for direct physical interaction with a human 

operator. Serval collaborative industrial robots have been marketed since 2004, which are 

normally with payload range from 0.5 kg to 10 kg. The safety requirements of collaborative 

robots have been discussed and gradually established since 2011[3]. Collaborative robots 

allow the human and the machine to work in close and share a common workspace, which 

release the industrial robots from a fence prohibiting access and give them the opportunities 

to share some high-strength and low-versatility tasks in the final assembly stage of 

automotive manufacturing. 
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To further eliminate the limitation of the workspace, research interest in mobile 

manipulators (robotic arms mounted on mobile bases) has grown steadily over the past two 

decades [4]–[6]. Commercial interest has also spiked in recent years due to advances in 

technology that have enabled the broad use of automation and robotics while 

simultaneously reducing costs. Mobile manipulators are gradually becoming commercial 

tools for industrial use [7]–[9]. Among them, heavy payload transport and manipulation 

have been one of the most popular tasks for the use of mobile manipulators [10], [11]. 

Overviews of mobile manipulators and applications for manufacturing can be found in [6], 

[12], which reference examples of commercial-off-the-shelf mobile manipulators that are 

developed and used for industrial purposes. These works were intended to capture the 

current state-of-the-art in mobile manipulation (as of 2016); compare the diversity of 

performance assessment methods available for these systems. Many commercial-off-the-

shelf mobile manipulators were developed in a constructionist approach by mounting 

general-purpose serial arms on various mobile platforms.  

2.3 The State-of-the-art of Robot Learning from Demonstrations 

As the requirements of high-flexibility tasks and highly customized products with 

short lifecycle, the conventional robot programming approaches gradually become 

inefficient for today’s smart manufacturing. Robot Learning from Demonstration (RLfD) 

is one of the techniques that target to reduce the robot programming effort and system setup 

time cost. RLfD is a wide broad topic ranging from task modeling, machine learning, to 

human-robot interaction as well. Many related works have been conducted in recent years.  
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Some studies have been conducted on how to replicate arm trajectories from human 

demonstrations. Chen et al. [13] developed a method to identify the trajectories and 

eliminate the noise from human demonstrations based on the statistical regression analysis. 

Hiratsuka et al. [14] employed Local Procrustes Analysis and Dynamic Movement 

Primitives to transfer the demonstrated trajectories from the human skeleton model to the 

robot and then reproduce them on the robot in real-time. Calinon et al. [15] presented an 

approach based on HMM and Gaussian mixture regression (GMR) to enable the robot to 

learn new trajectories from humanlike motion data. Jha et al. [16] used incremental inverse 

kinematics and positional mapping to transfer the demonstrated trajectories from human 

arm workspace to robot arm workspace. Maeda et al. [17] proposed a cost-function-based 

approach, which considered the cost of iterations of the inverse kinematics and the cost of 

task achievement, to enable the robot to mimic human arm motion through stochastic 

optimization of the embodiment mapping.  

In addition to the trajectory-level teaching, some studies have been also conducted 

for task-level RLfDs. The approaches included motion capture [18], [19], natural language 

[20], [21], vision system [22], [23], and wearable sensors [24] [25]. Based on these sensing 

data of human demonstrations, the robot can learn the task-level knowledge and generate 

its action planning strategies using the integrated learning algorithms. The algorithms 

include HMM [26], reinforcement learning [27], inverse reinforcement learning [28], and 

other learning approaches [29], [30]. These approaches improved the robot’s ability to 

adapt to human intentions in more complicated collaborative tasks comparing to the 

trajectory-level teaching approaches.  



10 

2.4 The State-of-the-art of Robot Motion Planning and Control 

Optimal trajectory planning for industrial robots is one of the key challenges for 

manufacturing automation in different applications [31], [32]. In the past two decades, 

probabilistic sampling-based algorithms have become popular and successful approaches 

for robotic motion planning problems especially in high-dimensional configuration spaces 

(e.g. the motion planning of high degree-of-freedom robots) [33]. Probabilistic sampling-

based algorithms are commonly classified into two categories: the single-query and the 

multiple-query. Both the single-query and the multiple-query path planning algorithms aim 

to explore the configuration space with a search using a probabilistic-based sampling 

scheme while avoiding explicit construction of the configuration space. 

The multiple-query approaches typically generate a roadmap, which is a topological 

graph that can be utilized by multiple initial-state/goal-state pairs. A classic example of 

this category is the probabilistic roadmap algorithm (PRM) [34]. The start-state/goal-state 

pairs are given as initial conditions of the PRM algorithm, the roadmap is established by 

randomly sampling points in configuration space and connecting nearby points if they can 

be reached from each other. The path from the start state to the goal state can then be found 

in the roadmap. The variants of PRM include lazy RPM [35], dynamic PRM [36], and 

PRM* algorithm [37]. 

Instead of constructing a roadmap for the free configuration space, the single-query 

approaches keep searching for a path that connects the given single initial-state/goal-state 

pair until finding a solution or reporting an early failure. One classical example of this 

category is the rapidly exploring random trees algorithm (RRT) [38]. The incremental 
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simulator is used to produce a randomly new state in each step, and the state advancement 

is determined by the collision detector and the distance between the current states to the 

goal state. The family of algorithms in this category also includes the rapidly exploring 

dense trees algorithm [39], RRT* [40], and LQR-RRT [41]. 

Recently, the Fast Marching Trees (FMT) [42], which combines the features of both 

PRM and sampling-based roadmap of trees (SRT) [43], is designed to reduce the number 

of obstacle collision-checks and increase the efficiency in high-dimensional environments. 

Besides the previous approaches, some other sampling-based motion planning algorithms 

are also notable, such as the cross-entropy motion planning algorithm [44] and expensive 

space trees (EST) [45]. 

2.5 Research Challenges 

In this chapter, the related work in collaborative robotic systems, robot learning from 

demonstrations, and robot motion planning and control are reviewed. From the survey, we 

can summarize the following research gaps.  

First, the lack of suitable robotic systems remains a challenge, especially a compact 

size collaborative mobile manipulator with high payload capability, flexibility, and 

reconfigurability. The research to address this challenge is further discussed in Chapter 3. 

Secondly, online teaching and learning through human demonstration is not easy to 

achieve. The intuitive and easy-to-use robot teaching approaches for both expert and non-

expert users, and the accurate, fast and affordable online programming approaches are still 

worth investigating. The research to address this challenge is further discussed in Chapter 

4 to Chapter 7. 
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Thirdly, the lack of suitable human-centered motion planning frameworks, which are 

safe and friendly to humans in collaborative tasks, for automotive assembly applications, 

remains a research gap. The research to solve this challenge is further discussed in Chapter 

8.
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CHAPTER 3

COLLABORATIVE LIFT ASSIST ROBOT FOR

AUTOMOTIVE ASSEMBLY 

3.1 Introduction 

A parallel mobile manipulator, the so-called Smart Companion Robot (SCR), for 

collaborative lift assistance in automotive assembly is proposed in this chapter. The initial 

prototype of the SCR is realized by merging a four-wheel-drive (4WD) Mecanum wheel 

mobile base and a 3-RPS parallel arm, which can achieve a six degree-of-freedom (DoF) 

movement for the payload attached to its upper platform.  

The design requirements of the SCR are described in Section 3.2. The technical 

details of the mechanical and electronic architectures are presented in Section 3.3. The 

implementation of the kinematic control, force servoing, and visual servoing are discussed 

in detail in Section 3.4. In Section 3.5, the technical specifications of the SCR are proposed 

and compared with other representative commercial mobile manipulators for the 

manufacturing shop floors. The performance of the SCR is evaluated on a prototype robot 

with real collaborative assembly tasks in Section 3.6. The chapter is summarized in Section 

3.7. 

3.2 Design Requirements 

Based on the overviews of mobile manipulators and applications for manufacturing [6], 

[12], which referenced examples of commercial-off-the-shelf mobile manipulators that are 
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developed and used for industrial purposes as of 2016, and compared the diversity of 

performance assessment methods available for these systems, we developed a Smart 

Companion Robot (SCR) to serve as a compact mobile lift-assist for  automotive assembly 

tasks, capable of human-robot collaboration, emerges from the following design 

requirements: 

➢ Small size: The SCR should be easily handled by a human worker and capable of

navigating narrow spaces within automotive assembly lines so that the maximal

base dimension is expected to be under 600 x 600 mm.

➢ High payload: The SCR must be able to transport and manipulate heavy parts in

automotive assemblies, such as wheels, brake discs. The maximum payload should

be up to 30 kg.

➢ Flexibility: The SCR should be able to manipulate and gravity-compensate

different kinds of parts in a variety of sizes and shapes in the six DoF manipulation,

such that the position and orientation of the parts can be adjusted accordingly to

match with the assembly position.

➢ Intuitive user interfaces: The robot should be easy-to-use for human operators, Ease

of collaborative interactions with intelligent assistive modes are necessary.

These requirements guided the creation of the SCR prototype and were realized by 

mounting a parallel manipulator on a mobile base with the capacity to intelligently assist 

the co-manipulation of heavy payloads for automotive assembly applications. The SCR 

is intended to track its human partner and facilitate the presentation of “the right part at 

the right time” by visual servoing to track a marker with a QR code. Moreover, it can be 



15 

responsive to the human-associated touch and implement gravity compensation for the 

delivered part by force servoing. 

3.3 Design of The Smart Companion Robot (SCR) 

3.3.1 Mechanical Architecture 

A custom-designed 4WD omnidirectional mobile base with Mecanum wheels is 

developed as the foundation of the SCR for adapting to the complicated dynamic 

environment in the workshop. It consists of a central platform and four Mecanum wheels, 

and each wheel is independently driven by a gear motor. Unlike most traditional 

Automated Guided Vehicle which cannot move sideways, the 4WD mobile base has 

omnidirectional mobility (forward/back, left/right, yaw), which greatly enhances the 

mobility and maneuverability of the system, especially in a narrow space.  

A custom-designed 3-RPS parallel manipulator is built for the SCR, which has three 

degrees of freedom (up/down, pitch, roll) and significantly improves the payload capacity 

of the system. It can achieve gravity compensation for a 30 kg part. The overall system has 

six degrees of freedom in total when the 3-RPS parallel manipulator is mounted on the 

center platform of the 4WD mobile base with Mecanum wheels. 
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3.3.2 Electronic Architecture 

The electronic system diagram of the SCR, including the power supply system, 

actuators, the perception system, and the controller, is presented in Figure 3.2. The SCR 

consists of 7 motors, including 4 brushless DC motors for the mobile base and 3 linear 

actuators for the parallel manipulator, a multi-threading Microcontroller Unit (MCU) to 

handle all the low-level controls, a PC laptop running Robot Operating System (ROS) for 

high-level motion planning, a 6-axis F/T sensor, a camera, and battery packs. 

For the 3-RPS parallel manipulator, each linear actuator is independently driven by 

a DC motor amplifier rated at 15A. A PWM signal is used to control the velocity of the 

linear actuator while a potentiometer provides a 0~5V analog feedback. For the mobile 

base, each wheel is driven by a gear motor powered by a dual-channel motor driver rated 

at 25A per channel. The 1024 lines count/revolution encoder on the gear motor provides 

the position feedback of each wheel.  

Figure 3.1. Mechanical Architecture of the SCR. 
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For the robot perception, we employ an OptoForce 6 Axis F/T Sensor to support the 

force-servoing mode (discussed in the next section), which is mounted on the upper 

platform of the parallel manipulator. The forces and torques are sampled (300 Hz) and 

post-processed to predict the human intentions of transportation and manipulation. 

Moreover, a wide-angle webcam (640x480, 30fps) is integrated for deploying the visual 

servoing mode. All the sensory and feedback data are collected by the PC-based controller 

for the implementation of motion planning and control strategies. Then the velocity 

commands are directly sent to and then executed by the MCU. 

3.4 Modeling and Control Methodology 

3.4.1 Kinematic Modeling 

Based on the mechanical design, the kinematic model of the SCR is derived for the 

velocity control for the end-effector. The modeling approach of the 3-RPS parallel 

architecture determines the Jacobian matrix of the linear actuator to the end-effector [46]. 

Figure 3.2. Electronic design of the SCR. 
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The definitions of the coordinate system are illustrated in Figure 3.3. The three rotation 

joints are fixed on the center platform of the mobile base and the centers of the rotation 

joints are defined as 1A , 2A and 3A . The origin ( M ) of the coordinate system of the 

mobile base (as well as the bottom platform of the 3-RPS parallel manipulator) is set at the 

center of the equilateral triangle 1 2 3A A A . The x-axis is in the direction of vector 1MA and 

z-axis is vertical to the center platform. The centers of the three spherical joints are defined

as 1B , 2B and 3B , which construct an equilateral triangle 1 2 3B B B . The origin ( P ) of the 

upper platform is set at the center of the triangle 1 2 3B B B  and the x-axis is in the direction 

of the vector 1PB , and the z-axis is vertical to the upper platform. 

For the velocity kinematics of the 3-RPS parallel manipulator, the velocities of z-

direction ( az ), pitch ( a ) and roll ( a ) are defined as the inputs of the 3-RPS parallel 

Figure 3.3. The coordinate system of the SCR. 
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manipulator model, and then the velocities of the three linear actuators ( L ), as the outputs 

of the 3-RPS parallel manipulator model, can be calculated by 

1 , ( , , , , , , )
a

a a a a a a b a a
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z
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Since the 3-RPS parallel manipulator has only 3 degrees of freedom, its velocities 

in these three degrees of freedom will also cause the velocities in the other three degrees 

of freedom, i.e., velocities in x-direction ( ax ), y-direction ( ay ), and yaw ( a ), which can 

be expressed by 
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where G  is the velocity mapping function which can be expressed by a function of the 

following items: ( 1, 2,3)i i =L represent the vector of each linear actuator; ( 1, 2,3)i i =u

represent the unit vector of each rotating joint, and ( 1, 2,3)i i =r  represent the position of 

each vertex with respect to the upper platform of the 3-RPS parallel manipulator. 

For the 4WD mobile base, its velocity kinematic model can be expressed by 
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where bx , by and b represent the x-direction, y-direction, and yaw velocities of the 

mobile base, ( 1,2,3,4)iq i = represent the angular velocities of the four Mecanum wheels 

and Ψ  is the inverse Jacobian of the mobile base, which can be expressed as a function of 
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the outside radius of the Mecanum wheel wr , the half-length of the wheelbase xl , and the

half-length of the wheel span yl .

Define the position and orientation of the end-effector (i.e., the center point on the 

upper platform) in the world frame as [ , , , , , ]Tz x y   . By combining the kinematic 

models of the parallel manipulator and mobile base, the inverse velocity kinematic model 

of the SCR is expressed as 

( )

( ) ( )
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(3.4) 

Therefore, given desired velocities of the end-effector, the velocities of the three 

linear actuators of the parallel manipulator and the velocities of the four wheel motors of 

the mobile platform can be calculated respectively, which will then be implemented by 

their corresponding low-level motion controllers. In our design, the desired velocities are 

generated either from force/torque data in force servo mode (i.e., human-robot physical 

interaction mode) or from visual data in visual servo mode (i.e., human-following mode). 

3.4.2 Human-robot Interaction Modeling 

In force servo mode, the human and robot hold the part at the same time. When the 

gravity of the delivered part is always compensated by the robot, the human worker can 

operate the robot regardless of the weight of the part. The human-robot interaction model 

used in our design can be expressed as: 
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s d dF mX cX= + (3.5) 

s d dT J = + (3.6) 
where sF is the force input of the force/torque sensor, m  is the virtual mass of the part, c

is the virtual damping of the part, dX  is the desired linear velocity of the end-effector, dX

is the desired linear acceleration of the end-effector, sT  is the torque input of the F/T sensor, 

J is the virtual movement of inertia,   is the virtual rotary damping, d is the desired

angular velocity of the upper platform, and d is the desired angular acceleration the upper

platform. Based on the interaction model, the desired linear velocity and angular velocity 

of the end-effector are calculated by 

1( ) ( )
c ct t
m m

d sX t e F t e dt
m

−

=  (3.7) 

1( ) ( )
t t

J J
d st e T t e dt

J

 


−

=  (3.8) 

3.4.3 Robot Motion Planning 

Targeting human-robot collaborative tasks in automotive assembly, the SCR is 

designed to work in and intelligently switch between visual servoing and force servoing 

modes. The visual servoing mode is designed for long-distance delivery of heavy parts 

which is regarded as the first stage of the assembly task. In this mode, the SCR follows the 

human worker (by tracking the QR code marker) around the assembly workspace. The 

force servoing mode is designed for accurately assembling the part to the vehicle, as the 

second stage of the assembly process. In this mode, the human worker can adjust the 

position and orientation of the part by directly applying forces/torques on the operating 

handle. In addition, the range of the roll and pitch angles are limited by the software 
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thresholds for safety purposes (e.g. the falling of an object) based on the weight and 

geometric shape of payloads, although the mechanism is capable of a larger range of 

movements. 

The software package for control implementation of the SCR is built based on the 

Robot Operating System (ROS) and Visual Servo Platform (VISP) [47]. The general 

control diagram is illustrated in Figure 3.4. Mode-switching from the default safety/rest 

mode is determined by the detection of the QR code (to visual-servo mode) and/or presence 

of handle-forces (to force-servo mode).  In the visual servoing mode, the SCR seeks to 

maintain a fixed distance with the detected QR marker. Low-level wheel control commands 

(for only the mobile base) are determined by the position and orientation of the marker 

with QR code and the kinematic model of the mobile base. The SCR comes to a safety/rest 

mode immediately if the detection is lost and resumes when the QR marker is re-detected. 

The SCR switches to the force servoing mode when a threshold handle-force is exceeded. 

In this mode, the control commands are determined by the 6-axis F/T sensor inputs and the 

kinematic model to synchronize all actuators of the SCR. Based on the high-level motion 

planning, the MCU realizes low-level independent PID control for the 3 linear actuators of 

the parallel mechanism and 4 wheels of the mobile base. 
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3.5 Prototype and Specifications of the SCR 

In this section, we first analyze the performance of the SCR and present a comparison 

between the SCR and other serial-arm mobile manipulators. An experiment representative 

of an automotive assembly task is implemented to further test the functionality and 

performance of the SCR. 

Figure 3.4. The control diagram of the SCR. 
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3.5.1 Specifications 

A real SCR prototype is built for the validation and demonstration, as shown in 

Figure 3.5. The specifications for its performance are shown in Table 3.1. The current 3D 

printed realization of structural components limits the rated payload of the SRC to 18 kg 

(maximum payload is 30 kg). However, the feedback rod linear actuators in the 3-RPS 

parallel mechanism are capable of each supporting up to 68 kg static payload. Hence, with 

machined components, our SCR architecture is capable of handling up > 70 kg payload 

without increasing the dimensions of the robot. 

The speed performance and motion ranges of the robot end-effector (i.e., the center 

point on the upper platform) are determined by the configurations of the robot and 

capabilities of the actuators. For the 3-RPS parallel architecture of the SCR, the side length 

of the equilateral triangle, which is formed by the three rotation joints, is 390 mm; the side 

length of the equilateral triangle, which is formed by the three spherical joints, is 260 mm; 

and the stoke of the and maximum speed of the linear actuators are 200 mm and 20 mm/s 

Figure 3.5. The prototype of the SCR. 
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respectively. For the mobile base, the maximum speed of the gear motor is 75 rpm and the 

outside diameter of the Mecanum wheel is 122 mm. Based on these configurations, 

including dimensions and actuator capabilities, we derive the performances of the robot as 

follows. The maximal translational speeds for X, Y, and Z are 500 mm/s, 500 mm/s, and 

20 mm/s respectively. The maximal rotational speeds for Roll, Pitch, and Yaw are 10 

degree/s, 10 degree/s, and 30 °/s respectively. The motion ranges for X, Y, and Yaw are 

unlimited. The motion range for Z is 600-800 mm. The motion ranges for Roll and Pitch 

are both +/- 30 degrees. We have set software limits to avoid running actuators beyond 

their acceptable ranges. The limit of tilt (roll and pitch) angles can be appropriately adjusted 

by controlling angle range thresholds based on the weight and geometric shape of various 

payloads. 

Table 3.1. The performance parameters of the SCR. 
Parameter Value 

Base Dimension 550 mm 
(L)*550mm(W) 

Rated Payload 18 kg 
Maximum Payload 30 kg 

Curb Weight 31.8 kg 

Maximum Speed 

x-axis: 500 mm/s
y-axis: 500 mm/s
z-axis: 20 mm/s

yaw: 30 °/s
pitch: 10 °/s
roll: 10 °/s

Maximum Motion 
Range 

z-axis: 600-800 mm
pitch angle: +/– 30° 
roll angle: +/– 30° 

Battery Type Lipo 
Operating Temperature 0° – 40° C 

DOF 6 
Software ROS Kinetic, VISP 

Wi-Fi 802.11-2.4/5.0 GHz 
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3.5.2 Comparison 

To illustrate the advantages of the SCR, we compare the robot with two 

representative commercial mobile manipulators for the manufacturing shop floors: KUKA 

KMR iiwa 14 [48]  (the type with a larger arm and payload) and Yaskawa YMR-12 [49]. 

