942 research outputs found

    Surface Defect Classification for Hot-Rolled Steel Strips by Selectively Dominant Local Binary Patterns

    Get PDF
    Developments in defect descriptors and computer vision-based algorithms for automatic optical inspection (AOI) allows for further development in image-based measurements. Defect classification is a vital part of an optical-imaging-based surface quality measuring instrument. The high-speed production rhythm of hot continuous rolling requires an ultra-rapid response to every component as well as algorithms in AOI instrument. In this paper, a simple, fast, yet robust texture descriptor, namely selectively dominant local binary patterns (SDLBPs), is proposed for defect classification. First, an intelligent searching algorithm with a quantitative thresholding mechanism is built to excavate the dominant non-uniform patterns (DNUPs). Second, two convertible schemes of pattern code mapping are developed for binary encoding of all uniform patterns and DNUPs. Third, feature extraction is carried out under SDLBP framework. Finally, an adaptive region weighting method is built for further strengthening the original nearest neighbor classifier in the feature matching stage. The extensive experiments carried out on an open texture database (Outex) and an actual surface defect database (Dragon) indicates that our proposed SDLBP yields promising performance on both classification accuracy and time efficiencyPeer reviewe

    The Effects of Character-Level Data Augmentation on Style-Based Dating of Historical Manuscripts

    Get PDF
    Identifying the production dates of historical manuscripts is one of the main goals for paleographers when studying ancient documents. Automatized methods can provide paleographers with objective tools to estimate dates more accurately. Previously, statistical features have been used to date digitized historical manuscripts based on the hypothesis that handwriting styles change over periods. However, the sparse availability of such documents poses a challenge in obtaining robust systems. Hence, the research of this article explores the influence of data augmentation on the dating of historical manuscripts. Linear Support Vector Machines were trained with k-fold cross-validation on textural and grapheme-based features extracted from historical manuscripts of different collections, including the Medieval Paleographical Scale, early Aramaic manuscripts, and the Dead Sea Scrolls. Results show that training models with augmented data improve the performance of historical manuscripts datin g by 1% - 3% in cumulative scores. Additionally, this indicates further enhancement possibilities by considering models specific to the features and the documents’ script

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Human face recognition under degraded conditions

    Get PDF
    Comparative studies on the state of the art feature extraction and classification techniques for human face recognition under low resolution problem, are proposed in this work. Also, the effect of applying resolution enhancement, using interpolation techniques, is evaluated. A gradient-based illumination insensitive preprocessing technique is proposed using the ratio between the gradient magnitude and the current intensity level of image which is insensitive against severe level of lighting effect. Also, a combination of multi-scale Weber analysis and enhanced DD-DT-CWT is demonstrated to have a noticeable stability versus illumination variation. Moreover, utilization of the illumination insensitive image descriptors on the preprocessed image leads to further robustness against lighting effect. The proposed block-based face analysis decreases the effect of occlusion by devoting different weights to the image subblocks, according to their discrimination power, in the score or decision level fusion. In addition, a hierarchical structure of global and block-based techniques is proposed to improve the recognition accuracy when different image degraded conditions occur. Complementary performance of global and local techniques leads to considerable improvement in the face recognition accuracy. Effectiveness of the proposed algorithms are evaluated on Extended Yale B, AR, CMU Multi-PIE, LFW, FERET and FRGC databases with large number of images under different degradation conditions. The experimental results show an improved performance under poor illumination, facial expression and, occluded images

