14,323 research outputs found

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    ‘Smart Cities’ – Dynamic Sustainability Issues and Challenges for ‘Old World’ Economies: A Case from the United Kingdom

    Get PDF
    The rapid and dynamic rate of urbanization, particularly in emerging world economies, has resulted in a need to ïŹnd sustainable ways of dealing with the excessive strains and pressures that come to bear on existing infrastructures and relationships. Increasingly during the twenty-ïŹrst century policy makers have turned to technological solutions to deal with this challenge and the dynamics inherent within it. This move towards the utilization of technology to underpin infrastructure has led to the emergence of the term ‘Smart City’. Smart cities incorporate technology based solutions in their planning development and operation. This paper explores the organizational issues and challenges facing a post-industrial agglomeration in the North West of England as it attempted to become a ‘Smart City’. In particular the paper identiïŹes and discusses the factors that posed signiïŹcant challenges for the dynamic relationships residents, policymakers and public and private sector organizations and as a result aims to use these micro-level issues to inform the macro-debate and context of wider Smart City discussions. In order to achieve this, the paper develops a range of recommendations that are designed to inform Smart City design, planning and implementation strategies

    Roadmaps to Utopia: Tales of the Smart City

    No full text
    Notions of the Smart City are pervasive in urban development discourses. Various frameworks for the development of smart cities, often conceptualized as roadmaps, make a number of implicit claims about how smart city projects proceed but the legitimacy of those claims is unclear. This paper begins to address this gap in knowledge. We explore the development of a smart transport application, MotionMap, in the context of a ÂŁ16M smart city programme taking place in Milton Keynes, UK. We examine how the idealized smart city narrative was locally inflected, and discuss the differences between the narrative and the processes and outcomes observed in Milton Keynes. The research shows that the vision of data-driven efficiency outlined in the roadmaps is not universally compelling, and that different approaches to the sensing and optimization of urban flows have potential for empowering or disempowering different actors. Roadmaps tend to emphasize the importance of delivering quick practical results. However, the benefits observed in Milton Keynes did not come from quick technical fixes but from a smart city narrative that reinforced existing city branding, mobilizing a growing network of actors towards the development of a smart region. Further research is needed to investigate this and other smart city developments, the significance of different smart city narratives, and how power relationships are reinforced and constructed through them

    Crowdsourcing technologies to promote citizens’ participation in smart cities, a scoping review

    Get PDF
    The scoping review reported by this article aimed to identify (i) the purposes of the studies using crowdsourcing technologies in the context of the smart cities’ implementations, (ii) the characteristics of the crowdsourcing technologies being used, and (iii) the maturity level of the solutions being proposed. An electronic search was conducted, and 29 studies were included in the review after the selection process. The results show a current interest in crowdsourcing campaigns using participatory reporting and participatory sensing to (i) support urban infrastructures’ maintenance, (ii) facilitate urban mobility, (iii) monitor the environment, (iv) manage crowds, (v) aggregate geographical information, and (vi) collect citizens’ perspectives about the cities. However, the results also show low maturity level of the proposed solutions and lack of consolidated evidence about their effectiveness, which difficulties their dissemination.publishe

    Special section Industry 4.0: Challenges for the future in manufacturing

    Get PDF
    International audienceThe sensing enterprise is a digital business innovation concept making Cyber-Physical Systems, service-oriented architectures and advanced human-computer interactions converge, supporting a more agile, flexible, and proactive management of unexpected events in today’s global value networks. In essence, it concerns the adoption of future Internet technologies in virtual enterprises. Translating this concept to a general approach to smart systems (smart manufacturing, smart cities, smart logistics, etc.), requires new capabilities by next-generation information systems to perform sensing, modelling, and interpretation of “any” signal from the real world, thus providing the systems with higher flexibility and possibilities for reconfiguration (Panetto et al. 2016). Intuitively, a sensing system requires resources and machineries to be constantly monitored, configured, and easily controlled by human operators. All these functions, and much more indeed, are now implemented by the so-called (Industrial) Internet of Things or Cyber-Physical Systems. With the advent of the new cyber-physical system design paradigm, the number and diversity of systems that need to work together in the future enterprises have significantly increased (Weichhart et al. 2016). This trend highlights the need to shift from the classic central control of systems, towards systems interoperability as a capability to control, sense, and perceive distributed and heterogeneous systems and their environments, as well as to purposefully and socially act upon their perceptions. Such a shift could have important consequences on the future architecture design of the control of these systems. The emergence of cloud-based technologies will also have a significant impact on the design and implementation of cyber-physical systems; using such novel technologies, collaborative engineering practises will increase globally, thus enabling a new generation of small-scale industrial organizations to function in an information-centric manner and enabling industry 4.0 transformations (Cimini, et al, 2017). The potential of such technologies in fostering a leaner and more agile approach towards engineering is very high. Engineers and engineering organizations no longer have to be restricted to the availability of advanced processing capabilities, as they can adopt a ‘pay as you go’ approach, which will enable them to access and use software resources for engineering activities from any remote location in the world

    Collaborative networks: A pillar of digital transformation

    Get PDF
    UID/EEA/00066/2019 POCI-01-0247-FEDER-033926The notion of digital transformation encompasses the adoption and integration of a variety of new information and communication technologies for the development of more efficient, flexible, agile, and sustainable solutions for industrial systems. Besides technology, this process also involves new organizational forms and leads to new business models. As such, this work addresses the contribution of collaborative networks to such a transformation. An analysis of the collaborative aspects required in the various dimensions of the 4th industrial revolution is conducted based on a literature survey and experiences gained from several research projects. A mapping between the identified collaboration needs and research results that can be adopted from the collaborative networks area is presented. Furthermore, several new research challenges are identified and briefly characterized.publishe
    • 

    corecore