The comparison metrics include robot dimensions, curb weight, payload, operation DOFs, 

number of actuators, and base drive types. The results of the detailed comparisons are listed 

in Table 3.2. From the results, we can intuitively see that the SCR has the smallest size, 

highest payload, lightest weight, and a minimum number of motors. Specifically, the rated 

payload density for SCR, KMR, and YMR are 59.5 kg/m2, 20.6 kg/m2, and 5.6 kg/m2 

respectively. We can see that the SCR requires the smallest dimensions to handle the same 

amount of payload. The payload to curb-weight ratios for SCR, KMR, and YMR are 0.57, 

0.03, and 0.01 respectively. We can see that the SCR requires the smallest curb weight to 

support the same amount of payload. The ratios between the operation DOFs and the 

required number of motors for SCR, KMR, and YMR are 6/11, 6/11, and 6/8 respectively. 

We can see that the SCR requires the minimum number of motors to achieve 6 operation 

DOFs of the end-effector. Moreover, it also has an omnidirectional mobility capability to 

make the robot much more flexible to operate on crowded manufacturing shop floors in a 

holonomic manner. 
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3.6 Human-robot Collaborative Assembly Experiment 

In order to demonstrate the effectiveness of the SCR, we choose a realistic 

automotive assembly task which is to install a heavy part into a vehicle by simultaneously 

inserting multiple bolts into their corresponding fixture holes. The corresponding assembly 

tasks include, but are not limited to, front differential installation, wheel hub installation, 

and brake rotor installation. Conventionally, human workers have to carry these parts, 

transport them to the vehicle, and then hold and manipulate them by appropriately adjusting 

the positions and orientations in order to install them. In this experiment, we will use the 

SCR to assist human workers to accomplish the task.  

3.6.1 Experimental Setup 

The configuration of the realistic assembly task is illustrated in Figure 3.6 (a). Part 

A is a 10 kg metal part with a size of 254 mm*254 mm and containing 4 bolts (15 mm in 

diameter) at the corner. Part B is another piece of the metal fixture with 4 holes (20 mm in 

diameter) at each corner. Part A and Part B can assembly together when their position and 

orientation are matched with each other so that all the 4 bolts on Part A can pass through 

the 4 holes on Part B. In this task, Part A is fixed on the upper platform of the 3-RPS 

parallel manipulator and its position and orientation can be adjusted by operating the SCR. 

Table 3.2. Comparison: SCR vs KUKA iiwa vs YMR-12 
Parameter SCR KUKA KMR iiwa 14 Yaskawa YMR-12 

Robot Dimensions L: 550 mm 
W: 550 mm 

L: 1080 mm 
W: 630 mm 

L: 1805 mm 
W: 1186 mm 

Rated Payload 18 kg  14 kg 12 kg 
Curb Weight 31.8 kg 419.5 kg 980 kg 

Operation DOFs 6 6 6 
No. of Actuators 7 11 8 
Base Drive Type Omni-directional Omni-directional Differential 
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Meanwhile, Part B is fixed on a workbench by a bench vise. Part A is originally placed to 

be mismatched with Part B as shown by yellow dashed lines in Figure 3.6 (a). In order to 

install Part A into Part B, one has to appropriately adjust all 3 positions and 3 orientations. 

The panorama of the collaborative task is illustrated in Figure 3.6 (b). Three obstacles are 

set in the central zone of the scene. The trajectory from the start position to the workspace 

of the assembly task is shown by the yellow dash arrow. The distances between the 

corresponding nearest point of the obstacles are 85 cm and 95 cm as shown by blue lines 

in Figure 3.6 (b). The entire process of the collaborative assembly task can be allocated as 

two steps:  

• Step 1: Heavy part transport by visual servoing (Figure 3.6 (b)): the SCR helps

the human worker to transport the heavy part to the workspace of the assembly

task. During this process, the robot is working in the visual servoing mode. It

follows the human worker by tracking a QR marker held by the human. Guided

by a human worker, it needs to pass through the narrow working space by

leveraging its flexible omnidirectional mobility capability and arrive at the

target workspace of the assembly task.

• Step 2: Heavy part assembly by force servoing (Figure 3.6 (a)): the SCR helps

the human worker to accomplish the assembly task. During this process, the

robot is working in the force servoing mode. The human worker can

appropriately adjust the position and orientation of the part on the SCR with the

handle and install the part into the fixture part which is fixed on the workbench

with a bench vise.
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3.6.2 Velocity Kinematics Validation 

The velocity kinematics is validated by manipulating the end-effector of the SCR in 

all six degrees of freedom, i.e., three translations and three rotations. The results are shown 

in  Figure 3.7 (a) ~ (f) respectively. In each result, the first row of blue curves describes the 

human applied forces and torques; the second-row of blue curves represent the desired end-

effector linear and angular velocities generated by the human-robot interaction model 

based on the human applied forces and torques; the second-row of red curves represent the 

actual end-effector linear and angular velocities achieved by the robot using the proposed 

kinematic control model. The desired linear and angular velocities, which respond to a 

variety of human input forces and torques, demonstrate the effectiveness of the human-

robot interaction model. The actual linear and angular velocities, which track their desired 

values closely, demonstrate the effectiveness of the developed kinematic control model. 

Therefore, we can see that the kinematic velocity control in six degrees of freedom is well 

achieved and it enables the human to interact with the robot by using naturally small 

forces/torques to operate the robot in six degrees of freedom.  

Figure 3.6. Human-robot collaborative assembly experiment setup. 

(a) (b)
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3.6.3 Part Transport Validation 

In the process of human-guided part transport, the SCR can pass through the narrow 

space without hitting any obstacles and successfully deliver the part to the target workspace 

for the following assembly task. Figure 3.8 (a) ~ (d) illustrates the reaction of the SCR 

when the tracking of the QR code is lost. The positions of the obstacles are marked by the 

red crosses, while the position and orientation of the mobile base are marked by a yellow 

point and an arrow. The results indicate that the SCR can stop immediately when the QR 

code is lost in the camera frame in Figure 3.8 (b), and automatically resume following the 

QR code when it is re-detected in Figure 3.8 (c) and (d). The process of passing through 

the narrow space is presented in Figure 3.9 (a) ~ (d). The results indicate that the SRC can 

Figure 3.7. The sensor data inputs and velocity kinematics outputs 
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make a sharp turn and pass through the channel of 85-95 cm in width. Moreover, the test 

results also demonstrate that the robot can pivot with respect to the center of the mobile 

base benefiting from the omni-directional mobility of mobile base. 

Figure 3.8. Test for lost tracking of the QR code. 

Figure 3.9. Test for passing through the narrow space. 
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3.6.4 Part Assembly Validation 

The close-up shots of the part assembly process are shown in Figure 3.10 (a) ~ (d). 

To demonstrate the movements of the robot more clearly, we record these close-up shots 

by a GoPro camera mounted on the workbench nearby the bench vise. The corresponding 

edges of the parts are marked by the yellow and red lines in each frame. In this process, the 

robot works in force servoing mode and the human worker operates the robot with the 

handlebar underneath the 6-axis F/T sensor. First, Figure 3.10 (a) and (b) illustrate that 

some preparatory maneuvers are conducted so that Part A, whose edges are marked by red 

lines, is approximately lifted to the same height as Part B whose edges are marked by the 

yellow lines. Afterward, Figure 3.10 (b) and (d) demonstrate that some fine maneuvers are 

implemented to adjust the position and orientation of Part A to make the bolts on Part A 

align with the holes on Part B and then install Part A into Part B. 

Figure 3.10. Part assembly process. 
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3.7 Conclusion 

A Smart Companion Robot (SCR) is designed, developed, and validated to 

collaborate with humans in automotive assembly. It can hold a heavy payload for humans 

and enable humans to use their motions and finger forces to transport and manipulate heavy 

parts in all six degrees of freedom. By taking advantage of the robot, human workers can 

be assisted to effectively, flexibly, and conveniently handle heavy parts in automotive 

assembly, which has great potential benefits in increasing the automotive assembly 

production efficiency and quality as well as improving ergonomics. The SCR is a 

representative example of how we can leverage both human and robot capabilities in 

manufacturing, where the human handles dexterous assembly tasks while the robot handles 

the heavy payload of automotive parts. The application of such a robot system is clearly 

not limited to automotive assembly alone. Any manufacturing task that involves heavy-

payload transportation and manipulation tasks could be benefited from this type of robot. 

In addition, the robot could also have a wide range of potential applications in other areas 

such as assisting the elderly to transport and manipulate heavy objects at home [50], [51], 

and even assisting soldiers to carry heavy goods like a “robotic mule” in battlefields by 

leveraging its advantages of compact size, heavy payload, high flexibility, and intuitive 

user interfaces. 
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CHAPTER 4 

ROBOT LEARNING FROM DEMONSTRATION ON 

OBJECT PLACING TASKS IN ASSEMBLY 

4.1 Introduction 

Object pick-and-place is one of the most common manipulations. Especially in 

collaborative assembly tasks, besides the proper picking capability, how to place the part 

correctly is also necessary for robots to accomplish the assembly process. Though many 

studies have been conducted in robot grasping and motion planning for picking, little 

attention has been paid to object placing tasks. To fulfill this research gap, I propose a 

vision-based approach to modeling the object placing tasks via contour-based task 

representation in this chapter. The proposed framework can be used to identify the 

correction of the task process and the final state of the object placing tasks with a single 

web camera.  

The sequential assembly operations may contain multiple pick-place actions, which 

pick up an object and place it onto a workpiece with a specific position and orientation. To 

accomplish the task, correct objects should be placed in the correct position and orientation 

onto the workpiece in a correct sequence. Inspired by the Semantic Event Chain (SEC) 

[23] and Generalized Voronoi Diagrams (GVD) [52], we proposed a framework to 

modeling object-placing tasks, which allows the robot to learn the action sequences and 

the import intermedia and final states of object placing tasks from human demonstration 
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videos. In the proposed framework, Rational Scene Dictionary (RSD) is used to present 

the object-action relations and sequence of the task, while GVD-based contours of the 

Keyframes of Task (KFT) are used to present the relative position and orientation between 

the corresponding objects and workpiece in the import intermedia and final state. The 

object placing tasks can be demonstrated through either a video of human demonstration 

or a simulation, and then it can be modeled with the proposed framework while a large 

number of pre-defined features, task states, or primitive skills are not necessary. 

The modeling and learning of object placing tasks are presented in Section 4.2. The 

results of task learning and validation are discussed in Section 4.3. The chapter is 

summarized in Section 4.4. 

4.2 Object Placing Task Modeling and Learning 

In this section, we will introduce the approaches and algorithms of the framework 

for object placing task modeling. Before discussing details about the algorithms, we 

provide an overview of the framework. Figure 4.1 illustrates the block diagram of the 

framework. The task demonstration video is regarded as an image sequence. The 

segmentation and tracking, which is not the key part of our research, is achieved by 

standard methods based on morphological transformations [53]–[55]. The rational scene 

dictionary (RSD) presents the general special relations between segment pairs. The key 

frames of a task (KFT) abstracted from RSD encode the important changes in spatial 

relations in the task process. According to the object relation changes in KFT, the frames 

and the corresponding segment-pairs in these frames for the computation of GVD-based 

contours can be determined. When an object is placed onto a workpiece, the position and 
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orientation of the object with respect to the workpiece can be represented by the GVD-

based contours. Fourier Descriptor (FD) [56], [57] is used to represent the contours. The 

similarity between two GVD-based contours is estimated by the Hausdorff distance [58].  

Therefore, in this framework, the sequence and general special relations for object placing 

are modeled by KFT, which is a subset abstracted from RSD. For a specific object-pair, 

the relative accurate position and orientation of corresponding objects are modeled by 

GVD-based contours, while the FD and shape similarity measurement could potentially be 

used for fault detection and waypoint searching. In the following sections, we describe the 

algorithm of each step in detail. 

4.2.1 Rational Scene Dictionary (RSD) 

The RSD is a dictionary that presents the general special relations for all object-

pairs in the workspace. The pure background of the workspace is also regarded as a large 

object as a whole. In our framework, we considered two kinds of relations for object-pair, 

touching and overlapping, such that the RSD consists of two sub-dictionaries, one is for 

Figure 4.1. Block diagram of the object placing task modeling framework. 
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touching object-pairs and the other is for overlapping object-pairs. The algorithm of RSD 

starts with the vertical and horizontal scan of the segmentation image. We assume that all 

the objects used for object-placing tasks are given, and the set of all the objects is denoted 

as 

  1 2 3, , ,..., nP p p p p=      (4.1) 

In a video frame, for each vertical or horizontal line in the segmentation image, we 

can obtain an object sequence according to the pixel values. Moreover, most of these 

sequences may repeat multiple times in the same frame depending on the shapes and 

special relations of the objects. The repeated times of all the object sequences in the frame 

are counted as a reference to determine the general special relations between different 

objects.  Therefore, for each video frame, we have a set of object sequences 

 ( )  1, 2 3, , ,..., mOS x os os os os=    (4.2) 

where x  is the frame ID and the elements in ( )OS x  are 

 
 

 1 2

: ( 1, 2,..., )

, ,..., ( )
k k k

k j

os Seq C k m

Seq q q q q P

= =

= 
   (4.3) 

where kSeq  is the object sequence and all its elements are belong to the set of objects. kC  

is the sum of the lines in the frame corresponding to kSeq . The touching and overlapping 

relations are determined according to the results of segmentation image scan by the rules 

in following. 

To determine the touching relation dictionary in this video frame, we need to search 

for all the object sequences in this frame. In the object sequence kos , once object ap  and 



38 

bp is adjacent, the object pair ,
t

a bop is recorded and its corresponding counter number of 

touching relation ,
t

a bC will increase kC . After traversing all the object sequences in the 

frame, a dictionary of touching relations of this frame can be written as 

 

( )( )
1 1 1 1 2 2 2 2, , , , , ,: , : ,..., :

, 1, 2,..., 1, 2,...,
r r r r

x t t t t t t
tch a b a b a b a b a b a b

i i k

D op C op C op C

a b Seq i r and k m

=

 = =
(4.4) 

For overlapping relation, since we want eventually present the relative position and 

orientation of corresponding segment pair through GVD-based contours, we define one 

object being overlapped by the other object when the later object is fully surrounded by the 

former object. To identify this kind of overlapping relations in the frame, for specific object 

sequence kSeq , we check the pair-triplet and the find the sub-sequence in the format

{ , , }a b aq q q , which indicates aq is potentially overlapped by bq . Once the sub-sequence is 

found, the object-pair ,
o

a bop  is recorded and its corresponding counter number of 

overlapping relation ,
o

a bC   will increase kC . A set of object-pairs and their corresponding 

counter number are obtained after traversing all the object sequences. In this set of object-

pairs, the objects that overlapping multiple objects and the objects crossing the boundary 

of the workspace are removed. The remaining object-pairs and their corresponding counter 

numbers formulate the dictionary of overlapping relations, which can be written as 

 
( )( )
1 1 1 1 2 2 2 2, , , , , ,: , : ,..., :

, 1, 2,..., 1, 2,...,
s s s s

x o o o o o o
ovp a b a b a b a b a b a b

i i k

D op C op C op C

a b Seq i s and k m

=

 = =
(4.5) 

Figure 4.2 illustrates an example of the vertical and horizontal scan of the 

segmentation image. Object 2 overlaps Object 4 and Object 4 overlaps Object 6 (the 
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workspace background). Object 3 is crossing the boundary of Object 4 and Object 6, such 

that Object 3 is not overlapping either Object 4 or Object 6 but they three are touching with 

each other. 

The RSD of a demonstration video is obtained by combing the dictionary of 

touching relations and the dictionary of overlapping relations with their frame ID, which 

can be expressed as 

( ) 1 1 2 2
1 2{ :[ , ], :[ , ],..., :[ , ]}N Nx xx x x x

tch ovp tch ovp N tch ovpRSD X x D D x D D x D D= (4.6) 

where X  represents the specific object placing task and N  is the total number of frames 

in the demonstration video. 

4.2.2 Key Frames of Object Placing Tasks 

In the object-placing tasks, we mainly concern two kinds of task knowledge, one is 

the sequence of objects that are placed, and the other is the final state of each object that is 

placed. Therefore, the keyframes of task (KFT) are needed to be abstracted from the RSD 

Figure 4.2. Image scan for RSD computation. 
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of the specific task. Based on the algorithm of RSD generation, KFT can be determined by 

the length change of the overlapping relation dictionaries. If kx
ovpD is larger than 1kx

ovpD+

then one or more objects are moving and starting to overlap other objects. If the length of 

kx
ovpD  is smaller than the length of 1kx

ovpD+ then one or more objects are moving and

starting to cross the boundaries of other objects. Therefore, if the length of the overlapping 

relation dictionary decreases at thi frame and it keeps the same from ( ) ( )thi j j i− 

frame to thi frame, then the roundness of ( )/ 2i j− is used as the frame number for one of 

the keyframes. Besides these frames, the last frame of the demonstration is also considered 

as one of the keyframes. The KFT of a specific task is a subset of the RSD, which can be 

written as  

( ) 1 1 2 2

1 2

1 2

{ :[ , ], :[ , ],..., :[ , ]}

( , ,..., [1, ])

M M

M

k k k k k k
k tch ovp k tch ovp k tch ovp

M

KFT X x D D x D D x D D

k k k N

=


 (4.7) 

Figure 4.3 illustrates an example of KFT for a demonstration with 617 frames in 

total. The task is to place the red-rectangle object on to the dark-rectangle object at its up-

right region, and then place the yellow-rectangle object on to the dark rectangle object at 

its left region. Three keyframes are abstracted based on the RSD of this task. The 128th 

frame represents one of the middle waypoints before the red-rectangle object being placed 

onto the dark rectangle object. The 402nd frame represents the final location of the red-

rectangle object on the dark-rectangle object and one of the middle waypoints of the 

yellow-rectangle object before it is placed onto the dark-rectangle object. The 617th frame 

is the final state of all the objects of this task.  
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4.2.3 Task Representation by GVD-based Contours 

From the previous section, we have obtained the keyframes of the task. To describe 

the relative location between objects in these specific keyframes, GVD-based contours 

with respect to certain objects are computed for each keyframe. Figure 4.4 illustrates the 

steps and results of the computation of the GVD-based contours for a specific keyframe in 

KFT. First, one object and the objects placed onto it can be represented by binary 

occupancy grids. Based on the values in KFT, the binary occupancy grids for each object 

who has one or more other object placed on it can be calculated. For example, Figure 4.4 

(b) represents the objects that directly on the workspace background in the format of binary

occupancy grids, while Figure 4.4 (f) represents the red-rectangle object that is placed onto 

the dark-rectangle object. Then GVD of each binary occupancy grids is computed through 

classical Brushfire algorithm [59] such as the results in Figure 4.4 (c) and (e). In order to 

use the GVD to describe the relative position and orientation between the corresponding 

object and reduce the influence of the noise in image segmentation and tracking, the 

external profile of GVD is computed to get the GVD-based contours. These GVD-based 

Figure 4.3. Example of KFT for a demonstration video. 
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contours are closed shapes showing as the green contours in Figure 4.4 (a) and (d), which 

contain the information of the relative position and orientation of the object and can be 

represented by Fourier Descriptor. The GVD-based contours of corresponding frames in 

KFT can be written as 
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4.2.4 Task Description and Checking by Fourier Descriptor and Shape Similarity 
Measurement 

Fourier Descriptor is used to describe the GVD-based contours (Figure 4 (a) and 

(d)). Let cnt  be one of the GVD-based contours in ( )GVD X  which is described by U

pixels in total. Let ( )( ), 0,1,..., 1i ix y i U= − be the coordinates of the pixels in the image

frame. The pixels can be projected to the complex plane by 

Figure 4.4. GVD-based contours for a specific keyframe. 
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( ){ } { } 0,1,..., 1iz x jy i U= + = − (4.9) 

The FD of this contour cnt  is defined as the discrete Fourier transform for each 

pixel on the complex plane by 

( )

0 1 1
21

0

{ } { , ,..., }

0,1,..., 1

U
jU kn

U
k n

n

Z Z Z Z

Z z e k U


−

− −

=

=

=  = −
(4.10) 

After the FD is normalized, the Hausdorff distance can be used to compute the 

similarity between two GVD-based contours. Let 1cntZ  and 2cntZ  be the normalized FD of 

two GVD-based contours, the Hausdorff distance between these two contours can be 

computed by

1 1 2 22 2 1 1

1 2 1 2 1 2( , ) max{ sup inf ( , ), sup inf ( , )}
cnt cntcnt cnt

H cnt cnt
z Z z Zz Z z Z

d Z Z d z z d z z
  

= (4.11) 

4.3 Experimental Results and Validation 

In this section, we test and verify the functionality of our framework by comparing 

the results from different demonstration videos. First, a demonstration of the target task 

analyzed using the proposed framework. Then, the KFT and corresponding GVD-based 

contours are used to estimate multiple object-placing operations. 