    QUIS-CAMPI: Biometric Recognition in Surveillance Scenarios

    Get PDF
    The concerns about individuals security have justified the increasing number of surveillance cameras deployed both in private and public spaces. However, contrary to popular belief, these devices are in most cases used solely for recording, instead of feeding intelligent analysis processes capable of extracting information about the observed individuals. Thus, even though video surveillance has already proved to be essential for solving multiple crimes, obtaining relevant details about the subjects that took part in a crime depends on the manual inspection of recordings. As such, the current goal of the research community is the development of automated surveillance systems capable of monitoring and identifying subjects in surveillance scenarios. Accordingly, the main goal of this thesis is to improve the performance of biometric recognition algorithms in data acquired from surveillance scenarios. In particular, we aim at designing a visual surveillance system capable of acquiring biometric data at a distance (e.g., face, iris or gait) without requiring human intervention in the process, as well as devising biometric recognition methods robust to the degradation factors resulting from the unconstrained acquisition process. Regarding the first goal, the analysis of the data acquired by typical surveillance systems shows that large acquisition distances significantly decrease the resolution of biometric samples, and thus their discriminability is not sufficient for recognition purposes. In the literature, diverse works point out Pan Tilt Zoom (PTZ) cameras as the most practical way for acquiring high-resolution imagery at a distance, particularly when using a master-slave configuration. In the master-slave configuration, the video acquired by a typical surveillance camera is analyzed for obtaining regions of interest (e.g., car, person) and these regions are subsequently imaged at high-resolution by the PTZ camera. Several methods have already shown that this configuration can be used for acquiring biometric data at a distance. Nevertheless, these methods failed at providing effective solutions to the typical challenges of this strategy, restraining its use in surveillance scenarios. Accordingly, this thesis proposes two methods to support the development of a biometric data acquisition system based on the cooperation of a PTZ camera with a typical surveillance camera. The first proposal is a camera calibration method capable of accurately mapping the coordinates of the master camera to the pan/tilt angles of the PTZ camera. The second proposal is a camera scheduling method for determining - in real-time - the sequence of acquisitions that maximizes the number of different targets obtained, while minimizing the cumulative transition time. In order to achieve the first goal of this thesis, both methods were combined with state-of-the-art approaches of the human monitoring field to develop a fully automated surveillance capable of acquiring biometric data at a distance and without human cooperation, designated as QUIS-CAMPI system. The QUIS-CAMPI system is the basis for pursuing the second goal of this thesis. The analysis of the performance of the state-of-the-art biometric recognition approaches shows that these approaches attain almost ideal recognition rates in unconstrained data. However, this performance is incongruous with the recognition rates observed in surveillance scenarios. Taking into account the drawbacks of current biometric datasets, this thesis introduces a novel dataset comprising biometric samples (face images and gait videos) acquired by the QUIS-CAMPI system at a distance ranging from 5 to 40 meters and without human intervention in the acquisition process. This set allows to objectively assess the performance of state-of-the-art biometric recognition methods in data that truly encompass the covariates of surveillance scenarios. As such, this set was exploited for promoting the first international challenge on biometric recognition in the wild. This thesis describes the evaluation protocols adopted, along with the results obtained by the nine methods specially designed for this competition. In addition, the data acquired by the QUIS-CAMPI system were crucial for accomplishing the second goal of this thesis, i.e., the development of methods robust to the covariates of surveillance scenarios. The first proposal regards a method for detecting corrupted features in biometric signatures inferred by a redundancy analysis algorithm. The second proposal is a caricature-based face recognition approach capable of enhancing the recognition performance by automatically generating a caricature from a 2D photo. The experimental evaluation of these methods shows that both approaches contribute to improve the recognition performance in unconstrained data.A crescente preocupação com a segurança dos indivĂ­duos tem justificado o crescimento do nĂșmero de cĂąmaras de vĂ­deo-vigilĂąncia instaladas tanto em espaços privados como pĂșblicos. Contudo, ao contrĂĄrio do que normalmente se pensa, estes dispositivos sĂŁo, na maior parte dos casos, usados apenas para gravação, nĂŁo estando ligados a nenhum tipo de software inteligente capaz de inferir em