4.3.1 Results of Task Modeling and Learning based on Human Demonstration 

The setup of the experiment including the camera, the objects, the corresponding 

configuration of workspace and the robotic system is illustrated in Figure 4.5. In the 

experiment, the target object-placing task is to first place the blue-triangle object onto the 

dark-rectangle object. The blue-rectangle object should finally locate at the top-right region 
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of the dark-rectangle object and point to the left. Then the yellow-rectangle object is placed 

onto the dark-rectangle object, who should locate at the right-bottom region of the dark-

rectangle object and its long side should be parallel to the right-side edge of the dark-

rectangle object. The task process is shown in Figure 4.6. The demonstration video of this 

task is generated in a simulation environment. The video contains 643 frames in total, and 

the original frames are with resolution 1920x1080 pixels. The frames are then cropped to 

1440x1080 pixels and resized to 480x360 pixels before feeding to the proposed framework. 

Figure 4.5. Experiment Setup. 

Figure 4.6. Modeling of the target object-placing task. 
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Figure 4.7 illustrates the process to get the GVD-based contours for a single 

keyframe. Figure 4.7 (a) is the original image whose background is removed; Figure 4.7 

(b) is the visualization of the segmented image. From the segmented images, we can

identify that the locations of the two rectangle objects with respect to the workspaces and 

the location of the triangle object with respect to the dark-rectangle object should be 

estimated by GVD-based contours. Then their corresponding binary occupancy grids, 

GVD, and GVD-based contours are generated separately. Figure 4.7 (c) ~ (e) illustrates the 

binary occupancy grids, GVD and GVD-based contours (in green color) of the two 

rectangle objects. Those of the triangle object with respect to the dark-rectangle object is 

shown in Figure 4.7 (f) ~ (h). After all the frames processed by the algorithm steps: 

segmentation and tracking, RSD, KFT, the keyframes of this task are the 160th, 422nd, and 

643rd frames. The overlapping and touching relations between the objects in these 

keyframes are list as follow: 

160 160 160 160 160 160{'160 ' :[ , ], '422 ' :[ , ], '643' :[ , ]}tch ovp tch ovp tch ovpKFT D D D D D D=

(4.12) 

The corresponding overlapping dictionaries in KFT are 

Figure 4.7. Image processing to get GVD-based contours. 
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The (4.12) and (4.13) present the data structure of the KFT and the overlapping 

dictionaries in the KFT, which are illustrated in (4.7). The keys in KFT are the 

corresponding frame numbers. Therefore, the sequence of the object-placing task can be 

obtained by simply sorting the keys in KFT. Each key in KFT is related to two dictionaries, 

one is for overlapping relations, and the other is for touching relations. (4.13) shows the 

data structure of the dictionaries for overlapping relations. The keys in the dictionaries are 

the corresponding object-pairs, whose first element is the object at the bottom. The value 

of each key is the counter of the lines in the image scan process. The GVD-based contours 

are visualized in Figure 4.6 as green contours in the corresponding images of keyframes. 

Based on our test, when the correct object approaching the corresponding target location, 

the GVD-based contour of the current state will have higher similarity with the 

corresponding target frame. When the correct object is located at the correct location, the 

Hausdorff distance between the GVD-contour corresponding to the current workspace state 

and the target key frame goes to a minimal value, which is around 5~10. In this specific 

task, the threshold of the Hausdorff distance is set as 11. 

4.3.2 Validations of Tasks Models by Checking Incorrect Tasks in Manufacturing 

The task modeling approach is verified by checking incorrectly performed tasks 

with the learned task models. Two types of faults are applied as examples: incorrect object 

location and incorrect object sequence. Figure 4.8 illustrates the situation that the first part 
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is not placed at a correct location in the task. From the corresponding keyframes of the 

demonstration, we can see the overlapping relations are the same in the process of the task, 

but the GVD-based contours of corresponding frames are different. In this test, the 

Hausdorff distance between the contours in Figure 4.8 (a) and (c) is 32.846, the Hausdorff 

distance between the contours in Figure 4.8 (b) and (d) is 32.846. They are both larger than 

the threshold value in our test. Thus, the incorrect object position can be detected by the 

difference of GVD-based contours.  

Similarly, Figure 4.9 illustrates the situation that the second part is not placed to the 

correct orientation. In this case, the general special of objects in the process of the task is 

still as same as the target demonstration. However, in the final state, the GVD-based 

contours in Figure 4.9 (a) and (b) are different, the Hausdorff distance between them is 

52.438, which is larger than the threshold in our test. 

Figure 4.8. Fist part is not placed to correct position. 
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Figure 4.10 illustrates the situation that an undesired part is used as the second part. 

In this case, both the value of KFT and GVD-based contours show the difference of the 

current state and the target state. The overlapping relation in Figure 4.10 (a) is 643
ovpD in 

Eq. (13), while the overlapping relation in Figure 4.10 (b) is 

654 D ={'[4, 2]': 149, '[6, 4]': 233, '[4, 1]': 185}ovp (4.14) 

The first object-pair in 643
ovpD and 654

ovpD is different. Therefore, the difference in the 

dictionary of overlapping relation can tell the undesired part is placed. Further, the size of 

the undesired object is different from the target object, so the corresponding GVD-based 

contours are different. In this case, the Hausdorff distance between the GVD-based 

contours in Figure 4.10 (a) and (b) is 30.406, which is larger than the threshold in our test. 

Figure 4.11 illustrates the situation that the object sequence in the task has an error 

with respect to the sequence of the target task. Though the final state of these two 

demonstrations is the same (Figure 4.11 (b) and (d)), the keyframes for the intermediate 

Figure 4.9. The second part is not placed in the correct orientation. 

Figure 4.10. Undesired part is placed in the scene. 
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state are different (Figure 4.11 (a) and (c)). The object overlapping relations of Figure 4.11 

(a) is represented as 422
ovpD   in Eq. (13), while the object overlapping relation in Figure 

4.11 (c) is 

349 {'[6, 1]': 186, '[4, 3]': 208, '[6, 4]': 331}ovpD = (4.15) 

The object-pairs in 422
ovpD and 349

ovpD  are different from each other. Moreover, the 

Hausdorff distance between the GVD-based contours in Figure 4.11 (a) and (c) is 30.406, 

which is larger than the threshold in our test. 

The results above indicate that it possible to identify the correct task process and final 

states for object-placing tasks with the proposed framework. The key intermedia states and 

the final state of object-placing tasks can be abstract from the demonstration videos. The 

GVD-based contours are possible to be used for relative position description in object-

placing tasks. 

4.4 Conclusion 

The objective of the proposed approach is to model and learn the object-placing task 

from human demonstration. The experimental results indicate that our framework can 

Figure 4.11. The incorrect sequence of object-placing actions. 
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abstract the knowledge of object placing tasks from a human demonstration video in a 

simulation environment. The object relation sequence can be described by the RSD, while 

the import intermedia states and final states of the placed object are possible to be 

represented by the KFT and GVD-based contours. Our approach does not need many pre-

defined features or a large-scale dataset for the task modeling. The knowledge of the object-

placing tasks is eventually presented by the small scale of data: RSD, KFT matrix, and 

corresponding FD of GVD-based contours in the frames. One potential future work is to 

apply the algorithm for more complicated on-line human fault detection in smart 

manufacturing. In addition, the proposed framework will also be used to guide robots to 

accomplish or assist humans to accomplish manufacturing tasks after learning from human 

demonstrations in future work. 
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CHAPTER 5 

ROBOT LEARNING FROM DEMONSTRATION ON 

ASSEMBLY ASSISTANCE USING CNN 

5.1 Introduction 

Starting with the relatively simple object-placing tasks in assembly, I stepped further 

for robot learning of assembly assistance in collaborative assembly tasks. In current 

automotive assembly applications, professional robot programming and complex system 

setup process are required to implement most of the autonomous assembly process. The 

data-driven approaches are potentially eliminating the complexity of the assembly task 

modeling and system setup. Thus, I proposed a teaching-learning-collaboration (TLC) 

framework to enable the conventional industrial robot to learn assembly tasks and assist 

humans in the collaboration process. With the framework, humans can teach robots with 

simple joystick operations, while the data can be automatically labeled for training. The 

trained robot can assist humans actively in collaborative assembly tasks. The research was 

conducted with a custom-defined convolutional neural network with single RGB image 

input of the human-robot shared workspace. The approach also suggests a potential way 

by which the robot can be personalized by its users to assist them in their preferred ways 

in collaborative assembly applications. 

An overview of the CNN-based teaching-learning-collaboration (TLC) framework is 

proposed in Section 5.2. The collaborative assembly tasks, which are modeled as a time 



52 

series are analyzed in Section 5.3. The robot learning of assembly tasks from human 

demonstrations using CNN is discussed in Section 5.4. Section 5.5 gives the experimental 

results and analysis. The chapter is summarized in Section 5.6. 

5.2 An Overview of the CNN-based TLC framework 

The existing approaches for human-robot collaborative tasks usually need a set of 

complex modeling and setup efforts [60], [61], and robots usually need to be programmed 

by a well-trained expert. This increases the cost of applying collaborative robots in human-

robot assembly and also makes the collaborative robots very complicated and very 

inconvenient for end-users to use. To address this challenge, deep learning is introduced 

and adapted to the teaching-learning-collaboration (TLC) framework to enable robots to 

easily learn undefined tasks and workspace situations from human demonstrations and 

enable the trained robots to actively assist human operators in the human-robot 

collaborative assembly in real-time. 

The system diagram of the TLC framework is shown in Figure 5.1.  In the human-

phase, the collaborative assembly task is allocated to both the human and the robot. In 

general, the robot should cooperate with the human operator to handle the lower-precision 

and higher-strength jobs, while the human operator focuses on the higher-precision and 

lower-strength assembly operations. To demonstrate the collaborative assembly task, the 

human operates the robot through intuitively human-robot interactions, such as leading-

through, joystick operation when conducting the assembly maneuvers. Therefore, human 

operators are able to teach the robot to accomplish collaborative assembly tasks through 

natural demonstrations. In the robot-learning phase, the robot learns the expected behaviors 
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in the process of collaborative assembly tasks online based on the scene of the shared 

workspace captured by the version system and the robot operations taught by the human 

operator. Based on the task knowledge learned from human demonstrations, in the human-

robot collaboration phase, the robot makes action decisions and generates proper assistant 

behaviors by given real-time images of the shared workspace. In this work, by modeling a 

collaborative assembly task as a time series, CNN is introduced to map the real-time vision 

of the shared workspace to proper robot assistant behaviors. 

5.3 Time Series Analysis of Collaborative Assembly Tasks 

Human-robot collaborative assembly tasks are complex time series, which include 

massive strict constraints (e.g. force/torque, tolerance, etc.), plentiful flexible 

manipulations (e.g. personalized preference in gestures, tools, and sequence of maneuvers, 

etc.) and dynamic environments. These characteristics lead to challenges to pre-define and 

program every possible state that may happen in the collaborative assembly. However, any 

specific assembly process must follow a certain sequence of requirements to achieve a 

successful final assembly.  

Figure 5.1. The system diagram of the TLC model. 
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Figure 5.2 illustrates the time series of a collaborative assembly task. From a 

mechanical perspective, checkpoints iCP  represent a series of discrete states, which are 

necessary and order-sensitive for the mechanism targeting for a successful final assembly. 

A sub-assembly iSA is defined as a set of maneuvers, which make the state of the 

mechanism transfer from the current checkpoint to the next checkpoint. The sub-assembly 

processes often include plenty of flexible operations accomplished by human operators 

which are not order-sensitive and highly based on the humans’ personal preferences. A 

station iP represents a position and orientation of the semi-assembled machine that leads

to the comfortable and convenient installation of new parts for human operators 

corresponding to the current sub-assembly section. In summary, an entire assembly task 

can be regarded as a time series consists of checkpoints, sub-assembly processes, hold and 

transfer of stations of the semi-assembled machine. The robot must generate proper 

behaviors to move from one station to another in real-time based on the state of the 

assembly task and the behavior of the human operator. 

    For an arbitrary human-robot collaborative assembly task, the configurations of stations 

are always discrete and finite though their values are unknown in advance. The 

Figure 5.2. The time series analysis of collaborative assembly tasks. 
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configurations of stations are mainly determined by the design of the mechanism and 

humans’ personal performances. Therefore, the problem is formulated as two steps: 

• Step 1: the robot learns the applicable station set { }P  for the collaborative

assembly. In this process, the information of the tasks, such as the operations of the

human operator and the states of semi-assembled mechanism, are represented

through sequences of camera frames. Meanwhile, the applicable station set { }P is

abstracted from the position and speed feedback of the robot in human

demonstrations.

• Step 2: the robot generates proper behavior to assist the human in the collaborative

assembly. In this human-robot collaboration process, the robot should generate

proper behavior based on the real-time images of the shared workspace. This is

achieved by a trained CNN, which maps the situation of the shared workspace to a

set of proper behaviors learned in the human demonstrations.

5.4 Learning from Demonstrations using CNN 

5.4.1 Robot System Configuration 

The robot system configuration for the human-teaching process is shown in Figure 

5.3. The robot holds the semi-assembled mechanism in its gripper, the state of the 

workspace is captured by a camera. In the process of human demonstrations, the human 

operator uses a joystick to control the motion of the robot. After moving the robot to a 

station that is convenient for him/her to conduct the following sub-assembly maneuvers, 

the human operator accomplishes the desired sub-assembly maneuvers by selecting correct 

parts and assembling them to the semi-assembled mechanism with hand tools. For each 
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round of demonstration, we can obtain four datasets of time series data: a series of 

timestamped images, which include the information of mechanism status and human 

operations; the moments when the robot speed turns to zero, which indicate the human 

intends to hold the position of the end-effect; the moments when the robot starts to move, 

which indicate the human wants to move the robot to the next station; and the positions of 

the end-effector when the robot speed turns to zero, which indicate the set of stations 

selected by the human operator for the assembly task. Based on these four datasets, the 

images can be automatically and effectively labeled according to their timestamps.  

5.4.2 Automatically Image Labeling 

Unlike many deep learning cases, whose datasets are manually labeled, the image 

frames of the workspace in the collaborative assembly process are automatically labeled 

based on the timestamps.  Figure 5.4 illustrates the timing sequence to label the image time 

series data sampled in the human demonstration. The algorithm of automatic image 

labeling is shown in Algorithm 5.1. When the robot is stopped at a station, the position of 

the robot end-effector is recorded through the robot feedback. When the human operator is 

conducting the assembly maneuvers, the real-time images are sampled and saved to the 

Figure 5.3. Robot system configuration for learning from demonstration. 
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computer, and all the images are timestamped. All these timestamped images are mapped 

to a robot behavior, which is the robot should stop at this specific station to wait until the 

sub-assembly is accomplished. 

After the current sub-assembly process being finished, the human operator uses a 

joystick to move the robot to the next station. The real-time images of the process that the 

robot transfers from the current station to the next station are also captured by the camera 

and all the images are timestamped as well. When the robot arrived at the next proper 

station for the human operator to conduct the following assembly maneuvers, the robot is 

stopped by the human via the joystick. The images in this period should be mapped to a 

robot motion, which is the robot end-effector transfers from the previous station to the 

current station. The current station is also recorded via robot position feedback. 

Since the human operator uses a joystick to operate the robot and uses hand tools to conduct 

the assembly maneuvers, there is a time interval t when the human operator switches 

his/her hand between the joystick and hand tools. In this time interval, the last sub-

assembly has been finished and the state of the assembly has already arrived at the 

checkpoint, therefore, the images in this period should be mapped to the next robot motion. 

In our experiment, we found that the time interval t is generally kept consistent in serval 

rounds of human demonstrations and is affected by the level of proficiency of the human 

Figure 5.4. Automatic image labeling based on time series. 
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operator. By selecting a proper value of the time interval, the error rate of image labeling 

can be controlled from 1% to 2%, which is normally acceptable for CNN training.  

Algorithm 5.1. Data Acquisition and Automatic Image Labeling. 
Algorithm: Data Acquisition and Automatic Image Labeling 
Initialization 

Initialize the list of “robot moving moment” 
Initialize the list of “robot stopping moment” 
Initialize the list of “robot stopping pose” 
Initialize the robot position and velocity 
Initialize the folder for temporary image storage 

Human demonstration 
While the current round of demonstration is not finished, do 

Save the timestamped image of workspace 
Read current robot speed 
Read current robot position 

If the robot is stopping, then 
Append the current robot position to “robot stopping 
pose” 
Append the current timestamp to “robot stopping 
moment” 

If the robot is starting to move, then 
Append the current timestamp to “robot moving 
moment” 

If the current round of demonstration is finished, then 
Break the while loop 

Automatic image labeling 
Set the proper time interval t  
For image in temporary image storage do 

Get the timestamp of the image it
Find the nearest timestamp st in the list of “robot stopping
moment” 
Find the nearest timestamp mt  in the list of “robot moving 
moment” 
If it is earlier than st and it is later than mt t−  , then 

Get the corresponding robot stopping pose P  at st
Label the image as “Moving to P ” 

If it is later than st and it is earlier than mt t−  , then 
Label the image as “Stop at current position” 
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5.4.3 Structure of CNN 

The structure of CNN and system diagram we used in this work is shown in Figure 

5.5. The detail of the structure of CNN is given in Table 5.1. The input size is notated by 

image width, image height, and number of channels. The filter shape of convolutional 

layers is noted by filter height, filter width, filter height, number of channels, and number 

of filters. The image of the workspace is captured by a webcam and the sampling frequency 

is 2Hz. This sampling frequency is selected based on the normal operating speed of the 

human operator, which can obtain enough data to present the assembly process and avoid 

too many repetitive images. The original RGB images obtained by the camera are first 

cropped and resized to 800 x 300 x 3. Then the image is pixel-wise normalized in each 

channel by 
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where H  is the height of the image, W  is the width of the image, and  0,255ix   is the

pixel value at a specific position in one channel of the RGB image. The parameters of the 

CNN applied in this work are illustrated in Table 5.1. It includes six convolution-pool 

sections after the image normalization. The number of filters is variant corresponding to 

the convolutional layers. The filter size and the stride of the max pool are set as 2 x 2 and 

1. After the convolution-pool sections, the output is flattened as an array with 4160
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elements. Then, there are two fully connected layers, which have 512 and 256 neurons 

respectively. A Softmax classifier is used to calculate the loss function and map the 

probability to each robot's behavior. The probability of each potential robot behavior can 

be written as 
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where K  is the total number of robot behaviors to predict in the collaborative assembly 

task, which is learned from the human demonstrations. The sparse cross-entropy loss is 

applied for the measurement of classification measurement. The Adam optimizer is 

implemented for the training of the CNN. The initial learning rate is set as 0.002 with an 

exponential decay rate of 0.98. Considering the limitation of the memory on our 

workstation, the batch size of training, validation, and testing are set as 100 images. After 

every 500 iterations, the updated CNN is validated throughout the overall validation 

dataset. If the validation result is better than the previous validation, then the current 

parameters of the CNN are saved to a file. The maximum training epochs are set as 100 

rounds. Once the training is finished, the CNN parameters with the minimum validation 

error are selected for robot assistance generation. 
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Figure 5.5. The structure of CNN and robot configuration for CNN implementation. 

Table 5.1. Structure of CNN 
Type Stride Input Size Filter Shape 
Conv 1 800 x 300 x 3 3 x 3 x 3 x 16 
Max 
Pool 2 800 x 300 x 3 Pool 2 x 2 

Conv 1 400 x 150 x3 3 x 3 x 3 x 32 
Max 
Pool 2 400 x 150 x3 Pool 2 x 2 

Conv 1 200 x 75 x3 3 x 3 x 3 x 32 
Max 
Pool 2 200 x 75 x3 Pool 2 x 2 

Conv 1 100 x 38 x 3 3 x 3 x 3 x 64 
Max 
Pool 2 100 x 38 x 3 Pool 2 x 2 

Conv 1 50 x 19 x 3 3 x 3 x 3 x 64 
Max 
Pool 2 50 x 19 x 3 Pool 2 x 2 

Conv 1 25 x 10 x 3 3 x 3 x 3 x 64 
Max 
Pool 2 25 x 10 x 3 Pool 2 x 2 

Flat N/A 13 x 5 x 64 N/A 
FC 1 1x1x4160 4160 x 512 
FC 1 1 x 1 x 512 512 x 256 

Softmax 1 1 x 1 x 256 Classifier 
* Conv is the convolutional layer
* FC is the fully connected layer
* Filter shape is noted by width, height, channel, and number of filters
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5.4.4 CNN-based Robot Assistance Generation 

The system configuration of the robot system for CNN implementation is illustrated 

in Figure 5.5. In this case, the human does not use the joystick to control the robot behavior. 

The diagram of the robot control logic is illustrated in Figure 5.6. The scenario of the shared 

workspace is sampled at a frequency of 10Hz, which is a normal frequency used in real-

time control. The same pre-process including cropping, resizing and normalization is 

conducted for the image as the human demonstration before feeding to the CNN. The 

trained CNN can generate the probability of each potential robot behaviors, which are 

learned from human demonstration. The robot behavior with the highest probability is 

selected to generate the robot assistant manipulation.  

If the selected behavior is to move the robot end-effector to a pose 

 , , , , ,P x y z   = , the desired pose with assigned robot speed will be sent to the low-

level controller. The low-level controller compares the received desired position with the 

real-time robot pose feedback. If the current robot pose is different from the desired robot 

pose, then a joint motion trajectory is generated based on the inverse kinematics of the 

robot in the low-level controller. The robot executes the joint trajectory to move to the 

desired robot pose with the assigned robot speed. If the selected robot behavior is to stop 

and hold the robot at the current pose, a zero robot velocity command will send to the low-

level robot controller, which makes the robot stop immediately. 
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5.5 Experimental Results and Analysis 

5.5.1 Experimental Setup 

The real robot system setup for the experiment is shown in Figure 5.7 (a). The 

experiment is conducted based on a Staubli TX40 industrial robot. A web camera is used 

to record the state in the human-robot shared workspace of the collaborative assembly. The 

system integration for robot control, joystick operation, computer version are based on 

Robot Operating System (ROS). The CNN is built, trained and deployed with TensorFlow. 

The low-level motion planning and robot speed control is implemented by the joint motion 

function of Staubli TX40 controller. 

The vehicle model (Figure 5.7 (c)) is disassembled as four wheels, the front 

bumper, the rear bumper, the semi-assembled chassis and the corresponding screws and 

washers for each component (Figure 5.7 (b)). In the human demonstrations, human uses 

the joystick to operate the robot to move the semi-assembled chassis to a proper location, 

which is comfortable and convenient for him/her to conduct the following sub-assembly 

Figure 5.6. Robot control diagram for CNN implementation. 
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maneuvers. The image of the workspace and the position of the robot are recorded for the 

CNN training. In the process of the CNN implementation, the real-time images are acquired 

by the webcam at the same location and the robot behavior is triggered automatically based 

on the image input of the CNN, which enables the robot to move to a position that is 

comfortable and convenient for the human worker to accomplish the assembly maneuvers. 

5.5.2 CNN Validation and Test Results 

In the learning efficiency perspective, the robot should accomplish the learning 

process in a few demonstrations of specific tasks for the collaborative assembly 

applications. In our experiment, we have created four datasets (D1- D4) from various 

human demonstrations of accomplishing the assembly tasks. Based on these datasets we 

have conducted the training, validation, and testing with two different configurations.  

Figure 5.7. Robot setup for human-robot collaborative assembly. 

Table 5.2. Dataset of Each Demonstration Process 
Class D1 D2 D3 D4 
Images of -80° 38 39 34 39 
Images of 0° 38 39 37 39 
Images of 90° 39 37 39 38 
Images of -178° 39 41 38 37 
Images of Hold 510 514 486 462 
Total 664 670 634 615 
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Firstly, we used only the dataset D1 to train and the dataset D3 to determine the 

parameters of the neural networks. The fourth demonstration was used as a test dataset for 

the trained neural networks (Figure 5.8). The training process was totally run for 100 

epochs, meanwhile, the entire images of the 3rd demonstration as the validation set were 

fed to the neural networks for every 500 iterations.  The parameters of the neural networks 

were saved whenever we get a better result in the validation. The best validation result is 

96.21% correct prediction which was achieved in 54000 iterations. The trained neural 

networks with the parameter corresponding to the minimum validation error get an average 

prediction accuracy as 98.34% with the test dataset. 

Secondly, we used the dataset D1 and D2 to train the neural networks so that the 

training dataset increased to 1334 images in total. The dataset D3 and D4 demonstrations 

were still used for validation and testing (Figure 5.9). The best validation result is 98.26% 

correct prediction which was achieved in 120000 iterations. The trained neural networks 

with the parameter corresponding to the minimum validation error get an average 

prediction accuracy as 98.49% with the test dataset. 

According to the results of the two different training-validation-testing 

configurations, the prediction accuracies on the validation dataset are both higher than 

95%. Through the CNN trained by the former configuration has a lower validation 

accuracy, the average test accuracies of both configurations are similar to each other, which 

Table 5.3. Training, Validation, and Testing Results 
Training Dataset Validation Dataset Test Dataset Validation (%) Test (%) 
D1 D3 D4 96.21 98.34 
D1 & D2 D3 D4 98.26 98.49 
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are 98.34% and 98.49% respectively. In our experiment, both CNNs successfully assisted 

the human operator in accomplishing the model vehicle assembly task. 

Figure 5.8. The training process of one-demonstration training configuration. 

Figure 5.9. The training process of two-demonstration training configuratioin. 
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The human-robot collaboration in the process of the two wheels and front bumper 

assembly is shown in Figure 5.10. The robot can hold or turn the proper station to make 

the human operator to install the parts easily. The scenario of an intelligent emergency stop 

function of the robot is shown in Figure 5.11. Once the features of human hands were 

detected, the control commands to stop the robot were generated by the neural networks. 

The robot stopped immediately before collision when the human operator’s hand suddenly 

approached the moving chassis. 

These experimental results demonstrated the trained CNN can generate the proper 

supportive behaviors automatically in the human-robot collaboration to help the human 

operator in the assembly of the model vehicle. In the process of human demonstrations, 

when the human hands are working on assembly maneuvers in the shared workspace, the 

robot is always stopping and holding on a specific station. The feature of human hands is 

successfully abstracted by the CNN, which enables the robot to stop immediately in many 

Figure 5.10. The robot supportive behaviors for two wheels and front bumper assembly. 
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other states besides the learned stations when the human hands are approaching the moving 

robot arm. 

5.6 Conclusion 

In this chapter, a CNN-based approach is proposed to learn and assist humans in 

assembly tasks from human demonstrations. Experimental results show that CNN is 

effective in robot learning during collaborative assembly and the robot can be trained to 

actively assist humans in the human-robot collaborative assembly process in real-time. The 

datasets for training, validation, and testing can be created and labeled online from human 

demonstrations. The approach can help alleviate the need for complex modeling and setup 

compared to the existing approaches. Our approach also suggests a potential way by which 

the robot can be personalized by its users to assist them in their preferred ways in 

collaborative assembly applications. 

Figure 5.11. The robot stops immediately when human hands approaching. 
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CHAPTER 6 

ROBOT LEARNING FROM DEMONSTRATION ON 

ASSEMBLY TASKS USING TC-IRL 

6.1 Introduction 

Existing robot learning approaches mainly focus on making robots repeat the tasks 

that humans have demonstrated and lack scalability to new tasks. Recently, some studies 

have applied inverse reinforcement learning (IRL) on task learning from human 

demonstrations, which use reward functions to capture human working patterns [62]–[65]. 

However, due to the large state and action space of IRL, it usually requires a large amount 

of training data and computational efforts. To address the above challenges of existing 

approaches, this section proposes a new teaching-learning-collaboration (TLC) framework 

to make collaborative robots learn the tasks from human teaching demonstrations and then 

assist humans to collaboratively accomplish the tasks including new tasks with larger 

geometric scales instead of repeating the learned tasks. The TLC model enables 

collaborative robots to learn from human demonstrations using a new task constraint-

guided inverse reinforcement learning (TC-IRL) approach. Compared to conventional IRL, 

it can significantly reduce the state and action space and computational efforts, and 

therefore lead to less training data requirement and better real-time performance. 

Furthermore, a robot assistance generation approach with task extension is then proposed 

to generate assistive robot actions to collaborate with humans to accomplish not only the 
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demonstrated tasks but also new tasks with larger geometric scales. The proposed 

approaches potentially allow humans to teach the robot by just a few small-scale 

demonstrations and then the robot can assist humans to accomplish a series of larger-scale 

tasks in the human-robot collaboration process. 

An overview of the TLC framework using TC-IRL is presented in Section 6.2. The 

representation of collaborative assembly tasks is discussed in Section 6.3. The robot 

learning of collaborative assembly tasks using TC-IRL is proposed in Section 6.4. The 

generation of the robot assistance which is guided by TC-IRL is presented in 6.5. The 

experimental results and analysis is discussed in Section 6.6. Finally, the chapter is 

summarized in Section 6.7. 

6.2 An Overview of TLC Framework Using TC-IRL 

In the conventional inverse reinforcement learning (IRL) approach [62], a 

collaborative assembly task can be modeled by a Markov decision process (MDP), which 

can be described by a tuple as 

( , , , , )M S A T R= (6.1) 

where S  represents the state space, A  represents the action space, ( ' | , )T P s s a=  is the 

state transition probability, [0,1)   is the discount factor, and R  is the reward function. 

In this IRL formulation, task constraints are connotative in the definitions of task states. 

Generally, all the potential states and actions that satisfy the task constraints must be 

defined in the model. For collaborative assembly applications, the actions and states in the 

MDP depend on parts, tools, assembly locations, sequences, etc. Therefore, the size of the 

action and state space will increase dramatically when the options of parts, tools, and task 
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scales are slightly increased. As known, the size of the state and action space is proportional 

to the number of unknown parameters that need to be learned through IRL, and the number 

of unknown parameters indicates the required amount of data for training of IRL. In 

addition, the size of the state and action space is also proportional to the computational 

costs of implementing IRL. Therefore, when applying conventional IRL to learning 

assembly tasks, due to the wide variety of the parts, tools, and assembly task variations, it 

will require a very large state and action space and therefore require a large amount of data 

for training and significant computational efforts for implementation. This makes it 

difficult to be applied to realistic assembly scenarios. To address this issue, we propose the 

TLC model based on the TC-IRL approach. An overview of the TLC model is illustrated 

in Figure 6.1. 

The goal of the TLC model is to enable the robot to learn the task constraints and 

human preference from human demonstrations, to assist the human to accomplish assembly 

tasks collaboratively by delivering proper parts and tools to proper human hands at the 

correct moment. In the human-teaching phase, a human demonstrates and allocates the 

collaborative tasks. In the robot-learning perspective, the robot learns the task constraints 

and human working styles from human demonstrations. In the human-robot collaboration 

phase, the robot generates supportive behaviors based on updated task parameters and the 

results of reward calculation and policy optimization. 

In the proposed approach, object-based constraints, location-based constraints, and 

human hand-based constraints are considered in the task constraint perspective. The object-

based constraints refer to the constraints between object pairs, for example, a certain part 
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must be assembled with a specific tool. The location-based constraints refer to the 

constraints that a certain part must be assembled to a specific location of the final product. 

Moreover, studies [66] indicated that about 10% of people are left-handedness. The human 

hand capabilities are considered as the human hand-based task constraints in the robot 

handover process. These types of constraints are all learned through the human 

demonstration in the proposed approaches. In addition to task constraints, the process of 

assembly also varies for different humans based on their working styles. According to the 

learned task constraints, we proposed TC-IRL to model the assembly process by a task 

constraint-guided Markov decision process (MDP) and extract the human preference in the 

assembly process via learning.  

In human-robot collaboration, the task can be new scalable tasks and the robot first 

uses natural language to guide the human worker to respond to the required task parameters 

for the new scalable task. Based on the learned task knowledge in human demonstrations 

and the new task parameters from the human response, the robot extends the learned 

knowledge from human demonstrations to the new task and then generate appropriate 

actions for both arms to appropriately assist the human during the new assembly process. 
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6.3 Collaborative Assembly Task Representation 

In the TLC model, the human worker and the robot work collaboratively in a shared 

workspace. The human worker uses his/her hands to assemble correct parts to correct 

locations with correct tools in sequence to formulate a final product in the teaching process. 

Then, the goal is to make the robot use both left and right arms hand over the correct parts 

and correct tools to correct human hands based on the knowledge learned from human 

demonstrations. To formulate the human-robot collaborative assembly task, we introduce 

the definitions of task resources.  

First, the set of tools can be defined as 

1 2{ , ,..., }
tsNTs ts ts ts= (6.2) 

where tsN is the total number of tools. The set of parts to be assembled is defined as 

1 2{ , ,..., }
arNAr ar ar ar= (6.3) 

Figure 6.1. The framework of TLC model using TC-IRL. 
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where ptN is the total number of parts. The parts are distinguished from each other by a set 

of attributes, such as shape, color, mass, etc. The set of the attributes that are used to 

describe different parts is defined as 

1 2{ , ,..., }i i i

i ari

ar ar ar
ar NV v v v= (6.4) 

where iar Ar  is an attribute, 
iarN is the total number of values corresponding to the 

attribute iar . The set of assembly locations can be written as

1 2{ , ,..., }
lcNLc lc lc lc= (6.5) 

where lcN  is the total number of assembly locations. The number of locations in the 

human-robot collaboration phase can be variant and different from that in the human 

teaching phase. The former location set depends on how the human worker wants to extend 

the task scale, while the later location set is generally the minimal scale of human 

demonstrations, which are enough to teach all the task constraints and human preferences. 

In this research, we present the derivation of the proposed approaches in two-dimensional 

assembly scenarios. 

6.4 Learning Collaborative Tasks via TC-IRL 

In this section, we present the detail of the task-constraint-guided inverse 

reinforcement learning (TC-IRL).  A general form of the MDP in the TC-IRL can be 

written as 

( , , , , )t t t t tM S A T R= (6.6) 
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where tS is the task constraint-guided state space, tA is the task constraint-guided action 

space, ( ' | , )t t t tT P s s a=  is the state transition probability, [0,1)   is the discount factor, 

and tR is the task constraint-guided reward function.  

In TC-IRL, the robot first learns the task constraints from human demonstrations, 

and the learned task constraints are then used to construct task constraint-guided state and 

action space which is much smaller than the original space. The task constraint-guided 

reward is then defined based on this constrained space and learning is conducted to learn 

the unknown parameters for assembly tasks from human demonstrations. In the following, 

we will first introduce the learning of task constraints including object-based task 

constraints, location-based task constraints, and human hand-based task constraints which 

are used to limit the size of the state and action space and then introduce the learning 

algorithm to learn how the human accomplishes the task.  

6.4.1 Learning of Task Constraints 

6.4.1.1 Object-based Task Constraints 

The object-based constraints refer to the constraints between object pairs, for 

example, a certain part must be assembled with a specific tool. Based on the definitions in 

the previous section, the object-based constraints can be represented by a matrix 

1,1 1,2 1,

,1 ,2 ,

c c

=
pt

ts ts ts pt
ts pt

N

obj

N N N N
N N

c

C
c c c



 
 
 
 
 

(6.7) 



 76 

where the thi  row of objC  corresponds to the tool its   in the set Ts , while the thj  column 

of objC  corresponds to the part jpt  in the set Pt . To indicate the object-based constraints, 

the element , 1i jc = if the part jpt should be assembled with the tool its , otherwise, , 0i jc =  

To learn the object-based constraints, the states of parts/tools and human hands are 

tracked in the demonstration process. The combined state at any given time can be 

represented as 

 ( ) [ ( ), ( )]T
h L Rs t obj t obj t=     (6.8)  

where ( )Lobj t  and ( )Robj t  indicate the object in the human’s left and right hand at the 

moment T t= . Each hand can be empty and can also with either a part or a tool in hand. 

Based on human operations in the demonstrations, we developed a statistic-based approach 

to learn the object-based constraints. For the thk  demonstration, let d
kL  be the overall 

length of the state sequence in the demonstration, 1kA  be the times of appearances of 

[ , ]T
h i js ts pt= , 2kA  be the times of appearances of [ , ]T

h j is pt ts= , and DN  be the total 

number of demonstrations. The probability that the part jpt  should be assembled with tool 

its  can be written as 

 1 2

1

1( , )
dN

k k
i j

kD i

A AP ts pt
N L=

+
=      (6.9) 

This probability is then used to update each element in objC  where for each part 

jpt in the set Pt , the tool with the highest probability is considered the object-based 

constraint, and the corresponding element is set as 1. 
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6.4.1.2 Location-based Tasks Constraints 

The location-based constraints refer to the constraints that a certain part must be 

assembled to a specific location of the final product. Each location-based constraint reveals 

which part is correct for a specific assembly location. The location-based constraint can be 

written in matrix format as 

1,1 1,2 1,

,1 ,2 ,

=
W

loc

H H H W H W

o o o
C

o o o


 
 
 
 
 

(6.10) 

where H  and W  are the height and width for the demonstrated tasks and ,i jo is a vector,

which indicates the values of attributes of the object assembled at the corresponding 

assembly location. 

For each assembly location in the task, we consider all the parts that have been 

installed at this assembly location throughout multiple human demonstrations. The 

probability distribution for a specific attribute iar at an assembly location ( , )x y can be 

calculated by 

D

( )
( | , ) i j

i j

count ar v
P ar v X x Y y

N
=

= = = = (6.11) 

where ( )count  function means to count the times of appearance of the given condition.

DN means the total number of rounds of human demonstrations. As we mentioned in the 

previous section, a two-dimensional assembly scenario is used for the derivation. 

Let hep be the probability of human demonstration errors. For the part at assembly 

location ( , )x y , the attribute  iar should have the value jv as the constraint if it satisfies
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( | , ) 1i j heP ar v X x Y y p= = =  − (6.12) 

This probability is then used to update the element in locC where the attributes 

whose probabilities satisfy (12) are all considered as constraints in ,i jo .

6.4.1.3 Human-Hand-based Task Constraints 

In dual-hand assembly operation scenarios, human workers may have different 

hand preferences to accomplish assembly operations. To enable the robot to deliver parts 

and corresponding tools to the proper hand of the human worker, we proposed a statistic 

approach to learn the human hand preference. The human hand-based task constraint with 

respect to part-tool pairs can be represented by a matrix 

1,1 1,2 1,

,1 ,2 ,

=
pt

ts ts ts pt
ts pt

N

hand

N N N N
N N

h h h

C
h h h



 
 
 
 
 

(6.13) 

The thi  row corresponds to the tool its in the set Ts , while the thj column 

corresponds to the part jpt  in the set Pt . The element , 1i jh = if the part jpt should be 

delivered to the right hand, while the tool should be delivered to the left hand. The element 

, 1i jh = −  represents the opposite hand preference. For those part-tool pairs, which are not 

satisfied with the object-based constraints or have never been appeared in any of human 

demonstrations, the corresponding element is set as , 0i jh = . 

With the definitions of variables in (6.9), for each specific part-tool pair ( , )i jts pt , 

the probability of different hand over methods among all the human demonstrations is 

computed by 
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1

1

2

1

1( , )

1( , )

d

d

N
k

i j
kD i
N

k
j i

kD i

AP L ts R pt
N L

AP L pt R ts
N L

=

=

= = =

= = =





(6.14) 

The higher probability in (6.14) is regarded as the human hand preference on this 

specific part-tool pair ( , )i jts pt . The values, -1 or 1, are signed to the corresponding 

elements in handC  based on the probability. 

6.4.2 IRL Learning of Assembly Tasks with Task Constraints 

In order to learn how human accomplishes the assembly task from his/her 

demonstration, we first need to construct the state and action space in (6.6). The learned 

object-based task constraints will help limit the size of the state space tS because only the 

constrained part-tool pairs ,i jc learned in objC are considered in the state definition. The 

learned location-based task constraint will further limit the state space tS because only 

parts whose attributes satisfy the constraint vector ,i jo in locC  are considered in the state 

definition for this location. The human hand-based task constraint will help limit the action 

space tA because for a specific part or tool, which hand to use in the action will be specified 

in the constraint handC . With constrained state space definition and constrained action space 

definition, the size of the entire state and action space (i.e., different action options at

different states) will then be significantly reduced.

The learning of assembly tasks is not only to learn the final assembly state but also 

to learn the process of how the human conduct the assembly during demonstrations. This 

process can be captured by a set of feature functions defined by  
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1 2[ , ,..., ,...]T
kf f f f= (6.15) 

where each kf  is defined in the state and action space  ( ) {0,1}kf s  to specify a special 

feature of the human assembly process. Each different value of the vector f  is 

corresponding to a human working style in the assembly, such as assembly the part row by 

row, left to right, from far to near with respect to his/her body position, etc. 

The overall human assembly process can be then reflected by a task constraint-

guided reward function which is defined as a weighted sum of the feature functions 

( ) ( , ) ( , )T
t k k

k
R s W f s a w f s a= = (6.16) 

where 1 2[ , ,...]TW w w=  is a set of weights to determine the preferences of the human on 

different features during assembly. The weights together will determine how the human 

would like to accomplish the assembly tasks.  