tempo real informaçÔes sobre os indivĂ­duos observados. Assim, apesar de a vĂ­deo-vigilĂąncia ter provado ser essencial na resolução de diversos crimes, o seu uso estĂĄ ainda confinado Ă  disponibilização de vĂ­deos que tĂȘm que ser manualmente inspecionados para extrair informaçÔes relevantes dos sujeitos envolvidos no crime. Como tal, atualmente, o principal desafio da comunidade cientĂ­fica Ă© o desenvolvimento de sistemas automatizados capazes de monitorizar e identificar indivĂ­duos em ambientes de vĂ­deo-vigilĂąncia. Esta tese tem como principal objetivo estender a aplicabilidade dos sistemas de reconhecimento biomĂ©trico aos ambientes de vĂ­deo-vigilĂąncia. De forma mais especifica, pretende-se 1) conceber um sistema de vĂ­deo-vigilĂąncia que consiga adquirir dados biomĂ©tricos a longas distĂąncias (e.g., imagens da cara, Ă­ris, ou vĂ­deos do tipo de passo) sem requerer a cooperação dos indivĂ­duos no processo; e 2) desenvolver mĂ©todos de reconhecimento biomĂ©trico robustos aos fatores de degradação inerentes aos dados adquiridos por este tipo de sistemas. No que diz respeito ao primeiro objetivo, a anĂĄlise aos dados adquiridos pelos sistemas tĂ­picos de vĂ­deo-vigilĂąncia mostra que, devido Ă  distĂąncia de captura, os traços biomĂ©tricos amostrados nĂŁo sĂŁo suficientemente discriminativos para garantir taxas de reconhecimento aceitĂĄveis. Na literatura, vĂĄrios trabalhos advogam o uso de cĂąmaras Pan Tilt Zoom (PTZ) para adquirir imagens de alta resolução Ă  distĂąncia, principalmente o uso destes dispositivos no modo masterslave. Na configuração master-slave um mĂłdulo de anĂĄlise inteligente seleciona zonas de interesse (e.g. carros, pessoas) a partir do vĂ­deo adquirido por uma cĂąmara de vĂ­deo-vigilĂąncia e a cĂąmara PTZ Ă© orientada para adquirir em alta resolução as regiĂ”es de interesse. Diversos mĂ©todos jĂĄ mostraram que esta configuração pode ser usada para adquirir dados biomĂ©tricos Ă  distĂąncia, ainda assim estes nĂŁo foram capazes de solucionar alguns problemas relacionados com esta estratĂ©gia, impedindo assim o seu uso em ambientes de vĂ­deo-vigilĂąncia. Deste modo, esta tese propĂ”e dois mĂ©todos para permitir a aquisição de dados biomĂ©tricos em ambientes de vĂ­deo-vigilĂąncia usando uma cĂąmara PTZ assistida por uma cĂąmara tĂ­pica de vĂ­deo-vigilĂąncia. O primeiro Ă© um mĂ©todo de calibração capaz de mapear de forma exata as coordenadas da cĂąmara master para o Ăąngulo da cĂąmara PTZ (slave) sem o auxĂ­lio de outros dispositivos Ăłticos. O segundo mĂ©todo determina a ordem pela qual um conjunto de sujeitos vai ser observado pela cĂąmara PTZ. O mĂ©todo proposto consegue determinar em tempo-real a sequĂȘncia de observaçÔes que maximiza o nĂșmero de diferentes sujeitos observados e simultaneamente minimiza o tempo total de transição entre sujeitos. De modo a atingir o primeiro objetivo desta tese, os dois mĂ©todos propostos foram combinados com os avanços alcançados na ĂĄrea da monitorização de humanos para assim desenvolver o primeiro sistema de vĂ­deo-vigilĂąncia completamente automatizado e capaz de adquirir dados biomĂ©tricos a longas distĂąncias sem requerer a cooperação dos indivĂ­duos no processo, designado por sistema QUIS-CAMPI. O sistema QUIS-CAMPI representa o ponto de partida para iniciar a investigação relacionada com o segundo objetivo desta tese. A anĂĄlise do desempenho dos mĂ©todos de reconhecimento biomĂ©trico do estado-da-arte mostra que estes conseguem obter taxas de reconhecimento quase perfeitas em dados adquiridos sem restriçÔes (e.g., taxas de reconhecimento maiores do que 99% no conjunto de dados LFW). Contudo, este desempenho nĂŁo Ă© corroborado pelos resultados observados em ambientes de vĂ­deo-vigilĂąncia, o que sugere que os conjuntos de dados atuais nĂŁo contĂȘm verdadeiramente os fatores de degradação tĂ­picos dos ambientes de vĂ­deo-vigilĂąncia. Tendo em conta as vulnerabilidades dos conjuntos de dados biomĂ©tricos atuais, esta tese introduz um novo conjunto de dados biomĂ©tricos (imagens da face e vĂ­deos do tipo de passo) adquiridos pelo sistema QUIS-CAMPI a uma distĂąncia mĂĄxima de 40m e sem a cooperação dos sujeitos no processo de aquisição. Este conjunto permite avaliar de forma objetiva o desempenho dos mĂ©todos do estado-da-arte no reconhecimento de indivĂ­duos em imagens/vĂ­deos capturados num ambiente real de vĂ­deo-vigilĂąncia. Como tal, este conjunto foi utilizado para promover a primeira competição de reconhecimento biomĂ©trico em ambientes nĂŁo controlados. Esta tese descreve os protocolos de avaliação usados, assim como os resultados obtidos por 9 mĂ©todos especialmente desenhados para esta competição. Para alĂ©m disso, os dados adquiridos pelo sistema QUIS-CAMPI foram essenciais para o desenvolvimento de dois mĂ©todos para aumentar a robustez aos fatores de degradação observados em ambientes de vĂ­deo-vigilĂąncia. O primeiro Ă© um mĂ©todo para detetar caracterĂ­sticas corruptas em assinaturas biomĂ©tricas atravĂ©s da anĂĄlise da redundĂąncia entre subconjuntos de caracterĂ­sticas. O segundo Ă© um mĂ©todo de reconhecimento facial baseado em caricaturas automaticamente geradas a partir de uma Ășnica foto do sujeito. As experiĂȘncias realizadas mostram que ambos os mĂ©todos conseguem reduzir as taxas de erro em dados adquiridos de forma nĂŁo controlada