In this research, we propose to apply the maximum entropy inverse reinforcement 

learning (MaxEnt-IRL) [67] to learn the weights in the reward function from human 

demonstrations. We assume that the MDP is deterministic in this work. Therefore, 

according to the MaxEnt-IRL principle, the distribution over assembly strategy under 

deterministic transitions can be defined as 

1( | , ) exp ( , )
( )

T
t k k

k
P M W w f s a

Z W


 
=  

 
 (6.17) 

where  is the assembly strategy in human demonstrations, ( )Z W  is the partition function. 

The weights of features in the reward function can then be optimized by maximizing the 

entropy through 
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* arg max log ( | , )

arg max ( ) log ( )

W

T
k k

W k

W P s M W

w f s Z W

=

 
= − 

 


(6.18) 

6.5 TC-IRL Guided Robot Assistance 

In this section, we will introduce how to generate assistive robot actions to 

collaborate with humans to accomplish not only the demonstrated tasks but also new tasks 

with larger geometric scales. The robot will ask the human through natural language about 

the dimensions of the new scalable tasks and the human will respond through natural 

language before the collaboration starts.  

6.5.1 Extension of TC-IRL 

When the collaborative assembly task is extended to a larger geometric scale, the 

object-based task constraints and the human hand-based task constraints should usually 

remain the same. However, the location-based task constraints for the extended task must 

be updated to fit the extended tasks. In the two-dimensional assembly scenarios, each 

assembly location in the human-demonstrated tasks is regarded as a center of a cluster and 

then each assembly location in human-demonstrated tasks can be mapped to a new center 

of a cluster in the extend tasks throughout a linear scaling transformation, which can be 

written as 

' , 'ex ex

d d

W Wx x y y
W W

= = (6.19) 

where exW and exH are the width and height of the enlarged assembly process. dW and dH

are the width and height of the demonstrated assembly. The location-based task constraint 



82 

at each assembly location ( , )x y  in human-demonstrated tasks formats a center of location-

based constraint cluster at ( ', ')x y in the enlarged assembly task. Afterward, the constraint 

of each assembly location in the extended assembly task is determined by the k-nearest 

neighbor (KNN) classifier, which can be written as 

( , ) ( ', ')
d d

KNN
ex ex ex H Wc x y C x y= (6.20) 

where [1, ]ex exx W and [1, ]ex exy H  gives a specific assembly location in the extended 

assembly task, exc is the location-based task constraint corresponding to the given 

assembly location. The right side of the equation means selecting the same location-based 

task constraint corresponding to the center of the closest cluster among all the nearby 

clusters which are centered at different ( ', ')x y . The minimal Euler distance is used as the 

criterion for the KNN to select the closest cluster in the enlarged assembly task. 

When the collaborative assembly task is extended to a larger scale, the MDP model 

in TC-IRL must also be updated to fit the extended tasks. After knowing the dimensions 

(height and the width) of the extended task from the human, the task constraints will be 

first updated for the new task. Based on the new task constraints, the task constraint-guided 

states, actions, and rewards can be defined in the same way as the originally demonstrated 

task in the previous sections. to construct a new task constraint-guided MDP and therefore 

result in a new TC-IRL. The new MDP and TC-IRL will also retain the advantage of small 

size for state and action space because the learned task constraint has been fully extended 

to the new scalable tasks to guide the definition and state and action space.  
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Because the human does not change for the new scalable task, his or her preference 

on how to accomplish the task giving the state and action space should retain the same. 

Therefore, the feature functions will remain the same as the originally TC-IRL, and more 

importantly, the optimized weights *W  which are previously learned from human 

demonstrations can also be used for the new task. This means that we do not need to re-

train the TC-IRL at all although the tasks have been extended to a larger scale. We only 

need to use the learned reward function to update the reward map for the new tasks with 

newly updated state and action space and then use the assistance action generation 

approach which is introduced in the following section to generate appropriate robot 

assistance for the human. 

6.5.2 Robot Assistance Generation 

After the reward map is updated based on the reward function for the new task, the 

value function of the extended MDP can be determined through value iterations: 

1
'

( ) max ( ) ( ')

. . '

i ia s

a

V s R s V s

s t s s

+

 
= + 

 

→


(6.21) 

where 's  is the next state of the system after the action a is executed at the state s . The 

converged value function with respect to the state s is noted as ( )V s . Since we aim to make 

the robot assist human to accomplish the assembly task, we will, therefore, require the 

human to initialize the task. The human first needs to accomplish two assembly actions 

based on his/her preference to establish an initial condition for the robot. Then, in order to 

generate appropriate assistance, the robot will first recognize the current state of the task 
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via its sensing system in real-time and then determines which action to choose from the 

action space of the extended MDP model. 

( )* arg max ( ) ( ')

. . '

a
a

a R s V s

s t s s

= +

→

(6.22) 

The optimized action *a  can also infers the assembly location that the human should 

be working on, the robot can then search all the available parts that can be assembled to 

this assembly location based on the location-based constraints. To determine which robot 

arm should be used to pick which available part, the Euclidean distances from the work 

home positions of both robot arms to each available part are calculated. The arm and the 

part corresponding to the minimal Euclidean distance are paired. According to the selected 

part, the robot then generates the list of all the available tools based on the object-based 

constraints. Similarly, the arm and the tool corresponding to the minimal Euclidean 

distance are paired. Based on the selected part-tool pair, the delivery targets are determined 

with the human hand preference. Afterward, the robot will execute the pick and handover 

actions to use different arms to pick up the correct part and tool and deliver them to the 

correct hands of the human to assist him/her to accomplish the assembly task. 

6.6 Experimental Results and Analysis 

6.6.1 Experimental Setup 

The proposed approaches are verified and evaluated on a multi-model human-robot 

collaborative assembly test platform. The hardware setup of the test platform is illustrated 

in Figure 6.2. The ABB Yumi is a dual-arm collaborative robot. The human stands face to 

face with the robot to work in a shared workspace. A six-camera VICON motion capture 
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system is set up on the roof surrounding the workspace to capture the motion of human 

hands. The Kinect RGB-D sensor offers a top-view point cloud of the workspace for part 

recognition and tracking. Therefore, we can identify which part is operated by which 

human hand in the realistic operations in both human demonstrations and human-robot 

collaborations. The software of the test platform is developed based on robot operating 

system (ROS) and visualized through Rviz [68]. The trajectory-level motion planning from 

point to point is accomplished based on the open motion planning library (OMPL) [69] via 

MoveIt! motion planning framework [70]. 

In our experiments, the configuration of the workspace is illustrated in Figure 6.3. 

The shared workspace consists of the part/tool stack zone and the assembly zone. The 

part/tool stack zone is close to the robot, and the assembly zone is near to the human in the 

shared workspace. Initially, all the parts and tools are sorted in the stack zone and the 

assembly zone is empty. The 15 tools have three different types: square (S), hex (H) and 

crisscross (C), and all of them are in white color (W). The 18 parts have three different 

shapes: square (S), hex (H) and crisscross (C), and three different colors: red (R), yellow 

(Y) and blue (B). Mechanically, a part can be assembled with a tool if and only if they have

the same shape. In the following sections, we use “color/shape” to present a part or a tool 

for convenience, for example, “B/S” means the blue square part, and “W/H” means the 

white hex tool.  

In the human demonstration process, the human manipulates the parts and fasteners 

in the workspace by his/her both hands directly. The human operations are tracked by hand 

motion capture. Since the object-based constraints and the human hand preference are 
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learned via statistic-based approaches, the sample size is critical for the human teaching 

and robot learning phase. The human starts the demonstration according to the natural 

language introduction of the robot. After the human finishes all the object manipulations 

through naturally pick-assembly-place operations, the human should put both hands at the 

work home position to indicate the robot that the demonstration is accomplished. 

Figure 6.2. The hardware setup of the test platform. 

Figure 6.3. The workspace configuration and collaborative assembly task. 
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6.6.2 Results of TC-IRL in Collaborative Assembly 

In the experiment, the proposed approaches are verified on a designed assembly 

task that the upper half of the assembly locations are expected to be red parts but no specific 

constraint in shape; the lower half of the assembly locations are expected to be blue parts 

but no constraint on the shape. Three rounds of 2 x 2 human demonstrations are given. In 

the demonstrations, the parts in red color but with different shapes are installed to the 

assembly locations in the upper half plane, while the parts in blue color but with different 

shapes are installed to the assembly location in the lower half plane. Meanwhile, human 

always use the left hand for tool operations and manipulate the parts with the right hand. 

All the three demonstrations are accomplished raw by raw, right to left, and from near to 

far with respect to the human’s body position. 

The result of a collaborative assembly case for an extended 4 x 3 assembly task 

based on the human demonstrations of the previous section is shown in Table 6.1. In the 

human-robot collaboration phase, the human first picked up the blue/crisscross with his 

right hand and a corresponding white/cross tool with his left hand and placed the assembled 

part at location 11 (3, 4). Then, the human picked up a blue/hex part with his right hand 

and a corresponding white/hex tool with his left hand and placed the assembled part at 

location 10 (2, 4). After this, the task state was successfully initialized by the human, and 

the robot started to assist the human in the following steps of the task. The column of 

process prediction in Table 6.1 gives the assembly locations predicted by the robot at 

different task states. The columns of robot assistance illustrate the robot’s decisions on 
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using which robot arm to pick up which part or tool and delivering to which human hand 

based on the real-time task state and the learned task constraints. 

6.6.3 Quantitative Evaluations 

To evaluate the proposed model, we tested the model with different assembly 

processes, human hand preferences, and extended tasks with larger dimensions in assembly 

with 9 different kinds of parts and 3 different kinds of tools. Each participant is first 

introduced about how to demonstrate the object-based constraint, location-based 

constraint, human hand-based constraint, and assembly process by giving three human 

demonstrations with 2 x 2 dimensions based on his/her preferences. After the robot learning 

Table 6.1. Results of Robot Assistance in 4 x 3 Assembly. 

State Process 
Prediction 

Robot Assistance 
Arm Part/Tool Hand 

[10, “000000000011”] 9 (1, 4) L Part: B/H R 
L Tool: W/H L 

[9, “000000000111”] 8 (3, 3) L Part: B/S R 
R Tool: W/S L 

[8, “000000001111”] 7 (2, 3) R Part: B/C R 
L Tool: W/C L 

[7, “000000011111”] 6 (1, 3) R Part: B/S R 
L Tool: W/S L 

[6, “000000111111”] 5 (3, 2) R Part: R/C R 
R Tool: W/C L 

[5, “000001111111”] 4 (2, 2) R Part: R/H R 
R Tool: H L 

[4, “000011111111”] 3 (1, 2) R Part: R/S R 
L Tool: W/S L 

[3, “000111111111”] 2 (3, 1) L Part: R/C R 
R Tool: W/C L 

[2, “001111111111”] 1 (2, 1) L Part: R/H R 
L Tool: W/H L 

[1, “011111111111”] 0 (1, 1) L Part: R/S R 
R Tool: W/S L 

[0, “111111111111”] -1 (end) Stop N/A N/A 
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phase, the 2 x 5 and 4 x 3 collaborative assembly tasks are accomplished with robot 

assistance. The results in Table 6.2 show that with correctly calibrated the motion capture 

system, the robot tool center points, and the location of the objects, the proposed approach 

can obtain 100% accuracy in assembly sequence prediction, pick-delivery actions. 

Based on the same workspace configuration and the same collaborative assembly 

task, the comparison on the action space size, the state space size, the transition map size, 

and computation effort are shown in Table 6.3. For the TC-IRL, the corresponding results 

are automatically generated online by setting the proper parameters of the task size. For 

conventional IRL, we assume that the robot can use either left or right arm to pick up a part 

or a tool then deliver to either left or right human hand in each manipulation. The sizes of 

state and action spaces are then calculated for conventional IRL respectively.  

We can see that with TC-IRL, the size of the action space, state space, and state 

transition matrix of the MDP process in the model are significantly reduced compared with 

the model without the constraint extractions. Based on our task configuration, the size of 

the state and action space for TC-IRL is significantly smaller than conventional IRL and 

the advantages become more obvious when the task dimension increase, which leads to a 

dramatic increase of the state and action space for IRL. Based on the principle of IRL, the 

reduced size also implies reduced requirement on the training data, which is why our 

proposed approach only requires several human demonstrations. At the same time, because 

of the reduced size, the computational cost is also significantly reduced, which leads to 

better real-time performance. 
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6.6.4 Subjective Evaluations 

To evaluate the general acceptability and suitability of the proposed approaches, 

the robot is trained by a knowledgeable user via 2x2 demonstrations to adapt to two hand 

preferences (lefthanded and righthanded) and eight process preferences shown in Table 

6.4. We asked nine non-expert subjects to accomplish both 3x3 and 2x5 collaborative 

assembly tasks with the robot. Based on the training set, the parts in the first row of the 3x3 

assembly must be in red color, and the second and the third row must be in blue color. For 

Table 6.2. Statistic Results of Robot Assistance. 

Assembly 
 Process 

Hand 
Preference 

No. of 
Prediction 

(2x5) 

No. 
of 

Pick 
(2x5) 

No. of 
Handover 

(2x5) 

No. of 
Prediction 

(4x3) 

No. 
of 

Pick 
(4x3) 

No. of 
Handover 

(4x3) 
Accuracy 

1 L 8/8 16/16 16/16 10/10 20/20 20/20 100% 
R 8/8 16/16 16/16 10/10 20/20 20/20 100% 

2 L 8/8 16/16 16/16 10/10 20/20 20/20 100% 
R 8/8 16/16 16/16 10/10 20/20 20/20 100% 

3 L 8/8 16/16 16/16 10/10 20/20 20/20 100% 
R 8/8 16/16 16/16 10/10 20/20 20/20 100% 

4 L 8/8 16/16 16/16 10/10 20/20 20/20 100% 
R 8/8 16/16 16/16 10/10 20/20 20/20 100% 

* The elements from the 2nd column to the 7th column are represented by “number of correct actions / numbers
of total actions”

Table 6.3. TC-IRL vs Conventional IRL. 

Task 
Size 

Size of Action Set Size of State Set Size of Transition Map Computation 
Effort 

TC-
IRL 

IRL TC-
IRL 

IRL TC-IRL IRL TC-IRL IRL 

2 x 2 4 432 28 1.2754e7 3136 7.0277e16 0.00076 s >10
min

2 x 3 6 648 186 2.7894e11 207576 5.0420e25 0.02174 s >10
min

2 x 4 8 864 1016 1.1387e16 8258048 1.1204e35 0.4286 s >10
min

2 x 5 10 1080 5110 7.4713e20 261121000 6.0287e44 11.10 s >10
min

4 x 3 12 1296 24564 7.1895e25 7240681152 6.6989e54 292.2 s >10
min

* The 2 x 2 tasks are used in human demonstrations on the real robot
* The 2 x 5 and 4 x 3 tasks are tested on the real robot
* The computation effort includes the time cost of the extended MDP generation and training of IRL
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the 2x5 assembly, the first row of the final assembly are red parts, and the second row are 

blue parts.  Before starting the task, we spend 3-5 minutes to let them watch the attached 

video and give them a brief introduction simultaneously about how we train the robot, how 

the robot will assist them, and what kind of final assembly they are expected to accomplish 

with the robot. In the two assembly tasks, the subjects can choose different process 

preferences for different assembly tasks, and accomplish the tasks based on their own hand 

preference. Once both collaborative assembly tasks are completed, the subjects are asked 

to finish a questionnaire, which contains 9 questions (Q1 ~ Q9) to assess his/her personal 

feeling about the human robot collaboration process.  

Table 6.4. Human Working Process Preferences for Subjective Evaluation 
Preference Description 

1 Row by row, left to right, far to near with respect to the body position. 
2 Row by row, left to right, near to far with respect to the body position. 
3 Row by row, right to left, far to near with respect to the body position. 
4 Row by row, right to left, near to far with respect to the body position. 
5 Column by column, left to right, far to near with respect to the body position. 
6 Column by column, left to right, near to far with respect to the body position. 
7 Column by column, right to left, far to near with respect to the body position. 
8 Column by column, right to left, near to far with respect to the body position. 

Table 6.5. Participants’ hand preferences and selected process preferences 

Subject Hand Preference Process Preference 
3x3 Assembly 2x5 Assembly 

1 Righthanded 6 1 
2 Lefthanded 8 5 
3 Righthanded 5 1 
4 Righthanded 4 1 
5 Righthanded 1 5 
6 Lefthanded 2 5 
7 Righthanded 3 1 
8 Lefthanded 2 1 
9 Righthanded 4 1 
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The participants’ hand preference and the selected process preferences for the 

assembly tasks are shown in Table 6.5. There are three lefthanded participants and six 

righthanded participants in the subjective evaluation experiment. Different assembly 

processes are employed in the collaborations based on their own preferences. The items in 

the questionnaire are shown in Table 6.6. The evaluation indicators normally employed by 

previous studies on human-robot interaction [71]–[76]. Additionally, Question 6 to 

Question 8 is specific designed as the performance indicators for the proposed TC-IRL 

approach. In this research, the participants use the Likert scale [77] to rate their feeling. 

The Likert scale is divided into five levels, excellent, very good, good, fair, and poor, by 

nine points. Since we have nine participants, the full score for each evaluation indicator is 

45. The scores of each evaluation indicator by different participants are shown in Figure

6.4. The results of the total score, the average score, and the standard. deviation (SD) of 

each performance indicator is shown in Table 6.7. The collaboration fluency and the robot 

response speed are between very good to good, which indicates the trajectory-level motion 

Table 6.6. Items in the questionnaire for the subjective evaluation 
Item Description 

Q1 What do you think of the fluency [71] to naturally collaborate with the robot by this 
approach? 

Q2 What do you think the robot response speed [72] in human-robot collaboration by this 
approach? 

Q3 What do you think the safety [73] in the human robot collaboration by this approach? 
Q4 What do you think the sociability [74] in human-robot collaboration by this approach? 

Q5 What do you think the task efficiency improvement [75] by this approach in human-robot 
collaboration? 

Q6 What do you think the hand preference matching in the collaboration process by this 
approach? 

Q7 What do you think the process preference matching in the collaboration process by this 
approach? 

Q8 What do you think the constraints matching in the collaboration process by this approach? 
Q9 What do you think the overall comfort [76] in the collaboration process by this approach? 
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planning can be further improved, such as enable the robot to handover both part and tool 

with both arms simultaneously. The results show that all the participants give full score for 

the safety of the collaboration due to the predictable handover manipulations generated by 

the collaborative robot. The assessments of the hand preference matching, process 

preference matching, and task constraint matching are either excellent or very good, which 

proves the effectiveness of the proposed TC-IRL approach. 

6.7 Conclusion 

In this chapter, we proposed a new learn-to-collaboration approach with the TC-IRL 

method that generates robot assistance to assist humans in human-robot collaborative 

Table 6.7. The Total, Average, Standard Deviation of Scores of Evaluation Indicators 
Indicator Total Average SD 

Collaboration fluency 39.5 4.39 0.57 
Robot response speed 33.5 3.72 0.85 
Collaboration safety 45 5.00 0.00 

Collaboration sociability 40.5 4.49 0.33 
Task efficiency improvement 39 4.33 0.33 

Hand preference matching 43 4.78 0.34 
Process preference matching 43 4.78 0.42 

Task constraint matching 42.5 4.72 0.34 
Overall comfort 41.5 4.61 0.31 

Figure 6.4. Scores of each subjective evaluation indicator. 
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assembly. The TC-IRL approach can significantly reduce the size of the action and state 

space and lead to a reduced requirement of training data and computational cost compared 

to traditional IRL. The proposed approach can also allow humans to teach the robot to 

accomplish new larger-scale tasks by learning from several small-scale demonstrations. 

The experiment results demonstrated the effectiveness and advantages of the proposed 

approach 
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CHAPTER 7 

ROBOT LEARNING OF ASSEMBLY TASKS FROM 

NON-EXPERT HUMAN DEMONSTRATIONS 

7.1 Introduction 

Most of the existing approaches, as well as the research we have conducted 

in previous chapters, usually assume that the demonstrations are performed by human 

experts who can conduct the task in an efficient way in order to achieve efficient robot 

executions through learning in RLfD, e.g., in assembly tasks, the demonstrations must be 

conducted by an expert worker in the assembly domain.  

There are several recent works [78]–[80] which use reinforcement learning to learn 

from imperfect human demonstrations. However, such works mainly aim to learn 

the lower-level control policies which are very different from higher-level assembly 

tasks. Also, these approaches usually require a significantly large number of 

demonstrations and usually cannot always guarantee the best solution compared to 

model-based approaches because of their data-driven heuristic nature.  

In this chapter, we aim to advance the robot learning from demonstration by reducing 

the requirement of demonstrations with human experts. Our major motivation is to make 

robots learn just like humans who can usually learn tasks from others from different 

perspectives and then synthesize the best way to accomplish the task although the others 

may not always demonstrate the tasks in efficient ways. Therefore, we propose a new 
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FOON-based approach to address robot learning from non-expert demonstrations in the 

robotic assembly contexts. We have previously introduced FOON as a graphical 

knowledge representation of human cooking tasks [81], [82]. In this research, we extend 

FOON to learning assembly tasks from non-expert demonstrations. We reconstruct some 

features of Functional Object-Oriented Network (FOON) to make it suitable for assembly 

tasks and also develop automatic subgraph creation and merging algorithms for FOON 

construction from multiple non-expert assembly demonstrations. Furthermore, we also 

propose an assembly task tree retrieving algorithm with the robot execution optimization 

process to enable robots to learn and generate the best possible task execution based on the 

constructed FOON. Because our approach employs models, it requires just a few 

demonstrations, which is significantly fewer compared to existing data-driven approaches. 

The weighted FOON for assembly tasks is introduced in Section 7.2. The approaches 

to construct FOON from non-expert demonstrations is presented in Section 7.3. The 

algorithms for the assembly tasks retrieval and optimization based on FOON are introduced 

in Section 7.4. The experimental results and analysis is discussed in Section 7.5. Finally, 

the chapter is summarized in Section 7.6. 

7.2 Weighted FOON for Assembly Tasks 

7.2.1 Structure of FOON 

The FOON proposed in our paper is a graphical task representation that includes 

robot motions, physical interactions between robots and objects in the workspace, and 

overall assembly task state descriptions. It provides a more intuitive way to represent, 

analyze, and visualize human demonstrations. More importantly, FOON decouples objects 
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and motion from a holistic view of action. This decoupling allows FOON nodes to have a 

more granular representation and gives FOON more flexibility than traditional task-step 

representations. The flexibility created by the motion nodes and object nodes enables more 

integrated task-tree merging and can generate more optimal task trees.  

The constructed FOON for assembly tasks is a bipartite network that contains 

motion nodes and object state nodes. To make it suitable for assembly task representations, 

as opposed to the original FOON for cooking tasks, a specific type of object node, the so-

called assembly state node, is introduced into the FOON to keep track of the assembly 

states in human demonstrations. Mathematically, an assembly state node can be either an 

input node or an output node of a motion node, and each motion node can have at most one 

assembly state node in its input nodes and at most one assembly node in its output nodes.  

FOON would only allow the object state nodes and assembly state nodes to be connected 

to motion nodes, and the motion nodes to be connected to object state nodes and assembly 

state nodes, which form a bipartite network. 

7.2.1.1 Nodes 

The nodes in FOON for assembly tasks have three types: object state  𝑂, motion 𝑀 

, and assembly state 𝐴 . An object state node 𝑁𝑂 represents a state of an object, which 

includes the object’s identifier, name, and attributes. The attributes of an object include but 

are not limited to, its position, mass, size, color, and so on. For assembly tasks, a single 

part in a specific state can be defined as an object state node. When the state of the part is 

changed, a new object state node is generated. When more than one part is assembled as a 

component, a new object state node is also generated for this component. An assembly 
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node 𝑁𝐴 has the same mathematical properties as an object node. It does not represent the 

state of a part or component, but rather it represents the state variations of the final 

assembly product.  A motion 𝑁𝑀 represents a manipulation related to specific objects. The 

information in a motion node includes, but is not limited to, the type of action, manipulated 

objects, start position, goal position, and so on. In a FOON for assembly, each object node 

and assembly node are unique in their name and attributes. Motion nodes with exactly the 

same attributes can appear at different locations in the FOON graph. 

7.2.1.2 Edges 

FOON for assembly is a directed graph. An edge can be drawn from an object state 

node or an assembly state node to a motion node, or vice-versa. In general, the object state 

nodes with edges directed to a motion node are regarded as task constraints of the 

manipulation in the motion node. The object state nodes that have edges that come from a 

motion node are regarded as the manipulation outcomes. These are analogous to input and 

output nodes coined in [81]. 

If there is an assembly node that has an edge directed to a motion node, this 

assembly node would indicate the state of the final assembly product before the 

manipulation corresponding to the motion node. If a motion node has an edge directed to 

an assembly node, this assembly node would indicate the state of the final assembly product 

after the manipulation corresponding to the motion node. Some motion nodes may not lead 

to a change in the final assembly state so that they do not have an assembly node as input 

or output. 
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7.2.1.3 Functional Units 

A functional unit in a FOON for assembly tasks consists of a motion node and 

multiple object state nodes. Some functional units also contain one assembly state node as 

input and/or output. As shown in Figure 7.1, the object state nodes and the assembly node 

with edges directed to the motion node are the input nodes of the functional unit, and the 

object state nodes and the assembly state node with edges pointing from the motion node 

are the output of the functional unit. In assembly tasks, the input assembly state node 

represents the state of the final assembly product before the manipulation of the motion 

node. Together, the object state nodes form the task constraints of the manipulation. A 

functional unit is defined as a minimum learning unit in a FOON for assembly.  

7.2.2 Integrating Weights into FOON 

The weights of FOON reflect both the success rate 𝑊𝑆𝑅 and average efficiency 𝑊𝑒 

of a given manipulation. The success rate is mainly related to the capabilities of robots, 

which corresponds to the accuracy required for executing manipulations. For example, 

robots have payload limitations for their arms and object size limitations for their grippers. 

It is nearly impossible for robots to handle manipulations beyond those limitations. Low-

Figure 7.1. A functional unit with m object state nodes and one assembly state node as 
input, (n-m) object state nodes and one assembly state node as output. 
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accuracy manipulations, such as handover, usually have a relatively higher success rate. 

On the contrary, the high-accuracy manipulations, such as placing a bolt into a hole, usually 

have a relatively lower success rate.  In terms of average efficiency, it mainly relates to 

safety and the complexity of manipulations. For instance, robots can move at a higher speed 

when simply picking up a single part from stock and handing it over to humans. On the 

contrary, robots may have to run at a slower speed when moving a component, which 

contains some loose parts on it, from one location to another. Moreover, some 

manipulations, such as switching the location of two parts, may contain multiple motion 

steps and require two robot arms to cooperate with each other, which means relatively 

higher complexities and lower efficiency. The weight of manipulation for the 

corresponding functional unit can be computed by: 

FU SR eW W W=  (7.1) 

where 𝑊𝑆𝑅 is the success rate of the manipulation and 𝑊𝑒 is the weight of efficiency for 

the manipulation. 

The representative success rates of manipulations can be determined empirically. 

The average efficiency of a specific type of manipulation can be identified from the average 

time cost of those in human demonstrations via hand tracking and object tracking with the 

optical tracking system. However, these are not trivial tasks to perform. To simplify this, 

we assign estimated weights based on our experiences and results of waypoint teaching 

and trajectory execution time. Manipulations that cannot be executed by a robot were 

assigned a success rate SRW  of 0.01, while other motions would be assigned higher values 

which varies between 0.8 to 0.95.  In addition, single-arm-single-part manipulations were 
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assigned a higher average efficiency weight which varies between 0.9 to 0.95, single-arm-

multi-parts manipulations (moving a component) were assigned a medium average 

efficiency weight which varies between 0.75 to 0.85, and dual-arm-single-component 

manipulations, which require both robot arms to work on different parts of a single 

component at the same time, assign a lower average efficiency weight of 0.1.  

7.3 FOON Construction from Non-expert Demonstrations 

In assembly tasks, parts and their corresponding attributes, such as mass, color, 

shape, etc. are usually well-defined. Using object tracking and human hand tracking, the 

velocities and locations of parts and the sequence of human manipulations can be obtained 

through human demonstrations. Therefore, FOON for assembly tasks can be learned from 

human demonstrations. However, the human demonstrations of non-expert end-users can 

be inefficient. For example, humans may first place a part at an incorrect location and then 

fix it, which introduces unnecessary manipulations into the demonstration. Similarly, 

humans may accomplish assembly tasks with an unoptimized manipulation sequence, 

which increases the usage of manipulations with lower success rates or efficiency. To 

eventually get an efficient solution, we first need to learn the assembly task representation 

using FOON based on the non-expert demonstration 

7.3.1 Creating Subgraphs 

For each assembly task, multiple rounds of human demonstrations are performed 

by different non-expert users. Each round of human demonstration automatically generates 

a list of functional units based on object tracking and human hand tracking. The process is 

also recorded as an instructional video online. The corresponding object state nodes, 
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assembly state nodes for both input and output, and the motion node of each functional unit 

are manually verified according to the instructional video. These functional units are then 

connected and combined into a subgraph automatically. The subgraph of FOON is then 

visualized and verified manually. Each subgraph represents the structured knowledge of 

an overall process of an assembly task. However, each process may be inefficient since it 

is demonstrated by a non-expert user. 

7.3.2 Merging Subgraphs 

The FOON for assembly can be expanded by merging new subgraphs generated by 

different human demonstrations of different assembly tasks. The merging algorithm is 

described in Algorithm 7.1. Two functional units are regarded as equal if and only if the 

set of nodes in one functional unit is exactly the same as the other functional unit. The 

FOON is first empty; the subgraph of each round of human demonstration for each 

assembly task is merged into the universal FOON in sequence. For each functional unit in 

the subgraph, if it does not exist in the universal FOON, it will be added to the universal 

FOON. The merged FOON contains the structured knowledge from multiple rounds of 

non-expert demonstrations for multiple assembly tasks, which gives the potential to robots 

to find the optimized efficient solution for each assembly task. The functional units in the 

universal FOON can be further connected according to their input and output nodes. For 

each output node of a functional unit, it might connect to the same input node of other 

functional units. The connections are rebuilt in the following task retrieval process. 
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7.4 Assembly Task Retrieval and Optimization 

In addition to FOON being a knowledge representation obtained or learned from 

human demonstrations, a FOON can also be used by robots for problem-solving and 

process optimization for assembly tasks. Given the goal of an assembly task, robots can 

search for all possible solutions and then choose the most efficient solution for the 

assembly task based on all the assembly tasks learned from human demonstrations. As 

mentioned in the previous section, each subgraph of FOON corresponds to a single round 

of human demonstration of an assembly task. Robots can at least choose the most efficient 

subgraph from the original non-expert demonstrations. Additionally, when multiple rounds 

of demonstrations of multiple assembly tasks are merged as a universal FOON, it is 

possible to find more efficient subgraphs other than the original demonstrations for 

assembly tasks. 

Algorithm 7.1. Merging New Subgraph to Universal FOON 
Algorithm: Merging New Subgraph to Universal FOON 
    for all functional unit FUi in new subgraph: 
        for all existed functional unit FUj in the universal FOON do 

      if FUi is equal to FUj then 
    FUi is already existed in the universal FOON. 
    continue to search next functional unit in new subgraph 

      else  
     Add FUi to the universal FOON 
     Add input object state nodes of FUi to node list 
     Add input assembly state node nodes of FUi to node list 
     Add output object state nodes of FUi to node list 
     Add output assembly state node of FUi to node list 

    (The connections are rebuilt in the task retrieval process) 
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7.4.1 Retrieving Assembly Task Trees 

Once multiple non-expert demonstrations for multiple assembly tasks have been 

conducted, a universal FOON can be established by merging subgraphs generated by each 

round of human demonstrations using Algorithm 7.1. In order to find the optimized 

Algorithm 7.2. Retrieval of Assembly Processes 
Algorithm: Retrieval of Assembly Processes 
Let Ngoal be the goal assembly state node. 
Let R be the list of root tree nodes. 
Let Pall be the list of all possible assembly process. 
Initialize R and Pall as empty list. 
for all functional units FUi in the universal FOON do 

if Ngoal is the output assembly state node of FUi then 
        Add FUi to R. 
    end if 
end for 
for all root nodes ri in R do 

 Initialize a tree stack TS. 
    Initialize a prelim tree node list Lp
    Append the root node ri to TS. 
    Append the root node ri to Lp. 
    while the tree stack TS is not empty do 
        Pop the functional unit FUh from the right side of TS. 
        Set the head of search h to FUh. 
        for all input object state nodes Ninput do 

   Initialize a list of candidate functional units Lc
   for all functional units FUi in the universal FOON do 
       if Ninput is one of the output object state nodes and FUi is not  an 

ancestor of the head h then 
     Set FUi as a child of the head h 
     Set h as the parent of the functional unit FUi 
     Append FUi to candidate list Lc

       end if 
   end for 
   Append candidate list Lc to prelim tree node list Lp

        end for 
    end while 
    Let Pd to be the cartesian product of Lp. 
    for each dependent tree path dp in Pd do 
        for all task paths p found by breath-first-search BFS(ri) do 

   Append path p to Pall. 
        end for 
    end for 
for all path in Pall do 
    Calculate the integrated weight of the path 
return optimized task path p*
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solution for a task, we need to find all the possible assembly processes based on the 

universal FOON. Most existing symbolic planning algorithms focus on solving the 

planning problems that are represented using planning domain definition languages. Since 

the proposed FOON for assembly tasks uses a different representation, we will need to 

develop a corresponding planning algorithm for it. Each assembly process is a combination 

of functional units, which gives the path from an initial condition to the goal of an assembly 

task. The algorithm to retrieval all possible assembly task processes is shown in Algorithm 

7.2.  

First, we give a goal assembly state node goalN  to the robot. All the nodes, which 

contain goalN  as an output assembly state node, in the universal FOON are appended to a 

list of root tree nodes R . Over each root node ir i in R , it is possible to generate multiple 

task tree paths, which can accomplish the given assembly task. Starting from the root tree 

node, we iterate for each input object state node of the corresponding functional unit and 

search for the functional units which can produce it. When we search for the dependencies 

of a functional unit, we define this functional unit as the head. For an input object state 

node inputN  of the head, if a functional unit contains it as an output object state node and it 

is not an ancestor of the head, then this functional unit is regarded as a dependency of the 

head for the input object node inputN . All of the functional units that produce inputN are

regarded as candidate functional units and are added to the list of candidate functional units 

Lc, which is then appended to a list of the preliminary tree nodes pL . This step proceeds

until the tree stack is empty; at this point, the list pL covers the functional units for the 
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dependencies for all the object state inputs. To accomplish the given assembly task, we 

only need one functional unit to meet the dependency for each input object state node. 

Thus, we compute the Cartesian product of the list pL . Each product set of functional units 

will contain a whole path that meets object state input requirements of the corresponding 

root. By conducting a breadth-first search ( )iBFS r  with respect to the root ir , we can 

obtain one assembly process to accomplish the assembly task. By iterating for each product 

set, we can obtain all possible assembly processes for the given assembly goal from the 

universal FOON. 

7.4.2 Robot Execution Optimization 

Once all possible assembly processes are determined, the optimal solution for the 

given assembly task is determined by the integrated weight of the assembly process. For 

an assembly process consisting of N  functional units and weights ( )1,2,...,iW i N=  for 

each function unit, the integrated weight of the assembly process can be written as 

1

N

I ii
W W

=
=  (7.2) 

The optimal assembly process can be determined by 

( )* arg max
I

all
W

p P= (7.3) 

where allP is the set of all possible assembly processes of the given assembly task. Once

the optimized task-level assembly process *p  is determined using FOON and the 

corresponding task retrieval algorithm, for each motion in  𝑝∗, the robot will search for the
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trajectory with minimum execution time among all the taught trajectories of the motion 

based on the situation of the workspace. 

7.5 Experimental Results and Analysis 

To evaluate the proposed approaches, different non-expert demonstrations for 

different assembly tasks are conducted. In this section, we first present the experimental 

setup. The assembly tasks and the corresponding non-expert demonstrations used in our 

experiments are then explained respectively. Based on the demonstrations, the results of 

robot learning and task retrieval and optimization are discussed. 

7.5.1 Experimental Setup 

The proposed approaches are verified and evaluated on a multi-model human-robot 

collaborative assembly test platform. The hardware setup of the test platform is illustrated 

in Figure 7.2 (a). In our experiments, we use the ABB Yumi, which is a dual-arm 

collaborative robot. The human stands face to face with the robot to work in a shared 

workspace. The Kinect RGB-D sensor offers a top-view point cloud of the workspace for 

part recognition and tracking. The software of the test platform is developed based on the 

Robot Operating System (ROS) and visualized through Rviz. The trajectory-level motion 

planning from point to point is accomplished based on the Open Motion Planning Library 

(OMPL) via MoveIt! motion planning framework [70]. 
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7.5.2 Subgraphs of Non-expert Demonstrations 

In our experiments, we use blocks with different numbers to represent different 

types of parts (O1 to O5). Initially, there are 12 parts in total located at different given 

locations in the stock zone. A 3 x 3 grid (G1 to G9) is defined as an assembly zone on the 

workbench. The start positions and the goal positions of pick-place and stacking robot 

actions between different grids are defined by assembly task in advance and the motion 

trajectories for the actions are generated via sampling-based motion planning algorithms 

in MoveIt! motion planning framework [70]. The motions and corresponding object states 

are learned via human demonstrations. The observed motions are mapped to corresponding 

elements in the action set according to the corresponding grid locations. The corresponding 

robot action assignment based on the observed motions is executed by sending the 

corresponding start position and the goal position and calling the sampling-based motion 

Figure 7.2. Experimental setup for FOON for Assembly. 
(a) The configuration of the robot and RGB-D sensor. (b) The top view of the human-robot shared

workspace captured by the RGB-D sensor. (c) The final state of the stacking task. (d) The final state of 
the shape constructing task. 
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planner to realize the action. Two types of assembly tasks are performed: the stacking task 

and the shape constructing task. The final assembly states of both tasks and the indexes of 

the grid locations are shown in Figure 7.2 (c) and Figure 7.2 (d). Three non-expert 

demonstrations are conducted for each task. 

For the stacking task, the goal is to build a 3-level stack (O3O2O1) at G5. The 

process of the first demonstration (Figure 7.3) is picking an O1 from stock and placing it 

at G1; then picking an O2 from stock and placing it onto the O1 at G1; then picking O2O1 

together and moving them from G1 to G5; picking an O3 from stock and stacking it on the 

O2O1 at G5. This demonstration is not efficient because the human stacked the first two 

parts at an improper location and then fixed it by moving the component to the correct 

location. The process of the second non-expert demonstration (Figure 7.4) is picking an 

O2 from stock and placing it to G5; then picking an O1 from stock and stacking it on the 

O2; then switching the positions of O1 and O2; finally picking an O3 from stock and 

stacking it on the O2 at G5. This demonstration is inefficient since an extra dual-arm 

manipulation was conducted to fix the order of the stack. The process of the third 

demonstration (Figure 7.5) is picking an O3 from stock and placing it to G8; then picking 

an O2 from stock and stacking it on the O2 at G8; then switching the positions of O2 and 

O3; then picking an O1 from stock and placing it to G5; finally picking the component 

(O3O2) from G8 and stacks it on the O1 at G5. This demonstration is less efficient than 

the previous two demonstrations since it contains five manipulations, including one dual-

arm manipulation, to accomplish a three-parts stacking task.  
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Figure 7.3. The subgraph of the first-round demonstration of the stacking task. 

Figure 7.4. The subgraph of the second-round demonstration of the stacking task. 

Figure 7.5. The subgraph of the third-round demonstration of the stacking task. 
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The shape constructing is to build a specific 3D shape in the 3 x 3 grid. The goal is 

to have a block O3 at both G1 and G7 and have a block O2 on the top of a block O1 at G5. 

Similar to the stacking task, we also conducted three non-expert demonstrations for the 

shape constructing task. The process of the first demonstration (Figure 7.6) is stacking two 

O3 at G1; then picking an O1 from stock and placing it to G5; then picking an O2 from 

stock and stacking it onto the O1 at G5; finally moving the O3 at the top of the component 

O3O3 to G7. This demonstration is inefficient because of the error pick-place action in the 

second step, which is fixed in the last step. The process of the second non-expert 

demonstration (Figure 7.7) is picking an O3 and placing it to G1; then building the 

component O2O1 via two pick-place actions at G4; then picking another O3 from stock 

and placing it to G7; finally moving the O2O1 from G4 to G5. The process of the third 

non-expert demonstration (Figure 7.8) is picking an O3 from stock and placing it to G9; 

then picking another O3 from stock and placing it to G8; then moving them to G1 and G7 

respectively; afterward, a block O1 and a block O2 are picked from stock and stack at G5 

to accomplish the task.  

Figure 7.6. The subgraph of the first-round demonstration of the shape constructing task. 
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7.5.3 Results of FOON Generation and Optimal Assembly Task Tree Retrieving 

To verify the proposed approaches, we merge the subgraphs generated by the non-

expert demonstrations progressively to establish the universal FOON. For each stage, we 

compare the optimal assembly task process we can obtain based on the present situation of 

the robot knowledge. 