    The Optimisation of Elementary and Integrative Content-Based Image Retrieval Techniques

    Get PDF
    Image retrieval plays a major role in many image processing applications. However, a number of factors (e.g. rotation, non-uniform illumination, noise and lack of spatial information) can disrupt the outputs of image retrieval systems such that they cannot produce the desired results. In recent years, many researchers have introduced different approaches to overcome this problem. Colour-based CBIR (content-based image retrieval) and shape-based CBIR were the most commonly used techniques for obtaining image signatures. Although the colour histogram and shape descriptor have produced satisfactory results for certain applications, they still suffer many theoretical and practical problems. A prominent one among them is the well-known “curse of dimensionality “. In this research, a new Fuzzy Fusion-based Colour and Shape Signature (FFCSS) approach for integrating colour-only and shape-only features has been investigated to produce an effective image feature vector for database retrieval. The proposed technique is based on an optimised fuzzy colour scheme and robust shape descriptors. Experimental tests were carried out to check the behaviour of the FFCSS-based system, including sensitivity and robustness of the proposed signature of the sampled images, especially under varied conditions of, rotation, scaling, noise and light intensity. To further improve retrieval efficiency of the devised signature model, the target image repositories were clustered into several groups using the k-means clustering algorithm at system runtime, where the search begins at the centres of each cluster. The FFCSS-based approach has proven superior to other benchmarked classic CBIR methods, hence this research makes a substantial contribution towards corresponding theoretical and practical fronts

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Robust approaches for face recognition

    Full text link
    This thesis gave answers to a number of important questions regarding face classification. Via this research, new methods were introduced to represent four facial attributes (three of them related to the demographic information of the human face: gender, age and race) and the fourth one related to facial expression. It stated that, discriminative facial features regarding to demographic information (gender, age and race) and expression information can be obtained by applying texture analysis techniques to the polar raster sampled images. In addition, it is found that, multi-label classification (MLC) is more suitable in the real world as a human face can be associated with multiple labels
    • 

    corecore