Figure 7.7. The subgraph of the second-round demonstration of the shape constructing task. 

Figure 7.8. The subgraph of the third-round demonstration of the shape constructing task. 
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In the first stage, the universal FOON was only built based on the three non-expert 

demonstrations of the stacking task is shown in Figure 7.9. It contains 12 functional units. 

Based on this merged FOON, the assembly process retrieval algorithm finds the same as 

the three non-expert demonstrations. The integrated weights of these three demonstrations 

are 0.478, 0.050, and 0.032 respectively. The results indicate that the robot will implement 

the stacking task by repeating the first human demonstration at this stage of merged FOON. 

The real robot execution of the stacking task is shown in Figure 7.10. Also, the robot cannot 

find a solution for the shape formatting task since none of its demonstrations has been 

integrated into the merged FOON yet.  

Figure 7.9. The merged graph of the three demonstrations of the stacking task. 

Figure 7.10. The real robot execution of the stacking task at the first stage. 
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In the second stage, the universal FOON was built based on the three non-expert 

demonstrations of the stacking task and the first non-expert demonstration of the shape 

constructing task. For the stacking task, the robot can find an optimized assembly process 

with three single-arm-single-part manipulations as shown in Figure 7.11, which is to pick 

up a block O1, a block O2, and a block O3 from stock and stack them at G5 in sequence. 

The corresponding integrated weight of this assembly process is 0.625, which is higher 

than all the non-expert demonstrations of the stacking task. The real robot execution of the 

optimized strategy on the stacking task is shown in Figure 7.12. For the shape constructing 

task, the first-round human demonstration is successfully reconstructed as the solution of 

the task at this stage of the merged FOON. 

In the third stage, we merged all the six non-expert demonstrations for both tasks 

to construct a universal FOON. The result of the universal FOON contains all six non-

expert demonstrations of both the stacking task and shape constructing task. At this stage, 

the optimized result for the stacking task is also found as same as the three-motions solution 

shown in Figure 7.11. For the shape constructing task, an optimized solution with four 

Figure 7.11. The optimized result of the stacking task. 
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single-arm-single-part manipulations is found, which is to directly pick up a block O1, a 

block O2, and two O3 blocks and place them to their corresponding locations in sequence. 

The subgraph of the optimized solution of the shape constructing task is shown in Figure 

7.13, and the robot execution of this optimized strategy is shown in Figure 7.14. 

Figure 7.12. The real robot execution of the optimized solution of the stacking task. 

Figure 7.13. The optimized solution for the shape constructing task. 

Figure 7.14. The real robot execution of the optimized shape constructing task. 
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7.5.4 Evaluations 

The summary of the assembly process optimization of the three stages of the 

universal FOON is illustrated in Table 7.1. The results of the raw non-expert 

demonstrations and the optimized results of the stacking and the shape constructing task 

are shown in Table 7.2and Table 7.3 respectively. The universal FOON built based on the 

three demonstrations of the stacking task contains 12 functional units and 13 object state 

nodes in total. Based on this universal FOON, we can find the optimized solution for the 

stacking task with an overall success rate of 0.693 and an overall efficient weight of 0.690. 

By adding a non-expert demonstration of the shape constructing task, the universal FOON 

contains 16 functional units and 16 object state nodes. With the updated universal FOON 

with more knowledge of assembly tasks, we can obtain a better-optimized solution for the 

stacking task with an overall success rate of 0.770 and an overall efficient weight of 0.812. 

According to the task design, this is already the best solution for the stacking task. Also, 

the robot successfully learned the shape constructing task via the additional one-round 

human demonstration, though it is not very efficient. After merging two additional non-

expert demonstrations of the shape constructing task, a better solution for the shape 

constructing task is found from the universal FOON, which is built based on six in-efficient 

human demonstrations. Based on the proposed task, the optimal solution simply contains 

four single-arm-single-part manipulations, which should be the most efficient solution 

based on our experimental setup. Moreover, the most efficient solution for the stacking 

task, which has already been found in the earlier stage, is also found in this universal 

FOON. 
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Furthermore, since we use a FOON model-based approach, we only require several 

rounds of non-expert demonstrations to derive the best possible solution for the task. In 

contrast, the existing data-driven approaches [78]–[80] usually require humans to 

demonstrate the task thousands of times to obtain enough training data to learn the task. 

Therefore, comparing to the existing data-driven approaches, the time cost and the teaching 

effort of human demonstrations can be significantly reduced using our proposed approach. 

Table 7.1. Summary of Assembly Process Optimization of Universal FOON. 

Graph Items Stage 
1 2 3 

Universal 
FOON 

No. of Object State Node 13 16 18 
No. of Motion Node 12 16 24 
No. of Functional Unit 12 16 24 

Optimized 
Stacking 
Assembly 
Process 

No. of Functional Unit 4 3 3 
Overall Success Rate 0.693 0.770 0.770 
Overall Efficient Weight 0.690 0.812 0.812 
Integrated Weight 0.478 0.625 0.625 

Optimized 
Shape 

Constructing 
Process 

No. of Functional Unit N/A 5 4 
Overall Success Rate N/A 0.694 0.772 
Overall Efficient Weight N/A 0.621 0.772 
Integrated Weight N/A 0.432 0.595 

Table 7.2. Raw Demonstrations vs Optimized Solution of Stacking Task. 

Item Raw Demonstrations Optimized 1st 2nd 3rd Average 
No. of Actions 4 4 5 4.33 3 
Success Rate 0.693 0.616 0.520 0.609 0.770 

Efficient Weight 0.690 0.081 0.061 0.280 0.812 
Integrated Weight 0.478 0.050 0.032 0.187 0.625 

Table 7.3. Raw Demonstrations vs Optimized Solution of Shape Constructing Task. 

Item Raw Demonstrations Optimized 1st 2nd 3rd Average 
No. of Actions 5 5 6 5.33 4 
Success Rate 0.694 0.694 0.696 0.695 0.772 

Efficient Weight 0.621 0.656 0.696 0.658 0.772 
Integrated Weight 0.432 0.456 0.485 0.457 0.595 
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7.6 Conclusion 

This chapter introduces a graph-based task representation approach based on the 

Functional Object-Oriented Network (FOON) to represent the knowledge of assembly 

tasks. It creates algorithms to create a FOON from multiple non-expert assembly 

demonstrations and also develops an assembly task tree retrieving approach with a robot 

execution optimization process to generate the best possible task execution plan from the 

FOON. The results indicate that robots can find the best possible assembly process among 

multiple rounds of non-expert demonstrations. The evaluation also indicates the 

effectiveness and advantages of the proposed approach compared to other existing 

approaches 



119 

CHAPTER 8 

MULTI-MODEL SAMPLING-BASED MOTION PLANNING 

FOR TRAJECTORY OPTIMIZATION 

WITH EXECUTION CONSISTENCY 

8.1 Introduction 

Sampling-based motion planners are commonly used to generate collision-free 

trajectories in real time for industrial robots However, the trajectories generated by such 

approaches tend to be inconsistent (with large variations in path length, execution time 

and average manipulability) across multiple trials. Such unpredictability of robot 

motions makes them inappropriate for many robotic (and especially co-robotic) 

applications that demand consistency and predictability to promote human trust. In this 

chapter, we propose an optimization-based multi-model motion planning framework – to 

first leverage existing sampling-based motion planning algorithms to create alternate 

choices; downselect amongst these choices using a multi-criteria performance 

measure, and finally execute selected motion plan to ensure execution consistency. 

The simulation and experimental results validate that our approach can achieve the 

optimized collision-free trajectory with predictable and consistent executions in 

manipulation tasks. 

The research problem is described in Section 8.2. The proposed multi-model 

sampling-based motion planning framework is presented in Section 8.3. The proposed 

approaches are evaluated the real automotive assembly tasks by simulation and real robot 
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experiments in Section 8.4 and Section 8.5. Finally, the chapter is summarized in Section 

8.6. 

8.2 Problem Statement 

In the implementations of the sampling-based motion planners in such applications, 

we find that by given the same pair of start and goal positions in the same plan scene, the 

trajectories may have large variations between each motion planning and execution, even 

if the planner and its parameter configuration are unchanged. These uncertainties may lead 

to efficiency and safety issues in industrial applications. 

For example, the torsion bar assembly with a mobile manipulator is illustrated in 

Figure 8.1. When the mobile base is parked at the stage, the manipulator needs to pick up 

the torsion bar, which is mounted on the mobile base, and place it to the correct assembly 

location underneath the vehicle chassis (represented by the overhead structure).  In this 

case, the pick-up position (Figure 8.1 (a)) and the assembly position (Figure 8.1 (b)) of the 

torsion bar are known. The joint states of the manipulator at the pick-up and the assembly 

positions are used for motion planning. The sampling-based motion planning algorithms 

may achieve predictable and safe collision-free trajectories. For example, a straightforward 

collision-free trajectory of the torsion bar assembly manipulation is shown in Figure 8.2 

(a). When there is an obstacle in the previous trajectories, a relatively optimized trajectory 

of the same task can also be obtained as shown in Figure 8.2 (b).  



121 

However, the optimized trajectory is not guaranteed in multiple executions. 

Tremendous differences are found between executions when the planning scene, planner, 

and its corresponding configurations are unchanged. For the trajectory shown in Figure 8.3 

(a), the manipulator tends to move the torsion bar around the obstacle through a circle for 

collision-avoidance and finally lift the torsion bar to the assembly position, which makes 

the torsion bar rotate like a propeller. For the trajectories shown in Figure 8.3 (b), the 

manipulator moves the torsion bar to the backward of the mobile base to create some 

clearance to the obstacle. 

Figure 8.1. Start and goal position of the torsion bar assembly. manipulation. 

Figure 8.2. Examples of relatively predictable and safe trajectory for torsion bar assembly 
manipulation. 
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Although it is possible to get the optimized trajectory by sampling-based motion 

planning algorithms, the trajectory generated from a single plan can also be unpredictable, 

inefficient, or even unsafe. These insufficiencies discourage the application of sampling-

based motion planning algorithms in human-robot collaboration (HRC) in smart 

manufacturing contexts. To address the challenges, a multi-model sampling-based motion 

planning framework is proposed in this research. 

8.3 Multi-model Sampling-based Motion Planning 

In this section, the multi-model sampling-based motion planning framework is 

discussed in detail. The existing sampling-based motion planners used in the framework 

are introduced at first. Then the overview of the framework and the algorithms in trajectory 

optimization and motion planning for consistency are presented. 

8.3.1 Multi-model Motion Planning Framework 

The diagram of the multi-model motion planning framework is illustrated in Figure 

8.4. The framework consists of three phases: multi-model preplanning, trajectory 

optimization, and planning and execution for consistency. In the multi-model preplanning 

phase, the planning scene, and the joint states of the robot arm at the start position and the 

Figure 8.3. Examples of relatively unpredictable and unsafe trajectories for torsion bar assembly 
manipulation in continuous planning and executions. 
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goal position are given, multiple sampling-based motion planners are called to generate the 

collision-free trajectories. Multiple unoptimizable collision-free trajectories with variations 

can be obtained in this phase.  

In the trajectory optimization phase, a cost-function-based approach is developed 

to select an optimized trajectory from the trajectories generated in the multi-model 

preplanning phase. In the proposed cost function, predictability, efficiency, manipulability, 

and safety are considered. The selected trajectory and its corresponding motion planner are 

delivered to the third phase, planning, and execution for consistency, to generate consistent 

robot motions. 

In the phase of planning and execution for consistency, the corresponding 

sampling-based motion planner is first specified according to the optimized trajectory. 

Then the optimized trajectory is divided into two to three segments based on the distance 

Figure 8.4. The diagram of the multi-modal motion planning framework. 
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and curvature, and the corresponding intermediate waypoints are assigned between the 

original start and goal state. For each segment of the robot motion, the joint constraints are 

added based on the boundary of each joint value in the corresponding segment of the 

optimized trajectory. Afterward, the longest common subsequence (LCS) is applied to 

measure the similarity between the corresponding segment of the new trajectory and the 

optimized trajectory. Given the tuned threshold of similarity and the maximum number of 

planning attempts, the similarity-based planner returns a relatively consistent trajectory 

with respect to the optimized trajectory for robot motion executions. The algorithms of 

each phase are discussed in more detail in the following sections. 

8.3.2 Multi-model Preplanning 

A list of sampling-based motion planners supported by the open motion planning 

library (OMPL) [69] is shown in Table 8.1. In our applications, two typical planners are 

commonly used for robot motion planning: RRT (multi-query) and PRM (single query).  

For the RRT motion planner, the corresponding joint state of the manipulator at the 

start position is given as the initial configuration. Given the number of vertices, incremental 

distance, and the joint state of the robot arm at the goal position, the RRT planner grows a 

tree rooted at the initial configuration by randomly sampling from the configuration space 

of the robot arm. For each sample, a connection is attempted between it and the nearest 

state in the tree. Once a joint trajectory that connects the initial configuration and the goal 

configuration is found, the joint trajectory is returned for a motion execution.  
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For the PRM motion planner, given the joint state of the robot arm at the start and 

the goal positions, a roadmap of the free space is built via multiple random sampling 

processes of the configuration space of the robot arm in the construction phase. After each 

sampling process, all neighbors less than the predefined distance in the free space are 

connected until the road map is dense enough.  Afterward, the collision-free path is 

obtained by Dijkstra’s shortest path query [83].  

In general, let start and goal   be the joint state of the manipulator at the given start 

position and the goal position, a set of collision-free trajectories  2, ,..., N   = 1   and the 

corresponding motion planners  2, ,..., N   = 1 can be obtained in the multi-model 

preplanning phase. 

8.3.3 Trajectory Optimization 

The trajectory optimization phase targets to select an optimized trajectory from the 

set of trajectories generated by the multi-model preplanning. To solve this problem, a 

constraint of manipulability and cost-function-based trajectory evaluation metrics are 

proposed. 

Table 8.1 Sampling-based motion planners in OMPL 
Planner Categories 

Single-query Multiple-query 
PRM RRT 
Lazy PRM RRT Connect 
PRM* RRT* 
Lazy PRM Lower Bound Tree RRT 
SPArse Roadmap Spanner EST 
SPARS2 FMT 
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8.3.3.1 Manipulability Constraint 

Since the trajectory candidates are collision-free and satisfy joint limits and velocity 

constraints, the main constraint for trajectory optimization in the proposed approach is 

singularity. For any waypoints in the optimized trajectory, the corresponding joint state of 

the manipulator   must not be close to a singularity of the manipulator. For each sampled 

joint state   in trajectory candidates, the manipulability index is calculated by [84]–[86] 

( ) ( )( )det Tw J J=   (8.1) 

where ( )J   is the Jacobian matrix of the manipulator with respect to the joint state  . 

To avoid the singularity, for all the sampled waypoints in the trajectory, the corresponding 

manipulability index must satisfy 

0w − +   (8.2) 

where   is a small constant. 

8.3.3.2 Trajectory Evaluation Metrics 

To identify the optimized trajectory in a set of trajectory candidates, multiple 

factors, such as predictability, efficiency, manipulability, and safety, should be taken into 

account comprehensively.  

In human-robot collaboration, the human can predict the trajectory that the robot 

might execute according to his/her knowledge about the goal of robot motion. If the 

trajectories executed by the robot in each duty cycle are constant and match with the 

prediction, the human is comfortable in the shared workspace [87]. Human usually expects 
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the robot to be efficient and the trajectory length ( )L   can be utilized as a proxy of 

predictability cost [88]. Therefore, the cost of predictability of a trajectory can be defined 

as 

( ) ( ) ( ) ( )
1

N

p k
k

C L L   
=

=  (8.3) 

where k  is the index of the trajectories, L is the path length of the trajectory. 

For task efficiency, the normalized total execution time of the trajectory is used as 

the factor of efficiency score, which can be written as 

( ) ( ) ( )
1

( )
N

e k
k

C T T   
=

=  (8.4) 

where T  is the execution time of the trajectory. 

From the manipulability perspective, we propose a cost of trajectory manipulability 

as 

( )
( )

( )
( )

( ),
1

1 n

m i
i

C w
n



 
 =

=   (8.5) 

where ( )n   is the number of the sampled waypoint in the trajectory  , ( ),iw  is the

manipulability index corresponding to the manipulator configuration at the thi   waypoint 

of trajectory  . 

The safety of the manipulation not only depends on the robot arm but also relates 

to the object that detached on the gripper, especially for large-dimension and 

unsymmetrical objects. In the torsion bar assembly case, we propose the overall 
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displacement of the wrist joint ( )tD    as the cost of the add-on safety factor. Thus, the cost 

of the add-on safety factor can be written as 

( ) ( ) ( ) ( )
1

N

s t t k
k

C D D   
=

=  (8.6) 

where the overall displacement of the wrist joint for the trajectory    is computed by 

( )
( )

0

T

t tD dt


 =  (8.7) 

where t is the angular velocity of the wrist joint. 

Based on the scores of predictability, efficiency, manipulability, and add-on safety 

factor from (8.3) to (8.7), we propose the score of a candidate trajectory as the weighted 

sum of all the factors above, which can be written as 

( ) ( ) ( ) ( ) ( )traj p p e e m m s sC C C C C        =  +  +  +  (8.8) 

where the weights are all positive constants. Based on the cost function in (8.8) and the 

constraint in (8.2), the trajectory optimization can be written into the general form as 

( )

( ) ( )

* arg min

. . ( , ) 0
trajC

s t w i

 

  

=

−  +  
(8.9) 

For each collision-free generated by the probabilistic sampling-based planners, the 

constraint of manipulability is checked, and the value of cost function is calculated. The 

output of the trajectory optimization phase is the optimized trajectory *  , which 

satisfies the constraint of manipulability and with the minimal value of cost function among 

all candidates, and its corresponding planner *  . 
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8.3.4 Planning and Execution for Consistency 

Based on the results of the optimized trajectory and the corresponding motion 

planner, a similarity-based motion planning algorithm is developed to obtain relatively 

consistent robot motions. 

8.3.4.1 Intermediate Waypoint Extraction 

Firstly, the motion planner that generated the optimized trajectory is set as the 

motion planner for the following planning and execution. Secondly, based on the joint 

trajectory of the optimized path, intermediate waypoints are calculated.  As the optimized 

path is presented by a list of joint states, the halved waypoint m  is determined based on 

the index of the joint state in the optimized path. 

( )* * / 2 0.5m l   = +  (8.10) 

where  *l  is the total number of the joint states recorded in the optimized trajectory * . 

Moreover, the max-curvature waypoint is determined by the following steps. For 

each joint state i of the optimized trajectory, the position of the TCP 

( ), , , , ,i i i i i i ip x y z   =  is calculated by the forward kinematics of the robot arm. Then the

curvature of the optimized trajectory at each recorded joint state can be calculated by 

( )
( ) ( ) ( )
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2 2 2 2
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

− + − + −
 =

+ +

(8.11) 

the waypoint c corresponding to the maximum curvature value in the optimized 

trajectory can be determined by 
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( ) ( )*arg max 1,2,...,c i i l =  = (8.12) 

In general, the optimized trajectory *  can be divided into three segments by given 

the joint state at the start position start , the halved waypoint m , the max-curvature

waypoint c , and the goal position goal . If the halved waypoint and the max-curvature

waypoint are very closed to each other, the halved waypoint is dropped so that the 

optimized trajectory is divided into two segments. 

8.3.4.2 Joint Constraint Extraction 

To consistently generate the new trajectories, which are similar to the optimized 

trajectory, with sampling-based motion planner, and reduce the planning time, the joint 

constraints are abstract from the optimized trajectory. For each joint in each segment of the 

optimized trajectory, the median value of the joint value can be written as 

( ),max ,min
, 1,2,...,

2
i i

i med ji N
 


+

= =   (8.13) 

where ,mini and ,maxi are the minimum and maximum values of the  thi joint appeared in 

the specific trajectory segment. jN is the total number of joints of the robot arm. By given 

a factor of tolerance tolk , the lower and the upper tolerances of each joint can be written as 

( ), , ,min1 ( 1,2,..., )i low tol i med tol i jk k i N  = − + = (8.14) 

( ), , ,max1 ( 1,2,..., )i high tol i med tol i jk k i N  = − + = (8.15) 

therefore, the constraint of each joint corresponding to the optimized trajectory segment 

can be represented by 
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 , , ,, , ( 1,2,..., )i i med i low i high jc i N  = = (8.16) 

8.3.4.3 Similarity-based Motion Planning 

With the previous results in optimal trajectory, intermediate waypoints, and joint 

constraints, a similarity-based motion planning algorithm is proposed to generate the 

consistent robot motions. As shown in Figure 8.5, for each segment c
j of the motion 

planning for consistency, the corresponding segment *
j  of the optimized trajectory is used 

as a reference. Give the maximum tolerance of the joint value t  in radius, and the 

maximum time of planning attempt pN , and the target similarity [0,1]ts  , the sampling-

based motion planner * is called to generate the new collision-free trajectory segment. 

Figure 8.5. The flowchart of the similarity-based motion planning. 
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After each time of motion planning, the similarity between the new trajectory segment and 

the corresponding optimized trajectory segment is calculated based on the LCS algorithm. 

If the similarity is larger than the threshold ts , the new trajectory segment is stored and

then moves forward to plan the next segment. Otherwise, the new trajectory segment with 

the highest similarity will be stored once the maximum time of planning attempt is 

achieved, and then move forward to plan the next segment. The above procedure keeps 

working until all the segments between the start position and the position are successfully 

generated. Afterward, the overall updated trajectory is output for robot motion execution. 

8.4 Simulation Evaluations 

The proposed multi-model motion planning framework is evaluated via a torsion bar 

assembly task. In this section, the proposed framework is evaluated by simulation with 

three different setups in the planning scene, including different positions and orientations 

of the assembly positions, different sizes, positions, and orientations of the obstacle. For 

each planning scene, different intermediate waypoint assigning strategies are validated for 

comparison. The comparison in planning attempt, path length, path execution time, path 

similarity is presented. 

8.4.1 Simulation Environment Setup 

The setup of the simulation environment is illustrated in Figure 8.6. The robot 

model of the Yaskawa YMR12 mobile manipulator, which consists of a Clearpath OTTO 

1500 mobile base and a Yaskawa MH12 manipulator is constructed. The 3D model of the 

overhead structure and the torsion bar are also developed and import into the planning 
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scene. The motion planning and robot control is implemented based on ROS [68] and 

MoveIt! [70].  

The torsion bar assembly tasks with the three different plane scenes in Figure 8.6 

(a) ~ (c) are simulated to evaluate the proposed framework. The mobile base remains static

in the plane scene, while the position and orientation of the overhead structure with respect 

to the mobile base are variant in different planning scenes.  For each plan scene, the pick-

up position and the assembly position are manually tuned for the torsion bar assembly 

manipulation. 

8.4.2 Simulation Results and Analysis 

To evaluate the proposed framework, for each plan scene shown in Figure 8.6, the 

start position is defined by corresponding joint state where the torsion bar is lifted along Z-

axis around 5 cm from the mount on the mobile base; the goal position is defined by the 

corresponding joint state where the torsion bar is moved down along Z-axis around 5 cm 

with respect to the correct final assembly position. In the multi-model pre-planning phase, 

ten trajectories are generated by giving the start position and the goal position and 

Figure 8.6. The setup of the simulation environment. 
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randomly choosing planners among RRT, FMT, and PRM. The joint trajectory, the 

trajectory of the tool center point (TCP), and the execution time are recorded as the 

baseline. In the phase of trajectory optimization, the optimal trajectory is selected from the 

ten trajectories with the proposed approach. Once the optimal trajectory is selected, the 

joint constraints, the halved waypoint, and the waypoint with maximum curvature are 

abstracted via the proposed approach. In each plan scene, the consistency of the execution 

is evaluated by considering the metrics including LCS-based trajectory similarity, the path 

length, the execution time of the trajectory, and the number of planning attempts. For each 

factor in the metrics, different waypoint assignment strategies are compared, which are 

“Constraint Only”, “Constraint + Halved Waypoint”, “Constraint + Max Curvature 

Waypoint”, and “Constraint + Halved and Max Curvature Waypoints”, respectively. Each 

waypoint assignment strategy is executed repeatedly ten times to evaluate the performance 

of the proposed approaches. 

The results of the average joint trajectory similarity calculated by the LCS-based 

algorithm are shown in Figure 8.7. As the baseline, the average trajectory similarities are 

less than 9.0% comparing to the corresponding selected optimal trajectories in all the three 

simulation setups by only given the start position and the goal position. In the LCS-base 

similarity calculation, the maximum tolerance of the joint value t  is set to 0.03 rad. When

the absolute values of the differences between all the corresponding joints of any two joint

states are less than the threshold, these two joint states are considered as close to each other.

The average trajectory similarities of the three simulation setups are increased to 47.1%,

11.8%, and 36.0%, respectively, after adding the joint constraints extracted from the
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optimal trajectory and implementing the similarity-based motion planning algorithm.  In 

Setup 1, both the “Constraint + Max Curvature Waypoint” and the “Constraint + Halved 

and Max Curvature Waypoint” strategies are with an average trajectory similarity 100%. 

In Setup 2, the “Constraint + Halved and Max Curvature Waypoints” strategy is with the 

highest average trajectory similarity 55.9%. In Setup 3, the “Constraint + Max Curvature 

Waypoints” strategy is with the highest similarity 69.2%, while the “Constraint + Halved 

and Max Curvature Waypoints” strategy is slightly less similarity 67.2%. The results 

indicate that adding intermediate waypoints can increase the average trajectory similarity, 

and the “Constraint + Max Curvature Waypoints” strategy generates good trajectory 

similarity in all three simulation setups. 

Figure 8.7. The average joint trajectory similarity calculated by the LCS-base algorithm. 
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The results of the average execution time of the three simulation setups are shown 

in Figure 8.8. The execution time includes the planning time of each trajectory section and 

the robot execution time of the overall trajectory when the accelerate scale and the velocity 

scale are set as 1.0 in MoveIt. After the multi-model pre-planning and the trajectory 

optimization, the original execution time of the selected optimal trajectories is 5.663 s, 

8.007 s, and 7.702 s, respectively, for the three simulation setups. Since the consistency of 

the robot executions is significantly increased and the trajectories that are similar to the 

corresponding optimal trajectories are repeatedly executed, the execution time can be 

reduced on average when the constraint and intermediate waypoints are added.  The 

standard deviation of the execution time is shown in Figure 8.9. The results show that the 

standard deviation of the execution time can be significantly reduced by only adding the 

joint constraint extracted from the optimal trajectory, though in Setup 2, the standard 

deviation of the execution time is 1.156 seconds that is larger than 1second. Moreover, the 

standard deviation of the execution time can be further decreased when adding intermediate 

Figure 8.8. The average execution time of the different waypoint assignment strategies.  
The original execution time of the selected optimal trajectory of each setup is 5.663s, 8.007s, and 

7.702s, respectively. 
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waypoints. All three different waypoint assignment strategies achieve a standard deviation 

less than 0.574 s. The “Constraint + Max Curvature Waypoints” strategy obtains the 

smallest standard deviation of execution time in all the three simulation setups, which are 

0.0006 s, 0.176 s, and 0.172 s, respectively.  

Figure 8.9. The standard deviation of execution time of the different waypoint assignment strategies.  
The original execution time of the selected optimal trajectory of each setup is 5.663s, 8.007s, and 7.702, 

respectively. 

Figure 8.10. The average path length of the different waypoint assignment strategies.  
The original path length of the selected optimal trajectory of each simulation setup is 1.384m, 2.032m, 

and 1.948m, respectively. 
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Moreover, the results of the average path length of the different waypoint 

assignment strategies are illustrated in Figure 8.10. After the multi-model pre-planning and 

the trajectory optimization, the original path length of the selected optimal trajectories is 

1.384m, 2.032m, and 1.948m, respectively. The standard deviation of the path length of 

the different waypoint assignment strategies for the three simulation setups is shown in 

Figure 8.11. The results indicate that, as a baseline, when only given the start and goal 

position for motion planning, the average path length is much higher than the optimal 

trajectory and the variance of the path length is larger than 1.4m in all three simulation 

setups. By adding the joint constraint and the intermediate waypoints, both the average 

value and the variance of the path length can be significantly reduced, which means better 

efficiency and consistency. In Setup 1, the “Constraint + Max Curvature Waypoints” 

strategy and the “Constraint + Halved and Max Curvature Waypoints” strategy obtain very 

good consistency with the average path length 1.384m and standard deviation less than 10-

4m. In Setup 2, the “Constraint + Max Curvature Waypoints” strategy is with the smallest 

standard deviation of 0.085 m but with a relatively longer average path length of 2.391 m 

comparing to the selected optimal trajectory. The “Constraint + Halved and Max Curvature 

Waypoints” strategy obtains a better trade-off between the path length and the standard 

deviation, which is with an average path length of 2.062 m and a standard deviation of 

0.098 m. In Setup 3, the “Constraint + Max Curvature Waypoint” strategy obtains the 

smallest standard deviation of 0.020 m with 0.034 m difference on average path length 

with respect to the optimal trajectory. The “Constraint + Halved and Max Curvature 
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Waypoints” obtains an average path length of 2.011 m that is closest to the optimal 

trajectory with a standard deviation of 0.038 m.  

Furthermore, the results of the average plan attempts are illustrated in Figure 8.12. 

In the simulation, the maximum plan attempts of each trajectory segment are set to 20. For 

the “Constraint + Halved and Max Curvature Waypoints” strategy, the minimal plan 

attempts to generate the whole trajectory is 3, while for the “Constraint + Max Curvature 

Waypoint” strategy or the “Constraint + Halved Waypoint” strategy, the minimal plan 

attempts to generate the whole trajectory is 2. The results indicate that adding intermediate 

waypoints can reduce the plan attempts in all three simulation setups. The “Constraint + 

Max Curvature Waypoint” strategy obtains the best results in both Setup 1 and Setup 2, 

but not performs very well in Setup 2. The “Constraint + Halved Waypoint” and the 

“Constraint + Max Curvature Waypoint” strategy obtain a relatively very good result in all 

three simulation setups. 

Figure 8.11. The standard deviation of path length of the different waypoint assignment strategies.  
The original path length of the selected optimal trajectory of each simulation setup is 1.384m, 2.032m, 

and 1.948m, respectively. 



140 

In summary, the proposed framework can significantly increase the efficiency and 

the consistency of the robot motions in different simulation setups. Both the joint constraint 

and intermediate waypoint assignment are necessary in order to generate consistent 

trajectories. Among the tested waypoint assignment strategies, the “Constraint + Halved 

and Max Curvature Waypoints” strategy obtains the best performance in line balancing 

with a stable solution founding and a good trade-off between consistency. 

8.5 Experimental Evaluations 

To further evaluate the proposed framework, the experiments are conducted on 

hardware-in-the-loop physical-testing tasks. In this section, we first present the 

experimental setup of the torsion bar assembly task in the real manufacturing contexts, then 

discuss the results of both simulation and real robot execution in the experiment. 

Figure 8.12. The average plan attempts of different waypoint strategies of the three simulation setups. 
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8.5.1 Experimental Setup 

The hardware setup of the YMR12 mobile manipulator, overhead structure, and the 

obstacle is illustrated in Figure 8.13. The relative positions of the robot, overhead structure, 

and the obstacle are similar to Setup 1 in the previous section. The obstacle is combined 

with three cartons, the overall dimensions are 0.47 m in length, 0.47 m in width, and 1.23 

m tall. The distance from the center of the obstacle to the right and front edge of the mobile 

base is 0.38 m. 

8.5.2 Experimental Results and Analysis 

Based on the results of the simulations in the previous section, the “Constraint + 

Halved and Max Curvature Waypoints” strategy is selected for the hardware-in-the-loop 

testing. The pick-up position and the assembly position of the torsion bar, the start position, 

Figure 8.13. Hardware setup for the experiment. 
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and the goal position of the testing trajectory are first programmed with a teach pendant in 

real situation. Based on the start position and the goal position of the testing trajectory, the 

optimal trajectory and the corresponding joint constraints and intermediate waypoints are 

generated by the proposed approaches. In the execution of the trajectories, the robot is 

driven directly through MoveIt! motion planning framework with a laptop running ROS. 

The gripper is controlled independently through a Python API based on RS485 

communication. The action of the gripper is trigged manually through the keyboard.  

The process of the torsion bar assembly tasks is illustrated in Figure 8.14 (a) ~ (h). 

The torsion bar is first located at the mount of the mobile base and the robot arm goes to 

grasp the torsion bar at the pick-up location (Figure 8.14 (a)). Then the torsion bar is lifted 

horizontally to the start position of the testing trajectory (Figure 8.14 (b)). The two 

intermediate waypoints obtained by the proposed algorithms are shown in Figure 8.14 (c) 

and Figure 8.14 (d). The goal position of the testing trajectory is illustrated in Figure 8.14 

(f). Figure 8.14 (e) illustrates an intermediate state when the robot is moving from the 

second intermediate waypoint to the goal position of the testing trajectory. After arrived 

the goal position, the torsion bar is lifted horizontally for about 5 cm to its accurate 

assembly position. As shown in Figure 8.14 (g), the robot holds the torsion bar at the 

assembly position until the human screws it up to the overhead structure. In the last step, 

the robot releases the torsion bar and moves back to its home position (Figure 8.14 (h)). 
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In the pre-planning phase, ten trajectories are first generated by simulation, which 

is intuitively presented in Figure 8.15. The overall execution time of these trajectories 

variants from 10.301 s to 19.001 s, the path length of these trajectories variant from 1.30 

m to 5.55 m. As a baseline, the result of the pre-planning indicates that the robot motion is 

inconsistent and unpredictable by planning while only given the original start position and 

the original goal position of the testing trajectory. The unpredictable robot motions may 

lead to safety issues in the human-robot collaboration in the proposed manufacturing 

contexts.  

In the trajectory optimization phase, one optimal trajectory is selected from the 

above candidate trajectories via the proposed const-function-based approach. The original 

path length of the selected optimal trajectory is 1.569 m, and the corresponding execution 

time in full speed in the simulation is 10.301s. Afterward, the joint constraints, the halved 

waypoint, and the max curvature waypoint are extracted from the optimal trajectory. Based 

on this information of the optimal trajectory, the “Constraint + Halved and Max Curvature 

Figure 8.14. The process of the torsion bar assembly. 



144 

Waypoints” strategy is implemented in the following similarity-based motion planning in 

both simulation and hardware-in-the-loop testing. 

In the hardware-in-the-loop experiment, the robot runs at a reduced speed for safety 

purposes since the manipulator of the YMR12 mobile robot is not a collaborative 

manipulator. The maximum velocity scale and the maximum acceleration scale are set as 

0.02. To evaluate the consistency of the robot executions, the torsion bar assembly task 

described in the previous section is repeated 25 times. Another 25 times of full-speed 

executions in simulation, while the maximum velocity scale and the maximum acceleration 

scale are set as 1.0 are also conducted, for the reference of ideal execution time. As an 

intuitive representation of the trajectory consistency, the trajectories of the 25 executions, 

which are recorded from the feedback of the real robot, are plotted in Figure 8.16. The plot 

indicates that the proposed approaches can generate consistent trajectories in the hardware 

test. 

Figure 8.15. The candidate trajectories generated in the pre-planning phase by simulation. 
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For further quantitative results, the trajectory similarity of the simulation and the 

hardware test, which is calculated based on the proposed LCS-base algorithm, is shown in 

Figure 8.17. The average trajectory similarity of the 25 executions in the simulation and 

the hardware test is 98.4% and 97.4%, respectively. The standard deviation of the trajectory 

similarity in the simulation and the hardware test is 2.38% and 2.93%, respectively. Though 

there are some differences between the original optimal trajectory and each execution, the 

trajectory is still consistent visually as shown in. Figure 8.16. 

The overall execution time of the 25 executions of the testing trajectory in the 

hardware tests and the simulations are illustrated in Figure 8.18. The average execution 

time of the testing trajectory is 30.28s with a slow speed limit on the hardware and is 11.98s 

with full speed in the simulation. The standard deviation of the execution time is 0.302 s 

and 0.297 s for the simulation and the hardware test, respectively. 

Figure 8.16. The trajectories of 25 executions in robot experiment. 
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The path length of 25 executions of the testing trajectory in both the hardware and 

the simulation are shown in Figure 8.19. The average path length of the hardware test is 

1.5733 m and that of the simulation is 1.5675 m. The error between the hardware test and 

Figure 8.17. The trajectory similarity in the simulation and the hardware test. 

Figure 8.18. The execution time in the simulation and the hardware test. 
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the simulation result is less than 0.4%. The hardware executions achieve a standard 

deviation of 0.16 mm in trajectories length, while the simulation is with a standard 

deviation of 1.59 mm. 

The experimental results indicate that the proposed approach can obtain a better 

trajectory consistency in real industrial contexts. In the human-robot collaboration, the 

optimized robot motions can avoid collisions and singularities, and more predictable to the 

human in the human-robot collaboration. 

8.6 Conclusion 

In this chapter, a multi-model sampling-based motion planning framework for 

trajectory optimization and execution consistency in smart manufacturing contexts is 

proposed. By selecting the optimized trajectory, extracting the joint constraints, and 

assigning the intermediate waypoints between the start and goal positions via the proposed 

Figure 8.19. Trajectory length in simulation and hardware test. 
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approaches, robots can achieve consistent, predictable, and safe manipulations in human-

robot collaboration in real manufacturing contexts. The torsion bar assembly task is 

demonstrated to validate and evaluate the proposed approach in real-world industrial 

contexts. The results of the simulation and the hardware-in-the-loop testing revealed the 

effectiveness and the advantages of the proposed approaches. 

The objective of this research is to extend the application of sampling-based motion 

planning to productive industrial usage and human-robot collaborations. The current 

results demonstrated a trajectory section of the torsion bar assembly process with a well-

constructed environment and static obstacles. More complex tasks and dynamic 

environment will be conducted as our future work. 
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CHAPTER 9 

CONCLUSION AND FUTURE WORK 

9.1 Conclusion 

The dissertation aims to improve the level of automation in automotive assembly via 

human-robot collaboration. 

In Chapter 3, the design of a Smart Companion Robot (SCR) is proposed. The robot 

prototype is developed and validated with real collaborative assembly tasks in 

manufacturing. The SCR is a representative example of how we can leverage both human 

and robot capabilities in manufacturing, where the human handles dexterous assembly 

tasks while the robot handles the heavy payload of automotive parts. The application of 

such a robot system is clearly not limited to automotive assembly alone. Any 

manufacturing task that involves heavy-payload transportation and manipulation tasks 

could be benefited from this type of robot. In addition, the robot may also have a wide 

range of potential applications in other areas., such as domestic services. 

In Chapter 4, a vision-based approach is proposed to enable the robot to learn object 

placing tasks in assembly from human demonstrations. The experimental results indicate 

that our framework can abstract the knowledge of object-placing tasks from a human 

demonstration video in a simulation environment. The proposed framework can be used to 

modeling the object placing tasks and detecting the error of tasks online. Also, the approach 

is potential to be used in more completed assembly tasks. 

In Chapter 5, a CNN-based approach is proposed to learn and assist humans in 

assembly tasks from human demonstrations. Experimental results show that CNN is 
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effective in robot learning during collaborative assembly and the robot can be trained to 

actively assist humans in the human-robot collaborative assembly process in real-time. The 

training data can be obtained in a few rounds of demonstrations, which alleviates the need 

for complex modeling and setup compared to the existing approaches. It also suggests a 

potential way by which the robot can be personalized by its users to assist them in their 

preferred ways in collaborative assembly applications. 

In Chapter 6, a learn-to-collaboration approach with the TC-IRL method is proposed 

to generate robot assistance to assist humans in human-robot collaborative assembly. The 

TC-IRL approach can significantly reduce the size of the action and state space and lead to 

a reduced requirement of training data and computational cost compared to traditional IRL. 

The proposed approach can also allow humans to teach the robot to accomplish new tasks 

with larger geometry scales by learning from several small-scale demonstrations.  

In Chapter 7, a graph-based approach is proposed for robot learning of assembly 

tasks from non-expert human demonstrations. The proposed approaches adapted the 

FOON to assembly tasks, and the results indicate that robots can find the best possible 

assembly process among multiple rounds of non-expert demonstrations. The evaluation 

also indicates the effectiveness and advantages of the proposed approach compared to other 

existing approaches. 

In Chapter 8, a multi-model sampling-based motion planning framework for 

trajectory optimization and execution consistency in smart manufacturing contexts is 

proposed. The experimental results in the simulation and the hardware-in-the-loop testing 
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demonstrate the proposed approach can extend the application of sampling-based motion 

planning to productive industrial usage and human-robot collaborations. 

9.2 Future Work 

In this dissertation, research on collaborative robotic systems, especially the 

development and application of the parallel mobile manipulator, has been conducted. 

Further exploration can be conducted to facilitate the design and performance of the 

parallel mobile manipulators for realistic smart manufacturing applications. For example, 

different combinations of the mobile bases and the parallel manipulators are worth testing 

in real manufacturing applications. 

From the RLfD perspective, novel approaches to improve the safety, efficiency, and 

human comfort in multi-human multi-robots (a hybrid of both parallel and serial mobile 

manipulators) collaboration are worth further investigation. Also, the proper human-robot 

interactions in the process of robot teaching and learning are worth further improvement, 

especially the proper hints generated by the robots to guide the non-expert human partners 

to facilitate the effectiveness. 
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